
22 Indian Conference on Computational Intelligence and Information Security (ICCIIS–07), January 25, 2007

1Dept. of Information & Communication Technology, Metropolitan University, Sylhet, Bangladesh. E-mail: sferdous@metrouni.edu.bd
2Dept. of Computer Science & Engineering, Shah Jalal University of Science & Technology, Sylhet, Bangladesh. E-mail: farida-cse@sust.edu

Middleware Distributed Approach to Synchronous
Detection of ARP Cache Poisoning

Md. Sadek Ferdous
1
 and Farida Chowdhury

2

Abstract—ARP cache poisoning based attack has been one of the

most successful attack methods for years inside a LAN. There are

a few solutions to detect and sometimes prevent an ARP based

attack but they have some restrictions. In this paper we present a

novel way to detect ARP cache poisoning inside a LAN. We

propose a middleware and synchronous solution that has to be

implemented in a distributed approach. Our solution requires no

need have access and change to any Operating System code, but

needs to be activated in timely manner and more than one host

inside a LAN will be utilized to detect ARP cache poisoning based

attack.

Key Words: ARP, ARP Cache Poisoning, Middleware, Syn-

chronous, Distributed.

I. INTRODUCTION

Address Resolution Protocol (ARP) is the mandatory

protocol to be followed to transfer data inside a LAN.

According to the TCP/IP model, ARP is used by a host inside

a Local Area Network (LAN) to find the Data Link Layer

address providing a Network Layer address [2, 4, 13].

According to the context of this paper, we assume a Network

Layer address is an IP address, and a Data Link Layer address

is an Ethernet address or Media Access Control (MAC)

address. In theory, MAC address is a globally unique and

totally unchangeable value that is hard coded burned into its

Network Interface Card (NIC) by the manufacturer [5]. In the

other hand, Internet Protocol (IP) is protocol used by

applications blind to whatever network technology operating

underneath it [5]. Each host inside a network should have a

unique IP address to communicate with each other. IP address

is virtual and assigned via software. ARP is used to map

between MAC address and IP address.

To smoothly perform the mapping between MAC and IP

address, every host in a LAN maintains a local table called

ARP cache. Due to the flaw in the design of TCP/IP layer, this

ARP cache can be deliberately and maliciously altered. This

act of changing the ARP cache deliberately and maliciously is

known as ARP cache poisoning [12, 14]. Based on such ARP

cache poisoning several very effective attacks such as Sniffing

(Man in the Middle, MAC Flood), DoS, Session Hijacking,

etc can be generated.

Following this introduction, this paper is organized as

follows: Section 2 discusses detailed ARP operation and how

ARP cache can be poisoned and how ARP cache poisoning

can be used to generate attacks inside a LAN. Section 3

provides a brief description of some techniques to detect and/or

prevent ARP cache poisoning. Section 4 discusses some of the

works related to detect ARP cache poisoning. Section 5

elaborates our proposed solution. We conclude in section 6.

II. ARP & ARP CACHE POISONING

To make communication between two hosts in a LAN two
pairs of addresses are necessary [2, 4, 13]. One pair contains
source IP address and source MAC address (MAC address of
the source host) and the other pair contains destination IP
address and destination MAC address (MAC address of the
destination host). All the data are encapsulated in the Ethernet
frame with these two pairs before they are transmitted. Before
this encapsulation takes place, sender host needs MAC
address of the destination host. Given an IP address, ARP can
resolve the MAC address of the corresponding host
dynamically. A figure of an ARP frame is given in Figure 1.

Fig. 1: Format of ARP Request or Reply Packet When Used on an
Ethernet

ARP is based on two functions: Request and Reply. Same

ARP frame with different configurations are used for Request

and Reply functions. In the Request function, an ARP packet

is broadcast over the network which contains, with other

information, Sender’s IP address, Sender’s MAC address and

Destination IP address. If there is a host which has the IP

address same as the Destination IP address, it responds with

an ARP Reply frame with its MAC address.

Other
Information

192.168.0.1 192.168.0.2
ABCDEF

123456

FFFFFF

FFFFFF

 SIP DIP SMAC Broadcast
 MAC

Fig. 2: Request ARP Packet

Other Info. 192.168.0.2 192.168.0.1 ABCDEF
123457

ABCDEF
123456

 SIP DIP SMAC DMAC

Fig. 3: Reply ARP Packet

Ripul
Textbox
Published in the Proceedings of the 1st Indian Conference on Computational Intelligence and Information Security, 2007 (ICCIIS, 07), pp:22-25.

Middleware Distributed Approach to Synchronous Detection of ARP Cache Poisoning 23

Let’s illustrate the scenario with some examples. Suppose

in a LAN there are some hosts A to F. A communication has to

be established from host A to host B with IP address 192.168.0.1

and 192.168.0.2 respectively and with MAC address of

ABCDEF123456 and ABCDEF123457 respectively. A knows

the IP address of B but has no idea about the MAC address of

B. So it uses ARP to resolve the MAC address of B. It builds

an ARP request packet like the figure 2.

In figure 2, SIP means Source IP, DIP means Destination

IP and SMAC means Source MAC. This packet is broadcast

over the LAN. Every host in the LAN checks the destination

IP address field. Only host B finds that destination IP address

of this packet matches with its IP address. So it responds by

sending an ARP reply packet with its MAC address. The reply

ARP packet looks like the figure 3.

In figure 3, DMAC means Destination MAC. After

receiving the ARP reply packet IP and MAC addresses of

source and destination host are known. Now an Ethernet

frame is built with these addresses and communication takes

place.

A. ARP Cache

For the efficient operation of the ARP, a table called ARP

cache is maintained in each host [11, 13]. This table caches the

recent mapping from IP address to MAC address. Each row of

this table has two columns. One column contains the IP address

and the other column contains the corresponding MAC address.

Such ARP cache can be built with the following ways:

1 Statically: In the static ARP cache, the table has to be

built with manual entry. User/administrator of a LAN

builds up the ARP cache by manually inserting the IP

address for each host of the LAN with its corresponding

MAC address.

2 Dynamically: In the dynamic ARP cache, ARP table is

built dynamically. When a host needs to know the MAC

address of another host, it sends an ARP request packet

and when it receives an ARP reply packet, it caches the

result in the ARP cache. So when the next time the same

host needs to know the MAC address of the same other

host, it first checks its ARP cache to find out the MAC

address thus eliminates the need for broadcasting an

ARP request packet to resolve the MAC address [9]. In

the same way when a host receives an ARP request

packet, that may or may not be destined for it, it caches

the source IP and MAC address from ARP request packet.

B. ARP Cache Poisoning

ARP cache poisoning is the act of changing the ARP table

deliberately and dynamically by introducing false mapping

between IP and MAC address in a selected host or all hosts in

a LAN through some predefined manners. Then using this

poisoning different modes of attack such as Sniffing (Man in

The Middle (MiTM) attack, MAC Flooding Attack), Denial of

Service Session Hijacking, etc can be generated [5, 10, 14].

Such poisoning can be furnished in the following ways

[7, 8]:

Unsolicited Response: If a host receives an ARP reply

packet by some other host it will update its ARP Cache

without checking the validity of the ARP reply, that means

the receiving host will not check whether that ARP reply is

generated for an ARP request. So an attacker has to send out

an ARP reply packet with false mapping information to

one/any number of hosts that the attacker wants to victimize

by poisoning the ARP Cache.

ARP Request: Sometimes an attacker can poison the ARP

cache of a host by using a legitimate ARP response. In this

case the attacker will wait for an ARP request packet

generated by a host. So when the first host will generate an

ARP request packet to resolve the MAC address of the

second host in the LAN, the attacker will involve in a race

condition. The second host will simply generate a legitimate

ARP reply packet with legitimate value. The attacker also

will generate an ARP reply packet with spurious mapping.

The reply packet that will be received later by the first host

will cause the first host to alter the ARP cache according to

its information. So if the attacker can win over the race

condition, the ARP cache of the first host will be poisoned.

ARP Response: Sometimes an attacker can poison the ARP

cache of a host by using a legitimate ARP response. In this

case the attacker will wait for an ARP request packet

generated by a host. So when the first host will generate an

ARP request packet to resolve the MAC address of the

second host in the LAN, the attacker will involve in a race

condition. The second host will simply generate a legitimate

ARP reply packet with legitimate value. The attacker also

will generate an ARP reply packet with spurious mapping.

The reply packet that will be received later by the first host

will cause the first host to alter the ARP cache according to

its information. So if the attacker can win over the race

condition, the ARP cache of the first host will be poisoned.

III. PREVENTION/DETECTION OF ARP CACHE POISONING

In this section we provide some of the defenses against

ARP cache poisoning. ARP was never designed with

security in mind. Due to design constraint in the TCP/IP

protocol suite and implementation constraint in various

platforms, there is no universal defense against ARP cache

poisoning. But some steps can be applied to prevent/detect it

[3, 5, 6]. Those are elaborated in the following subsections:

A. Static ARP Tables

The most straightforward method to prevent ARP cache

poisoning is use static ARP cache. Almost every platform

Ripul
Rectangle

24 Indian Conference on Computational Intelligence and Information Security (ICCIIS–07), January 25, 2007

supports static ARP cache in the ARP implementation. Static

ARP means manual entry of IP and MAC address pair into

each host and neither ARP request is generated nor an ARP

reply is honored. So ARP cache can’t be altered dynamically

using the techniques elaborated in the section 2.2.2. This

almost secures a network from ARP cache poisoning. The

drawback is that it is almost impossible to implement in large

LAN. That's because every device that is added to the network

has to be manually added to the ARP script or entered into

each machine's ARP table which is very hard to maintain. But

for a small network this technique successfully eliminates the

possibility of ARP cache poisoning in almost every platform.

B. Using a Switch with Port Securit

Some high-end switches come with an advanced feature

known as Port Security/MAC Binding/Port Binding. Port

Security enables a switch to allow only one MAC address for

each port and this configuration can be only by a network

administrator. This prevents MAC/ARP table of the switch to

be altered. This feature prevents attacker from changing the

MAC address of their machine or from trying to map more

than one MAC address to their machine. It can often help

prevent ARP-based MITM attack. The main drawback of such

feature is that it is very hard to maintain for large LAN. This

method also can’t be implemented in networks using DHCP.

C. Monitoring Tool

The best option for any network is to defend against ARP

cache poisoning is to use monitoring tool. A monitoring tool

can be used to monitor the ARP traffic. It will cause an alert

when it will find some unusual ARP communication. This

kind of monitoring has been regarded as the best option to

guard against ARP cache poisoning.

IV. RELATED WORKS

Though monitoring tool is being regarded the best option to

defend against ARP cache poisoning, very few good

monitoring tools can be found in the web.

ARPwatch is a famous ARP monitoring tool [1]. It’s a free

UNIX program which listens for ARP reply in the network.

Upon the ARP reply it builds a table with IP/MAC pairing. If

in the next time it finds a discrepancy in the same IP/MAC

pairing, it generates some kind of alert. It has some serious

restrictions. At the time of building the table, it may be biased

by an unsolicited response (a spoofed ARP reply generated by

an attacker) and a false pairing of IP and MAC may be

accepted by it. So when in the next time it receives an ARP

reply with real MAC/IP pairing, it will take it as the spoofed

one and will generate a false alarm. ARPwatch can’t be

trusted if it is implemented in a DHCP enabled network as it’ll

generate many false alarms.

Mahesh V. Tripunitara and Partha Dutta in [7] has proposed

a solution to detect and prevent ARP cache poisoning

According to their solution when any host receives an ARP

reply, it will be checked if that reply is for any outstanding

ARP request. If not, the frame will be dropped. When an ARP

request will be received, the validity for the request will be

checked. Their solution is almost perfect with one major

drawback: to implement their solution kernel level

modification in the OS is necessary.

V. PROPOSED SOLUTION

In this section we propose our solution to detect ARP cache

poisoning. At first we’ll define the characteristic properties of

our solution and then we’ll propose an algorithm to define our

solution. The characteristic properties of our solution are as

follows:

Middleware: Our solution is proposed to be middleware so

that implementation based on our solution can act

independently without the help of OS and there is no need to

access the source code for ARP implementation and network

subsystem of the OS.

Distributed: Our solution is proposed to be distributed in

nature so that time to time interaction among different agents

of different hosts, which will be implemented according to our

proposed solution, can be performed.

Synchronous: Our solution is proposed to be Synchronous

which involves the necessity of checking the ARP table of a

host in a definite time interval.

The key point of the algorithm is that it will create a

monitor/agent each for one host which will maintain its own

internal table with valid/legitimate IP/MAC mapping. At first

IP/MAC mapping will be retrieved from the ARP cache and

then they will be verified. If the verification fails, an alarm

will be raised and proper step will be taken to remove the false

mapping from the ARP cache. For verification, the monitor of

different hosts will communicate with each other in a fixed

port.

The algorithm of our proposed solution goes below:

Algorithm Detect ARP Cache Poisoning

1. While (TRUE)

2. Check the ARP cache of the host in a definite time period

3. If there are some entries in the ARP cache

4. If there is no entry in the internal table

5. For every mapping of IP/MAC in each row
 of the ARP cache

6. Call Procedure BuildInternalTable
 (IP address, MAC address)

7. Else there are entries in the internal
 table

8. Match the IP address of each row in the ARP
 cache with each of the IP Address of the
 internal table

9. If there is a positive match

10. Check the two MAC addresses of the
 corresponding IP address in the ARP
 cache and internal table

Ripul
Rectangle

Middleware Distributed Approach to Synchronous Detection of ARP Cache Poisoning 25

11. If there is a positive match

12. Do nothing

13. Else If there is negative match

14. Potential possibility of ARP cache
 poisoning. As the internal table is
 built with valid values, ARP cache
 contains a spurious mapping of
 IP/MAC. Raise an alert. Delete the
 Corresponding IP/MAC mapping
 from the ARP cache

15. End If. (end of if of line 11)

16. Else If there is no match in the internal table

17. Follow the steps of line 5 and 6

18. End If (end of if of line 9)

19. End If (end of if in the line of 4)

20. Else If there is no entry in the ARP cache

22. Do nothing.

23. End If (end of if in the line of 3)

24. End while

Procedure Build Internal Table
(IP address, MAC address)

1. Build a special frame with some predefined values and
send it to the host whose IP/MAC mapping has been found
as the parameter of the procedure. The frame will
communicate in a defined port set aside for our purpose.
The purpose of the special frame is to tell the agent of the
receiving host to check this IP/MAC mapping. After
checking the receiving agent will send another packet to
the sending agent

2. After receiving .the reply packet, check the answer

3. If the answer is positive

4. Make an entry with the corresponding source
 IP/MAC address of the frame in the internal table

5. Else If the answer is negative

6. Potential possibility of ARP cache poisoning.
 Raise an alert. Delete the this IP/MAC mapping
 from the ARP cache and do not make any entry
 in the internal table for this IP/MAC mapping

7. Else If there is no answer frame for a definite period of
time

8. Follow the steps of line 6

9 End If

10. Return

The main advantage of our algorithm is that it gets off the

restrictions of different solutions that we’ve discussed in

Section 4. According to our algorithm, no false alarm will be

generated like the ARPwatch. This is because ARPwatch

relies on only ARP traffic. But as our algorithm validates

every IP/MAC mapping by locally checking in an appropriate

host, there is no chance to generate false alarm. Our solution

can also be implemented in DHCP enabled network unlike the

ARPwatch. Again unlike the solution stated in the [7], no

kernel level modification is necessary as our solution just

checks the local cache, not the ARP packet. The limitation of

our solution is that time to time it will create some extra traffic

for the verification purpose in the network.

VI. CONCLUSIONS

In this paper we presented the different aspects of Address

Resolution Protocol (ARP) cache poisoning problem and

attack scenarios that could be generated based on it. Then we

discussed some related works in this field. At last we

presented a unique algorithm to detect ARP cache poisoning

in a unique distributed way inside a LAN. This paper did not

deal with any kind of implementation detail. In future, an

implementation can be deployed and a comparative

performance analysis between this implementation and other

related works can be accomplished.

REFERENCES

 [1] ARP information from wikipedia

 [2] http://en.wikipedia.org/wiki/Arpwatch

 [3] Behrouz A. Forouzan, Data Communications and Networking, TATA

McGRAW-HILL, 2004.

 [4] Corey Nachreiner, “Anatomy of an ARP Poisoning Attack”,

WatchGuard Life Security Service, 2003. http://www.watchguard.

com/ infocenter/editorial/135324.asp

 [5] Plummer, D.C., “An ethernet address resolution protocol or converting

network protocol addresses to 48.bit Ethernet address for transmission

on ethernet hardware”. RFC 826, November 1982.

 [6] Dillinja, “Address Resolution Protocol: Description, Exploitation and

Exploitation Prevention”, September, 2003. http://www.Govern

mentsecurity.org/archive/t2605.html

 [7] Josha Bronson, “Protecting your network from arp spoofing based

attacks”, http://faculty.capitol-college.edu/~amehri/Articles/How_to_

Protect.pdf.

 [8] Mahesh C. Tripunitara and Partha Dutta , “A Middleware Approach to

Asynchronous and Backward Compatible Detection and Prevention

of ARP Cache Poisoning”, Annual Computer Security Applications

Conference (ACSAC), 1999.

 [9] Beekey, Mike, “ARP Vulnerabilities: Indefensible Local Network

Attacks”, Black Hat Briefings, 2001. http://www.blackhat.com/

presentations/ bh-usa- 01/MikeBeekey/bh-usa-01-Mike-Beekey.ppt

 [10] Neil B. Riser, “Spoofing: An Overview of Some the Current Spoofing

Threats”, July, 2001. From SANS Reading Room.

 [11] Wagner, Robert, “Address Resolution Protocol Spoofing and Man-in-

the-Middle Attacks”, Practical Assignment GSEC, August, 2001.

 [12] Whalen, Sean, Sophie Engle & Dominic Romeo, “An Introduction to

ARP Spoofing”, April 2007, http://www.node99.org/projects/arpspoof/

arpspoof-slides.ppt.

 [13] Manwani, Silky, “ARP Cache Poisoning Detection and Prevention”,

Dec 2003. http://faculty.capitolcollege.edu/~amehri/Articles/Spoof_

report.pdf.

 [14] Stevens, W. Richard, TCP/IP Illustrated, Volume 1: The Protocols,

Addison Wesley Longman, Inc. 1994.

 [15] Volobuev, Y., “Playing redir games with ARP and ICMP”,

BUGTRAQ mailing list, September 1997. http://www.goth.net/iceburg/

tcp/arp.games.html.

Ripul
Rectangle

