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Abstract

Designing user interfaces which can cope with unconventional control properties is challenging, and conventional interface design

techniques are of little help. This paper examines how interactions can be designed to explicitly take into account the uncertainty and

dynamics of control inputs. In particular, the asymmetry of feedback and control channels is highlighted as a key design constraint,

which is especially obvious in current non-invasive brain–computer interfaces (BCIs). Brain–computer interfaces are systems capable of

decoding neural activity in real time, thereby allowing a computer application to be directly controlled by thought. BCIs, however, have

totally different signal properties than most conventional interaction devices. Bandwidth is very limited and there are comparatively long

and unpredictable delays. Such interfaces cannot simply be treated as unwieldy mice. In this respect they are an example of a growing

field of sensor-based interfaces which have unorthodox control properties. As a concrete example, we present the text entry application

‘‘Hex-O-Spell’’, controlled via motor-imagery based electroencephalography (EEG). The system utilizes the high visual display

bandwidth to help compensate for the limited control signals, where the timing of the state changes encodes most of the information. We

present results showing the comparatively high performance of this interface, with entry rates exceeding seven characters per minute.

r 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

For many years, interaction with a computer has been
focused on a few well-understood modalities. Instruments
such as the keyboard and mouse, and visual displays have
been dominant. In the last decade, however, the potential
of unconventional communication channels has become
e front matter r 2009 Elsevier Ltd. All rights reserved.

cs.2009.05.009

s were partly supported by the Bundesministerium für
rschung (BMBF), FKZ 01IBE01A, by the SFI (00/PI.1/

roject TOBI: Tools for Brain–Computer Interaction, and

ramme of the European Community, under the PASCAL

cellence, IST-2002-506778. This publication only reflects

ws.

ing author. Tel.: +441413303339; fax: +44 1413304913.

esses: jhw@dcs.gla.ac.uk (J. Williamson),

.uk (R. Murray-Smith), blanker@cs.tu-berlin.de

matthias.krauledat@first.fhg.de (M. Krauledat),

eller@tu-berlin.de (K.-R. Müller).
increasingly apparent. A wide variety of sensors and
display mechanisms have been experimented with. It is
still difficult, however, to reason about the different
properties of interfaces with these different channels. There
are certain fundamental defining characteristics of hu-
man–computer interfaces which can be measured or
estimated, and can be used as a consistent framework for
design. Among these, the most elementary are bandwidth,
dimensionality and delay. This paper explores how these
considerations can be used as the basis for rational
interface design. From these principles, a state-of-the-art
text entry system has been developed. This manages some
of the highest entry speeds for brain–computer interfaces of
the non-evoked1 electroencephalography (EEG) type. It is
1Generated by internal thought alone, without external stimuli such as

flashing visual indicators.
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designed to cope with the temporal characteristics and
noise properties of the EEG control signals rather than
being a variant of an existing metaphor.
1.1. Motivation

Direct brain-to-computer interfaces have advanced
significantly in the recent past. Non-invasive, EEG-based
systems with relatively fast interaction are being developed
in several labs throughout the world. Such interactions
have almost exclusively been based upon mapping existing
metaphors (cursors and button-pushing being the most
prominent of these) to the signals that are measured from
the brain–computer interface. The question arises as to
whether there are better ways of dealing with the curious
properties of a brain–computer interface (BCI), ways in
which users can express their intentions by reliably
controlling the state of the system with which they interact.
This question in turn provokes a second: what do
experiences with designing interfaces for brain-control
reveal about the fundamentals of human–computer inter-
action?

The purpose of this work is thus twofold: to discuss how
brain–computer interaction can be improved by better
design and to examine how the interactions should be
designed in light of the issues raised. Many elements of
HCI consist of carefully adapted special-purpose mechan-
isms for particular purposes, but given a new control
problem it is difficult to utilize these except by ad hoc

modification. It would be useful to consider, given some
knowledge of the control behaviour of an interactor, what
Fig. 1. Asymmetry of BCI communication. The channels available fo
the properties of suitable interfaces might be, and what
design processes could be used to develop practical systems
from these properties.
1.2. The challenges to conventional human–computer

interaction

Although proof-of-concept BCIs were demonstrated
decades ago (e.g. Elbert et al., 1980), several major
challenges remain. One of the most pressing is to develop
BCI-driven applications which take the specific character-
istics of BCI communication into account. Apart from
being prone to error and having a rather uncontrolled
variability in timing, the bandwidth of EEG-based
brain–computer interfaces is heavily unbalanced: BCI users
can perceive a high rate of information transfer from the
display, but have a low-bandwidth communication in their
control actions (Fig. 1). This asymmetry is unusually
extreme in EEG-based BCI, but such imbalance between
the inputs a human can apply and the responses a system
can make is present in many interfaces. Different interac-
tion styles are suited to different balances of the input and
feedback channels.
Where feedback channels are broad in comparison to

input channels, more sophisticated models can be simu-
lated within the system and displayed to the user. The
system can respond differently to the same control inputs
at different times; the mapping from input response can be
adapted to disambiguate the user’s intention as efficiently
as possible. Such systems rely less on user training than
where the feedback channels are narrower, where the user
r input are much slower than the channels available for feedback.
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must learn the properties of the system in order to be
efficient. Typing is an example of an input-bound system,
where the feedback is very limited (simple tactile response,
possibly with some visual element) and extensive training is
required to achieve effective interaction. However, the lack
of dependence of feedback means input can be extremely
rapid, so long as interaction conditions are constant.

1.3. Background: brain–computer interfaces

Brain–computer interfaces translate brain signals into
control signals without intermediate motor action. The
measured brain signals contain elements which can be
consciously modulated. The resulting signals may be used
for a desktop-based computer application or for control-
ling a neuroprosthesis. There is a variety of BCI systems
being developed that use signals recorded from the scalp,
the surface of the cortex or from inside the brain. It has
been shown that invasive BCI systems enable monkeys,
and recently also humans, to operate a robotic arm
(Hochberg et al., 2006; Carmena et al., 2003). Further-
more, it was demonstrated that non-invasive BCI systems
enable healthy subjects as well as patients to control an
internet browser or simple word processing software
(Kuebler et al., 2001; Wolpaw et al., 2002; Dornhege et
al., 2007a). BCIs have also been successfully used in the
restoration of grasp function using functional electrical
stimulation (e.g. as described in Mueller-Putz and
Pfurtscheller, 2008) and in wheelchair navigation (Millan,
2008).

This has obvious benefits to those physically incapaci-
tated, opening up a channel of control for even the most
severely disabled patients. In practice, it has been applied
to enable patients suffering from amyotrophic lateral
sclerosis (ALS) who have become totally locked-in (i.e.
they have no functioning motor control) to communicate
with the outside world (Birbaumer et al., 1999). Direct
brain control is of interest even for those who are able-
bodied; the idea of a direct channel between thought and
machine is long-standing technological dream. Current
technology limits the richness of the communication, but
the potential for tightly bound brain–computer systems is
enormous.
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Fig. 2. Interaction as a closed loop control process, with input and feedback

cortex, rather than muscles as usual.
2. Designing for uncertain control inputs with unusual

dynamics

2.1. Closed-loop interfaces

A computer interface facilitates control. It provides a set
of mechanisms by which a human can drive the belief of a
system about a user’s intentions towards a desired state
over a period of time. Control requires both display to the
user and input from the user; computers feedback state to a
user, who modifies his or her actions to bring about the
required change of state (Fig. 2). This control operates at
multiple scales, forming a hierarchy of loops, from internal
muscular control loops to long-term progress towards
abstract goals.
The familiar mouse-pointing metaphor is a simple

example, where motor control is used to bring two objects
(a pointer and a target) into alignment, thus communicat-
ing the user’s intent to the computer. This superficially
trivial mechanism is carefully engineered by interface
designers, who manipulate the dynamic response curves
of the pointer motion, design the spatial arrangement of
targets and shape the hardware to fit with the restrictions
of human muscle activity (see for example, Barrett et al.,
1995; Isokoski and Raisamo, 2004). Much of this has
evolved unconsciously, as designers refine products to
subjectively improve user experience. There is surprisingly
little systematic analysis of these properties.
2.1.1. Separating communication and control

One of the difficulties in applying information-based
measures in interaction design is the confusion between
communication and control. In order to operate a system,
the operator must be able to drive the system into the states
that the operator wishes the system to enter. Regardless of
the potential bandwidth of the input and output channels
(how much information can be conveyed in a period of
time), the system will function poorly if they cannot be
used to reliably steer the system towards desired states.
Independent measures of channel capacities only give
upper bounds on performance. Introducing a delay in
display, for example, does not affect the throughput of the
State

Sensors

Feedback

ace

 Direct Line

Computer

channels. Note that in BCIs, effectors are the neuronal assemblies in the
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Fig. 3. Hex, running on a PocketPC, controlled by tilt.
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feedback channel, but it can significantly degrade control
performance.

2.2. Control in a BCI context

New ways of interacting must be devised to make BCI
more practical. Twisting existing metaphors to fit the signal
properties that occur in brain–computer interfaces is a
quick and easy way of building something functional, but it
falls far short of the potential for rich brain computer
interfacing. The challenge to HCI is to take what is known
about the specific control properties of EEG-based BCI
and construct a concrete interface from those fundamen-
tals.

There are several important differences between BCI and
most other extant interfaces. There is the aforementioned
asymmetry of information flow; the response dynamics of
the EEG-based BCI are exotic compared to the simple
responses of mice, keyboards or touchscreens; and control
involves significant levels of uncertainty. EEG-based BCI
can be characterized as a slow, noisy, low-dimensional
channel with long and variable delays induced by the BCI
classification processes and fluctuations of the user itself
(Shenoy et al., 2006).

One unusual consideration is the very direct effect of
stress and mental load upon the performance of users
operating a BCI. Performance is observed to rapidly
degrade as mental load increases, possibly due to
interference from brain patterns resulting from the stressful
situation. It is therefore important to maintain a calm
interface which does not result in frustration or require
constant, concentrated attention.

2.3. Linking uncertainty and dynamics

Uncertainty and dynamics are intimately linked. Inter-
faces have dynamics so that communication is spread over
time, at a pace that suits the constraints of the human and
the system. This distribution is necessary because informa-
tion cannot be passed instantly through a channel of
limited capacity. Furthermore, the comfort of the interact-
ing user is strongly affected by the design of the dynamics;
a physically demanding system may be less pleasant to use
than the one with calmer or better-matched dynamics.
Computer interfaces are unusual in that they have pseudo-
physical responses (a pointer moving on screen in response
to mouse motion is mapped via some transfer function, for
example). These responses, unlike hardware systems, can
be manipulated continuously to improve control. This is
the basis of enhancements such as semantic pointing
(Blanch et al., 2004; Blanch, 2005).

On a fundamental level, the system can link its internal
response dynamics to its uncertainty about the user’s
intent. As the measured signals from the user diverge from
patterns characteristic of those associated with functions
the system provides, the system can dampen responses. The
handling qualities of interface can be manipulated so that
when the system is certain, it behaves like a high-
performance vehicle, swerving and navigating at the
slightest touch. When uncertainty creeps in, the response
can gradually calm down, requiring more evidence to effect
action. The issues of the ‘‘cost’’ of action and the relation
between action, control and belief are discussed in detail in
Williamson (2006).
3. Hex: a text entry system for tilt control

These ideas were originally developed while examining
the problems of gestural interaction on mobile devices,
where problems with noisy sensing and poor user under-
standing of what movements sensors are actually measur-
ing makes interface design difficult. ‘‘Hex’’ (Williamson
and Murray-Smith, 2005) was developed as an example of
a system which links the dynamics of a cursor to a
probabilistic model. The result is a tilt-based gestural text
entry system which adapts the response to sensor input as
text is entered.
Hex uses accelerometers to measure tilt, and text is

entered by maneuvering a cursor through a hexagonal
tessellation, crossing edges which demarcate letters (Fig. 3).
Hex is unusual in that it feeds the output of a language
model (predicting the most likely future characters) to a
dynamic system, altering the dynamic response of the
system to make likely things easier, and make a priori

unlikely text require additional evidence in the form of
greater control effort.
Hex models the cursor as a ball rolling over a changing

landscape (an example is shown in Fig. 4). As the language
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Fig. 4. The surface model for one hexagon during an interaction with

Hex. A ‘‘Q’’ has just been entered, and the path to the vowels and then

towards ‘‘U’’ has become much more likely. A valley has thus formed, to

guide the user towards that path.
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model’s predictions of future characters change, the land-
scape forms gentle valleys along likely trajectories, and
gentle inclines against unlikely ones. These soft ‘‘buffers’’
mitigate the cumulative effect of small deviations, and so
permits higher performance maneuvers to be used reliably.

Hex is an example of a system designed to cope with
interaction properties that afflict mobile interaction. It
supports noisy inputs by modulating the pseudo-physics
underlying the interface. Mobile interfaces are one
common example where noisy, intermittently varying
sensing is combined with a disparity between input and
feedback channels. EEG interaction moves into even more
extreme territory, where common assumptions about how
interfaces should respond break down. The following
sections illustrate how the basic principles of Hex were
adapted to deal with the constraints of brain–computer
interfaces.
4. Text entry with BCI control

4.1. Classification and its properties

The classification process is able to extract useful control
signals from the extremely noisy high-dimensional data
recorded from the EEG electrodes (Blankertz et al., 2007b).
In the case of the Berlin brain–computer interface (BBCI),
this transformation takes 128 scalp electrode readings, and
maps them to a single scalar variable (Dornhege et al.,
2007b; Blankertz et al., 2008a, 2007a, 2006b). The quality
of this signal is, however, quite limited. In particular, noise
levels are very high, and the windowing process for the
classifier induces delays of a minimum of some hundred
milliseconds. In practice, the output of the classifier is
passed through an integrator, which smoothes out the
signal, but induces further delay. However, despite this, the
controllability of the interface is significantly improved by
integration.

4.1.1. Timing-based interaction

One of the limitations of current EEG based control is
the very limited number of states that can be reliably
distinguished. Although some subjects are able to activate
up to three or even more distinguishable mental states with
practice, only two states are normally viable for most
subjects. The classification process is not necessarily
binary; it can produce continuous values, as is done in
the classifier used in the Berlin BCI. However, accurate
control of the level of activation of mental states is not
achievable.
To transform these signals into useful symbols, the

signals must be coded in some way. A simple threshold
could be applied to produce binary values, and sequences
of these could be used to navigate a binary tree (this is the
approach used in earlier incarnations of the Berlin BCI,
Dornhege, 2006). Coding strategies from BCI signals are
discussed in Dornhege (2006). The alternative is to use the
timing of transitions to control the interface. The
bandwidth of the channel is then limited by the uncertainty
in the timing of events. Timing based interfaces have been
successfully applied to text entry before; the most obvious
example is Morse code, which efficiently codes text using a
single binary state and small set of discrete transition times.
Versions of Dasher (Ward et al., 2000) have been
implemented using one or two buttons to control a
continuous one-dimensional cursor. The cursor moves
constantly in one direction, and button pushes in the
reverse direction of movement. Dasher’s efficient coding
algorithm partitions the space in such a way that less
timing accuracy is needed for higher probability targets
(Wills and MacKay, 2006; Felton et al., 2007). Dasher has
been successfully implemented with EEG based control.
However, its continuously paced nature has the potential
to become complex when control is subject to the uncertain
delays and variability that plague BCI.
Timing-based interaction can be enhanced with appro-

priate feedback. In order to effect the transitions accu-
rately, users need to be able to predict when to time the
next transition with sufficient warning to compensate for
the delays in the control loop. If the interface can provide
such cues, the quality of control can be improved. In self-
clocked systems like Morse code this is unnecessary, as
sequences can be completed open-loop (or rather, the
timing control loop is internal to the user). However,
because users generally have very limited models of how
their mental activity affects the system in a BCI situation,
closed-loop control is required.

4.1.2. State change transients

The dynamics of state changes are essential constraints
in constructing a timing based interaction. Fig. 5 shows the
typical outputs of the classifier as a user enters an imagined
motor activity from a rest state. The transient has
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Fig. 5. Typical transients in the Berlin BCI EEG interface in a controlled

target acquisition task. The trace of a one-dimensional cursor is plotted

against time. The user is attempting to move an onscreen cursor either to

right hand side (in the traces with dotted lines), or the left hand side

(dashed lines). The y-value indicates the x-position of the cursor; the

targets are at �0:8 and 0.8. This value is the filtered, clipped, integrated

classifier output. The 400ms region at the start where the trace reads 0 is

where the target is shown before movement begins. The complex, lagged

response of the control system is apparent.
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noticeable delays which vary significantly over the course
of an interaction. These classifier trajectories make control
with conventional metaphors frustrating and error prone.

4.2. Criteria of quality: bit-rate, perfection and frustration

Traditionally, text entry systems have been benchmarked
on input rate. An interface that allows users to input the
largest number of correct symbols in the least time is
considered superior. This, while an easy to measure metric,
is not necessarily the most appropriate in the awkward,
error-prone and slowed down world of BCI. For some
users, producing perfect text may be highly desirable;
others may wish to communicate rough meaning without
particular regard to the precise words used. Anecdotal
evidence from several BCI labs suggest that there are
severely disabled users who have a strong desire to interact
on an equal basis with others–rather than communicate via
stock phrases and abbreviations–who strive to achieve
letter-perfect text despite the process being exceptionally
painstaking.

The comfort of the interface is also important. Interfaces
which continuously load the user with fine control actions
may be unpleasant to use because of the relentless cognitive
load. Allowing intermittent interaction, or stable interac-
tion better paced with the control the user can exert may
result in interfaces which are subjectively preferable even
though the character throughput is lower than in alter-
native interfaces.
4.3. Language modeling

Introducing prior models can dramatically reduce the
bandwidth requirements for communication. In a text
entry application, a language model determines the
probability distribution on all symbols, given the symbols
that have been produced so far (PðcjprefixÞ) and any other
observable evidence which might bias the selection of text
(time of day, current tasks, etc.).
For standard English text, which has a very low entropy

(1–3 bits per word, Brown et al., 1992) compared to the
maximum entropy of the characters which make up the
text, were fully independent (5–6 bits per character), there
is a large potential gain from the introduction of a good
language model. Such a language model can ease the use of
text entry systems, but only if it is incorporated in an
intuitive way, without wresting control from the user. Hex,
and the its BCI successor, Hex-O-Spell, are examples of
how this can be achieved under different control condi-
tions.

5. Hex-O-Spell

5.1. The Berlin BCI

The Berlin brain–computer interface is an EEG-based
BCI system which operates on the spatio-spectral changes
during different kinds of motor imagery, i.e. the changes
which occur when movements are imagined but not
executed. It uses machine learning techniques to adapt to
the specific brain signatures of each user, thereby achieving
relatively good control with only a single training session
(Blankertz et al., 2007b, 2008a).
The decoding of mental states from brain activity as used

in the Berlin brain–computer interface system is described
in Blankertz et al. (2008b, 2007a, b, 2006b)).
The output from the classification is a continuous

control signal. Typically this is a graded classifier output
which discriminates two motor imagery classes (for
example, imagined movement of the left hand versus
imagined movement of the right foot).
Bit rates (measured during one dimensional, synchro-

nous cursor control target acquisition task) range between
6 and 35 bits per minute (Dornhege, 2006). The intention-
to-control delay is difficult to quantify. The reaction time
from stimulus presentation to significant BCI control is
between 750 and 1750ms with a large intra-subject trial-to-
trial variability (compared to 300–450ms in a two
alternative forced choice task with finger movement
responses to visual stimuli).
It should be noted that there is a non-negligible

percentage of the population for which BCI control does
not work well enough for any stable control to be achieved.
Since this phenomenon is reported from all BCI labora-
tories it seems not to be a data analysis problem but rather
be an inherent neurophysiological property. This is
currently an area of intensive investigation in BCI research.
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5.2. Alternative control techniques

There are BCI systems that are based on the detection of
potentials that are evoked by external stimuli rather than
endogenously altered mental states. Most prominent is the
approach proposed by Farwell and Donchin (1988) using
the P300 component. Here, characters are presented in a
6� 6 matrix. The symbol on which the user focuses her/his
concentration can be predicted from the brain potentials
that are evoked by random flashing of rows and columns.
The role of directing the gaze to the desired letter is not
currently understood. Further developments (e.g. Kaper
and Ritter, 2004; Krusienski et al., 2006) suggest that high
spelling rates can be achieved using this approach. In the
online experiments that have been reported so far, many
repetitions of the stimuli have been used in order to
increase the signal-to-noise ratio for P300 detection.
Accordingly the spelling speed could not exceed about 6
characters per minute (cpm) even at 100% classification
accuracy. However, offline analyses show that, in principle,
fewer averages could be used, such that up to 15 characters
per minute could be possible. This, however, still remains
to be demonstrated. Although these techniques might offer
slightly higher performance, their design is inherently
visually noisy. It is difficult to imagine such techniques
integrated into an interface suitable for a general market.
Endogenously altered control offers far more potential for
sleek and well-designed interactions. If BCI is to leave the
lab and become widely accepted, the interaction must be
designed so it is palatable to those for which it is not their
only hope of communicating. This is one area where HCI
could make a huge contribution to the development of
BCI. Indeed, for those who depend upon BCI as their only
portal into the world, it could be argued that making the
interaction a pleasurable—or at least not uncomfortable—
experience should be a priority. Distracting, ugly and
painstaking interfaces should not be the default simply
because the obvious alternative is no communication at all.

6. Implementation

6.1. Adaptation from Hex

The original Hex system was designed to deal with
continuous, steering-style control. The user drove the
system into desired states by generating trajectories in tilt
space. Each character has a particular ideal tilt trajectory,
and these can be sequenced together to form text. The
amount of deviation tolerated in the trajectory is deter-
mined by the language model. When a particular sequence
is likely, more of the tilt space is allocated to that sequence.
This is achieved by continuously modulating the response
of the system to alter the mapping of the input tilt
movements and the on screen cursor movement.

In the EEG control situation, the response of the system
when users attempt to control mental states is not well
suited to continuous control. Users are more capable of
switching between states than maintaining precisely ba-
lanced levels between them. The timing of these transitions
is relatively free, however, and it is these timings which are
used to control the text entry interface, known as ‘‘Hex-O-
Spell’’ (Hex-O-Spell was originally described in Blankertz
et al., 2006a). The original hexagonal tessellation is
maintained, but now letters are rearranged after each
transition, so that the most likely ones require the shortest
transitions. Because the input is very slow, it is more
effective to completely alter the display than to modulate
the underlying dynamics as in Hex, where communication
is less asymmetric.
In Hex, the language model was directly linked to the

interface dynamics. For BCI control, that approach is
difficult to apply because of the inherently slow system
dynamics. The delays in control mean that adaptations to
the dynamics are out of sync with user expectations.
Instead, the dynamic layout adaptation algorithm is
applied, resulting in more predictable behaviour.
This design decision is based upon the observed

asymmetry in the BCI system. Because of the massive
display bandwidth available compared to the very limited
input channel, it makes sense to increase the complexity of
the system model and permit varying response to control
inputs. These consequences can be displayed to the user in
real-time, rather than having the user learn and internalize
a model. A constant one-to-one mapping of particular
motion or thought pattern to an action within the system is
less able to optimally use the degrees-of-freedom the
interactor has to effect their intentions. In the original
Hex system, where input and output were better balanced,
the system supported the user, but left the fundamental
trajectories for text sequences constant. This allowed the
basic elements to be learned so that they can be executed
quickly with minimal feedback. As the asymmetry shifts
towards feedback-dominated control, the complexity of the
model is transferred from the user’s mind to the system.
This makes the user more dependent on feedback, but
requires less training and more efficient use of the input
available. The continuous adaptation of response dynamics
in Hex requires that the user pay more attention in return
for a more productive mapping of the tilt input to the
selection space.

6.2. Interaction design

The text entry system is controlled by the two mental
states: imagined right hand movement and imagined right

foot movement. The initial configuration is shown in the
leftmost plot of Fig. 6. Six hexagonal fields surround a
circle. In each of them five letters or other symbols
(including ‘‘o’’ for backspace) are arranged. For the
selection of a symbol there is an arrow in the centre of the
circle. By imagining a right hand movement the arrow
turns clockwise. An imagined foot movement stops the
rotation and the arrow starts extending. If this foot
imagination persists, the arrow touches the hexagon and
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Fig. 6. The mental text entry system ‘‘Hex-o-Spell’. The two states classified by the BBCI system (bar on the right in each screenshot) control the turning

and growing of the grey arrow, respectively (see also text). Letters can thus be chosen in a two step procedure. If the classifier output is undecided (orange

bar between the thresholds), the arrow maintains its direction and its length diminishes continuously to minimum. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. The structure of the control loop in Hex-O-Spell, indicating the transformation of a discrete user intention into a continuous variable which is fed

back to the user, while simultaneously generating discrete symbols.

J. Williamson et al. / Int. J. Human-Computer Studies 67 (2009) 827–841834
thereby selects it. Then all other hexagons are cleared and
the five symbols of the selected hexagon are moved to
individual hexagons as shown in the rightmost screenshot
of Fig. 6. The arrow is reset to its minimal length while
maintaining its original direction. Now the same procedure
(rotation if desired and extension of the arrow) is repeated
to select one symbol. Note that there are only five symbols
for choice in the second step, cf. rightmost screenshot of
Fig. 6. Choosing the empty hexagon makes the application
return to the first step without selection. This transition
allows a sort of limited undo. Misspelt characters can be
erased by selecting the backspace symbol ‘‘o’’.
6.3. The design of Hex-o-Spell

Hex-O-Spell is unusual in that the user applies binary
control to produce discrete output, but does so through a
continuous control process. Control is effected by imagin-
ing one of two distinct motor movements; but these are
based upon the feedback from the interface, which has a
continuously changing state. This state is the result of
integrating the output of the classifier identifying the
imagined movements, which is integrated and then
thresholded to into a decision between rotation/forward
motion with fixed speeds. Fig. 7 shows the structure of this
control loop.
Hex-o-Spell is effectively a timing-based interface. The

time at which the transition from the rotation state to the
forward state occurs determines the letter which is selected.
The rate of communication is bounded by how accurately
the user can make these transitions, given the noise
properties, delays and unfamiliarity of interaction present
in an EEG interface. The time to traverse 60� should be
calibrated against the reaction time of the user and the
system; if the traversal time is much shorter than the
reaction time, selection will become impossible. In Hex-O-
Spell, the timing was roughly adjusted according to
empirical measurements to optimize the entry speed.
Before the session recording began, users were asked to
try the rotation/extension mechanism with various speeds
until they felt comfortable with the level of control offered.
A more extensive tuning methodology might improve
performance.
The language model, which adapts the layout, acts to

minimize the time required for a selection, trading-off the
time required to rotate to the appropriate position against
the time required to visually scan the new layout and find
the new locations of symbols. The ‘‘calmness’’ of this
adaptation strategy means that the user is not always in a
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tightly coupled loop with the system; rather than being a
flight-style control task, the interaction is broken into
smaller chunks which the user can proceed through at their
own pace.

6.4. Language model

The implemented language model is a modified partial
predictive-match (PPM) model (Bell et al., 1984; Cleary et
al., 1995), which comes close to the maximum possible
compression for English (Teahan and Cleary, 1996). A tree
of probabilities is stored, giving PPPMðX N jX N�K ; . . . ;
X N�1Þ as probability for the N-th letter, given the K

previous letters. In the Hex-o-Spell implementation this
PPM model (with K ¼ 2) was combined with a modified
PPM where the prefix is variable length, and runs from the
start of the word. I.e. we used the probability
PvPPMðX N jX 1; . . . ;X N�1Þ of the N-th letter in a word,
given all the previous letters of that word. These two
probability models are combined by a relative weighting
that depends on the relative position of the letter in a word.
The relative weights for PvPPM decrease linearly from 1 for
the first letter to 0.5 for the sixth and all subsequent letters.
The language models have been trained on a large corpus
of German newspaper articles and some novels.

The right part of Fig. 8 illustrates the language model
(here trained for the German language as described above)
during the writing of the word ‘‘BERLIN’’. In the very first
step the language model reflects the prior distribution of
letters beginning a word. The second row shows the
situation when the second letter is selected. According to
the language model, the letter ‘‘E’’ is the most probable
second letter in a word starting with ‘‘B’’. After selection of
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Fig. 8. Language model at work. The sketch on the left shows the ranking o

straightforward direction from the centre is the easiest to go to (no state swit

illustrates how the language model influences the operation during the spelling o

of five subsequent characters are placed within one hexagon, see leftmost scr

probable letter, i.e. these characters are in the hexagon to which the arrow initia

the relative position of the corresponding characters within one hexagon as indi

be written. (The probabilities were extracted for the German language.) (For i

referred to the web version of this article.)
‘‘B’’ the arrow is reset pointing to the hexagon containing
the ‘‘E’’, and the ‘‘E’’ is placed in ‘‘straight ahead’’
direction. In this way, mere continuation of the previous
mental state—the least effort condition—leads to the
selection of ‘‘E’’. In the example the probability of the
backspace symbol was chosen to be 0.1. In practice this
value is set according to the control capability of the user.
6.5. Implementation details

Hex-O-Spell, originally developed in C, was ported to a
native Matlab script. This ran on a separate machine from
the classifier. Classifier output was streamed to the work-
station on which the text entry system ran via UDP. An
image of the set-up is shown in Fig. 9.
7. A case study–Hex-O-Spell in practice

7.1. Trial run details

On two days in the course of the CeBIT fair 2006 in
Hanover, Germany, live demonstrations were given with
two subjects simultaneously using the BBCI system. These
demonstrations turned out to be BBCI robustness tests par

excellence. All over the fair pavilion, noise sources of
different kinds (both electric and acoustic) were potentially
jeopardizing the performance. A low air humidity made the
EEG electrode gel dry out and the subjects were under
significant psychological pressure to perform well, for
instance in front of TV cameras or in the presence of the
German minister of research. The preparation of the
experiments started at 9:15 a.m. and the live performance
DEFGH I J K LMNOPQRSTUVWXYZ _ < . ?

DEFGH I J K LMNOPQRSTUVWXYZ _ < . ?

DEFGH I J K LMNOPQRSTUVWXYZ _ < . ?

DEFGH I J K LMNOPQRSTUVWXYZ _ < . ?

DEFGH I J K LMNOPQRSTUVWXYZ _ < . ?

DEFGH I J KL MNOPQRSTUVWXYZ _ < . ?

f the positions within one hexagon. The position that can be reached in

ch needed). Then the ranking proceeds clockwise. The figure on the right

f ‘‘BERLIN’’. Each row corresponds to the selection of one letter. Groups

eenshot of Fig. 6. Red shading indicates the group containing the most

lly is directed to. The ranking of probabilities within each group determine

cated in the left subplot. A red circle marks the letter that actually needs to

nterpretation of the references to colour in this figure legend, the reader is
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Fig. 9. The basic Hex-O-Spell set-up. The participant wears the EEG cap shown at the left. On screen, the layout of letters can be seen, along with the

currently entered phrase, the state of the selection arrow, and the feedback bar which shows the filtered output of the classifier directly.
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at 11 a.m. The two subjects were either playing ‘‘Brain-
Pong’’ against each other or writing sentences with Hex-o-
Spell. Except for short breaks and a longer lunch break, the
subjects continued until 5 p.m. without degradation of
performance over time—a demonstration of great stability.
The typing speed was between 2.3 and 5 characters per
minute for one subject and between 4.6 and 7 characters
per minute for the other subject. This speed was measured
for error-free, completed phrases, i.e. all typing errors that
have been committed had to be corrected by using
backspace. The total number of characters spelled in
error-free phrases was over 500 per subject per day.
Although this might appear slow, it is a very high speed
for non-evoked EEG and is at a level where it would be of
enormous utility to those with total paralysis.

7.2. From EEG to text

A detailed time series analysis of one particular entry
sequence is given below. This shows each of the steps
involved in transforming raw classifier signals into
sequences of text. The time series is broken into five stages
(Fig. 10):
(a)
 the raw classifier signal (distance from separating
hyperplane);
(b)
 the bandpass filtered, clamped and scaled values, which
are passed to the interface;
(c)
 the orientation and length of the pointing arrow
(solid ¼ angle, dotted ¼ length);
(d)
 the transitions through edges in the hexagonal plane
and
(e)
 the entered characters against time.
This illustrates the different processing levels that occur
during the interaction. There are visual feedback mechan-
isms for each of these levels save the first. The moving
sidebar at the right hand side of the screen shows the
filtered classifier signal, the moving arrow cursor shows the
pointer direction, the change of layout indicates hexagon
transitions, and the text currently entered is displayed on
screen.
These multiple feedback loops facilitate hierarchical

control, from the base level of mental activity control to
the editing of text (Fig. 11).

7.3. Overall performance

Results for all of the text entry sequences performed
during the session are given in Table 1, and summarized in
Figs. 12 and 13. Figures are in characters per minute. The
average text entry speed was 4.24 cpm, with a standard
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Fig. 10. From top to bottom: (a) Raw classifier output. (b) Filtered and clamped signal. Values 40 represent ‘‘extend arrow’’ operations; values o0

represent ‘‘rotate’’ operations. The alternating pattern of control becomes visible here. (c) Length and angle of the pointer arrow. The angle of rotation is

shown in red; the length of the arrow is shown in green. The arrow length ranges between about 0.9 and 3.2. Changes in length and orientation take place

alternately. (d) Hex transitions. Each transition is either a first step transition (1:x) or a second step transition (2:x), at which point a letter is generated.

The blue staircase plot shows the number of characters entered against time. (e) The entered characters. The blue staircase shows the number of characters

at each time point. The letters entered can be read above. Downward movements in the blue graph indicate a backspace. This example has been chosen for

the clarity of the plots rather than the speed of entry. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)
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deviation of 1.638 cpm. Fig. 12 shows some further
examples of character entry.

7.3.1. Discussion

For a BCI driven text entry system not operating on
evoked potentials this is a very competitive spelling speed,
especially taking into account the environment and the fact
that the subjects did not have significant training with the
use of the BBCI text entry interface: the subjects used Hex-
O-Spell only twice before (although both subjects were
experienced users of the Berlin BCI set-up and were
familiar with the use of motor imagery control). There is
noticeable variability in the time taken to enter characters.
This suggests that the one-dimensional rotation control
occasionally introduces significant penalties when targets
are overshot and a lengthy re-rotation is required.
Hex-O-Spell is an effective speller for two-class EEG

interaction. Its performance is limited by the ability of the
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Fig. 11. Hierarchy of control loops in Hex-O-Spell. Each of the different

stages of control is fed back to the user. As control moves downwards,

timescales increase.

Table 1

Results for the CeBIT testing session.

Text Mean

cpm

Std. dev.

cpm

ICH BIN EIN VORDENKER 3.28 5.91

ICH BIN EIN VORDENKER 3.13 5.37

ICH BIN EIN VORDENKER. DIE MENTALE

SCHREIBMASCHINE IN AKTION

2.85 3.30

HALLO SUESSE 1.13 1.24

ICH BIN EIN VORDENKER 3.17 4.09

ICH BIN EIN VORDENKER 2.84 6.39

THE GADGET SHOW 2.07 4.48

NEUES AUF DREISAT 1.68 1.54

ICH BIN EIN BERLINER. MENS SANA IN

CAMPARI SODA

2.66 3.28

ICH DENKE ALSO BIN ICH? 2.69 2.69

IN GEDANKEN SCHON VIEL WEITER 3.18 3.70

WO EIN BEGEISTERTER STEHT IST DER

GIPFEL DER WELT. E.DORFF

1.27 0.33

DER GEIST IST KEIN ELEFANT 4.43 5.93

DIE GEDANKEN SIND FREI 3.63 8.35

ICH BIN EIN FRAUNHOFER VORDENKER 2.30 2.77

MIT UNS KOENNEN SIE RECHNEN 2.83 4.16

DIE SONNE IST VON KUPFER 3.33 5.29

GROSSHIRNRINDE AM STEUER. DURCH

GEDANKENKRAFT. DAS DENKEN

VERSTEHEN

6.30 11.41

DIE GEDANKEN SIND FREI. ICH DENKE

ALSO SCHREIBE ICH

4.54 11.26

DER WUNSCH IST DER VATER DES

GEDANKEN

7.05 9.64

DER MENSCH DENKT DAS HIRN LENKT. DAS

PFERD FRISST KEINEN GURKENSALAT

5.42 9.74

BERLIN BRAIN COMPUTER INTERFACE.

BERNSTEIN ZENTRUM BERLIN. ICH BIN EIN

CURSOR. HOLT MICH HIER RAUS

6.43 15.78

BERLIN BRAIN COMPUTER INTERFACE. CAN

YOU IMAGINE? MY BRAIN HURTS

4.46 10.83

BERLIN BRAIN COMPUTER INTERFACE. DAS

DENKEN VERSTEHEN. PAUSE?

5.85 9.93

SPITZENFORSCHUNG GEFOERDERT VOM

BUNDESMINISTERIUM

6.22 13.65

MENTALE SCHREIBMASCHINE IN AKTION.

BERLIN BRAIN COMPUTER INTERFACE

5.05 11.23

BERLIN BRAIN COMPUTER INTERFACE. DAS

DENKEN VERSTEHEN

6.44 17.24

STEUERUNG DURCH GEDANKENKRAFT.

DIE GEDANKEN SIND FREI

5.35 10.79

UNDMIT GEISTESSTAERKE TU ICHWUNDER

AUCH

5.46 8.29

MENTALE SCHREIBMASCHINE ENTWICKELT

VOM BBCI TEAM

5.88 13.77

DAS PFERD FRISST KEINEN GURKENSALAT.

BERLIN BRAIN COMPUTER INTERFACE

5.63 14.45

BMBF MENSCH TECHNIK INTERAKTION.

FRAUNHOFER FIRST UND CHARITE BERLIN

BBCI

5.38 12.02

DEM DENKEN ZUSEHEN. WORUEBER MAN

NICHT SPRECHEN KANN DARUEBER SOLL

MAN SCHWEIGEN

5.28 11.30
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user to switch mental states with appropriate timings and
the temporal accuracy with which the classifier detects
these changes. There is little literature which gives detailed
figures for the rate at which subjects are able to switch
motor imagery, however, it seems that there is likely to be
wide subject variation in timing ability. Training techni-
ques which emphasize speed of imagery might improve
performance with systems such as Hex-O-Spell, as might
classifiers which are designed to rapidly respond to
transients. Most training is currently focused on reliably
maintaining a state; different strategies may be more
effective with transient based interfaces. Other timing
based structures could be designed which would reduce
the worst case delays (for example, in Hex-O-Spell where
overshoot occurs). Such structures could, for example,
have a more explicitly rhythmic structure. Auditory feed-
back would be in an interesting mechanism in such cases;
there is a very strong link between motor movement and
rhythmic audio.
DER KOPF IST RUND DAMIT DAS DENKEN

DIE RICHTUNG WECHSELN KANN

6.68 15.43

ICH BIN MUEDE. FEIERABEND?BERLIN

BRAIN COMPUTER INTERFACE

5.42 11.85

Speeds are given in characters per minute, along with the standard

deviation of the character rate.
7.3.2. Improving Hex-O-Spell

Hex-o-Spell could also be modified to work as a T9-style
system, with only a single transition for each character
rather than a pair. Given that PPM models can compress
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Fig. 12. Entered characters for another two trials. Average character rate of 4.57 and 3.70 cpm, respectively. Correction steps can be seen as downward

movements in the staircase plot.
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Fig. 13. Box plot of overall text entry speeds. Values are characters per minute (60.0/character time in seconds). Each single point represents one

character. The upper limit reaches a saturation point because the time taken to perform selection cannot be less than the minimum time to extend the

arrow. Subject 1 performed sessions 1–17 and subject 2 performed sessions 18–35. The rotation rate for subject 2 was higher than for subject 1, resulting in

higher rates. Rotation rates were adjusted until the user was comfortable with the level of control achieved.
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English to approximately 2 bits per character and choosing
one from six transitions gives � 2.585 bits, this should be
feasible. Dunlop (2004) describes a functioning entry
system using only four transitions followed by a decoding
step. Despite the potential increase of typing speed, it has
to be explored whether BCI users are interested in this form
of predictive text entry. There are anecdotal reports of
patients who preferred a slower spelling system than using
a system which suggested word completions based on a
probabilistic model. The assistance of the interface was
perceived to be intrusive; the patients desired communicate
on the same terms as those around them, painstakingly
working over phrases to make them perfect, even though
rough meaning could be communicated far more quickly.

Some layout optimization could also be performed, for
example, placing backspace in a easier-to-reach position.
The original Hex paper Williamson and Murray-Smith
(2005) described how layouts can be numerically optimized
to penalize certain behaviours. In Hex, jerk was minimized;
in Hex-O-Spell the inter-transient time to could be
regularized so that changes of mental state could be made
more predictable.
Hex-O-Spell could also potentially benefit from directly

linking the interface dynamics to the language model. The
rotation speed of the arrow could be dynamically adjusted
to as to move less quickly when passing more likely
options. This introduces a level of control similar to that in
the original Hex system.

8. Conclusions

Interfaces of the future will involve a vast array of
sensing and display technologies. The existing metaphors
for interaction cannot be simply transplanted to these new
contexts. In order to take full advantage of the potential of
the available hardware, interface designers need to consider
how the properties of the channels available affect
control, how control can effect communication and how
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communication can drive action. Low-level signal proper-
ties of the control loop can be used as starting points for
designing interfaces; such properties include delays, tran-
sient behaviour and bandwidth asymmetry. The BCI
example is a particularly extreme case, where unusually
long delays, high levels of uncertainty, and massive
display–control asymmetry are present. Hex-O-Spell de-
monstrates how effective interfaces for exotic sensing
hardware can be constructed by examining these proper-
ties. The text entry speeds (4–7 characters per minute) are
very competitive for non-invasive BCI, and are at a level
that are viable for use for those without other means of
communication. Hex-O-Spell also demonstrates how inter-
action design can benefit those developing BCIs; specifi-
cally how designing an interface whose dynamics are
sympathetic to those characteristic of a BCI can result in
effective interfaces, and how integration of predictive
models can be used to reduce bandwidth requirements in
a natural way. For interaction designers, it illustrates some
of the challenges in designing interaction where the familiar
properties of devices like mice and keyboards are no longer
valid. Those designing for mobile devices, where control
properties are in constant flux as users activities change,
should take into account the varying imbalances in the
control loop and design their metaphors to cope fluidly
with transitions between control modes. Interfaces de-
signed to work with users with special needs which
preclude the use of conventional control also face the
challenge of designing for asymmetric control. The
methods outlined in this paper suggest that powerful
interface can be designed by identifying key characteristics
of the control properties, and then working from these
fundamentals to develop metaphors for interaction.
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B., Kübler, A., Perelmouter, J., Taub, E., Flor, H., 1999. A spelling

device for the paralysed. Nature 398, 297–298.

Blanch, R., 2005. Architecture logicielle et outils pour les interfaces

hommes–machines graphiques avancées (Software architecture and

tools for advanced computer–human graphic interaction). Ph.D.

Thesis, Université Paris XI, Orsay.
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