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Abstract

This paper applies theMixture of Gaussiansprobabilistic model, com-
bined with Expectation Maximization optimization to the task of sum-
marizing three dimensional range data for a mobile robot. This provides
a flexible way of dealing with uncertainties in sensor information, and al-
lows the introduction of prior knowledge into low-level perception mod-
ules. Problems with the basic approach were solved in several ways: the
mixture of Gaussians was reparameterized to reflect the types of objects
expected in the scene, and priors on model parameters were included
in the optimization process. Both approaches force the optimization to
find ‘interesting’ objects, given the sensor and object characteristics. A
higher level classifier was used to interpret the results provided by the
model, and to reject spurious solutions.

1 Introduction

This paper concerns an application of theMixture of Gaussians(MoG) probabilistic
model (Titteringtonet al. 1985) for a robot docking application. We use the Expectation-
Maximization (EM) approach (Dempsteret al.1977) to fit Gaussian sub-models to a sparse
3d representation of the robot’s environment, finding walls, boxes, etc.. We have modified
the MoG formulation in three ways to incorporate prior knowledge about the task, and the
sensor characteristics: the parameters of the Gaussians are recast to constrain how they fit
the data, priors on these parameters are calculated and incorporated into the EM algorithm,
and a higher level processing stage is included which interprets the fit of the Gaussians on
the data, detects misclassifications, and providing prior information to guide the model-
fitting.

The robot is equipped with a LIDAR 3d laser range-finder (PIAP 1995) which it uses to
identify possible docking objects. The range-finder calculates the time of flight for a light
pulse reflected off objects in the scene. The particular LIDAR used is not very powerful,
making objects with poor reflectance (e.g., dark, shiny, or surfaces not perpendicular to the
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laser beam) invisible. The scan pattern is also very sparse, especially in the vertical direc-
tion, as shown in the scan of a wall in Figure 1. However, if an object is detected, the range
returned is accurate (�1-2cm). When the range data is plotted in Cartesian space it forms
a number of sparse clusters, which leads naturally to the use of MoG clustering algorithms
to make sense of the scene. The sparse nature of the data inspired the modifications to the
MoG formulation described in this paper.

Model-based object recognition from dense range images has been widely reported (see
(Arman and Aggarwal 1993) for a review), but is not relevant in this case given the sparse-
ness of the data. Denser range images could be collected by combining multiple scans, but
the poor visibility of the sensor hampers the application of these techniques. The advantage
of the MoG technique is that the segmentation is “soft”, and perception proceeds iteratively
during learning. This is especially useful for mobile robots where evidence accumulates
over time, and the allocation of attention is time and state-dependent. The EM algorithm is
useful since it is guaranteed to converge to a local maximum.

The following sections of the paper describe the re-parameterization of the Gaussians to
model plane-like clusters, the formulation of the priors, and the higher level processing
which interprets the clustered data in order to both move the robot and provide prior infor-
mation to the model-fitting algorithm.
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Figure 1: Plot showing data from a LIDAR scan of a wall, plotted in Cartesian space. The
robot is located at the origin, with they axis pointing forward,x to the right, andz up. The
sparse scan pattern is visible, as well as the visibility constraint: the wall extends beyond
where the scan ends, but is invisible to the LIDAR due to the orientation of the wall

2 Mixture of Gaussians model

The range-finder returns a set of data, each of which is a position in Cartesian spacexi =
(xi; yi; zi). The complete set of dataD = fx1 : : :xNg is modeled as being generated by a
mixture density

P (xn) =

MX
i=1

P (xnji; �i;�i; �i)P (i);

where we use a Gaussian as the sub-model, with mean�i, variance�i and weight�i, which
makes the probability of a particular data point:

P (xnj�;�; �) =

MX
i=1

�i
(2�)3=2j�ij1=2

exp

�
�
1

2
(xn � �i)

T��1
i (xn � �i)

�



Given a set of dataD, the most likely set of parameters is found using the EM algorithm.
This algorithm has a number of advantages, such as guaranteed convergence to a local
minimum, and efficient computational performance.

In 3D Cartesian space, the Gaussian sub-models form ellipsoids, where the size and orien-
tation are determined by the covariance matrix�i. In the general case, the EM algorithm
can be used to learn all the parameters of�i. The sparseness of the LIDAR data makes
this parameterization inappropriate, as various odd collections of points could be clustered
together. By changing the parameterization of�i to better model plane-like structures, the
system can be improved. The reparameterization is most readily expressed in terms of the
eigenvalues�i and eigenvectorsVi of the covariance matrix�i = Vi�iV

�1
i .

The covariance matrix of a normal approximation to a plane-like vertical structure will
have a large eigenvalue in thez direction, and in thex–y plane one large and one small
eigenvalue. Since�i is symmetrical, the eigenvectors are orthogonal,V �1

i = V T
i = Vi,

and�i can be written:

�i =

 
sin �i cos �i 0
cos �i � sin �i 0
0 0 1

! 
ai 0 0
0 ai 0
0 0 bi

! 
sin �i cos �i 0
cos �i � sin �i 0
0 0 1

!
;

where�i is the angle of orientation of theith sub-model in thex–y plane,ai scales the
cluster in thex andy directions, andbi scales in thez direction. The constant controls
the aspect ratio of the ellipsoid in thex–y plane.1

The optimal values of these parameters(a; b) are found using EM, first calculating the
probability that data pointxn is modeled by Gaussiani, (hin) for every data pointxn and
every Gaussiani,

hin =
�ij�ij

�1=2 exp
�
� 1

2 (xn � �i)
T��1

i (xn � �i)
�

PM
i=1 �ij�ij

�1=2 exp
�
� 1

2 (xn � �i)T�
�1
i (xn � �i)

� :
This “responsibility” is then used as a weighting for the updates to the other parameters,

�̂i =

P
n hinxnP
n hin

; �̂i =
1

2
tan�1

�
2
P

n hin(xn1 � �i1)(xn2 � �i2)P
n hin[(xn1 � �i1)2 � (xn2 � �i2)2]

�
� = ( � 1)((xn1 � �i1) sin � + (xn2 � �i2) cos �)

2 + (xn1 � �i1)
2 + (xn2 � �i2)

2

âi =

P
n hin�

2
P

n hin
; b̂i =

P
n hin(xn3 � �n3)

2P
n hin

;

wherexn1 is the first element ofxn etc. and� corresponds to the projection of the data into
the plane of the cluster. It is important to update the means�i first, and use the new values
to update the other parameters.2 Figure 2 shows a typical model response on real LIDAR
data.

2.1 Practicalities of application, and results

Starting values for the model parameters are important, as EM is only guaranteed to find a
local optimum. The Gaussian mixture components are initialized with a large covariance,
allowing them to pick up data and move to the correct positions. We found that initializing
the means�i to random data points, rather than randomly in the input space, tended to

1By experimentation, a value of of 0.01 was found to be reasonable for this application.
2Intuition for the�̂i update can be obtained by considering that(xn1��i1) is thex component of

the distance betweenxn and�i, which isjxn��ij cos �, and similarly(xn2��i2) is jxn��ij sin �,
sotan 2� = sin 2�

cos 2�
= 2 sin � cos �

cos2 ��sin2 �
= 2(xn1��i1)(xn2��i2)

(xn1��i1)
2�(xn2��i2)

2 .
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Figure 2: Example of a ‘desirable’ clustering of the 3d data points. The left hand graph
shows the view from above (thex–y plane), and the right shows the view from the side
(theyz plane). The robot is positioned at the origin. The scene shows walls to the front
and the right, and a box in front. All three objects are modeled. The ellipses are drawn at a
probability of 0.5.

work better, especially given the sensor characteristics—if the LIDAR returned a range
measurement, it was likely to be part of an interesting object.

Despite the accuracy of measurement, there are still outlying data points, and it is impos-
sible to fully segment the data into separate objects. One simple solution we found was
to define a “junk” Gaussian. This is a sub-model placed in the center of the data, with a
large covariance�. This Gaussian then becomes responsible for the outliers in the data (i.e.
sparsely distributed data over the whole scene, none of which are associated with a specific
object), allowing the object-modeling Gaussians to work undistracted.

The use of EM with thea; b; � parameterization found and represented plane-like data clus-
ters better than models where all the elements of the covariance matrix were free to adapt.
It also tended to converge faster, probably due to the reduced numbers of parameters in the
covariance matrix (3 as opposed to 6). Although the algorithm is constrained to find planes,
the parameterization was flexible enough to model other objects such as thin vertical lines
(say from a table leg). The only problem with the algorithm was that it occasionally found
poor local minimum solutions, such as illustrated in Figure 3. This is a common problem
with least squares based clustering methods (Duda and Hart 1973).
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Figure 3: Two examples of ‘undesirable’ local minimum solutions found by EM. Both
graphs show the top view of a scene of a box in front of a wall. The algorithm has incor-
rectly clustered the box with the left had side of the wall.



3 Incorporating prior information

As well as reformulating the Gaussian models to suit our application, we also incorporated
prior knowledge on the parameters of the sub-models. Sensor characteristics are often
well-defined, and it makes sense to use these as early as possible in perception, rather than
dealing with their side-effects at higher levels of reasoning. Here, e.g., the visibility con-
straint, by which only planes which are almost perpendicular to the lidar rays are visible,
could be included by writingP (xn) =

PM
i=1 P (xnji; �i)P (i)P (visiblej�i), the updates

could be recalculated, and the feature immediately brought into the modeling process. In
addition, prior knowledge about the locations and sizes of objects, maybe from other sen-
sors, can be used to influence the modeling procedure. This allows the sensor to make
better use of the sparse data.

For a model with parameters� and dataD, Bayes rule gives:

P (�jD) =
P (�)

P (D)

Y
P (xnj�):

Normally the logarithm of this is taken, to give the log-likelihood, which in the case of
mixtures of Gaussians is

L(Dj�) = log(p(f�i; �i; ai; bi; �ig))� log(p(D)) +
X
n

log
X
i

p(xnji; �i; �i; ai; bi; �i)

To include the parameter priors in the EM algorithm, distributions for the different
parameters are chosen, then the log-likelihood is differentiated as usual to find the
updates to the parameters (McMichael 1995). The calculations are simplified if the
priors on all the parameters are assumed to be independent,p(f�i; �i; ai; bi; �ig) =Q
i p(�i)p(�i)p(ai)p(bi)p(�i).

The exact form of the prior distributions varies for different parameters, both to cap-
ture different behavior and for ease of implementation. For the element means (�i),
a flat distribution over the data is used, specifying that the means should be among
the data points. For the element weights, a multinomial Dirichlet prior can be used,
p(�ij�) = �(�+M)

�(�+1)M

QM
i=1 �

�
i . When the hyperparameter� > 0, the algorithm favours

weights around1=M , and when�1 < � < 0, weights close to 0 or 1.3 The expected value
of ai (written asai) can be encoded as a prior by settingp(aijai) = K exp (�ai=(2ai)),
whereK is a normalizing factor, independent ofai.4 The prior forbi has the same form.
Priors for�i were not used, but could be useful to capture the visibility constraint. Given
these distributions, the updates to the parameters become

�̂i =

P
n hinxnP
n hin

; �̂i =

P
n hin + �P

n

P
j hjn + �

âi =

P
n hin�= + ai
2
P

n hin
; b̂i =

P
n hin(xn3 � �n3)

2 + biP
n hin

:

The update for�i is the same as before, the prior having no effect. The update forai and
bi forces them to be nearai andbi, and the update for�i is affected by the hyperparameter
�.

The priors onai andbi had noticeable effects on the models obtained. Figure 4 shows the
results from two fits, starting from identical initial conditions. By adjusting the size of the
prior, the algorithm can be guided into finding different sized clusters. Large values of the
prior are shown here to demonstrate its effect.

3In this paper we make little use of the� priors, but introducing separate�i’s for each object
could be a useful next step for scenes with varying object sizes.

4To deal with the case whenai = 0, the prior is truncated, settingp(aijai) = 0 whenai < �crit
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Figure 4: Example of the action of the priors onai and bi. The photograph shows a
visual image of the scene: a box in front of a wall, and the priors were chosen such that a
distribution matching that of the wall should be preferred. The two left hand graphs show
the top and side view of the scene clustered without priors, while the two right hand graphs
use priors onai andbi. The priors give a preference for large values ofai andbi, so biasing
the optimization to find a mixture component matching the whole wall as opposed to just
the top of it.

4 Classification and diagnosis
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Figure 5: Schematic of system

This section describes how higher-level processing can be used to not only interpret the
clusters fitted by the EM algorithm, but also affect the model-fitting using prior information.
The processes of model-fitting and analysis are thus coupled, and not sequential.

The results of the model fitting are primarily processed to steer the robot. Once the cluster
has been recognized as a box/wall/etc., the location and orientation are used to calculate
a move command. To perform the object-recognition, we used a simple classifier on a
feature vector extracted from the clustered data. The labels used were specific to docking,
and commonly clustered objects – boxes, walls, thin vertical lines, but also included labels
for clustering errors (like those shown in Figure 3). The features used were the values of the
parametersai, bi, giving the size of the clusters, but also measures of the visibility of the
clusters, and the skewness of the within-cluster data. The classification used simple models
of the probability distributions of the featuresfi, given the objectsOj (i.e. P (fijOj)),
using a set of training data. In addition to moving the robot, the classifier can modify the
behavior of the model fitting algorithm. If a poor clustering solution is found, EM can be
re-run with slightly different initial conditions. If the probable locations or sizes of objects
are known from previous scans, or indeed from other sensors, then these can constrain the
clustering through priors, or provide initial means.



5 Summary

This paper shows that the Mixture of Gaussians architecture combined with EM optimiza-
tion and the use of parameter priors can be used to segment and analyze real data from the
3D range-finder of a mobile robot. The approach was successfully used to guide a mobile
robot towards a docking object, using only its range-finder for perception.

For the learning community this provides more than an example of the application of a
probabilistic model to a real task. We have shown how the usual Mixture of Gaussians
model can be parameterized to include expectations about the environment in a way which
can be readily extended. We have included prior knowledge at three different levels: 1.
The use of problem-specific parameterization of the covariance matrix to find expected
patterns (e.g. planes at particular angles). 2. The use of problem-specific parameter priors
to automatically rule-out unlikely objects at the lowest level of perception. 3. The results of
the clustering process were post-processed by higher-level classification algorithms which
interpreted the parameters of the mixture components, diagnosed typical misclassification,
provided new priors for future perception, and gave the robot control system new targets.

It is expected that the basic approach can be fruitfully applied to other sensors, to prob-
lems which track dynamically changing scenes, or to problems which require relation-
ships between objects in the scene to be accounted for and interpreted. A problem com-
mon to all modeling approaches is that it is not trivial to determine the number and types
of clusters needed to represent a given scene. Recent work with Markov-Chain Monte-
Carlo approaches has been successfully applied to mixtures of Gaussians (Richardson and
Green 1997), allowing a Bayesian solution to this problem, which could provide control
systems with even richer probabilistic information (a series of models conditioned on num-
ber of clusters).
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