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As a result of their good performance in practice and their desirable analytical properties, Gaussian
process regression models are becoming increasingly of interest in statistics, engineering and other
fields. However, two major problems arise when the model is applied to a large data-set with repeated
measurements. One stems from the systematic heterogeneity among the different replications, and
the other is the requirement to invert a covariance matrix which is involved in the implementation
of the model. The dimension of this matrix equals the sample size of the training data-set. In this
paper, a Gaussian process mixture model for regression is proposed for dealing with the above two
problems, and a hybrid Markov chain Monte Carlo (MCMC) algorithm is used for its implementation.
Application to a real data-set is reported.
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1. Introduction

Gaussian processes have been used in many applications. Ini-
tially proposed in O’Hagan (1978), Gaussian process priors have
recently been used in Bayesian approaches to regression, clas-
sification and other areas; see reviews by Williams (1998) and
MacKay (1999). However, two major problems arise when the
Gaussian process regression model is applied to a large data-
set with repeated measurements. Such data can often be re-
garded as consisting of a number of ‘batches’ of values, and one
source of difficulty results from possible heterogeneity among
the different batches. For example, the application we discuss
later concerns data collected during standing-up manoeuvres of
paraplegia patients. In practice a few hundred data points are
collected during each standing-up of a given patient, and the
procedure is repeated several times for each of a number of pa-
tients. The data from a single standing-up manoeuvre constitutes
a ‘batch’ in this context. Obviously, the mechanism underlying
different standings-up is quite similar, but possibly not the same,
even for the same patient. This results in heterogeneity among
the replications. The other problem is that implementation of
the model requires the inversion of a covariance matrix of di-

mension N × N , where N is the sample size of the training
data. This takes time O(N 3). Even though computing speed has
rapidly increased and some approximation methods have been
proposed (see for example Gibbs and MacKay 1996), imple-
mentation is still time-consuming for a large training data-set.
Some approaches, such as the Bayesian committee machine
(Tresp 2000), have been developed to deal with the second
problem.

In this paper, we use a Gaussian process mixture model for
regression to deal with both problems. Mixture models repre-
sent a flexible approach (see e.g. Titterington, Smith and Makov
1985, McLachlan and Peel 2000) for modelling a large data-set
when there might be heterogeneity and a ‘pure’ model might
be inadequate. The idea of a mixture model involving Gaus-
sian processes has been reported before in the literature. For
example, Lemm (1999) used mixtures of Gaussian process pri-
ors to model data with arbitrary density and applied the model
to image analysis. Rasmussen and Ghahramani (2002) used a
mixture model of Gaussian process experts for data in a single
batch. They assume that each observation in the batch comes
from one of a number of Gaussian processes but the identity
of that Gaussian process is not observed, and can vary from

0960-3174 C© 2005 Springer Science + Business Media, Inc.



32 Shi, Murray-Smith and Titterington

observation to observation. The same is true of the method of
Tresp (2001).

Our approach is different. We assume that each batch of
observations comes from one of a set of Gaussian processes,
with all observations within a batch coming from the same pro-
cess. The familiar hierarchical structure of mixture models is
then created by the assumption that the identity of the Gaus-
sian process underlying a given batch is missing. A Bayesian
approach is used for analyzing the resulting hierarchical
model.

Our problem can be thought of as one of curve fitting with
high-dimensional input variables. This is a difficult problem, for
which neural network models are often used in practice (see e.g.
Cheng and Titterington 1994). However, our experience with
our dataset is that the Gaussian process regression model gives
a better fit than does the neural network model; see Section 4.
Certain nonparametric approaches, such as spline smoothing,
can also be used for curve fitting, but implementation is very
complicated unless the dimensionality of the input variables is
very small.

The paper is organized as follows. Section 2 gives a brief re-
view of Gaussian process models for regression. Section 3 pro-
poses the hierarchical mixture model, and gives details of the
algorithm, which implements a Bayesian analysis of the prob-
lem. Section 4 examines the performance of the model and the
algorithm on a numerical example. Some discussion and further
development are given in Section 5.

2. Gaussian process priors for regression

We are given training data consisting of N data points {yi , xi , i =
1, . . . , N }, where, for each i , xi is a Q-dimensional vector of
inputs (independent variables), and yi is the output (dependent
variable, target). A Gaussian process regression model is defined
by

yi = f (xi ) + εi , (1)

where εi ∼ N (0, σ 2
v ) is an error term. Errors on different data

points are independent. The function f (xi ) is a nonlinear func-
tion of xi . The prior for this function is assumed to correspond
to a Gaussian process; i.e., for each i , f (xi ) has a multivariate
normal distribution with zero mean, and there exists a covari-
ance function C(xi , x j ) := Cov( f (xi ), f (x j )). An example of
such a covariance function is

C(xi , x j ) = C(xi , x j ;θ)

= v0 exp

(
− 1

2

Q∑
q=1

wq

(
xiq − x jq

)2

)

+ a0 + a1

Q∑
q=1

xiq x jq , (2)

where θ = (w1, . . . , wQ, v0, a0, a1, σ
2
v ) denotes the set of un-

known parameters. Therefore, y = (y1, . . . , yN )′ has a normal

distribution with zero mean and covariance matrix

�(θ) = C(θ) + σ 2
v I, (3)

where I is an identity matrix, C(θ) is an N × N matrix with
elements as given in (2), and �(θ) is an N × N matrix.

The covariance function (2) is often used in practice. The first
term recognises high correlation between the outputs of cases
with nearby inputs, while the other terms are a bias term and a
linear regression term; see O’Hagan (1978) and Williams and
Rasmussen (1996), among others. More discussion about the
choice of covariance function can be found in MacKay (1999).

Given a covariance function and a set of training data,

D = {y, X} = {(y1, x1), . . . , (yN , xN )},
the log-likelihood is L(θ) = − 1

2 log |Ψ(θ)| − 1
2 yT Ψ(θ)−1 y −

N
2 log 2π, and the maximum likelihood estimate (MLE) of θ can
be calculated with the help of an iterative optimization method,
such as the conjugate gradient method. This requires the eval-
uation of Ψ(θ)−1, which takes time O(N 3). Efficient imple-
mentation with particular reference to approximation of the ma-
trix inversion has been well developed; see for example Gibbs
(1997) and MacKay (1999). However, the method is still time-
consuming for large sets of training data.

The Gaussian process framework also includes a straightfor-
ward way of predicting an output based on the relevant test inputs
and on the training data. Let x∗ be the test inputs and let f (x∗) be
the related nonlinear function. The distribution of f (x∗) given
x∗ and the training data D is also a Gaussian distribution, with
mean and variance given by

E( f (x∗) |D) = ψT (x∗)Ψ−1 y, (4)

Var( f (x∗) |D) = C(x∗, x∗) − ψT (x∗)Ψ−1ψ(x∗), (5)

where ψ(x∗) = (C(x∗, x1), . . . , C(x∗, xN ))T and Ψ is the co-
variance matrix of (y1, . . . , yN ) given in (3). If y∗ is the related
output, then its predictive distribution is also Gaussian, with
mean given by (4) and variance (Var( f (x∗) |D) + σ 2

v ).
Clearly these recipes for prediction involve the parameters θ.

In non-Bayesian analysis the mean (4), evaluated at the MLE of
θ, is generally used as a prediction for y∗.

In our Bayesian approach, prior information about the un-
known parameter θ is summarised in the form of a prior density
p(θ). Then the posterior density for θ given the training data D
is

p(θ |D) ∝ p(θ)p(y | X,θ), (6)

where p(y | X,θ) is the density function of an N -dimensional
multivariate normal distribution with zero mean and covariance
matrix Ψ(θ), such as is defined by (3). Since the form of the
covariance function is complicated in terms ofθ, it is not feasible
to carry out analytical inference based on the above posterior
distribution. A Markov chain Monte Carlo approach is generally
used; see Neal (1997) and MacKay (1999).
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Fig. 1. Paraplegia data for one patient: trajectory of the body COM
for five standings-up for one patient, where comy and comz represent
horizontal and vertical position respectively

3. Hierarchical mixture models

3.1. The hierarchical models

We first use the paraplegia data to illustrate the data struc-
ture; the details will be given in Section 4. As mentioned in
Section 1, in this example, we study standing-up manoeuvres
made by paraplegic patients. The output is the pair of horizontal
and vertical trajectories of the body centre of mass, and the input
variables include a range of different measures such as forces
and torques under the patient’s feet and the arm support. Our
main objective is to model and predict the above output using
the input variables. In one standing-up, a few hundred (training)
data points (involving output and input variables) are recorded.
In Fig. 1, each curve along the x-axis represents the output hor-
izontal trajectory (comy) for one standing-up manoeuvre, and
the y-axis represents the output vertical trajectory (comz). Each
curve constitutes a set of data points for comy and comz, each of
which can be modelled by a Gaussian process regression model
as discussed in the previous section, and prediction can be based
on the posterior mean of the nonlinear function f (x) as given in
(4).

In fact, Fig. 1 presents 5 batches of data, corresponding to 5
standings-up. Clearly the basic model structure seems to be the
same for different batches and yet there is evidence of hetero-
geneity between different batches. Arguably this heterogeneity
could represent just random variability, but incorporation of the
possibility of systematic heterogeneity by fitting mixture models
appears to be justified by the resulting improvement in fit shown
later, for example in Fig. 5.

In general, suppose that there are M different batches of data
and that, in the mth batch, Nm observations are collected. The
observations are assumed independent for the different batches.
Let the observations be ymn, m = 1, . . . , M, n = 1, . . . , Nm .
Similarly to (1), the data in the mth batch can be modelled

by

ymn = fm(xmn) + εmn. (7)

Let Dm be the data, both outputs and inputs, collected in the mth
batch. The model for the nonlinear function fm(x) is assumed
to correspond to a Gaussian process defined by (2), and this is
denoted by

fm(x) ∼ G P(θm). (8)

If there is no heterogeneity among the different batches, or if
we are happy to assume that a pure Gaussian process model is
adequate, we can assume that all the θm’s are the same. How-
ever, in the paraplegia example, the patient may use different
techniques in different standings-up, so that we need to ac-
commodate the possibility of heterogeneity for the five batches
of data presented in Fig. 1. We also need to analyse data col-
lected from different patients, and then the heterogeneity is
likely to be more severe, because of factors such as the dif-
ferent ages, weights, heights and injury levels for the different
patients.

A random-effect-type approach is one way of dealing with
heterogeneity. For example, we can use a hierarchical approach
in which Gaussian process models (7) and (8) are combined with
a parametric model,

θm ∼ g(·), (9)

where g(·) is the density function of a known distribution, such
as a normal distribution. However, since the dimension of θ
is generally very large and the meaning of θ is not clear, it
is very difficult to justify such a parametric model (in fact, in
Section 5.1 we do report the results obtained from an asymptotic
approach with a random-effects flavour). Instead, we choose a
finite mixture model, in which

fm(x) ∼
K∑

k=1

πkGP(θk), (10)

where K is the number of components in the mixture model,
and πk is the weight corresponding to the kth component. We
assume that K has a given fixed value in this paper; discussion
about how to choose K will be given in the next two sections.
We shall assume that the K component Gaussian process models
have the same structure, defined in (2), but with different val-
ues of the parameter θk . However, the theory and the algorithm
developed in the following sections can also be used without
substantial difficulty for mixtures of Gaussian processes with
different structures.

The model in (10) can be regarded as a hierarchical model, if
we introduce an unobservable latent indicator variable zm . If the
value of zm is given, as k, say, which can take any value from
1 to K , the model for batch m is a Gaussian process regression
model G P(θk), i.e.

fm(x) | (zm = k) ∼ GP(θk). (11)



34 Shi, Murray-Smith and Titterington

The higher-level model for the latent indicator variable takes the
simple form in which

P(zm = k) = πk, k = 1, . . . , K , (12)

independently for each m.
This hierarchical model offers certain advantages. First, it is

easy to extend it to a more general model. For example, the
distribution of the latent indicator variable z may depend on
some information um related to the particular group, such as
the age, sex and height of the patient in our paraplegia data, so
that an allocation model of the form zm ∼ F(um) may be used
as a higher-level model in (12), along the lines of Thompson
et al. (1998). Secondly, the latent indicator variable can be used
in implementation; see the discussion in the rest of this section.

3.2. Bayesian inference for θ

3.2.1. Priors

Let Θ = (θ1, . . . ,θK ) and π = (π1, . . . , πK ), and let D be the
collection of training data. The posterior density of the unknown
parameters is given by

p(Θ,π |D) ∝ p(Θ,π)p(D |Θ,π), (13)

where

p(D |Θ,π) =
M∏

m=1

K∑
k=1

πk p(ym |θk, Xm).

We assume that, a priori, Θ and π are independent, and the θk

are independent and identically distributed, so that

p(Θ,π) = p(π)
K∏

k=1

p(θk).

We will use the covariance function defined in (2), and adopt the
priors given in Rasmussen (1996); see also Neal (1997). Thus,
each wi has an inverse Gamma distribution:

w−1 ∼ Ga

(
α

2
,

α

2µ

)
.

Note that E(w−1) = µ and that small values of α produce
vague priors. The hyperparameter µ is assumed to take the value
µ0 Q2/α, with α = 1, µ0 = 1. The priors on log(σ 2

v ), a0 and a1

are taken as Gaussian, N (−3, 32), corresponding to fairly vague
priors, and the prior on log(v0) is N (−1, 1) (Rasmussen 1996).

As in the general setting of mixture models, we assume that
(π1, . . . , πK ) has a Dirichlet distribution, i.e.

p(π1, . . . , πk) ∼ D(δ, . . . , δ),

with δ = 1, for example.
Obviously, it is very difficult to do analytical posterior analysis

for (13). A hybrid MCMC algorithm is therefore proposed in
this paper and the details are given in the next subsection.

3.2.2. The implementation

We use the Gibbs sampler (Geman and Geman 1984) to deal with
(13). However, instead of generating a sample of (Θ,π) from
its posterior density (13) directly, we found that implementation
is much simpler if the latent variables z = (z1, . . . , zM ) are
simulated along with the unknown parameterΘ, as is common in
the Bayesian analysis of mixture data. Inference about π can be
easily obtained through z by model (12). The detailed description
of one sweep of this procedure based on the Gibbs sampler is
defined as follows:

(a) update z from p(z |Θ,D) given the current value of Θ; and
(b) update Θ from p(Θ | z,D) given the current value of z.

In Step (a), p(z1, . . . , zM | y,Θ) still has quite a complicated
form. A Gibbs subalgorithm is therefore used in this step; we
present the details in the Appendix.

In Step (b), if we assume that, a priori, the θk are independent,
for k = 1, . . . , K , then the conditional density function of Θ is

p(Θ |D, z) =
K∏

k=1

p(θk |D, z),

with

p(θk |D, z) ∝ p(θk)
∏

m∈{zm=k}
p(ym |θk, Xm). (14)

Thus θk, k = 1, . . . , K , are conditionally independent given
(z1, . . . , zM ), and we can deal with each θk separately. Note
that the right-hand side of (14) involves a product of factors of
the form p(ym |θk, Xm), which just requires the inversion of a
covariance matrix of dimension Nm , and this is generally much
smaller than the total sample size of N = N1 + · · · + NM . As
a consequence, the computational burden is much less than that
incurred by modelling the data-set by a single Gaussian process
regression model.

However, the dimension of θk is Q + 4 for the covariance
function defined in (2), where Q may vary from one to a few
dozen. Moreover, the above conditional density function may
have a complex form, and may be multi-modal. It is still quite
challenging to simulate from such a density function. In this
paper, we adopt the Hybrid MC method (Duane, Kennedy and
Roweth 1987), the details of which are given in the Appendix.
The discussion in Rasmussen (1996) and Neal (1997) indicates
that this is a good method for sampling from the above condi-
tional distribution.

Therefore, our algorithm consists of a Gibbs subalgorithm in
Step (a) and a Hybrid Monte Carlo algorithm in Step (b). The
algorithm still converges to the correct stationary distribution
provided the chains from the subalgorithms are aperiodic and
irreducible; see for example Section 5.4.4 in Carlin and Louis
(2000). We shall refer to the algorithm as Hybrid Markov chain
Monte Carlo (Hybrid MCMC).
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3.3. Prediction

Using the algorithm discussed above, we generate T , say, sam-
ples of the parameters of interest Θ and the latent indicator
variables z from their joint posterior distribution. Denote the set
of samples by {θ(t)

1 , . . . ,θ
(t)
K , z(t), t = 1, . . . , T }. The idea of the

Bayesian sampling-based approach is to use this set of samples
to do posterior inference, including prediction.

For prediction, we need the posterior density of fm(x) at x∗,
namely

p( fm(x) |D, x∗) =
∫

p( fm(x) |Dm, x∗,θ, zm)

× p(θ, zm |Dm) dθ dzm

� 1

T

T∑
t=1

p
(

fm(x) |Dm, x∗,θ(t), z(t)
m

)
. (15)

The distribution corresponding to p( fm(x) |Dm, x∗,θ(t), z(t)
m ) is

Gaussian with mean of the form (4) and variance of the form (5).
In general, we use the predictive mean of (15) as a prediction
for a new set of test inputs in the mth batch, calculated by

ŷ∗
m = (

ŷ∗(1)
m + · · · + ŷ∗(T )

m

)
/T, (16)

where ŷ∗(t)
m is given by (4) for the particular value θ(t). The vari-

ance associated with the prediction can be calculated similarly,
as

σ̂ ∗2
m = 1

T

T∑
t=1

σ̂ ∗2(t)
m + 1

T

T∑
t=1

(
ŷ∗(t)

m

)2 − (ŷ∗
m)2, (17)

where σ̂
∗2(t)
m is given by (5). The predictive variance is (σ̂ ∗2

m +σ̂ 2
v ).

Batches 1, . . . , M provide an empirical distribution of the set
of all possible batches. This empirical distribution can be written
as

P̂(batch is batch m) = 1

M
, (18)

for m = 1, . . . , M . We can use this for the batch identifier of
any new set of data. Therefore, the prediction for the response
associated with a test input x∗ in a new batch is

ŷ∗ =
M∑

m=1

ŷ∗
m/M (19)

and the variance is

σ̂ ∗2 =
M∑

m=1

σ̂ ∗2
m

/
M +

(
M∑

m=1

ŷ∗2
m /M − ŷ∗2

)
, (20)

where ŷ∗
m and σ̂ ∗2

m are given by (16) and (17) respectively. Note
that σ̂ ∗2 is larger than the average of the variances,

∑M
m=1 σ̂ ∗2

m /M .
The second item in (20) represents the heterogeneity among the
different batches. The predictive variance is (σ̂ ∗2 + σ̂ 2

v ).

4. Application to the modelling
of standing-up manoeuvres

Our application concerns FES-assisted standing-up manoeuvres
performed by paraplegic patients. The acronym ‘FES’ stands for
‘Functional Electrical Stimulation’: patients stand up with the
help of an arm support along with electrical stimulation of their
paralyzed lower extremities. The Functional Electrical Stimu-
lation artificially invokes muscle contractions and thus creates
torques in the body joints. In the case of standing up, the knee
joint extensor muscles, the quadriceps group, are stimulated by
two surface electrodes on each leg. In the experiments, the stim-
ulation level was constant and was triggered by the user via push-
buttons; for more details see Kamnik, Bajd and Kralj (1999). The
stimulation sequences were determined on the basis of known
subject body position and arm reactions. Using Goniometers, ac-
celerometers, other sensors and the related algorithms, we can
arrange for the body position and other information to be fed
back to the simulator control system. However, the equipment
is very expensive and it is a tedious job to set the sensors. This
method can therefore only be used in the simulation or labora-
tory environment; it is not suitable for implementation in home
or clinical praxis. For this reason, the supportive forces acting
at the interaction points with the paraplegic’s environment are
considered as an alternative feedback source; for more details
see Kamnik et al. (2003). To use the supportive force feedback
information, we need a model that relates the supportive forces
to the output trajectory. In this paper, we select as outputs the
horizontal (comy) and vertical (comz) trajectories of the body
COM (centre of mass), and select 14 input variables, such as
the forces and torques under the patient’s feet, under the arm
support handle and under the seat while the body is in contact
with it. In one standing-up, output and inputs are recorded for
a few hundred time steps. The experiment was repeated several
times for one patient, and there are total of 8 patients involved
in this project. The data are standardized by height and weight
of the patient (see the details in Kamnik et al. 2003).

First we study the data-set in Fig. 1, which shows the trajec-
tories of the body COM for the five standings-up for a single
patient; there are a few hundred data points for each standing up.
From the whole data-set, we randomly select about half of the
data points from the first three standings-up as training data; the
rest are used as test data. The sample sizes of the training data
are 101, 76 and 91 respectively for the three batches. We apply
the hierarchical mixture model defined by (11) and (12). For
each mixture component, we use the same covariance function
(2), but with different values of the parameter θk .

We assume that the number of components is K = 2, and
use the hybrid MCMC algorithm to generate samples from the
relevant posterior distribution. The algorithm converges very
quickly. On the basis of traces of the values of the log-likelihood
and other criteria (see e.g. Gelman 1996), the algorithm tends
to stabilise after about 1200 iterations (see Fig. 2). In this
example, we discard the first 2000 iterations. In order to have
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Fig. 2. Paraplegia data for one patient: (a) The values of log-likelihood for two mixture components. (b) Samples of unknown parameters generated
from their posterior distributions for two mixture components

approximately independent draws, we select one sample from
each 20 iterations, and a total of 100 samples are selected
altogether. Those 100 samples are approximately independently
and identically distributed according to the related posterior
distribution. They form the basis of posterior inference, such as
the creation of predictions for test data.

To measure the performance of the model and the algorithm,
the actual output values of the test data are compared with the
predictions. The results are plotted in Fig. 3 and presented in
Table 1, where rmse is root mean squared error between the
prediction and the true test value, and r is the related correlation
coefficient. There are two kinds of test data. One is made up of
the other half of the data points in the first three standings-up.
We expect that in this case the predictions should be very close
to the true data. The numerical results in Table 1 and Fig. 3
confirm this expectation. The other set of test data comes from
the last two standings-up. We use the training data from the first

three standings-up to simulate those two manoeuvres; this is one
of the major objectives of this engineering project. The results
are also presented in Table 1 and Fig. 3. The values of rmse
are 0.0097 and 0.0052, and the sample correlation coefficients
are 0.9638 and 0.9963, for comy and comz respectively. From
those summary statistics and from Fig. 3, the fit is seen to be
very good. The method has also been compared with neural
network models in Kamnik et al. (2002). The results obtained
from the Gaussian process mixture model are much better than
those achieved by the neural network model. For example, the
value of rmse achieved by the former model for the first three
standings-up in Fig. 3 is about half of the value obtained with
the latter model; for details see Kamnik et al. (2002).

We have discussed how to predict a new standing-up ma-
noeuvre using data from the same patient. A more interesting
problem is to simulate a standing-up manoeuvre for a patient
different from those who contributed to the training data. To
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Fig. 3. Paraplegia data for one patient: The true test data (points), the predictions and the 95% confidence intervals (lines)

illustrate this, we use a training data-set that includes half the
data points from the first three standings-up for five patients.
There are therefore a total of 15 ‘batches’ of data. We use a
Gaussian process regression mixture model with four mixture
components to build a predictor that we apply to a new pa-
tient. The final results are presented in Table 1 and Fig. 4. As
expected the results are not as good as with prediction based
on data from the same patient (see the last two standings-up in
Fig. 3). However, if we bear in mind the complexity of the prob-
lem and compare the results with those of other approaches,
such as neural network models, the overall performance is
good. More discussion of this issue will be given in the next
section.

We now discuss some problems in the selection of the model
and its implementation. The first issue is that of the number of
mixture components, which is related to the number of ‘clus-

Table 1. rmse and correlation coefficient (r) between true and pre-
dicted responses

Training data: Half of first three standings-up
Model: GP regression mixture model with two components

comy comz

Test data rmse r rmse r
First three standings-up 0.0023 0.9967 0.0012 0.9994
Last two standings-up 0.0097 0.9638 0.0052 0.9963

Training data: Half of first three standings-up for 5 patients
Model: GP regression mixture model with four components

comy comz

Test data rmse r rmse r
Five standings-up for new patient 0.0195 0.4596 0.0291 0.9269

ters’ among the different batches. Here we choose this number
empirically. Biomechanics research has shown that patients usu-
ally use the following three ways of standing up: the static man-
ner, in which they bring their upper body forward prior to rising
and then they rise primarily in the vertical direction; the dynam-
ical manner, in which the manoeuvre is fast and consists of two
phases, namely forward motion with which they pull their up-
per body forward and vertical motion when they rise vertically;
and in the third way patients stand up primarily with the help
of their arm support. (However, information about the type of
standing-up underlying our data is not available to us, and in
general it is difficult to know in practice which method a patient
used.) Bearing in mind the differences among different patients,
we use a mixture model with four mixture components when
we work on the training data from five patients. Figure 5 shows
the results obtained by using the mixture model with K = 4
and K = 1; the results from the former are much better than
those from the latter. We have also tried the model with three
components; the final results are almost the same as the results
in Table 1 for K = 4. For the case when the training data come
from the same patient, since the heterogeneity among the dif-
ferent standings-up is not very substantial, we choose the model
with two mixture components.

The version of the hybrid MCMC algorithm used in this paper
is quite efficient and converges very quickly. For the mixture
model, the dimension of the covariance matrix that requires to
be inverted is equal to the sample size of each batch, and the
CPU time for running one iteration on our SPARC station 20 is
about 2 seconds in this example, comparing to about 23 seconds
for the conventional method, which treats all the training data
as a single ‘batch’. The approach is also quite robust. When
we choose different values of the hyperparameters in the prior
distribution, the final results are almost the same; the sample
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Fig. 4. Prediction for standing-up manoeuvre for a new patient based on training data from five others: The true test data (points), the predictions
and the 95% confidence intervals (lines)

Fig. 5. Prediction for standing-up manoeuvre for a new patient using
the mixture model with K = 1 (dotted line, rmse = 0.0270) and K = 4
(dashed line, rmse = 0.0199). The solid line represents true values

size is generally quite large for these engineering problems, so
the data dominate the prior.

If the number of input variables is large, the number of un-
known parameters is also large. We should choose the starting
point carefully to avoid divergence of the algorithm, especially
when the number of mixture components and the number of
batches are also large. One way of achieving this is to choose
the means of the prior distribution as the starting points. For
some complicated problems, we may consider the following ap-
proach: divide the batches into K ‘clusters’ using the knowledge
and information obtained in collecting data, such as the differ-
ent ways of standing up; then use a single GP regression model
in each cluster separately. The estimates from this single model

are used as the starting point of the final mixture model and
the starting values of the indicator variables are related to those
clusters. Both approaches were used in our example. Both sets
of final results were good and were very similar to each other.

5. Discussion

5.1. Other methods for prediction

In Section 3.3, we assume that the empirical distribution is (18),
and use (19) and (20) to calculate a prediction and its variance
for a new set of test inputs x∗. An alternative approach is to use
the following asymptotic result:

f̂ m(x∗) ∼ N
(

fm(x∗), σ̂ ∗2
m

)
, (21)

for m = 1, . . . , M , where ˆf m(x∗) is the posterior mean of the
nonlinear function fm(x) corresponding to the mth batch, given
by (16), and σ̂ ∗2

m is given by (17). If we assume that the fm(x∗)
are the same for all M batches, then a weighted least squares
calculation estimates the prediction f (x∗) = fm(x∗) by∑

m
ˆf m(x∗)

/
σ̂ ∗2

m∑
m 1

/
σ̂ ∗2

m

,

with variance
1∑

m 1
/
σ̂ ∗2

m

.

The idea is quite similar to the Bayesian committee machine
(BCM) which divides the whole data-set into M different
batches, but does not accommodate heterogeneity (Tresp 2000).

Heterogeneity can be modelled by incorporating the following
lower-level model:

fm(x∗) ∼ N ( f (x∗), τ 2).
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The estimate of the overall mean is then∑
m

ˆf m(x∗)
/(

σ̂ ∗2
m + τ̂ 2

)
∑

m 1
/(

σ̂ ∗2
m + τ̂ 2

) ,

and the estimated variance is

1∑
m 1

/(
σ̂ ∗2

m + τ̂ 2
) , (22)

where τ̂ 2 is an estimate of τ 2, obtained for example by maximum
likelihood. This is in fact a random-effects-type approach and
contains features that are similar to aspects of the method given
in Section 3.3. The second term in (20) has an effect similar
to that of τ 2 here, in that both represent heterogeneity among
different groups.

We compared these different approaches by calculating the
pointwise 95% Bayesian credible regions for the paraplegia data.
The results are shown in Fig. 6. The dashed line represents the
results obtained from the above model with heterogeneity. These
results seem reasonable. The method discussed in Section 3.3
gave a very similar result, which is not presented here.

The dotted lines in Fig. 6 represent the Bayesian credible
regions calculated from the model by the BCM, which are unre-
alistically narrow for the example; empirical coverage rates are
also presented. The model without consideration of heterogene-
ity, i.e. with τ = 0, gave a very similar result to this.

However, if the data are collected from different sources that
show considerable variety, the Bayesian credible regions cal-
culated by the method in Section 3.3 or the above model with
heterogeneity may be very wide. This phenomenon is shown in
Fig. 3. Though the point predictions were quite good, the credi-
ble regions gave little information. Since different patients will

Fig. 6. Predictions with 95% Bayesian credible regions: Solid line—the true value; dashed lines—regions calculated from the model with hetero-
geneity, giving coverage rates of 0.966 and 0.902 for each manoeuvre in the upper panel and 0.818 and 0.936 for the lower; dotted lines—regions
calculated from BCM, for which the coverage rates are 0.408, 0.460, 0.188 and 0.484 respectively

have different heights, weights, levels of injury, etc., the variety
among them is substantial. Therefore, the variance in (22) will be
dominated by τ 2, which is the variance related to heterogeneity.
A way of dealing with this problem is to model the indicator vari-
able (12) using further contextual information about individual
patients. Research along these lines is in progress.

5.2. Further developments

We have assumed that the number of mixture components K
is fixed, and we use an ad hoc approach to determine this
number. There is much literature concerning the selection of
K . For the Bayesian approach discussed in this paper, a pos-
sible approach is to maximize, over K , the scoring function
P(D, K ) = p(K )p(D | K ), where

p(D | K ) =
∫

p(D |ΘK , K )p(ΘK | K ) dΘK ,

and p(K ) is a prior probability that there are K components.
Here ΘK denotes all unknown parameters including {πk}, and
the dimension of ΘK is generally very large, so that this integral
is intractable. It is therefore of interest to find an approxima-
tion to the above integral or an alternative approach to model
selection. Ideally we would wish to tackle the problems of as-
sessing the value of K and parameter estimation simultaneously
using methods such as those in Richardson and Green (1997)
and Stephens (2000). Research along these lines is currently in
progress.

In our application, the output trajectory and the input sup-
portive forces are all functions of time. Functional data analysis
(Ramsay and Silverman 1997) is an ideal alternative approach
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for modelling such relationships. However, implementation is
very difficult, even for the functional linear model, when the out-
put response and the input covariates are all treated as functions.
It therefore requires further research to develop some efficient
algorithms and to study functional nonlinear models.

Appendix: Hybrid MCMC algorithm

The details of the subalgorithms for the Hybrid MCMC algo-
rithm discussed in Section 3.2.2 are as follows.

Step (a) Sampling from p(z1, . . . , zm | y,Θ)
Let ck be the number of observations for which zm = k, over

all m = 1, . . . , M . Then

p(z1, . . . , zM | π1, . . . , πK ) =
K∏

k=1

π
ck
k ,

and

p(z1, . . . , zM ) =
∫

p(z1, . . . , zM | π1, . . . , πK )

× p(π1, . . . , πK )dπ1 . . . dπK

= �(K δ)

�(M + K δ)

K∏
k=1

�(ck + δ)

�(δ)
.

The conditional density function of zm is

p(zm = k | z−m) = c−m,k + δ

M − 1 + K δ
,

where the subscript −m indicates all indices except m and c−m,k

is the number of observations for which zi = k for all i �= m. A
Gibbs subalgorithm is used to update zm by sampling from the
following density:

p(zm = k | z−m, y,Θ) ∝ p(zm = k | z−m)p(y |Θ, z)

∝ p(zm = k | z−m)p(ym |θk).

We used the fact that p(ym |θ, zm) is the density function of
the Gaussian distribution with zero mean and covariance matrix
Ψ(θk) if zm = k.

An alternative approach is to treat (π1, . . . , πK ) as missing
variables as well. One sweep of the procedure for sampling z
and π is as follows:

(i) sample zm from p(zm = k | y,Θ,π) ∝ πk p(ym |θk);
(ii) sample (π1, . . . , πK ) from p(π1, . . . , πK ) ∼ D(δ +

c1, . . . , δ + cK ).

In this approach, a sample of π is also generated.

Step (b) Sampling from p(θk |D, z) in (14).
We write p(θk |D, z) ∝ exp(−E), where E is called potential

energy. If we assume that, a priori, the θk are independent for
k = 1, . . . , K , then the conditional density function of Θ is

p(Θ |D, z) =
K∏

k=1

p(θk |D, z)

with

p(θk |D, z) ∝ p(θk)
∏

m∈{zm=k}
p(ym |θk).

Thus θk, k = 1, . . . , K , are conditionally independent given
(z1, . . . , zM ), and we can deal with each θk separately. (For
simplicity we omit the subscript k from θk in the rest of
this Appendix.) The idea of the Hybrid MC method (Duane,
Kennedy and Roweth 1987) is to create a fictitious dynamical
system where the parameter vector θ of interest, called the
position variables, is augmented by a set of latent variables
φ, called the momentum variables, with the same dimension
as that of θ. The kinetic energy is a defined as a function of
the associated momenta: K(φ) = 1

2

∑
φi/λ. The momentum

variables are therefore independent and Gaussian with zero
mean and variance λ. The total energy H of the system is
the sum of the kinetic energy K and the potential energy E .
The Hybrid MC samples are drawn from the joint distribution
p(θ,φ |D, z) ∝ exp(−H) = exp(−E − K).

One sweep of a variation of the Hybrid MC Algorithm
(Horowitz 1991, see also Neal 1993, Rasmussen 1996) is as
follows.

(i) Starting from the current state (θ,φ), calculate the new
state (θ(ε),φ(ε)) by the following ‘Leapfrog’ steps with
step size ε:

φi

(
ε

2

)
= φi − ε

2

∂E
∂θi

(θ),

θi (ε) = θi + εφi

(
ε

2

)
/λ,

φi (ε) = φi

(
ε

2

)
− ε

2

∂E
∂θi

(θ(ε)),

where ∂E(θ)/∂θi is the first derivative of E evaluated at θ.
(ii) The new state (θ∗,φ∗) is such that

(θ∗,φ∗) =



(θ(ε),φ(ε)) with probability
min(1, p(θ,φ)/p(θ(ε),φ(ε)))

(θ, −φ) otherwise,

where p(θ,φ)/p(θ(ε),φ(ε)) = exp[H(θ(ε),φ(ε)) − H
(θ,φ)].

(iii) Generate vi from the standard Gaussian distribution, and
update φi to αφ∗

i + √
1 − α2vi .

Rasmussen (1996) suggests setting ε = 0.5N−1/2
m , λ = 1 and

α = 0.95.
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