
Biometrics 63, 714–723

September 2007
DOI: 10.1111/j.1541-0420.2007.00758.x

Gaussian Process Functional Regression Modeling for Batch Data

J. Q. Shi,1,∗ B. Wang,1 R. Murray-Smith,2 and D. M. Titterington2

1School of Mathematics and Statistics, University of Newcastle, Newcastle Upon Tyne NE1 7RU, U.K.
2Department of Computing Science and Department of Statistics, University of Glasgow, Glasgow G12 8QQ, U.K.

∗email: j.q.shi@ncl.ac.uk

Summary. A Gaussian process functional regression model is proposed for the analysis of batch data. Co-
variance structure and mean structure are considered simultaneously, with the covariance structure modeled
by a Gaussian process regression model and the mean structure modeled by a functional regression model.
The model allows the inclusion of covariates in both the covariance structure and the mean structure. It
models the nonlinear relationship between a functional output variable and a set of functional and non-
functional covariates. Several applications and simulation studies are reported and show that the method
provides very good results for curve fitting and prediction.
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1. Introduction
We begin by discussing a motivating example. The applica-
tion concerns data collected during standing-up maneuvers
of paraplegic patients. The outputs are the trajectories of the
body center of mass (COM), required for a simulator control
system; for details see Section 3.3. However, it is very difficult
to measure the body position unless some expensive equip-
ment is used and set up in a laboratory environment. Thus,
one of the aims of the project is to develop a model for re-
constructing the trajectory of the body COM by using some
easily measured quantities, such as the forces and torques un-
der the patient’s feet, under the arm support, and under the
seat while the body is in contact with it. More than 30 such
input variables are observed in the project. Figure 1 depicts
40 curves of y(t), the vertical trajectories of the body COM,
denoted by comz. Each curve represents a standing-up maneu-
ver. Eight patients participated in the experiment, and each
of them repeated the experiment five times. Our aim is to find
a “model” f to model and predict y(t) given covariates x(t) =
(x1(t), . . . , xQ(t))′:

y(t) = f(t, x1(t), . . . , xQ(t)) + ε(t). (1)

In each standing-up, both the output variable y(t) and the
input variables {x1(t), . . . , xQ(t)} are observed at a few hun-
dred time points ti , for i = 1, . . . , N . If we observe M repli-
cations, the mth replication is called the mth batch (m =
1, . . . , M). The data collected are called batch data, termi-
nology that is popular in the engineering community.

We have little information about the physical relation-
ship between the output variable y(t) and the input variables
{x1(t), . . . , xQ(t)}. For such data, it is typically not realis-
tic to use parametric models, or nonparametric linear mod-
els such as the functional linear regression models discussed
in Ramsay and Silverman (1997) and the varying-coefficient

linear models described in Fan, Yao, and Cai (2003). Our idea
is to treat the output curve, corresponding to a batch, as a
stochastic process and then to estimate the mean and covari-
ance structure simultaneously:

ym(t) = μm(t) + τm(x), (2)

where μm(t) = E(ym(t)) and τm(x) is a stochastic process
with zero mean and covariance kernel function C(x, x∗) with
x = x(t).

To be specific, we will use a Gaussian process regression
(GPR) model for τm(x) in equation (2). The GPR model
has been widely used as a nonparametric approach; see for
example O’Hagan (1978), Williams (1998), Neal (1999), and
Rasmussen and Williams (2006). In the model, τ = f(x) is
an output curve, where f(·) is a function mapping an input
x ∈ Rq into τ ∈ R, and a Gaussian process prior is assumed
for f(·): f(x) has a normal distribution with zero mean and
covariance kernel C(x, x∗). The GPR approach models the
nonlinear relationship between y(t) and x(t) through a Gaus-
sian process. Because we assume a zero mean or a given mean
for the GPR model, we need first to standardize the data.
This is straightforward for a single batch of data, which can
be standardized by simply subtracting the sample mean. How-
ever, standardization is intractable for batch data, especially
when it is used to generate predictions for a completely new
batch; see Section 2.2. In Section 3.3, we will show that for
the paraplegia example the performance of the GPR model is
very good if we use training data collected from a particular
patient to predict a new standing-up for the same patient;
different standings-up for the same patient have similar mean
structures. However, the performance of predictions for a new
patient is not so good; mean structures of batches from differ-
ent patients are quite variable (see Figure 1), because of dif-
ferences in height, weight, and other factors for the different
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Figure 1. Paraplegia data for eight patients: vertical tra-
jectory of the body COM comz coordinate (y-axis, in mm)
against time (x-axis, in seconds). Each curve corresponds to
one standing-up.

patients. Another limitation of the GPR model is that, al-
though it performs very well in interpolating test data, its
extrapolation performance deteriorates very rapidly when the
test data are “distant” from the training data. A typical ex-
ample is that of multiple-step-ahead forecasting. For k-step-
ahead forecasting, GPR performs very well when k is small;
see, for example, Girard and Murray-Smith (2005). However,
when k is large, GPR usually fails in prediction; see Sec-
tion 3.2. In this article, we try to address these problems and
improve the performance of the GPR model by considering
the mean structure and covariance structure simultaneously.

To model the mean structure we will use a functional re-
gression model (Ramsay and Silverman, 1997) with functional
coefficient parameters and nonfunctional covariates (i.e., we
use some batch-based information). We will show that using
this type of mean structure within a GPR model can improve
the performance substantially.

The idea of modeling the mean and covariance structure si-
multaneously has been reported elsewhere. For example, Rice
and Silverman (1991) estimated the mean function using a cu-
bic spline and estimated the covariance structure via smooth
nonparametric estimates of the relevant eigenfunctions. How-
ever, their method is limited to the case of a one-dimensional
input variable. Eubank (2003) dealt with a forecasting prob-
lem by using a linear functional regression (LFR) model with
a special covariance structure.

The article is organized as follows. Section 2 proposes the
Gaussian process functional regression (GPFR) model, and
shows how to estimate unknown parameters and predict new
test data. Several applications are reported in Section 3. Some
discussion and further developments are given in Section 4.

2. The Gaussian Process Regression Model
with Functional Mean Structure

2.1 The Gaussian Process Regression Model for Batch Data
The discrete form of a GPR model for a single batch of N
observations is defined as

y = (y1, . . . , yN )′ ∼ N(0,C), (3)

where C is an N × N covariance matrix, of which the ijth
element Cij = C(xi, xj) is a function of input covariates xi

and xj . An example of such a covariance function is

C (xi,xj) = C (xi,xj ;θ)

= v0 exp

{
−1

2

Q∑
q=1

wq(xiq − xjq)
2

}

+ a0 + a1

Q∑
q=1

xiqxjq + σ0δij , (4)

where θ = (w1, . . . ,wQ , v0, a0, a1, σ2
0) denotes the set of un-

known parameters, and δij is the Kronecker delta. Models (3)
and (4) define a nonlinear model for y, given x = (x1, . . . , xQ);
some recent developments can be found in Rasmussen and
Williams (2006). The GPR is nonparametric, and it is usually
not very sensitive to the different choices of kernel covariance
functions. In practice, we can use equation (4) for most of
problems. Some other types of covariance function and the
related problems are discussed in MacKay (1999).

To deal with a data set based on repeated experiments
involving similar objects and processes, that is, consisting of
several batches, Shi, Murray-Smith, and Titterington (2005)
proposed a hierarchical GPR model. Suppose that there are
M different batches of data and that, in the mth batch, Nm

observations are recorded. The data collected in the mth batch
are

Dm = {(ymi , tmi , xm,1,i, . . . , xm,Q,i) for i = 1, . . . , Nm;

and (um1, . . . , ump)}, (5)

where tmi is the time point at which we record the data,
ymi = y(tmi ) is the output, for example, the body comz posi-
tion, recorded at tmi and xm,q,i = xq(tmi ) is the measurement
of the qth input variable for q = 1, . . . , Q. The elements of
um = (um1, . . . , ump)

′ are not functional data, that is, do not
depend on t; they offer information for each curve, such as the
patient’s height and weight and the technique used in a par-
ticular standing-up. In Shi et al.’s hierarchical mixture model
we have that

ym | zm = k ∼ GPk(θ), (6)

where ym = (ym1, . . . , ymN m)′, and zm is an unobservable la-
tent indicator variable corresponding to the mth batch. If
zm = k is given, the model for the Nm correlated observa-
tions in batch m is a GPR model GPk (θ); that is, the process
has a normal distribution with zero mean or a given mean μ,
and a covariance kernel function Ck (xi, xj ; θ). The associa-
tion among the different batches is introduced by the latent
variable zm , for which

P (zm = k) = πk, k = 1, . . . , K, (7)

for specified K. This model is used to address the problem of
heterogeneity but without using the batch-based information
um. A special case is the model (6) with K = 1:

ym ∼ GP(θ), (8)
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independently, for m = 1, . . . , M . In this model, the hetero-
geneity among the different batches is ignored.

2.2 Gaussian Process Functional Regression Model
As already mentioned, the Gaussian process defined in equa-
tion (6) is usually assumed to have zero mean or a known
mean μ. To apply it to batch data, we need to center the
data by subtracting its sample batch mean, calculated from
the training data for each batch. However, this method has
its limitations, as mentioned in Section 1. There are two main
problems. First, if the training data are not distributed uni-
formly over the whole time range, if for example only the data
corresponding to the first half of a standing-up were recorded,
the batch sample mean calculated from such a data set could
be quite different from the real mean. Secondly, it is difficult
to use this model to predict a new batch for which there are
no training data, in particular for a new patient.

Instead, we model the mean structure as well as the co-
variance structure. We use a functional regression model
to model the mean structure and a Gaussian process to
model the covariance structure; that is, we use the model
given in equation (2), where τm(x) is a zero-mean Gaus-
sian process with covariance function C(·, ·), as defined in
Section 2.1.

There is a large literature on fitting nonparametric curve
μm(t) with a scalar input variable t. To model the dependence
of the mean functions on the batch-based covariates, um, we
use a similar idea to that discussed in Ramsay and Silverman
(1997) and take

μm(t) = u′
mβ(t), (9)

where the coefficient β is functional.
If we have observed data in the form of Dm in equation (5)

for the mth batch, it is natural to consider a discrete form of
the above model, given by

ymi = μmi + τmi ; m = 1, . . . , M, i = 1, . . . , Nm, (10)

where μmi = μm(tmi ) = u′
mβ(tmi ) and τ m = (τm1, . . . , τmN m)′

is defined in equation (6) or its special case (8). We will refer
to this model as the GPFR model.

This model is quite distinct from the LFR model discussed
in Ramsay and Silverman (1997), which models the mean
structure only. This is illustrated by the example given in
Figure 2a, in which the solid line represents the true mean
curve whereas the dotted line represents the curve with a
random error, fluctuating around the true mean curve. The
dashed line represents a curve with dependent errors, which
is a Gaussian process depending on a functional input vari-
able x; for details see Section 3.1. This curve is systematically
different from the true mean curve; 30 such sample curves are
presented in Figure 2b.

2.3 Estimation
It is not difficult to write down a penalized likelihood for
model (10), and then estimate the unknown parameters in-
volved in both the mean structure and the covariance struc-
ture. However, the implementation is tedious and there may
be computational problems. We use a two-stage approach in
this article. In the first stage we estimate the mean struc-
ture by using B-spline smoothing; see for example Rice and

Silverman (1991), Faraway (1997, 2001) and Ramsay and
Silverman (1997). We approximate each curve ym(t) (m =
1, . . . , M) by

ym(t) = A′
mΦ(t),

where Φ(t) = (Φ1(t), . . . ,ΦK(t))′ are the B-spline basis func-
tions and Am = (Am1, . . . , AmK )′. The coefficients A =
(Amk ) form an M × K matrix, whose elements are chosen
to minimize

∫ (
ym(t) −

K∑
k=1

AmkΦk(t)

)2

dt .

The functional parameters can be expanded as β(t) = BΦ(t),
where B is a p × K matrix, which can be estimated by B̂ =
(U ′U)−1U ′A, where U = (u1, . . . , uM )′ is an M × p matrix.
An estimate of the mean function is given by

μ̂m(t) = u′
mB̂Φ(t). (11)

Selection of the form and number of the basis functions is dis-
cussed by Faraway (1997, 2001). From our empirical experi-
ence, the accuracy of the model depends mainly on successful
modeling of the covariance structure when the output curves
depend on many input functional covariates. Thus, we do not
need to use many basis functions in this first stage. For the
examples discussed in the next section, we found that 20 basis
functions were enough.

In the second stage, we replace μmi in equation (10) by its
estimate μ̂mi = μ̂m(tmi ) from equation (11). Thus,

τ̂mi = ymi − μ̂mi

is modeled by a Gaussian process as defined in equations (6)
or (8) with covariance function C(·, ·; θ). A standard method
such as a maximum likelihood or a Markov chain Monte Carlo
approach can be used to estimate the unknown parameters
θ, leading to θ̂ say; see, for example, Rasmussen (1996) and
Williams (1998). Implementation in the case of batch data is
described by Shi et al. (2005).

2.4 Prediction
We now consider the generation of a prediction y∗ at a
new test point (t∗, x∗) with x∗ = x(t∗). From equation (2),
ŷ∗ = μ̂(t∗) + τ̂(x∗), where τ ∗ = τ(x∗) is predicted by its con-
ditional mean E(τ ∗ | D) through the Gaussian process with
estimated covariance function C(·, ·; θ̂). We will discuss two
types of prediction in this subsection. First we suppose that
we have already observed some training data in a batch, the
(M + 1)th batch say, and want to predict the output for a
new set of inputs. In addition to the training data observed
in the first M batches, we assume that N observations are
obtained in the new batch, providing data

DM+1 =
{(

yM+1,i, tM+1,i, xM+1,1,i, . . . , xM+1,Q,i

)
for i = 1, . . . , N ; and uM+1

}
.

We therefore have training data D = {D1, . . . ,DM ,DM+1}. It
is of interest to predict y∗ at a new test data point t∗ in the
(M + 1)th batch. Let x∗ = x(t∗) be the observed test inputs.
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Figure 2. The sample curves. (a) Solid line—the true mean curve; dotted line—the curve with random errors; dashed
line—the curve with errors having GP covariance structure depending on x. (b) Thirty sample curves with GP errors.

We use the Gaussian process assumption for the (M + 1)th
batch, (

τM+1,1, . . . , τM+1,N , τ ∗)′ ∼ N(0,Ω) (12)

where τ = y − μ and Ω is an (N + 1) × (N + 1) covariance
matrix

Ω =

[
C C

(
x∗,xM+1

)
C ′(x∗,xM+1

)
C(x∗,x∗)

]
(13)

where C(x∗, xM+1) = (C(x∗, xM+1,1), . . . , C(x∗, xM+1,N ))′,
is the covariance matrix between y∗ and yM+1 =
(yM+1,1, . . . , yM+1,N )′, and C is the N × N covariance matrix
of yM+1 or τ M+1, which depends on xM+1. The covariance
can be calculated by, for example, equation (4) with the pa-
rameters estimated as in the previous subsection. Thus, the
predictive distribution of y∗, given training data D and the
mean μ(t), is also a Gaussian distribution. Its mean and vari-
ance are given by

E(y∗ | D,μ) = μM+1(t
∗) + H ′(yM+1 − μM+1(t)), (14)

σ∗2
GP = Var(y∗ | D,μ) = C(x∗,x∗) − H ′CH, (15)

where μM+1(t) = (μM+1(t1), . . . , μM+1(tN ))′ is the vector of
means at data points t = (t1, . . . , tN ), and H ′ = [C(x∗,
xM+1)]

′C−1. Thus the prediction for y∗ is given by

ŷ∗
M+1 = μ̂M+1(t

∗) + H ′(yM+1 − μ̂M+1(t)), (16)

where μ̂M+1(t
∗) and μ̂M+1(t) are given by equation (11), that

is, μ̂M+1(·) = u′
M+1B̂Φ(·). The prediction variance can be cal-

culated from the conditional variances in equations (14) and
(15):

σ̂∗2
M+1 = Var(y∗ | D) = E{Var(y∗ | D,μ)} + Var{E(y∗ | D,μ)}

= σ̂∗2
GP

(
1 + u′

M+1(U
′U)−1uM+1

)
, (17)

where σ̂∗2
GP is given by equation (15), in which all the pa-

rameters are replaced by their estimators. The derivation of
equation (17) is given in Appendix A.

The second type of prediction is to predict for a com-
pletely new batch. We shall still refer to the new batch as the

(M + 1)th batch, with batch-based covariate uM+1. We want
to predict y∗ at (t∗, x∗). In this case, the training data are
D = {D1, . . . ,DM}. Because we have not observed any data
in the (M + 1)th batch, we cannot use the predictive mean
and covariance matrix discussed above, which is based on
the Gaussian process assumption (12). The argument in Shi
et al. (2005) is that batches 1, . . . , M provide an empirical
distribution of the set of all possible batches. We will use a
similar idea here but only for the Gaussian process compo-
nent τM+1(·) = yM+1(·) − μ̂M+1(·). We assume that, for m =
1, . . . , M, P (τ ∗ belongs to mth batch) = 1/M . To say that τ ∗

belongs to the mth batch means that (τm,1, . . . , τm,Nm , τ ∗) ∼
N(0,Ωm), where Ωm is an (Nm + 1) × (Nm + 1) covari-
ance matrix which is defined similar to equation (13). We
can, therefore, calculate ŷ∗

m and σ̂∗2
m from equations (16) and

(17), respectively, as if the test data belongs to the mth batch.
Because the empirical distribution is relevant to the Gaussian
process component only, ŷ∗

m is given by

ŷ∗
m = μ̂M+1(t

∗) + H ′(ym − μ̂m(t)). (18)

The value of σ̂∗2
m is given by equations (17) and (15), but

the related covariance matrices are calculated at x∗ and
(xm,1, . . . , xm,Nm).

Based on the above empirical assumption, the prediction
for the response associated with a test input x∗ at t∗ in a
completely new batch is

ŷ∗ =

M∑
m=1

ŷ∗
m

/
M, (19)

and the predictive variance is

σ̂∗2 =

M∑
m=1

σ̂∗2
m

/
M +

(
M∑

m=1

ŷ∗2
m

/
M − ŷ∗2

)
. (20)

3. Applications
3.1 Learning and Prediction for Large Batch Data Sets
We first consider an example with simulated data. The
true model used to generate the data is ymi (xmi ) = um +
sin(0.5xmi )

3 + τmi , where, for each m, xmi ∈ (−4, 4) and {τmi}
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Figure 3. The predictions obtained by the different methods, where the solid line represents the true curve, the dashed line
represents the predictions, and the dotted lines represent 95% prediction intervals.

is a Gaussian process with zero mean and covariance func-
tion C(xmi , xmj) = v0 exp{− 1

2w0(xmi − xmj)
2} + σ0δij , with

v0 = 0.1, w0 = 1.0 and σ2
0 = 0.0025. In this example, xmi

is the same as tmi . Thirty independent curves are generated
and are presented in Figure 2b, where um = 0 for batches 1 to
10, um = −1 for batches 11 to 20, and um = 1 for the remain-
ing 10 batches. In each batch, 100 data points are generated.
We randomly select half of the data points as training data.

In this example, only one discrete covariate um is used
in the mean structure model (9). The model is such that
μm(t) = β1(t) when um = −1, μm(t) = β2(t) when um =
0, and μm(t) = β3(t) when um = 1. We use cubic B-spline
smoothing with 18 knots equally spaced in (−4, 4) and the
method discussed in Section 2.3 to estimate βi(t), for i = 1,
2, 3. We then apply a GPR model to τ̂m(t) = ym(t) − μ̂m(t)
with covariance function (4), depending on the scalar input
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Table 1
The values of rmse and r between true and predicted responses

Type I Type II

Results for Model rmse r rmse r

Figure 3 GPFR 0.0485 0.9976 0.1634 0.9814
LFR 0.3616 0.8718 0.4054 0.9510
GPR 0.1066 0.9865 0.5693 0.4455

rmse r rmsea r rmseb rmsec

Simu. Study GPFR 0.0588 0.9954 0.2802 0.9270 0.1321 0.3116
LFR 0.3244 0.9068 0.3318 0.9143 0.2874 0.3352
GPR 0.0830 0.9911 0.6044 0.1246 0.2271 0.6843

aThe overall rmse comparing true and predicted responses in range [0, 4].
bThe rmse comparing true and predicted responses in range [0, 1].
cThe rmse comparing true and predicted responses in range [1, 4].
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Figure 4. The k-step-ahead forecasts and the associated 95% prediction intervals.
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Table 2
Numerical results of rmse and r for k-step-ahead forecasting

1 step 3 step 6 step

Results for Model rmse r rmse r rmse r

Figure 4 GPFR 0.0697 0.9925 0.1001 0.9838 0.1658 0.9502
LFR 0.2564 0.9291 0.2241 0.9054 0.2314 0.9044
GPR 0.1452 0.9683 0.3972 0.7010 0.5842 −0.0439

Simu. Study GPFR 0.0785 0.9896 0.1229 0.9769 0.2169 0.9360
LFR 0.3013 0.8989 0.3097 0.8820 0.3242 0.8172
GPR 0.1487 0.9670 0.4375 0.6640 0.5994 0.0021

variable x as discussed in Section 2.3. Prediction can then be
carried out by the method discussed in Section 2.4.

To assess the performance of the method, we calculate pre-
dictions for a new batch and compare them with the actual
output values of the test data. One hundred data points are
generated in a new batch with um = 1. Half of the data are
selected as part of the training data and are used to predict
the rest. Two types of training data are considered. Type I
data are selected randomly from the whole set of 100 points.
In type II data, data points corresponding to x ∈ (−4, 0) are
used as training data and the rest are used as test data. Thus,
type I prediction is essentially interpolation, while type II pre-
diction involves extrapolation, which is obviously harder. For
comparison, GPR and LFR are also applied to the same data
set.

The predictions obtained by the different methods, along
with the actual values of the test data, are plotted in Figure 3
and presented in Table 1, in which rmse is the root mean
squared error between the predictions and the true test val-
ues, and r is the related correlation coefficient. The left-hand
side panels in Figure 3 report the results for type I prediction,
that is, interpolation. Both GPFR and GPR predict the out-
put very precisely. It is not surprising that the result using
LFR is less good, because LFR models the common mean
structure only. The results for type II prediction are given in
the right-hand side panels in Figure 3. GPFR still gives very
precise predictions. LFR predicts the common mean struc-
ture, so that its performance is quite similar for both types
of test data. GPR fails to predict this type of test data well
except for a few points close to 0. GPR models the covariance
structure only, and does not reliably predict the test data if
they are “far away” from the training data. When test data
are “close” to training data, the GPFR model uses both the
mean structure and the covariance structure to calculate pre-
dictions, and gives a very precise result; when test data are
distant from the training data, GPFR would rely mainly on
the mean structure to predict test data and could still give
a reasonably good result. This is confirmed by the simula-
tion study, based on 50 replications, reported in Table 1. The
overall performance of GPFR for type II prediction is better
than LFR and GPR. In the range [0, 1], which is close to the
training data, GPFR(rmse = 0.1321) is much better than
LFR(rmse = 0.2874) and GPR(rmse = 0.2271). In the
range [1, 4], which is further away from the training data,
GPFR(rmse = 0.3116) is slightly better than LFR(rmse =

0.3352), as expected, and GPR fails in the prediction of out-
put in this range (rmse = 0.6843, see also Figure 3f).

3.2 Multiple-Step-Ahead Forecasting
If, in a discrete-time dynamic system, we have available data
up to time ti , we may wish to predict the output at time ti+k.
This is called k-step-ahead forecasting. Many dynamic sys-
tems are periodic in real-life problems, and data collected in
each period form a batch. We may refer to the data collected
in previous periods as historical data. In the current period,
we use the data up to time ti as well as the historical data to
train the model and forecast the output at time ti+k.

We use the artificial model used in Section 3.1 to generate
a set of batch data. Values for 30 curves are generated, each
at 50 equally spaced points. For the k-step-ahead forecasting
problem, we assume that there are two functional input vari-
ables associated with each output yi , namely xi and yi−k. We
first use the data for those 30 curves and the related input
variables to train the model, and then do k-step-ahead fore-
casting after one-third of the data in a new batch has been
observed. For comparison, the GPFR, LFR and GPR meth-
ods are applied to the same data set. A simulation study with
50 replications was conducted. The results from the simu-
lation study and the result from one typical replication, for
1−, 3−, and 6-step-ahead forecasts, are reported in Table 2.
The results for the single replication are also presented in
Figure 4. The values of rmse and r are calculated by com-
paring the forecast values with the actual simulated values.
The GPFR model performs very well in all the cases and be-
comes more and more accurate as the end of the period is
approached, by which time more observations have been ob-
tained. The LFR model gives reasonably good predictions in
all the cases. The precision achieved does not vary much with
k. As expected, LFR does not give very accurate predictions
because only the common mean structure is modeled. When
k is small, GPR gives good predictions; see for example the
1-step-ahead results reported in Table 2. However, the preci-
sion decreases very rapidly as k increases. It fails when k is
larger than six in this example. Of course, the precision of the
forecasting obtained by GPFR also decreases as k increases,
but the rate of decrease is much slower than for the GPR
model. When k is very large, the forecast obtained by GPFR
will be close to that given by LFR, that is, it will give a fore-
cast based on a common mean structure. This is still a useful
forecast.
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(a) GPFR, same patient
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(b) GPR, same patient
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(c) GPFR, new patient
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(d) GPR, new patient
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(e) GPFR, new patient
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(f) GPR, new patient

Figure 5. Paraplegia data: the true test data (solid line), the prediction (dashed line), and the 95% prediction intervals
(dotted line). (a)–(b) Prediction of a new standing-up as for the same patient. (c)–(d) Prediction of a new standing-up as for
a new patient. (e)–(f) Prediction of five new standings-up for a new patient.

3.3 Modeling of Standing-Up Maneuvers
by Paraplegic Patients

Our application, as introduced in Section 1, involves the anal-
ysis of the standing-up maneuver in the context of paraplegia;
for operational details see Kamnik, Bajd, and Kralj (1999)
and Kamnik et al. (2005). Here we model the vertical tra-
jectory of the body COM as output, and select 14 input

variables. In one standing-up, output and inputs are recorded
for a few hundred time points. The experiment was repeated
several times for each patient. The vertical trajectories of the
body COM are presented in Figure 1 for 40 standings-up, 5
for each of 8 patients.

For modeling the mean structure in the GPFR model,
we use three covariates for um, namely the patient’s height,
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weight and sex. These are natural covariates for the mean
structure model. Figure 1 indicates that the time scale may
be different for different standings-up. Some registration
methods are used before estimating the mean structure; see
Ramsay and Silverman (1997) and Ramsay and Li (1998).
We then estimate the mean structure and covariance struc-
ture by the method discussed in Section 2 with the covariance
function (4), and use this model to predict a new standing-up.
For comparison, results from GPR models are also obtained.

We consider two important types of prediction here. Type
A uses the data that have already been observed for one
patient to predict a new standing-up for the same patient,
whereas type B predicts a standing-up for a new patient. For
type A prediction, we use the training data from the same pa-
tient, which should have similar mean structure, so that GPR
should predict well. However, it may be less satisfactory for
type B prediction. This is confirmed by the numerical results.
Figure 5a and 5b presents the type A prediction by GPFR and
GPR, respectively, both giving very good results. Figure 5c–5f
shows type B predictions. Figure 5c and 5d presents the pre-
diction for a single standing-up for a new patient by using the
GPFR and GPR models, respectively. The values of rmse are
18.6180 and 47.8120, respectively, which shows that GPFR
performs much better than GPR. Figure 5e and 5f shows the
predictions for all five standings-up for this new patient. The
average value of rmse is 14.6661 for GPFR and 40.95550 for
GPR, showing that GPFR performs consistently better than
GPR.

We selected one of the eight patients as the new patient in
turn, and used the data obtained from the rest as the training
data. The results are very similar to those reported in Figure 5
except for one patient. However, that patient is atypical, being
a thin (59 kg) and very tall (178 cm) woman. She is an outlier
in terms of the mean structure model, and thus the GPFR
model fails to improve much on the result obtaining by GPR.
For this patient, the average value of rmse for five standings-
up is 62.8 for the GPFR and 51.74 for the GPR model.

4. Discussion
Nonparametric and nonlinear regression analysis for batch
data (functional data or longitudinal data) is a difficult prob-
lem with a large literature. However, most methods are lim-
ited to scenarios with one- or two-dimensional covariates (Lin
and Carroll, 2000; Yao, Müller, and Wang, 2005), or the non-
parametric linear regression model (Ramsay and Silverman,
1997; Fan et al., 2003). However, for our motivating example
discussed in Section 1 and Section 3.3 and many other ap-
plications, one needs a nonparametric nonlinear model that
copes with high-dimensional input functional covariates.

Rice and Silverman (1991) treat the output curve (batch)
as a stochastic process and then estimate both the mean and
covariance structure: ym(t) = μm(t) + τm(t), where μm(t) =
E(ym(t)) and τm(t) is a stochastic process with zero mean and
kernel covariance function C(t, t∗) = Cov(y(t), y(t∗)). In our
method the stochastic process τm(x) and the related covari-
ance kernel C depend on input variables x, that is, Cov(y(t),
y(t∗)) = C(x, x∗), as in model (2). Yao et al. (2005) ap-
proximated the covariance matrix C(t, t∗) by a smooth sur-
face estimate and then estimated the related eigenvalues and

eigenfunctions. The stochastic process τm(t) can be expanded
in terms of those eigenfunctions. However, it is very difficult to
extend their method to the model involving C(x, x∗) when the
dimension of x is larger than one. In this article, we assume
a Gaussian process for τm(x) and estimate it by a predictive
mean as discussed in Section 2.4.

For the problem of curve fitting and prediction with high-
dimensional input variables, neural network models are an-
other popular approach; see Cheng and Titterington (1994)
for a review. Shi et al. (2005) and Kamnik et al. (2005) showed
that the GPR model gives a better fit for the paraplegia data
than did the neural network models. However, the GPR model
models the covariance structure only.

In future work it would be worthwhile to explore a uni-
fied Bayesian approach to the GPFR model; see, for example,
DiMatteo, Genovese, and Kass (2001) and Shi et al. (2005).

5. Supplementary Materials
Appendix A. Derivation of equation (17) is accessed at
the Biometrics website http://www.tibs.org/biometrics.
The related Matlab Codes are available at the website
http://www.staff.ncl.ac.uk/j.q.shi.
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