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Abstract. We study a variant of the classical stable marriage problem in which there
is an additional requirement for a stable matching, namely that there should not be
two men each of whom prefers the other’s partner in the matching. The problem
is motivated by the experience of practical medical matching schemes that use stable
matchings, where two students have been known to register a complaint on discovering
that each of them would prefer the other’s allocation. We show that the problem of
deciding whether an instance of the classical stable marriage problem admits a stable
matching with this additional man-exchange stability property is NP-complete. This
implies a similar result for the hospitals/residents problem, which is a many-to-one
generalisation of stable marriage.

Classification Algorithms, computational complexity.

1 Introduction and problem description

The Stable Marriage problem (SM) was introduced in the seminal paper of Gale and
Shapley [6]. In its classical form, an instance of SM involves n men and n women, each
of whom specifies a preference list, which is a total order on the members of the opposite
sex. A matching M is a set of man-woman pairs such that each person belongs to exactly
one pair. If (m,w) ∈ M , we say that w is m’s partner in M , and vice versa, and we write
M(m) = w, M(w) = m.

We say that a person x prefers y to y′ if y precedes y′ on x’s preference list. A matching
is stable if it admits no blocking pair, namely a man m and woman w such that m prefers
w to M(m) and w prefers m to M(w). Gale and Shapley proved that every instance of
SM admits at least one stable matching; in general, there may be many.

The Hospitals / Residents problem (HR) is a many-to-one generalisation of SM, so
called because of its application in centralised matching schemes for the allocation of
graduating medical students, or residents, to hospitals [13]. The best known such scheme
is the National Resident Matching Program (NRMP) [12] in the US, but similar schemes
exist in Canada [5], in Scotland [15, 9], and in a variety of other contexts and countries.
In fact, this extension of SM was also discussed by Gale and Shapley under the name of
the College Admissions problem. In an instance of HR, each resident has a preference list
containing a subset of the hospitals - his/her acceptable set, and each hospital ranks the
residents for which it is acceptable. In addition, each hospital has a quota of available
posts, and a matching is a set of resident-hospital pairs so that each resident appears in
at most one pair and each hospital in a number of pairs that is bounded by its quota. The
definition of stability is easily extended to this more general setting – see, for example,
Gusfield and Irving [8] for details. It is again the case that every problem instance admits
at least one stable matching. Clearly SM is the special case of HR in which every hospital
is acceptable to every resident and each hospital has a quota of 1.
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In the stable marriage problem, the stability of a matching M does not preclude the
possibility that two men, say m and m′, might wish to exchange their partners, since
m might prefer M(m′) to M(m) and m′ might prefer M(m) to M(m′). (Of course, the
fact that the matching is stable means that, in such a situation, neither of the women
involved would prefer to swap.) A similar situation can arise in HR, where two residents
might prefer to exchange the hospitals allocated to them in a stable matching, although
the hospitals would not sanction such a change. Indeed there is documented evidence [4]
of at least one complaint submitted by participants in a medical matching scheme who
had discovered just such a circumstance, and who felt that a satisfactory matching should
prevent this possibility from arising.

We say that a matching M for an instance of SM is man-exchange stable if it is sta-
ble in the normal sense, and in addition there do not exist two men m and m′ such
that m prefers M(m′) to M(m) and m′ prefers M(m) to M(m′). A similar definition
of resident-exchange stability applies in the HR context. So, in order to pre-empt com-
plaints of the kind mentioned above, a centralised matching scheme might seek to impose
a resident-exchange stable matching if one can be found. However, it is easy to see that
such a matching need not exist. For example, the stable marriage instance shown in Fig-
ure 1 has just two stable matchings, namely {(m1, w1), (m2, w2), (m3, w3), (m4, w4)} and
{(m1, w2), (m2, w4), (m3, w3), (m4, w1)}. The first of these has the man-exchange blocking

pair {m2,m3} while the second is blocked by the pairs {m1,m2} and {m1,m4}.

Men’s preferences Women’s preferences
m1 : w1 w4 w2 w3 w1 : m4 m1 m2 m3

m2 : w3 w2 w4 w1 w2 : m1 m2 m4 m3

m3 : w2 w3 w4 w1 w3 : m3 m2 m1 m4

m4 : w3 w2 w4 w1 w4 : m2 m4 m3 m1

Figure 1: A stable marriage instance with no man-exchange stable matching.

On the other hand, the instance shown in Figure 2 has just one stable matching, namely
{(m1, w4), (m2, w2), (m3, w1), (m4, w3)}, and it is straightforward to check that this is also
man-exchange stable.

Men’s preferences Women’s preferences
m1 : w1 w4 w3 w2 w1 : m2 m3 m1 m4

m2 : w4 w2 w1 w3 w2 : m2 m4 m1 m3

m3 : w2 w1 w4 w3 w3 : m1 m4 m3 m2

m4 : w2 w3 w4 w1 w4 : m1 m4 m2 m3

Figure 2: A stable marriage instance with a man-exchange stable matching.

Unfortunately, there is little prospect of an efficient algorithm to determine, for a
given instance of SM whether there exists a man-exchange stable matching (or one that
is resident-exchange stable for an instance of HR), and if so to find one – it is the main
purpose of this paper to show that the decision problem is NP-complete.

The formal description of the Man-Exchange Stable Marriage problem is as follows.

Man-Exchange Stable Marriage (MESM)
INSTANCE: A set of n men and a set of n women, and for each person a total order on

2



the persons of the opposite sex.
QUESTION: Does there exist a one-to-one matching of the men to the women that (a) is
stable in the classical sense, and (b) admits no man-exchange blocking pair.

A similar concept of exchange-stability was introduced by Alcalde [1] in the context
of the non-bipartite stable roommates problem, but without the pre-requisite that the
matching be stable in the classical sense. A version of this problem was subsequently shown
to be NP-complete by Cechlárová [2]. Cechlárová and Manlove [3] studied a number of
variants of exchange-stable matching. They showed that, if the requirement for stability in
the classical sense is dropped, then a matching that is man-exchange stable in this weaker
sense is guaranteed to exist, and can be found in polynomial time. On the other hand, if,
in addition, we allow a pair of women, as well as a pair of men, to form a blocking pair,
(but still do not require classical stability) then the resulting Exchange-stable Marriage
problem is NP-complete.

However, none of these results has implications for our notion of Man-Exchange Sta-
bility, where the pre-requisite of stability in the classical sense completely changes the
nature of the problem. Indeed, the existence of a polynomial-time algorithm for MESM
was posed as an open problem in [3]. (Note that, in [3], the term ‘Man-exchange stable
marriage’ is used to refer to the version of the problem where classical stability is not
required; our use of terminology differs from this.)

The remainder of this paper is structured as follows. Section 2 summarises the Gale-
Shapley algorithm for the stable marriage problem, and the concepts of man-optimal and
woman-optimal stable matchings. In Section 3, we review the key results that characterise
the lattice structure of the set of stable matchings. These are needed to understand the
ideas underlying the NP-completeness reduction. This reduction, using as starting point a
variant of Satisfiability, is presented in Section 4, together with the necessary correctness
proofs. We conclude with a summary and some additional observations in Section 5.

2 The Gale-Shapley algorithm

The (man-oriented version of the) Gale-Shapley algorithm involves a sequence of ‘propos-
als’ from men to women. Each proposal may be accepted – if the woman is free, or if
she prefers this man to her current partner – and otherwise is rejected; if it is accepted,
the man and woman become partners, and she rejects her current partner, if any, at that
point, setting him free. This process continues until there is no free man, at which point
the set of partners forms a stable matching. A version of the Gale-Shapley algorithm is
presented in Figure 3.

assign each person to be free;
while (some man m is free) {

w = first woman on m’s list to whom he has not proposed;
if (w is free)

w accepts m;
elsif (w prefers m to her partner m′)

w rejects m′ and accepts m;
else

w rejects m;
}

Figure 3: The Gale-Shapley Algorithm

It is well known that the apparent non-determinism inherent in the algorithm is imma-
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terial, and that all possible executions of the Gale-Shapley algorithm find the man-optimal

stable matching, i.e., the stable matching in which every man has the best partner that he
can have in any stable matching (and, as it turns out, every woman the worst). Of course,
interchanging the roles of men and women in the algorithm leads to the woman-optimal

stable matching, which is simultaneously optimal for all of the women, and ‘pessimal’ for
all of the men. For further details, see the comprehensive treatment of Gusfield and Irving
[8].

In some sense the man-optimal stable matching has the best chance of being man-
exchange stable, since the further down a man’s preference list that his partner is, the more
possibilities that man has to be a member of a man-exchange blocking pair. However, it
is easy to see that there are cases where the man-optimal is not exchange-stable but some
other stable matching is – it may even be the case that there are many stable matchings,
but only the woman-optimal is man-exchange stable.

For example, the instance shown in Figure 4 has 3 stable matchings. The man-
optimal {(m1, w1), (m2, w2), (m3, w3), (m4, w4), (m5, w5), (m6, w6)} is blocked by the men
{m1,m2}, the stable matching {(m1, w1), (m2, w2), (m3, w4), (m4, w3), (m5, w5), (m6, w6)}
is blocked by the men {m3,m4}, while {(m1, w3), (m2, w4), (m3, w5), (m4, w6), (m5, w1), (m6, w2)},
which is the woman-optimal, is man-exchange stable.

Men’s preferences Women’s preferences
m1 : w2 w1 w3 w4 w6 w5 w1 : m5 m1 m6 m2 m3 m4

m2 : w1 w2 w3 w4 w5 w6 w2 : m6 m2 m1 m4 m3 m5

m3 : w3 w4 w2 w5 w1 w6 w3 : m1 m4 m3 m6 m2 m5

m4 : w4 w1 w3 w5 w6 w2 w4 : m2 m3 m4 m5 m1 m6

m5 : w5 w1 w4 w6 w3 w2 w5 : m3 m5 m6 m4 m2 m1

m6 : w1 w6 w2 w3 w5 w4 w6 : m4 m6 m3 m1 m5 m2

Figure 4: The woman-optimal can be the only man-exchange stable matching.

3 Rotations and the rotation poset

For a given stable marriage instance, we define a partial order relation on the set of stable
matchings as follows: matching M dominates matching M ′ if every man has at least as
good a partner in M as he has in M ′. It turns out that the set of stable matchings
forms a distributive lattice under this partial order [11]; in the meet M ∧ M ′, each man
has the better of his partners in M and M ′, and in the join M ∨ M ′, each man has the
poorer of these two partners (or, in each case, the same partner as in M and M ′ if these
coincide). The man-optimal stable matching Mm and the woman-optimal Mw are the top
and bottom of this lattice, respectively.

An instance of SM can have exponentially many stable matchings [11]. However,
the so-called rotation poset, first described by Irving and Leather [10], gives a compact
representation of the lattice. We will exploit this structural characterisation in our NP-
completeness proof in Section 4.

Let M be a stable matching for an instance I of SM. For each man m such that
M(m) 6= Mw(m), we define the successor woman for m relative to M , denoted sM (m)
to be the first woman w on m’s list, following M(m), such that w prefers m to M(w).
There must be such a woman if M(m) 6= Mw(m), since Mw(m) qualifies, but sM (m) is
undefined if M(m) = Mw(m).)
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A rotation exposed in M is a cyclic sequence of pairs ρ = (m0, w0), . . . , (mr−1, wr−1)
such that M(mi) = wi and sM (mi) = wi+1 for all i, i + 1 taken modulo r. To eliminate

the exposed rotation ρ from the stable matching M means to pair mi with wi+1 for all
mi in the rotation (i + 1 again taken modulo r) and otherwise leave the pairs unchanged.
We denote the resulting matching, which also turns out to be stable, by M/ρ. Every
stable matching M 6= Mw has at least one exposed rotation; to find one, choose a man x0

for whom M(x0) 6= Mw(x0) and generate the sequence xi+1 = M(sM (xi)) until it cycles,
setting mi = xt+i, where xt is the first repeated man in the sequence. It turns out that
every stable matching can be obtained by starting with the man-optimal and successively
eliminating a sequence of exposed rotations. Each stable matching is characterised by the
set of rotations that must be eliminated to produce it.

A partial order relation can be defined on the rotations for an SM instance as follows:
rotation ρ precedes rotation ρ′, written ρ ≺ ρ′, if, in order to obtain a stable matching in
which ρ′ is exposed, rotation ρ must be eliminated. The set of rotations under this partial
order is known as the rotation poset. A subset S of the rotation poset with the property
that ρ ∈ S, σ ≺ ρ ⇒ σ ∈ S is called closed. The following theorem gives what, for our
purposes, is the key characterisation of the set of stable matchings in terms of the rotation
poset.

Theorem 1 For an instance of Stable Marriage, there is a one-to-one correspondence

between the stable matchings and the closed subsets of the rotation poset. A stable matching

can be obtained from the man-optimal by eliminating, in any valid sequential order, the

rotations in the corresponding closed subset.

We refer to the unique closed subset of the rotation poset corresponding to a given
stable matching M simply as the rotation set of M . Full coverage of the structural aspects
of stable marriage, and how these can be expoited to give efficient algorithms for a range
of problems related to the set of stable matchings, is given by Gusfield and Irving [8].

4 NP-completeness of man-exchange stable marriage

We prove that man-exchange stable marriage is NP-complete by describing a polynomial-
time reduction from a variant of Satisfiability. This variant is defined as follows:

Unnegated One-in-Three 3SAT (U-1in3-3SAT)
INSTANCE: A set U of variables, a collection C of clauses over U such that each clause
C ∈ C has |C| = 3 and no clause contains a negated variable.
QUESTION: Is there a truth assignment for U such that each clause in C has exactly one
true literal.

This problem was shown to be NP-complete by Schaefer [14] – see also [7, Problem
LO4, Page 259].

First of all we describe how, given an instance of U-1in3-3SAT, we construct an instance
of MESM, and then, via a sequence of lemmas we show that this construction has all of
the properties required of a polynomial-time reduction.

Let I be an instance of U-1in3-3SAT involving n variables a1, . . . , an and t clauses
C1, . . . , Ct. We introduce 5tn men mijk and 5tn women wijk (1 ≤ i ≤ n, 1 ≤ j ≤ t, 1 ≤
k ≤ 5), and an additional n men xi and n women yi (1 ≤ i ≤ n).

The preference lists for the men are defined as follows:
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If ai ∈ Cj = {ai, ap, aq}

mi11 : A wi11 B wi12 C wi13 . . .
mij1 : wij1 B wij2 C wij3 . . . (j > 1)
mij2 : wij2 wij3 wij4 . . .
mij3 : wij3 wij4 wij5 . . .
mij4 : wij4 wij5 wi(j+1)1 . . .

mij5 : wij5 wi(j+1)1 wij2 . . .

If ai 6∈ Cj

mi11 : A wi11 wi12 . . .
mij1 : wij1 wij2 . . . (j > 1)
mij2 : wij2 wij3 . . .
mij3 : wij3 wij4 . . .
mij4 : wij4 wij5 . . .
mij5 : wij5 wi(j+1)1 . . .

where
A = {ws11 : ai and as appear together in some clause}
B = {wpj2, wqj2}
C = {wpj3, wqj3}.

Here, a set of women included at a certain position in a preference list may appear in
any order, the symbol . . . indicates all remaining women not explicitly listed earlier, and
(j + 1) becomes 1 in the case where j = t.

Finally,
xi : wi11 yi . . .

The preference lists for the women are defined as follows:

wi11 : mit4 mit5 mi11 xi . . .
wij1 : mi(j−1)4 mi(j−1)5 mij1 . . . (j > 1)

wij2 : mij5 mij1 mij2 . . .
wij3 : mij1 mij2 mij3 . . .
wij4 : mij2 mij3 mij4 . . .
wij5 : mij3 mij4 mij5 . . .
yi : xi . . .

Again, the symbol . . . indicates all remaining men not explicitly listed earlier.
Before presenting the formal proofs, we give an overview of the rationale for this

construction.
The rotation structure for the derived instance of MESM is as follows:

• for each i (1 ≤ i ≤ n)

ρi = ((mi11, wi11), (mi12, wi12), . . . , (mi15, wi15), (mi21, wi21), . . . , (mit5, wit5))

is a rotation of length 5t that has no predecessors in the rotation poset;

• for each i, j (1 ≤ i ≤ n, 1 ≤ j ≤ t) such that ai ∈ Cj ,

σij = ((mij1, wij2), (mij2, wij3), (mij3, wij4), (mij4, wij5), (mij5, wi(j+1)1))

is a rotation of length 5 that is a successor of ρi, and only ρi, in the rotation poset.
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The entries A in the men’s preference lists ensure that, for each clause Cj = {ap, aq, ar},
at least two of the rotations ρp, ρq and ρr must be in a rotation set that corresponds to
a stable matching that avoids a man-exchange blocking pair. Furthermore, the entries B
and C ensure that, if all three of these rotations are in a rotation set then a man-exchange
blocking pair for the corresponding stable matching cannot be avoided. Hence we can have
a man-exchange stable matching only if we can choose a subset of the original variables
that has an intersection of size 2 with each clause - and this subset represents the false
variables in a satisfying assignment. The argument works in the other direction too.

We now formalise this argument, and thereby establish the validity of our reduction.

Lemma 2 For the derived instance of MESM, the man-optimal stable matching pairs mijk

with wijk for all i, j, k, and xi with yi for all i.

Proof : As described in Section 2, the man-optimal stable matching is produced by applying
the Gale-Shapley algorithm from the men’s side, and in so doing the order in which men
propose is immaterial. A possible execution of the algorithm is as follows:

1. mij2 proposes to wij2 for all i, j; all proposals accepted;

2. mij3 proposes to wij3 for all i, j; all proposals accepted;

3. mij4 proposes to wij4 for all i, j; all proposals accepted;

4. mij5 proposes to wij5 for all i, j; all proposals accepted;

5. xi proposes to wi11 for all i; all proposals accepted;

6. mi11 proposes to all the women in set A for all i; all proposals rejected because each
woman in A prefers the man x who proposed to her previously;

7. mij1 proposes to wij1 for all i and j; all proposals accepted, and all xi rejected;

8. xi proposes to yi for all i; all proposals accepted.

The algorithm terminates at this point, and it is clear that the matching produced is
the one listed in the statement of the lemma, which is therefore the man-optimal stable
matching.

Lemma 3 For the derived instance of MESM, each of the cyclic sequences ρi defined

above is a rotation that is exposed in the man-optimal Mm, and which therefore has no

predecessors in the rotation poset.

Proof : It is immediate from the previous lemma that Mm(mijk) = wijk for all j and
k. By inspection of the preference lists, it is also immediate that sMm

(mij2) = wij3,
sMm

(mij3) = wij4, sMm
(mij4) = wij5, and sMm

(mij5) = wi(j+1)1 for all j, where j + 1
becomes 1 in the case j = t. Furthermore, in the case of mij1, all of the women in the set
B prefer their partner in Mm to mij1, from which it follows, again by inspection of the
preference lists, that sMm

(mij1) = wij2 for all j.

Lemma 4 For the derived instance of MESM, each of the cyclic sequences σij defined

above is a rotation that has only ρi as a predecessor in the rotation poset.
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Proof : Consider the stable matching Mi obtained from Mm by the elimination of rotation
ρi. It is immediate that Mi(mij1) = wij2, Mi(mij2) = wij3, Mi(mij3) = wij4, Mi(mij4) =
wij5, and Mi(mij5) = wi(j+1)1 for all relevant j. By inspection of the preference lists,
it is also immediate that sMi

(mij2) = wij4, sMi
(mij3) = wij5, sMi

(mij4) = wi(j+1)1, and
sMi

(mij5) = wij2 for all relevant j. In the case of mij1, all of the women in the set C prefer
their partner in Mi to mij1, from which it follows, again by inspection of the preference
lists, that sMi

(mij1) = wij3 for all relevant j.
Hence σij is a rotation exposed in Mi. But this rotation clearly cannot be exposed

unless ρi has been eliminated, so it has ρi, and only ρi as a predecessor.

Lemma 5 Suppose that the derived instance of MESM admits a man-exchange stable

matching M , and let S be the rotation set corresponding to M . Then for each clause

Cj = {ap, aq, ar}, exactly two of ρp, ρq, ρr are in S.

Proof : Consider the man-optimal stable matching Mm. From the preference lists we
can verify that {mp11,mq11} forms a man-exchange blocking pair, since mp11 prefers wq11

(who is in the relevant set A) to wp11, and likewise mq11 prefers wp11 to wq11. Similarly
{mp11,mr11} and {mq11,mr11} also form man-exchange blocking pairs. Since the pairs
(mp11, wp11), (mq11, wq11) and (mr11, wr11) are in the rotations ρp, ρq and ρr respectively,
it follows that at least two of these rotations must be eliminated to avoid these three
man-exchange blocking pairs.

Suppose that ρp and ρq are in S. If neither σpj nor σqj is in S then M(mpj1) = wpj2 and
M(mqj1) = wqj2, so that {mpj1,mqj1} forms a man-exchange blocking pair for M because
of the women in B. On the other hand, if both σpj and σqj are in S then M(mpj1) = wpj3

and M(mqj1) = wqj3, so that this same pair again forms a man-exchange blocking pair for
M , this time because of the women in C. If all three of ρp, ρq, ρr are in S, then we would
require exactly one of σpj, σqj , exactly one of σpj, σrj , and exactly one of σqj , σrj to be in
S, which is clearly impossible. It follows that exactly two of ρp, ρq, ρr are in S.

Lemma 6 Suppose that the derived instance of MESM admits a man-exchange stable

matching M . Then the given instance of U-1in3-3SAT admits a satisfying assignment.

Proof : From Lemma 5(i), it follows that the closed subset S of the rotation poset corre-
sponding to a stable matching that is also man-exchange stable must contain exactly two
of the rotations ρi corresponding to each clause in the given instance. Consequently, if we
assign variable ai to be false if and only if ρi ∈ S, the resulting assignment will satisfy the
given boolean expression with exactly one true literal in each clause, as required.

Lemma 7 Suppose that the given instance of U-1in3-3SAT admits a satisfying assign-

ment. Then the derived instance of MESM admits a man-exchange stable matching.

Proof : Given a satisfying assignment for the instance of U-1in3-3SAT, define the subset S
of the rotation poset to consist of all of the rotations ρi corresponding to variables ai that
are assigned false, and for each clause Cj = {ap, aq, ar} in which, say ap and aq are assigned
false, exactly one of the rotations σpj, σqj. It follows from Lemmas 3 and 4 that S is a
closed subset of the rotation poset. We claim that the stable matching M corresponding
to set S is man-exchange stable.

Firstly, suppose that ai is a true variable. Man mi11 is paired with wi11 in M , so
prefers only women ws11 such that variable as is in some clause with ai. So as must be a
false variable, and ws11 is therefore paired with either mst5 or mst4 in M . But neither of
these men prefers wi11 to ws11, so mi11 cannot be a member of a man-exchange blocking
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pair. Any man mijk (j 6= 1 or k 6= 1) has his first choice woman as partner in M , so also
cannot be a member of a man-exchange blocking pair.

Secondly, if ai is a false variable, consider whether any man mij2 could be in a man-
exchange blocking pair. Such a man prefers only wij2, and possibly wij3 to his partner in
M . But the partner of wij2 is either mij1 or mij5, and neither of these men prefers mij2’s
partner to his own. If mij2 prefers wij3 to his partner wij4, then wij3 must have mij1 as
partner, and he does not prefer wij4. The same argument holds for mij3 and mij4. In
the case of mij5, he prefers only wij5, and possibly wi(j+1)1 to his partner in M , and once
again it is easy to check that neither of these women’s partners prefers mij5’s partner to
his own.

Next, for a false variable ai, consider whether a man mij1 could be in a man-exchange
blocking pair. Suppose first that σij 6∈ S, so that M(mij1) = wij2. Then mij1 prefers the
following women to his partner in M :

1. wij1;

2. wpj2 and wqj2, where Cj = {ai, ap, aq};

3. when j = 1, women ws11 for all values of s such that ai and as occur together in
some clause.

In case (1), M(wij1) = mi(j−1)r for r = 4 or r = 5, and these men prefer their own partners
to wij2. For case (2), we know that one of ap, aq is true and the other false; suppose that
ap is true. Then ρp 6∈ S, so that mpj2 has his first choice woman wpj2 as his partner in M .
It follows that aq is false, so ρq ∈ S and further we must have σqj ∈ S, so M(wqj2) = mqj5.
But inspection of mqj5’s preference list reveals that he does not prefer wij2 to his own
partner. We subdivide case (3) into two subcases. If ρs 6∈ S then M(ws11) = ms11, and
ms11 does not prefer wi12. If ρs ∈ S then M(ws111) = mst4 or mst5, and again neither of
these men prefers wi12.

Finally, suppose that σij ∈ S, so that M(mij1) = wij3. Then mij1 prefers the following
women to his partner in M :

1. wij1;

2. wij2;

3. wpj2 and wqj2, where Cj = {ai, ap, aq};

4. wpj3 and wqj3, where Cj = {ai, ap, aq};

5. when j = 1, women ws11 for all values of s such that ai and as occur together in
some clause.

In case (1), M(wij1) = mi(j−1)r for r = 4 or r = 5, and these men prefer their own
partners to wij3. In case (2), M(wij2) = mij5, and this man prefers his own partner wij2

to wij3.
For cases (3) and (4),again assume that ap is true and aq false, so that ρp 6∈ S and

ρq ∈ S. In case (3), M(wpj2) = mpj2 and mpj2 prefers wpj2 to wij3, while M(wqj2) = mqj1,
since σqj 6∈ S, and mqj1 prefers wqj2 to wij3. In case (4), M(wpj3) = mpj3 and mpj3 prefers
wpj3 to wij3, while M(wqj3) = mqj2, since σqj 6∈ S, and mqj2 prefers wqj3 to wij3.

Lastly, we subdivide case (5) into two subcases. If ρs 6∈ S then M(ws11) = ms11, and
ms11 does not prefer wi13. If ρs ∈ S then M(ws111) = mst4 or mst5, and again neither of
these men prefers wi13.

Theorem 8 The man-exchange stable marriage problem is NP-complete.
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Proof : Membership in NP is immediate. NP-completeness follows from Lemmas 6 and 7,
together with the known NP-completeness of U-1in3-3SAT.

A more constrained version of the MESM problem arises if we also insist that there
should be no two women each of whom prefers the other’s partner to her own; we refer
to the problem of determining whether there is a stable matching with this even stronger
exchange-stability property as General Exchange Stable Marriage (GESM). Perhaps it is
not surprising that this variant also turns out to be NP-complete.

Theorem 9 The general exchange stable marriage problem is NP-complete.

Proof : We use the same transformation as for MESM. Examination of the women’s pref-
erence lists, and the set of stable matchings, for the derived instance, reveals that none of
the stable matchings has an exchange blocking pair of women, and the result follows at
once from this observation.

5 Summary and conclusion

In this paper we have introduced the Man-Exchange Stable Marriage problem, motivated
by a significant practical application, and have shown that this problem, and therefore its
generalisation in the Hospitals / Residents context, is NP-complete.

It is natural to ask how the situation is affected if we allow a stable matching to be
blocked by any coalition of t ≥ 2 men, all of whom could improve if they permuted their
partners in a suitable way. In the context of practical matching schemes, this man-coalition

stable marriage problem could still be significant although, in reality, the chances that a set
of more than two residents would collectively realise that they could form such a coalition
would be much diminished.

In fact, for this extended problem, the situation is rather different, as the following
theorem, first established by Cechlarova and Manlove [3] indicates.

Theorem 10 For any stable marriage instance, the man-optimal stable matching is the

only stable matching that can be man-coalition stable.

Proof : Let M be any stable matching other than the man-optimal, and let S be the
corresponding (non-empty) rotation set. Let ρ = (m0, w0), . . . , (mr−1, wr−1) be a member
of S with no successors in S. Then, for each i (0 ≤ i ≤ r − 1), mi prefers wi to wi+1, his
partner in M (i + 1 taken modulo r). Hence the set {m0, . . . mr−1} is a blocking coalition
for M .

It is a simple matter to determine, in O(n2) time whether a stable marriage instance
involving n men admits a man-coalition stable matching. Construct a directed graph G
with a vertex vi for each man mi and a directed edge from vi to vj if and only if mi

prefers M(mj) to M(mi), where M is the man-optimal stable matching. Then it is easy
to show that M is man-coalition stable if and only if G is acyclic. The man-optimal stable
matching can be found in O(n2) time by the Gale-Shapley algorithm, and the existence
of a cycle in G can be checked also in O(n2) time by standard means such as depth-first
search.
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