
Greedy Matchings

Robert W. Irving

Department of Computing Science, University of Glasgow,
Glasgow G12 8QQ, UK. rwi@dcs.gla.ac.uk.

Abstract

Suppose that each member of a set of n applicants ranks a subset
of a set of m posts in strict order of preference. A matching is a set of
(post, applicant) pairs such that each applicant and each post appears
in at most one pair. A greedy matching is one in which the maxi-
mum possible number of applicants are matched to their �rst choice
post, and subject to that condition, the maximum possible number
are matched to their second choice post, and so on. This is a relevant
concept in any practical matching situation where the preferences are
on only one side of the market.

A greedy matching can be found by a transformation to the classical
problem of maximum weight bipartite matching. However an exponen-
tially decreasing sequence of weights must be assigned to the entries
in each preference list, and this adversely a�ects the complexity of
the algorithm (and its performance in practice). Here, we describe a
more direct augmenting-path based algorithm to �nd a greedy match-
ing, we analyse its worst-case complexity, and give empirical evidence
on its performance relative to a highly tuned implementation of the
Hungarian algorithm.

1 Description of the problem

Let A be a set of n applicants and P a set of m posts, and suppose that, asso-
ciated with each member of A is a strictly ordered preference list comprising
a subset of the elements of P. A matching of A to P is an allocation of each
applicant to at most one post so that each post is �lled by at most one
applicant; in other words it is a matching in the bipartite graph G = (V;E)
in which V = A[P and (a; p) 2 E if and only if post p appears in the pref-
erence list of applicant a. The size of a matching is the number of applicants
matched.

The question arises as to how we might compare matchings in this con-
text, and how we might de�ne a notion of optimality, and �nd e�ciently
a matching that is optimal in that sense. In the case where preferences
are expressed on both sides of the market, a key property of a matching is

1

stability, and, subject to that property, matchings that are simultaneously
optimal for all members on one side of the market can be found e�ciently.
This is the domain of stable matching problems, which have been studied
extensively | see, for example, [2] | and variants of the so-called Gale-
Shapley algorithm [1] are routinely used to solve a number of large-scale
real-life matching problems of this kind [6, 3].

When preferences are expressed on one side only, a number of di�er-
ent forms of optimality can be de�ned. Such problems arise commonly in
practice | for example in the allocation of projects to students, and in the
allocation of trainee teachers to probationary posts in at least one national
matching scheme. Here we investigate just one such possibility, the notion
of what we call a greedy matching.

Denote by M the set of all matchings of A to P. De�ne M1 to be
the subset of M in which the maximum possible number of candidates are
matched to their �rst choice post1. For i = 2; 3; : : :, de�ne Mi to be the
subset of Mi�1 in which the maximum possible number of candidates are
matched to their ith choice post. A matching that belongs to Mi for all i
will be called a greedy matching.

Alternatively and equivalently, de�ne the pro�le �(M) of a matching
M to be the m-tuple (x1; : : : ; xm) where, for each i, xi is the number of
applicants who are matched in M with their ith choice post. De�ne a
total order � on pro�les as follows: (x1; : : : ; xm) � (y1; : : : ym) if, for some
r, xi = yi for 1 � i < r and xr < yr. Then a greedy matching is one
that, among all matchings, has the maximum possible pro�le under this
ordering. As a matter of convenience, we abbreviate a pro�le (x1; : : : xm) by
(x1; : : : ; xd) if xd > 0 and xi = 0 for i = d+ 1; : : : ;m.

For a given problem instance, there may be more than one greedy match-
ing, but it is a consequence of the de�nition that all greedy matchings must
have the same size.

We make the trivial observation that, in spite of the terminology, a simple
greedy algorithm, in which we assign the maximum number of candidates to
their �rst choice post, then the maximum number of the remainder to their
second choice post, and so on, is by no means guaranteed to lead to a greedy
matching. However, a greedy matching can be found by transforming to an
instance of the classical maximum weight bipartite matching problem [4, 5].
This involves allocating a suitably steeply decreasing sequence of weights
to the positions in each applicant's preference list to ensure that, for any
value of i, an applicant who improves from his (i + 1)th to his ith choice
post would change the weight of the matching by more than any number
of applicants who move down from their (i + j)th choice, for any value of
j � 1. This can be achieved, for example, by assigning a weight of nm�i

1This number is clearly the number of di�erent posts that appear as the �rst choice of

at least one applicant.

2

to each applicant's ith choice, and 0 to a post that does not appear in the
applicant's preference list. Note, however, that the use of such large integers
as edge weights in the graph may lead to implementation complications,
and also results in a
(m log n) time algorithm for integer operations (such
as comparison), giving an additional factor of m log n in the complexity
function of the algorithm. So, for example, in the special case where m = n
and every applicant's preference list contains all of the posts, the O(n3)
Hungarian algorithm for the maximum weight bipartite matching problem
yields an algorithm for the greedy matching problem that is no better than
O(n4 log n) in the worst case. If the preference lists are of bounded length,
say at most c, then the resulting bipartite graph has at most cn edges, and
the weights are bounded by nc. In this case the Hungarian algorithm can
be implemented to run in O(cn2 log n(c+ logn)) time in the worst case [4].

We note in passing that the cardinality of a greedy matching may di�er
considerably from that of a maximum cardinality matching. As an extreme
case, consider an example with n = m (n odd) in which a maximum car-
dinality matching is perfect, i.e., has size n, while a greedy matching has
size 1 + bn=2c, giving a ratio tending to 0:5. The preference lists of the n
applicants are as follows:

� applicant 1 has a preference list of length 1 containing only post 1

� for 2 � i � 1 + bn=2c, applicant i has a preference list of length 2
containing post 1 and post i in that order

� for 2 + bn=2c � i � n, applicant i has a preference list of length 2
containing post i� bn=2c and post i in that order.

In a greedy matching, applicants 2 + bn=2c; : : : ; n and one of applicants
1; : : : ; 1+bn=2c obtain their �rst choice post and all remaining applicants are
unmatched. However, a maximum cardinality matching assigns candidate 1
to his �rst choice post and all other candidates to their second choice post.

On the other hand, it is easy to see that a greedy matching can never
be of size < 1=2 the size of a maximum cardinality matching.

In this paper, we address the problem of �nding a direct algorithm for
a greedy matching, and whether we can �nd such an algorithm that com-
pares favourably, in terms of worst-case complexity and/or performance in
practice, with solutions obtained by transforming to maximum weight bi-
partite matching. The algorithm, together with a correctness proof, is given
in Section 2. A worst case analysis of the algorithm appears in Section 3. In
Section 4 we give some empirical evidence to compare the performance, in
practice, of the new algorithm relative to the highly tuned LEDA implemen-
tation of the Hungarian algorithm for maximum weight bipartite matching.
Finally, Section 5 contains some concluding remarks and open problems.

3

2 A direct algorithm for the greedy matching prob-

lem

We de�ne the degree d(M) of a matchingM to be the largest value of k such
that some applicant is assigned to his kth choice post inM . For a particular
instance of the greedy matching problem, suppose that a greedy matching
has degree d. (Clearly every greedy matching has the same degree, so the
value of d is a property of the instance itself.) Let the pro�le of a greedy
matching M be (r1; r2; : : : ; rd), so that rd > 0, and r1 + r2 � � � + rd = g,
where g is the size of M .

A matching M 0 of size s with degree j and pro�le (s1; : : : ; sj) will be
called a greedy s-matching if si = ri for 1 � i < j, and sj � rj .

Given an instance of the greedy matching problem we can construct a
corresponding weighted bipartite graph G = (V;E) in which V = A [P,
E = ffa; pg : a 2 A; p 2 P, p is one of a's chosen posts g, and the weight,
or order, of edge fa; pg is the position of p in a's preference list.

Suppose we have the weighted bipartite graph G representing an instance
of the greedy matching problem, and let M be a greedy s-matching in G.
Then, clearly, M corresponds to a set of edges in G no two of which have
a common end-vertex. Any edge of G that is in M will be called a match

edge, and any edge of G that is not in M will be called a non-match edge.
A vertex v is exposed relative to M if it is not a member of any edge of M .
An alternating path relative to M is a path consisting alternately of match
and non-match edges.

We seek an algorithm that �nds a greedy matching by iterating a step
that takes a greedy s-matching as input and generates a greedy (s + 1)-
matching as output. As is customary in matching, the algorithm will be
based on an appropriate notion of augmenting path { i.e., an alternating
path, with suitable properties, that starts and ends at an exposed vertex.
The question is, what properties does such an augmenting path have, and
how can we set about searching for one?

We begin with a standard type of lemma that justi�es the concept of an
augmenting path. By augmenting a matching M along such a path P , we
mean adding toM the odd-numbered edges and removing fromM the even-
numbered edges, or, equivalently, forming the symmetric di�erence M � P ,
thus obtaining a matching M 0 of size one greater than M .

Lemma 2.1 For a given instance I of the Greedy Matching problem, if we

have a greedy s-matching M , then we can obtain from it a greedy (s + 1)-
matching by augmenting along an appropriate augmenting path.

Proof Let M 0 be an arbitrary greedy (s + 1)-matching. Let G =
(V;E) be the weighted bipartite graph corresponding to I, and consider the

4

subgraph G0 = (V 0; E0) of G with V 0 = V and E0 = M � M 0, where �
denotes symmetric di�erence. Let the edges of E0 be coloured red or blue
according as the corresponding edge in E is in M or in M 0. It is immediate
that the connected components of G0 are paths or even-length cycles with
edges that are alternately red and blue.

In any component of G0 that is an even-length path or a cycle, the
multiset of orders of the red edges must be identical to the multiset of
orders of the blue edges, otherwise the greedy property ofM or of M 0 would
be contradicted. Hence we can amend M 0 by replacing all of the blue edges
that are in cycles or even-length paths of G0 by the red edges that are in
those cycles and paths. After this amendment, M 0 remains a greedy (s+1)-
matching.

Similarly, if G0 has more than one component that is an odd-length path,
we can take any two such components that have, between them, the same
number of red and blue edges. Again, for the same reason as before, the
multisets of orders of red and blue edges must be identical, so we can amend
M 0, retaining its greedy property, to the point where the corresponding
graph G0 has just a single odd-length path of alternate blue and red edges.
This establishes the lemma. 2

Suppose that we have a greedy s-matchingMs inG. A greedy augmenting

path for Ms is an augmenting path that leads, by augmentation, to a greedy
(s+1)-matching Ms+1. There are some severe restrictions on the nature of
such a path because of the greedy status of Ms and Ms+1.

We shall call an alternating path from an exposed applicant vertex a to
some other vertex v in G feasible if it could, in principle, be extended to
a greedy augmenting path2. In order to be feasible, the sequence of orders
of the edges on the path must satisfy a property that can most easily be
described by a Boolean valued function, as given in Figure 1. When applied
to the order sequence < x1; x2; : : : ; xr >, this function must return the value
True. We call any integer sequence that causes the value True to be returned
by this function stack monotonic.

The sequence of values on the stack (enumerated top to bottom) is called
the signature of this path from a to v. It is a strictly increasing sequence
of positive integers, and is of odd length if v is a post vertex, and of even
length if v is an applicant vertex.

Lemma 2.2 Suppose that a1; p1; a2; p2; : : : is an alternating path from an

exposed vertex a1, and that this path can be extended to a greedy augmenting

path. Then the corresponding sequence of edge orders is stack monotonic.

2This is not the de�nition of feasible, merely intuitive justi�cation for the concept; the

de�nition is in terms of stack monotonicity introduced subsequently.

5

Create(S); �� an empty integer stack

for i in 1 : : : r loop
if Is-Empty(S) or else xi < Top(S) then

Push(S, xi);
elsif xi = Top(S) then

Pop(S);
else

return False;
end if;

end loop;
return True;

Figure 1: Algorithm to test for stack monotonicity

Proof Suppose �rst that the above function returns the value False on
encountering ai, for some i. Then it is not hard to show that replacing
the edges (p1; a2); : : : ; (pi�1; ai) by the edges (a1; p1); : : : ; (ai�1; pi�1) in the
current matching will contradict the fact that the current matching is greedy.

Suppose now that the above function returns the value False on en-
countering pi, for some i. Then it is not hard to show that replacing the
edges (a1; p1); : : : ; (ai; pi) by the edges (p1; a2); : : : ; (pi�1; ai) in the supposed
augmented matching will contradict the fact that the augmented matching
is greedy. 2

Hence we now de�ne a feasible alternating path to be an alternating path
that starts at an exposed applicant vertex and that has a sequence of edge
orders that is stack monotonic.

Lemma 2.3 Suppose that M is a greedy s-matching of degree k, and that

a greedy (s + 1)-matching has degree l(� k). Let P be an alternating path,

relative to M , from an exposed applicant vertex a to an exposed post vertex

p. Then P is a greedy augmenting path for M if and only if

(i) the sequence of edge orders in P is stack monotonic, and

(ii) the signature of P is < l >.

Proof The `if' part of the proof is immediate, since augmenting along P
changes the multiset of edge orders only by adding one copy of l.

To prove the `only if' part, the preceding lemma establishes the need for
stack monotonicity. To see that the signature of P must be < l >, it su�ces
to observe that the signature characterises the di�erence between the pro�le
of M and that of the matching M 0 obtained from M by augmenting along
P . To be precise, values in odd-numbered places in the signature represent
gains, and values in even-numbered positions represent losses in the pro�le
of M 0 as compared to the pro�le of M . The result follows. 2

6

These lemmas provide us with the basis of an algorithm for the greedy
matching problem. Suppose we have a greedy s-matching of degree k. We
�rst search for a greedy augmenting path with signature < k >, which
would lead to a greedy (s+ 1)-matching of degree k. If we fail to �nd such
a path, then, for successive values of i (= 1; 2; : : :) we search for a greedy
augmenting path with signature < k + i >, which would lead to a greedy
(s+1)-matching of degree k+ i. If we fail to �nd such a path for any value
of i, then the current matching is a greedy matching, and the algorithm
terminates. The algorithm is summarised in Figure 2. To justify the loop
terminating condition, we note that the size of a matching cannot exceed
either the number of applicants or the number of posts, and the degree of a
matching cannot exceed the number of posts. (This latter bound could be
tightened to the maximum length of any preference list.)

M := ;; �� the empty matching
k := 0;
while jM j < min(m;n) and k � m loop

if 9 a greedy augmenting path P relative to M with signature < k > then

augment M along P ;
else

k := k + 1;
end if;

end loop;

Figure 2: Outline algorithm for a greedy matching

Suppose that we are seeking a greedy augmenting path, relative to a
greedy s-matching, with signature < k >. Potentially, this search might
have to consider each exposed applicant vertex as a starting point. During
this search, we need pursue only paths that are stack monotonic and that
contain no edge of order greater than k. If we reach an exposed post vertex
we have found a greedy augmenting path.

The problem is how to make this search e�cient. It appears that we
cannot avoid visiting the same vertex repeatedly. It is certainly possible
that we reach a vertex by one feasible alternating path that does not extend
to a greedy augmenting path, but then we reach it again by a di�erent
feasible alternating path that does.

In order to limit the number of times that any vertex is visited during
the search, we record, for each post vertex p, the minimum signature of any
path encountered from an exposed applicant vertex to p. Here, `minimum'
is relative to a total ordering on signatures de�ned below. We call this the

7

current value of p, denoted V (p). If we subsequently re-visit p, it turns out
that we need not pursue the current search path unless its signature is `less'
than the current value V (p), in which case V (p) is updated and the path
pursued.

So what do we mean when we say that one signature is less than another?
Recall that a signature is a strictly increasing sequence of positive integers.
This sequence has even or odd length according as the alternating path in
question ends at an applicant or a post vertex | we are concerned only with
paths to post vertices, so we assume that the signatures are of odd length.
Let �1 = (x1; x2; : : : ; xp) and �2 = (y1; y2; : : : ; yq) be two such signatures. If
p < q and xi = yi for i = 1; : : : ; p, then we say that �1 < �2, whereas if q < p
and xi = yi for i = 1; : : : ; p, then we say that �2 < �1. Otherwise, de�ne r
to be the smallest value of i such that xi 6= yi. If r is odd, then �1 < �2 if
and only if xi < yi, whereas if r is even, then �1 < �2 if and only if xi > yi.
It is immediate that < is a total order on the set of possible signatures.

Given any alternating path P relative to a matchingM , we de�ne the dif-
ference vector, or simply the vector v(P) of P to be them-tuple (x1; : : : ; xm),
where xi is the di�erence between the number of match edges of order i and
the number of non-match edges of order i in P . A non-zero vector v(P) is
positive, written v(P) > 0, if the �rst non-zero element in v(P) is positive,
and is otherwise negative, written v(P) < 0. Note that we allow this de�-
nition to apply even to alternating paths that use the same edge more than
once | any such edge contributes to the vector according to the number of
times that it appears in the path.

Lemma 2.4 Let C be an alternating cycle relative to a greedy s-matching

M . Then v(C) � 0.

Proof Suppose that v(C) < 0. Then it is immediate that the matching
obtained from M by exchanging non-match edges for match edges in C has
a greater pro�le than M , contradicting M 's greedy property. 2

Lemma 2.5 If P is a greedy augmenting path relative to a greedy s-matching

M , then there is no augmenting path Q with v(Q)� v(P) < 0, where � rep-

resents element-wise subtraction of the vectors.

Proof Such a path would contradict the greedy property of the augmenting
path P . 2

Lemma 2.6 Let P be a (not necessarily simple) alternating path, relative

to a greedy s-matching M , from vertex u to vertex w, and let x be a post

vertex and y an applicant vertex such that x precedes y on P . If P 0 is an

alternating path obtained from P by inserting an additional sequence of edges
from y to x (none of these additional edges being in P), then v(P 0) � v(P).

8

Proof Clearly v(P 0) = v(P) + v(C), where C is an alternating cycle, and
the result follows from Lemma 2.4. 2

Lemma 2.7 Let P be a greedy augmenting path relative to a greedy s-
matching M , and let x be a post vertex and y an applicant vertex such

that y precedes x on P . If S is the subpath of P from y to x and S0 is any

alternating path from y to x that contains no edges of P then v(S0) � v(S).

Proof If this were not true, then replacing S by S0 in P would give an
augmenting path P 0 such that v(P 0) < v(P), contradicting the greedy status
of P , by Lemma 2.5. 2

Lemma 2.8 Let P1 and P2 be two feasible alternating paths from exposed

vertices to some post vertex p. Then the signature of P1 is less than the

signature of P2 if and only if v(P1)� v(P2) < 0.

Proof Immediate. 2

The fact that an alternating path to a post vertex p need be pursued
only if its signature is less than that of any previous alternating path to p
is a consequence of the following key theorem.

Theorem 2.1 Let G be the weighted bipartite graph representing an in-

stance of the greedy matching problem, and let P = a1p1a2p2 : : : arpr be a

greedy augmenting path of order k relative to a greedy s-matching M in G.
Then, for each i (1 � i � r), the signature of path Pi = a1p1 : : : aipi is the
minimum signature of any alternating path from an exposed applicant vertex

to pi. Furthermore, if P 0 is any such path to pi with the same signature then

either P 0 or a pre�x of P 0 can be extended to a greedy augmenting path of

order k.

Proof Denote by � the signature of path X = a1p1a2 : : : aipi, and suppose
there is another feasible alternating path Y = b1q1 : : : bjqj, with signature
� < � from an exposed applicant vertex b1 to qj = pi.

Consider the path Z = b1q1 : : : bjqjai+1pi+1 : : : arpr. This need not be a
simple path. There may be one or more pairs (k; l) such that 1 � k � j,
i + 1 � l � r, with qk = pl, but bk 6= al. Let the pairs of this kind
be (k1; l1); : : : ; (ks; ls), with k1 < � � � < ks. There must also be pairs
(k01; l

0

1); : : : ; (k
0

s; l
0

s), with k1 < k01 � k2 < k02 � � � � � ks < k0s, such that
bk0

i

= al0
i

but qk0

i

6= pl0
i

(1 � i � s). In other words, each subpath of Z of the
form qki

bki+1 : : : bk0

i

is part of the path P whereas each subpath of Z of the
form bk0

i

qk0

i

bk0

i
+1 : : : qki+1

is not part of P .
For each i (1 � i � s) let Zi be the path that follows Y from b1 to qki

and then follows P from qki
to pr. So Z1 is a simple path and Zs = Z.

9

Consider how Zi+1 di�ers from Zi. We split into two cases, depending on
whether qki+1

precedes or follows qki
in path P .

case (i) qki+1
precedes qki

in path P : Then Zi+1 is obtained from Zi in the
manner of Lemma 2.6, and it follows from that lemma that v(Zi+1) � v(Zi).
case (ii) qki+1

follows qki
in path P : Then Zi+1 is obtained from Zi in the

manner of Lemma 2.7, and it follows from that lemma that v(Zi+1) � v(Zi).
Applying this result inductively, we �nd that v(Z1) � v(Z). Further-

more,

v(Z) = v(b1 ! qj) + v(pi ! pr)
< v(a1 ! pi) + v(pi ! pr)
= v(P):

Here, we use x! y to represent the subpath of Y or P , as appropriate,
from vertex x to vertex y.

Hence, in view of Lemma 2.5, the augmenting path Z1 provides a con-
tradiction of the greedy property of the augmenting path P .

For the second part of the theorem, the result is immediate if P 0 extended
by ai+1pi+1 : : : pr is a simple path, and otherwise the construction used for
Z1 above provides the claimed extension of a pre�x of P 0. 2

A convenient way of organising the search for a greedy augmenting path
is in breadth-�rst order. This ensures that potential alternating paths are
considered in increasing order of length. In typical instances, we can expect
augmenting paths to be relatively short { this will certainly be true in the
early iterations.

A pseudocode version of the breadth-�rst search (BFS) algorithm for a
greedy augmenting path of order k is shown in Figure 3. In this algorithm,
a feasible neighbour of an applicant vertex a is a post vertex q, not matched
to a, such that the order of the edge q is at most equal to the value on top
of the current stack (the signature of the current path to a), or at most k if
the current stack is empty. It is clear that only such feasible post vertices
are of interest since only they can give a feasible alternating path. In fact,
a further feasibility criterion that can be used to speed up the algorithm is
that, if the edge fa; qg has order j then there must be at least one match
edge of order j, since a greedy augmenting path that includes edge fa; qg
must also include at least one such match edge.

Throughout, the predecessor of each post vertex on the best path from
an exposed applicant vertex is stored, and these predecessors allow the re-
construction of any augmenting path found.

3 Analysis of the algorithm

Suppose that a greedy matching has size s, degree d, and pro�le (x1; : : : ; xd),
and let sk = x1 + � � � + xk (1 � k � d). The greedy augmenting path

10

for each post vertex p loop
V (p) :=<1 >; �� greater than any real signature

end loop;
create an empty queue of applicant vertices Q;
for each exposed applicant vertex a loop

add a to Q;
end loop;
while Q is not empty loop

remove a from Q;
if a is matched, say with p then

S := V (p);
update(S, (a; p)); �� S is now the signature of the `best' path to a

else

S :=<>; �� empty signature

end if;
for each feasible neighbour q of a loop

�� feasible in terms of the target order k and the signature S

update(S, (a; q)); �� S is now the signature of the `current' path to q

if S < V (q) then �� this is a signature comparison

V (q) := S;
set the predecessor of q to be a;
if q is exposed then

set q to be the end of the augmenting path;
return the augmenting path;

elsif q's matched applicant is not in Q then

add q's matched applicant to Q;
end if;

end if;
restore S; �� S is once again the signature of the current path to a

end loop;
end loop;
return failure; �� there is no augmenting path with signature < k > if this point is reached;

Figure 3: BFS algorithm for a greedy augmenting path of order k

11

algorithm will be called xk+1 times with target order k; xk of the calls �nd
a greedy augmenting path and the last one fails because the required order
at that point is insu�cient. In practice, we could avoid all the calls with
target order k = 1 | instead of starting with the empty matching we could
trivially generate an initial greedy x1-matching.

So to complete the analysis, we need to investigate the worst-case be-
haviour of the greedy augmenting path procedure. A key question here is
how many times the main loop of the augmenting path procedure can be
iterated. To provide a bound on this, we establish the following lemma. In
stating this lemma, we note that, whenever an applicant vertex b is added to
the queue, it is because of some alternating path from an exposed applicant
vertex a that is, in a precise sense, better than any such alternating path
previously encountered.

Lemma 3.1 For a given applicant vertex b, the ith time that vertex is added

to the queue must be as a result of an alternating path from an exposed vertex

that contains at least i� 1 match edges.

Proof This is a simple induction argument. The base case (i = 1) is
immediate. For the induction step, note that we do not add b to the queue
if it is already there. When we come to add it the ith time, all the feasible
alternating paths with fewer than (i � 1) match edges have already been
processed, because of the breadth-�rst order. 2

It follows from this lemma that, if the size of the current greedy matching
is at most sk, then the number of iterations of the main loop of the aug-
menting path procedure can be at most n� sk + sk(sk + 1) = n+ s2k. This
is because, bearing in mind that a vertex is removed from the queue during
every loop iteration, each of the unmatched applicant vertices, numbering
at least n � sk, is added to the queue at most once, and each of the other
vertices, numbering at most sk, can be added at most sk + 1 times.

Consider the xk + 1 calls of the augmenting path algorithm in which
the target order is k. The signature of any vertex is a sequence of length at
most k, so signature assignments and comparisons take O(k) time. Also, the
inner for loop in the algorithm is executed at most k times since applicant
vertices cannot have more than k feasible neighbours.

It follows that the total amount of work done in progressing from a
greedy sk�1-matching to a greedy sk-matching is

O(k2(xk + 1)(n+ s2k));

and so the overall complexity of our greedy matching algorithm is

O(
dX

k=1

k2(xk + 1)(n+ s2k)):

12

This is likely to be a signi�cant over-estimate of the true complexity, cer-
tainly in the average case, and we conjecture that this is also true even in the
worst case, though we have no proof. But it seems unlikely that all of the
conditions required for this worst case analysis to be tight can be satis�ed
simultaneously.

Disappointingly, even in the case where all preference lists are of length
bounded by a constant c, this worst-case complexity, when expressed in
terms of n and c is no better than O(c2n3), and so does not compare
favourably with that of the Hungarian algorithm (see Section 1). However,
in practice, at least for most preference pro�les, we can expect the sequence
< xk > to be very heavily weighted towards small values of k, resulting in
an average case that is a substantial improvement on this �gure.

4 Empirical evidence

In an attempt to evaluate the practical utility of the new algorithm, we
obtained empirical evidence comparing its performance with that of the
highly tuned LEDA implementation of the Hungarian algorithm [4]. In
all cases we took the number of posts to be the same as the number n of
applicants, and we varied the length c of the preference lists from a small
constant value up to n. We noted execution time for the two algorithms,
averaged over 5 instances of each size. We generated each preference list as
a random permutation of a random subset of appropriate size of the set of
posts.

Table 1 shows the results of these experiments. Each row of the table
represents a particular value of n, and each column the length of the prefer-
ence lists. The �rst entry in each cell relates to the new algorithm and the
second to the Hungarian algorithm. All times shown are in seconds on a 450
Mhz PC with 128 megabytes of RAM. Times marked * reect a slowdown
in execution time due to swapping, and missing entries represent instances
that could not be solved due to memory constraints.

An apparent anomaly in some table entries for the new algorithm is ex-
plained by observing that, when c becomes large relative to n, the execution
time can vary substantially from instance to instance. This is because it
depends on the degree of the matching rather than the value of c and this
is quite variable in practice.

It can be seen that the new algorithm is capable of solving many prob-
lem instances that are inaccesible to the Hungarian algorithm, namely those
with relatively long preference lists, for which the requirement for an expo-
nentially growing sequence of weights causes memory overow. Also, the
new algorithm is faster, except when n is large and c is small (which is, ad-
mittedly, likely to be the most important case in any practical application).
This results from the observed average case behaviour of the two algorithms,

13

c

n 10 20 50 100 200 500 1000 2000

0.01 0.01 0.01 0.01
100 0.05 0.10 0.27 0.66

0.01 0.01 0.02 0.02 0.03
200 0.08 0.17 0.61 1.56 4.73

0.05 0.06 0.10 0.12 0.22 0.25
500 0.18 0.44 1.50 4.14 15.0 342*

0.17 0.21 0.31 0.47 0.64 0.90 0.69
1000 0.36 0.87 3.08 8.67 33.4 - -

0.69 0.78 1.14 1.57 2.35 3.36 3.93 4.69
2000 0.70 1.78 6.35 21.9 350* - - -

4.15 4.93 5.72 7.05 8.88 15.4 20.9 -
5000 1.90 4.78 18.9 322* - - - -

20.7 22.4 26.1 29.1 36.6 54.6 - -
10000 3.66 9.43 36.4 - - - - -

106 117 126 133 157 - - -
20000 7.45 19.7 3558* - - - - -

794 852 873 884 - - - -
50000 22.3 1097* - - - - - -

Table 1: Run times for the new algorithm and the Hungarian algorithm

which seems to be little more than linear in n for the Hungarian algorithm,
but more like quadratic for the new algorithm. By contrast, the Hungarian
algorithm is clearly superlinear in c, on average, whereas the new algorithm
is decidedly sublinear in c.

5 Conclusion and Open Problems

In this paper we have introduced the concept of a greedy matching, presented
in the context of allocating applicants to posts based on the preferences of
the applicants, and we have described a direct algorithm to �nd such a
matching. We have analysed the algorithm, and have presented empirical
evidence of its performance in practice relative to a highly tuned version of
the Hungarian algorithm for a maximum weight bipartite matching.

The key open question is whether a tighter analysis of this algorithm can
be achieved, showing it to be truly competitive in the worst case with the
Hungarian algorithm, or alternatively whether a variant, or indeed a di�er-
ent algorithm altogether, can be discovered that will have a more favourable
worst-case and/or average/case performance.

There is a whole range of other questions that can be asked about greedy
matchings, such as:

14

Question 5.1 How di�erent can greedy matchings be?

Question 5.2 How can we generate the set of all greedy matchings e�-

ciently?

Question 5.3 Does the set of all greedy matchings exhibit any interesting

or useful mathematical structure?

Beyond that, there is the question of direct algorithms for other inter-
esting matchings that can be de�ned in the same context; for example

� greedy maximum matchings, i.e., matchings that satisfy the greedy
property but subject to the overall constraint that they have maximum
possible cardinality;

� generous matchings, i.e., maximum cardinality matchings in which the
smallest number of applicants are allocated to their mth choice, and
subject to that the smallest number are allocated to their (m � 1)th
choice, and so on.

References

[1] D. Gale and L.S. Shapley. College admissions and the stability of mar-
riage. American Mathematical Monthly, 69:9{15, 1962.

[2] D. Gus�eld and R.W. Irving. The Stable Marriage Problem: Structure

and Algorithms. MIT Press, 1989.

[3] R.W. Irving. Matching medical students to pairs of hospitals: a new
variation on a well-known theme. In Proceedings of ESA '98: the Sixth

European Symposium on Algorithms, volume 1461 of Lecture Notes in

Computer Science, pages 381{392. Springer-Verlag, 1998.

[4] K. Mehlorn and S. Naher. LEDA: A Platform for Combinatorial and

Geometric Computing. Cambridge University Press, 1999.

[5] C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Al-

gorithms and Complexity. Prentice-Hall, 1982.

[6] A.E. Roth. The evolution of the labor market for medical interns and
residents: a case study in game theory. Journal of Political Economy,
92(6):991{1016, 1984.

15

