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ABSTRACT

Normalisation of the basis function activations in a radial
basis function (RBF) network is a common way of achieving
the partition of unity often desired for modelling applica-
tions. It results in the basis functions covering the whole
of the input space to the same degree. However, normalisa-
tion of the basis functions can lead to other effects which are
sometimes less desireable for modelling applications. This
paper describes some side effects of normalisation which
fundamentally alter properties of the basis functions, e.g.
the shape is no longer uniform, maxima of basis functions
can be shifted from their centres, and the basis functions are
no longer guaranteed to decrease monotonically as distance
from their centre increases — in many cases basis functions
can re-appear far from the basis function centre. This paper
examines how these phenomena occur, and analyses theo-
retically and experimentally the effect of normalisation on
the least squares solution to the weights problem.

1. Introduction

Basis function networks have recently been the subject of in-
creasing attention in the neural network, control and signal
processing literature. Basis function networks, in partic-
ular Gaussian radial basis function (RBF) networks, have
been successfully applied to a number of complex pattern
recognition, modelling, control and signal processing tasks
[1]. ITn many cases the use of normalised basis functionshas
resulted in an improvement in performance. Normalisation
is sometimes desired because it results in every point in
the input space being covered by the basis functions to the
same degree, i.e. the basis functions sum to unity at every
point. When this is the case a partition of unity across the
input space is said to have been achieved. Partitioning of
unity is an important property for basis function networks
in many applications. It often results in a structure which
can be less sensitive to poor centre selection and in cases
where the network is being used within a local model struc-
ture, a partition of unity is highly desirable. While the ap-
proximation capabilities of normalised networks have been
demonstrated [2], the side-effects of normalisation have not
vet been considered in detail. In this paper the effect of
normalisation, as used in [3][4][5][6] [7], on the behaviour
of RBF networks is considered. Normalisation is most rel-
evant for RBF nets, as other networks which partition the
input space in an axis-orthogonal manner (e.g. B-Spline
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nets), can be designed to achieve a partition of unity with-
out normalisation.

This paper is structured as follows. After an overview
and discussion of normalised networks, the effects of nor-
malisation on the physical properties of the basis functions
and weight training is considered. It is demonstrated that,
in addition to achieving a partition of unity, normalisation
of the basis functions can lead to unexpected side effects.
The most obvious of these is the change in shape of the
basis functions and the possible loss in smoothness of rep-
resentation. In addition, with non-compact basis functions,
normalisation results in the whole of the input space being
covered and not just the part of the space defined by the
training data. This can lead to stability problems at the
edge of the input space for non-compact' basis functions.
It is also shown that in the case of irregular networks, i.e.
those where centres are distributed unevenly, or differing
sizes of basis functions are used, normalisation can give rise
to two further phenomena, a shift in maximum and loss in
monotonicity of the basis functions. The loss in monotonic-
ity can lead to what we term ‘reactivation’, whereby the
basis function can reappear far from its centre, thereby hav-
ing more than one region of significant activity. It is then
demonstrated that normalisation can affect the magnitude
of the weights found, affecting the robustness of the final
model. Finally, these effects will be illustrated by means of
an example and their consequences for modelling discussed.

2. Modelling with Normalised Radial
Basis Functions

The output of a normalised basis function network (BFN)
is described by,

M
y=1(x) =Y widi(x), (1)
=1
where the basis functions ¢ (x) are normalised

— ¢(d(x;ck,crk))
Or(x) = =37 ,

Zi:l o(d(x;ci, 0i))

where y is the network output?, x is the vector of input
variables, ¢; is the centre of the :th basis function, o; is the
width of the ¢th unit, M is the number of processing units,

(2)

1By compact it is meant that the basis functions are non-zero
for some finite range. Outside of this range the basis function
takes the value zero

2This paper considers single output systems only. However
the analysis can easily be extended to multi-output systems.



w; is the weight associated with unit ¢ , d(-) denotes some
distance metric, and ¢ is the non-linear activation function
before normalisation. The normalised form is ¢;, for unit 1.
In principle, this can be any non-linear function, but many
authors use local® basis functions for a number of practical
reasons. Local basis functions are advantageous because of
the increased interpretability of the network, the ability to
produce locally accurate confidence limits [8], and locality
can also be utilised to improve computational efficiency.

Figure 1: Unnormalised Radial Basis Function network

Figure 1 illustrates the network representation of equa-
tion (1). The output is a linear combination of the ba-
sis functions. A common choice for ¢; takes the form of
a Gaussian although other activation functions have been
proposed [9]. The Gaussian activation function used in this
paper takes the form,

2

: 3)

\ X —C;
d(x;ei,00) = H—t
a;

di(d(x;ci,07)) = exp(—d(x;¢i,0:)), (4)

Normalisation of the basis functions in such a network

is often motivated by the desire to achieve a partition of

unity across the input space. By partition of unity it is

meant that at any point in the input space the sum of the
normalised basis functions equals unity, i.e,

Z@-(x) =1, (5)

This has the effect of covering every point of the input
space to the same degree, unlike the un-normalised case
where points given different weightings. Normalised net-
works are attractive for a number of practical reasons. Be-
cause the space is covered to same degree at every point,
they are often less sensitive to poor centre selection. In
addition, it is desirable for many applications [10] that the
cumulative sum of all basis functions at any point equals
unity. Werntges [11] discusses the advantages of normalisa-
tion in RBF nets, promoting the advantages of a partition
of unity produced by normalisation, but not considering the
side-effects discussed in this paper.

The approximation capabilities of such networks have
been considered in detail by Benaim [2] and it has been

3By local it is meant that the basis function is significantly
active for some limited range of the input.

shown the NRBF’s are capable of universal approzimation
[12] in a satisfactory sense.

3. Side-effects of Normalisation for the
Basis Functions

In order to achieve a partition of unity for many networks
it is necessary to normalise. However, normalisation also
leads to a number of important side effects which can have
important consequences for the resulting network. In this
section we describe these side effects and their consequences
for the behaviour of the network.

3.1 Loss of Independence and Change of Shape of
Basis Function

Unnormalised networks usually use homogeneous basis func-
tions, sometimes with differing widths. In normalised nets
this is not the case — the shape of the basis functions is usu-
ally quite different from the un-normalised basis function,
and the shape is influenced not only by the basis function’s
width, but also by the proximity of the other functions in
the network.

Unnormalised Basis Functions

Normalised Basis Functions

Figure 2: Change in shape due to normalisation

The effect on the shape of the basis functions can be seen
from figure 2, with evenly spaced basis functions covering
a one-dimensional space.lt can be clearly seen that the ba-
sis functions have changed shape significantly. The smaller
the width of the original basis function, the squarer the nor-
malised basis function becomes. The maximum value of the
basis functions also decreases, as width increases. As can
be seen in figure 2, the smoothness of the network’s rep-
resentation can seriously affected by normalisation if the
original basis functions are narrow in width. The effect in
two dimensions is shown by the contour plot in figure 5.

It also can be seen from equation 2 that each normalised
basis function is a function of all the origional basis func-
tions. Thus, changing any of the original basis functions
affects all of the normalised basis functions. This can have
important consequences for on-line applications where the
network parameters are updated with each new data point.
3.2 Covering of the input-space
In the case where the basis function used is non-compact in
nature, for example when Gaussians are used, then normal-
isation results the whole of the input space being covered
and not just the region of the input space defined by the
training data. It can be seen from figures 2 and 3 that in
the normalised case the activation tends toward unity at



the edges of the space. This can lead to unpredictable and
often unstable behaviour in dynamic models if the input
vector drifts outside the region of the input space that has
been learnt during training.

3.3 Irregular Networks: reactivation and shift in

maxima

A further difficulty with normalised basis functions involves
two further phenomena. If centres are not uniformly spaced,
or if basis functions of differing widths are used, the max-
imum of the basis function may no longer be at its centre.
A further effect of varying basis widths is that the basis
function can become multi-modal, meaning that it can now
also increase as the distance function increases, instead of
continuously decreasing — the unit ‘reactivates’.

Unnormalised Basis Functions

Normalised Basis Functions
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Figure 3: Shift in maxima and reactivation.

These effects are shown in figure 3. Note the reactiva-
tion of the centre basis function, the reduced maximum of
the right hand basis function, and the shift in maximum for
all three functions. The vertical lines show the positions of
the basis functions centres to emphasise the centre-shift ef-
fect The reactivation occurs when neighbouring basis func-

Figure 4: Simple example of reactivation

tions have differing widths. A one-dimensional example in
Figure 4 using two basis functions illustrates how the phe-
nomenon occurs. The point in the input space z where the
basis function reactivates can be determined from the units’
centres (cl and cz2, where ¢; is furthest from the input m) and
their widths (o1 and o2). The reactivation point, assum-
ing monotonically decreasing basis functions, is the point
at which the distance metric di is no longer smaller than

d>.

dy < d2, (6)

For a Euclidean distance metric,

() < (55 "

o |r—c|

(8)

Equation (8) shows that reactivation only occurs when
the ratio between o1 and o2 is less than the ratio of the
unweighted distances from the centres. This implies that in
networks with uniformly wide basis functions, reactivation
cannot occur. The shift in the position of the activation
function’s maximum occurs when neighbouring basis func-
tions are either unevenly spaced or have differing widths.

This behaviour can cause problems if the network is be-
ing used to estimate an underlying probability distribution
as is the case when more general locally accurate models
are being used to approximate the function in place of the
simple weights of an RBF net, e.g. [6] [13]. Within this
framework, reactivation can lead to models becoming signif-
icantly active in regions in which they were never intended
to operate thus leading to less interpretable local models.
The local learning methods for local model networks pro-
posed in [14] require the partition of unity to be able to
model the target function.

7’
o1 |z —c1 |

3.4 Effects of normalisation on multi-dimensional
problems

The effects of normalisation can become more pronounced
as the input dimension increases. Due to the increased num-
ber of neighbouring units in higher dimensions, the cumu-
lative activation in a given region tends to increase with
dimension, leading to normalised basis functions often hav-
ing dramatically reduced maxima. Note also that the dif-
ference between the normalised radial and ellipsoidal basis
functions is less extreme than the difference between the
original functions — in many cases normalisation makes the
use of more complex distance metrics less significant. Two
dimensional contour plots are shown below.
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Figure 5: Contour plot of 2-dimensional network with radial
and ellipsoidal units before and after normalisation.

The concepts of neural network stability and robustness are
closely related to the size of the basis function weights. It is
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desirable to achieve a given network accuracy with weights
of minimum magnitude since this improves the network’s
ability to generalise. For example, with noisy data, large
weights can cause potentially large errors or even instabil-
ity. It is therefore of interest to examine what happens
to the least squares weight solution when a given network
as defined by the network parameters (M, W, &, ¢), is nor-

malised.

4.1 Theoretical limits on weights

We consider the system described by equation (1) where
the exact form of the basis function is defined by the acti-
vation function used and whether it is normalised or not.
We also assume that the output observations are all posi-
tive. In practice this is not a restriction since the output
can be normalised to lie in the interval (0,1) during the pre-
processing stage. At the output the inverse operation can
be carried out. If all of the observations are grouped into
matrix form with Y7 defined as,

YT = [y1, o, Jun), (9)
and
¥ = [p(d(xi;e1,01))...6(d(xi;enr, o00))],  (10)
with
of
» = ' (11)
o5
then,
Y = Cow, (12)

where N is the number of observations, ® is the NxM
design matrix of basis function activations from the training
set, w is the M x1 vector of weights and Cis a NxN positive
definite diagonal matrix (this assumes basis functions which
positive for all of their support). In the unnormalised case
C is simply the identity matrix, while in the normalised
case C’s entries are given by

—1

M
Crk = Z(b(d(xk;ci,m)
=1

Then,
Y =C'Y = dw, (14)

since C is invertible. Therefore the solution to equation
(14) can be written,

w=(®"®)"'®"C'Y (15)
which can be written
w = JCT'Y, (16)

where J is an MxN matrix and assuming that the inverse
(®T®)~! exists. Expanding equation (16) yields,

wi; = Jakny(t) + - + finknvy(tn), (17)

where w; denoteds the ith normalised weight, jmy is the mn
entry of J and k;; is the 2th diagonal entry of C~'. After
some manipulation the following inequality can be obtained
from equation

kminwi S W; S kmazujiy (18)

where kimaz and kmmin are the maximum and minimum en-
tries of the C~! matrix and w; denotes the ith weight under
the constraint that the C matrix is the identity matrix, i.e.,
the network is un-normalised.

Equation (18) indicates that the magnitude of optimal
weights may be increased or decreased after normalisation
of the basis functions. An increase in weights typically oc-
curs when the widths are large (as Kkmin 1s then also large),
whereas a decrease in weight magnitude tends to be asso-
ciated with small widths. In multidimensional cases, the
effect of large basis functions becomes even more dramatic,
for the reasons described in section 3.3. It is therefore im-
portant not to normalise blindly, but to compensate for the
normalisation by altering the design criteria for the struc-
ture (centre positions and width magnitudes) identification
procedure.

5. TIllustrative Example: Modelling a
Pulse Function

In order to illustrate the effects noted in the previous sec-
tions a simple one-dimensional example of RBF modelling is
presented. The function to be modelled is depicted in figure
6. A network consisting of three basis functions (centred at

Target Function
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Figure 6: Target Function

[0.3,0.5,0.9]) was used for the modelling task. The widths
of the various basis functions were varied to illustrate the
effects noted above.

The modelling performance of the network with narrow
basis functions is depicted in 7. The basis functions are
deliberately chosen to be too narrow in order to exaggerate
the effects of normalisation. The reactivation, covering of
the input space and weight decrease effects can be clearly
seen in figure 7. The approximation is very poor because
the basis functions are too narrow.

The modelling performance of a network with wide ba-
sis functions is presented in figure 8. It can be clearly seen
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Figure 8: Wide basis functions

that the network approximation is better than with nar-
row basis functions. In this case reactivation is still occurs
in the normalised case. Note the weight increase due to
normalisation.

6. Conclusions

In this paper we have described phenomena which occur in
basis function networks when a partition of unity is achieved
by means of normalising the network. These effects can be
summarised as follows:

1. Normalisation leads to a change in shape of basis
function. This can lead to a loss in smoothness of
representation if the widths of units are too narrow.

2. In the case where non-compact basis functions are
used normalisation leads to a covering of the whole
of the input space. This can result in stability prob-
lems for dynamical networks at the edges of the space
defined by the training data.

3. For irregular networks the maxima of the units can
shift away from the centres, and the units can reacti-
vate in other parts of the input space. Reactivation,
and the resulting non-localised behaviour of individ-
ual basis functions means that the very motivation
behind much of the work carried on RBF nets, i.e.
localised behaviour, is no longer guaranteed.

4. Normalisation also affects the magnitude of weights.
This can subsequently effect the robustness and sta-
bility (for dynamical systems) of the network. The
question of stability will be considered in more detail
in a later publication.

5. Effects 1-4 become more pronounced as the input di-
mension increases.

While partitioning unity is highly desireable for many
modelling applications, these phenomena, or side-effects,
can lead to unpredictible network behaviour. It is therefore
of crucial importance that researchers and users consider
these effects when designing both networks and training al-
gorithms.
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