Spatial and Behavioural types: safety, liveness and decidability

Lucia Acciai and Michele Boreale

Dipartimento di Sistemi e Informatica
Università degli Studi di Firenze

Lisbon, April 19–21, 2011
1 Introduction

2 Processes, types and formulae

3 The local and the global systems

4 Decidability

5 Conclusion
Logics and Types

Need to control the usage of (new) names in pi-calculus

Spatial Logic: suitable to
- analyze properties of systems
- describe the spatial structure of processes
- reason on distribution and concurrency

Behavioral types: combines static analysis and model checking
- abstract (the behavior of) processes
- simplify the analysis of concurrent message-passing processes
- properties are checked against types
- E.g. in [Igarashi, Kobayashi’01]
 - processes = pi-calculus, types = CCS
 - (global) invariant safety properties are considered
Our approach

Introduce a type system where

- processes and types share the same “shallow” spatial structure
- each block of declared names is annotated with a SL formula
- type safety: restricted processes are guaranteed to satisfy precise properties on bound names

Benefits

- properties not limited to safety invariants
- compositionality: only relevant names are considered when checking properties
Our approach

Introduce a type system where

- processes and types share the same “shallow” spatial structure
- each block of declared names is annotated with a SL formula
- type safety: restricted processes are guaranteed to satisfy precise properties on bound names

Benefits

- properties not limited to safety invariants
- compositionality: only relevant names are considered when checking properties
Outline

1. Introduction
2. Processes, types and formulae
3. The local and the global systems
4. Decidability
5. Conclusion
Processes

Pi-calculus with replicated input and guarded summation:

Prefixes \(\alpha ::= a(\tilde{b}) \) Input
| \(\bar{a}\langle \tilde{b} \rangle \) Output
| \(\tau \) Silent prefix

Processes \(P ::= \sum_{i \in I} \alpha_i.P_i \) Guarded summation
| \(P|P \) Parallel composition
| \((\nu\tilde{b})P \) Restriction
| \(!a(\tilde{b}).P \) Replicated input
Types

CCS with replicated input and guarded summation:

Prefixes \(\mu ::= a \mid \overline{a} \mid \tau \)

Process types \(T ::= \sum_i \mu_i . T_i \)

- Guarded summation
- Parallel composition
- Restriction
- Replicated input

Channel types \(t ::= (\tilde{x} : \tilde{t})T \)
Shallow Logic (SL): examples of formulae

\text{shallow} = \text{input and output barbs are not followed by a continuation}

Race freedom:
\[\text{NoRace}(a) \equiv \Box^* \neg H^*(\overline{a}|\overline{a}) \]

Unique receptiveness:
\[\text{UniRec}(a) \equiv \Box^* \left(a \land \neg H^*(a|a) \right) \]

Responsiveness:
\[\text{Resp}(a) \equiv \Box_{\neg a}^* \langle a \rangle \]

Deadlock freedom:
\[\text{DeadFree}(a) \equiv \Box^* \left[\left(\overline{a} \rightarrow H^*(\overline{a}|\langle a \rangle) \right) \land \left(a \rightarrow H^*(a|\langle a \rangle) \right) \right] \]
Well-annotated processes

\[P ::= \cdots \mid (\forall \tilde{a} : \tilde{t}; \phi)P \quad \text{with} \quad \text{fn}(\phi) \subseteq \tilde{a} \]

with \(\phi \) a shallow logic formula

Definition (well-annotated processes)

A process \(P \in \mathcal{P} \) is *well-annotated* if whenever \(P \equiv (\forall \tilde{b})(\forall \tilde{a} : \phi)Q \) then \(Q \models \phi. \)
Remark: a "weakening" property of SL

Let B with \(\text{fn}(B) = \emptyset \):

$A \models \phi \iff A \upharpoonright B \models \phi$

Necessary for soundness of scope extrusion

\[
(\nu \tilde{a} : \phi)(P \upharpoonright Q) \equiv (\nu \tilde{a} : \phi)(P \upharpoonright Q) \quad \text{if} \quad \tilde{a} \notin Q
\]

In (Caires and Cardelli’s) Spatial Logic this does not hold. E.g.

- $\neg (\neg 0 \upharpoonright \neg 0)$
- $\diamond T$
Remark: a “weakening” property of SL

Lemma

In Shallow Logic $\forall B$ with $\text{fn}(B) = \emptyset$: $A \models \phi \iff A \mid B \models \phi$

Necessary for soundness of scope extrusion

$$(\forall \tilde{a} : \phi)P \mid Q \equiv (\forall \tilde{a} : \phi)(P \mid Q) \text{ if } \tilde{a} \notin Q$$

In (Caires and Cardelli’s) Spatial Logic this does not hold. E.g.

- $\neg(\neg 0 \mid \neg 0)$
- $\Diamond T$
1 Introduction

2 Processes, types and formulae

3 The local and the global systems

4 Decidability

5 Conclusion
A “Local” Type System

Judgments: \(\Gamma \vdash_{L} P : T \)

Key rule: \((\text{T-RES})\):

\[
\frac{\Gamma, \tilde{\tilde{a}} : \tilde{\tilde{t}} \vdash P : T \quad T \downarrow_{\tilde{a}} \models \phi}{\Gamma \vdash (\nu \tilde{\tilde{a}} : \tilde{\tilde{t}}; \phi)P : (\nu \tilde{\tilde{a}} : \tilde{\tilde{t}})T}
\]

Local: in \((\text{T-RES})\) only the part of \(T\) depending on the restricted names, \(T \downarrow_{\tilde{x}}\), is taken into account - the rest is hidden

Example: \((a \cdot \tilde{b} \cdot \tilde{a} | (\nu c)(b \cdot c | \tilde{d} | \tilde{c})) \downarrow_{a} = a \cdot \tau \cdot \tilde{a} | (\nu c)(\tau \cdot c | \tau | \tilde{c})\)
A “Local” Type System

Judgments: \(\Gamma \vdash_{L} P : T \)

Key rule: \((T-\text{RES})\):

\[
\frac{\Gamma, \tilde{a} : \tilde{t} \vdash P : T \quad T \downarrow \tilde{a} \models \phi}{\Gamma \vdash (\forall \tilde{a} : \tilde{t}; \phi)P : (\forall \tilde{a} : \tilde{t})T}
\]

Local: in \((T-\text{RES})\) only the part of \(T\) depending on the restricted names, \(T \downarrow \tilde{x}\), is taken into account - the rest is hidden

Example: \(\downarrow_{a} (a \cdot b \cdot a \mid (\forall c)(b \cdot c \mid d \mid c)) = a \cdot \tau \cdot a \mid (\forall c)(\tau \cdot c \mid \tau \mid c)\)
A “Local” Type System

Judgments: $\Gamma \vdash_L P : T$

Key rule: $(T-\text{RES})$: $\frac{\Gamma, \bar{\alpha} : \bar{t} \vdash P : T \quad T \downarrow \bar{\alpha} \vdash \phi}{\Gamma \vdash (\nu \bar{\alpha} : \bar{t}; \phi) P : (\nu \bar{\alpha} : \bar{t})T}$

Local: in $(T-\text{RES})$ only the part of T depending on the restricted names, $T \downarrow \bar{x}$, is taken into account - the rest is hidden

Example: $(a.b.\bar{a} | (\nu c)(b.c | d | \bar{c})) \downarrow_a = a.\tau.\bar{a} | (\nu c)(\tau.c | \tau | \bar{c})$

relevant names = newly created names
Definitions and Results

Definition (negative formulae)

In a negative formula each $\langle \neg \tilde{x} \rangle^*$ is under an **odd** number of \neg.

Note: no limitations on other modalities!

Theorem (run-time soundness)

Suppose that $\Gamma \vdash^L P : T$ and that P is decorated with negative formulae of the form $\Box^* \phi$. Then $P \rightarrow^* P'$ implies that P' is well-annotated.

Race Freedom and Unique Receptiveness are negative
Definitions and Results

Definition (negative formulae)
In a negative formula each $\langle \neg \tilde{x} \rangle^*$ is under an odd number of \neg

Note: no limitations on other modalities!

Theorem (run-time soundness)
Suppose that $\Gamma \vdash L P : T$ and that P is decorated with negative formulae of the form $\square^* \phi$. Then $P \rightarrow^* P'$ implies that P' is well-annotated.

Race Freedom and Unique Receptiveness are negative
A “Global” Type System: motivations

Type soundness does not hold for non-negative formulae like \(\text{Resp}(a) \) and \(\text{DeadFree}(a) \)

E.g.:

\[
R = (\nu a; \text{Resp}(a))(c.a|\overline{a})
\]

is well-typed for suitable \(\Gamma \). Indeed

\[
\Gamma, a \vdash_L c.a|\overline{a} : c.a|\overline{a}
\]

and

\[
(c.a|\overline{a}) \downarrow_a = \tau.a|\overline{a} \models \text{Resp}(a)
\]

but

\[
c.a|\overline{a} \not\models \text{Resp}(a)
\]

Problem: \(\text{Resp} \) on \(a \) also \textbf{depends} on a “global” name \(c \)
A “Global” Type System: motivations

Type soundness does not hold for non-negative formulae like $\text{Resp}(a)$ and $\text{DeadFree}(a)$

E.g.:

$$R = (\nu a; \text{Resp}(a))(c.a|\overline{a})$$

is well-typed for suitable Γ. Indeed

$$\Gamma, a \vdash_L c.a|\overline{a} : c.a|\overline{a}$$

and

$$(c.a|\overline{a}) \downarrow_a = \tau.a|\overline{a} \models \text{Resp}(a)$$

but

$$c.a|\overline{a} \not\models \text{Resp}(a)$$

Problem: Resp on a also depends on a “global” name c
Type soundness does not hold for non-negative formulae like $Resp(a)$ and $DeadFree(a)$

E.g.:

$$R = (\nu a; Resp(a))(c.a|\bar{a})$$

is well-typed for suitable Γ. Indeed

$$\Gamma, a \vdash_L c.a|\bar{a} : c.a|\bar{a}$$

and

$$(c.a|\bar{a}) \downarrow_a = \tau.a|\bar{a} \models Resp(a)$$

but

$$c.a|\bar{a} \not\models Resp(a)$$

Problem: $Resp$ on a also **depends** on a “global” name c
A “Global” Type System

Main change:

\[\downarrow x \text{ replaced by } \downarrow \tilde{x} \]

where \(T \downarrow \tilde{x} \) keeps the names in \(\tilde{x} \) and the causes of \(\tilde{x} \) in \(T \)

(plus some bookkeeping on names)

E.g.:

\[(c.a|\overline{a}) \downarrow a = c.a|\overline{a} \not\in Resp(a)\]

relevant names = new names + causally related free names
A “Global” Type System

Main change:

\[\downarrow \tilde{x} \text{ replaced by } \downarrow_{\tilde{x}} \]

where \(T \downarrow_{\tilde{x}} \) keeps the names in \(\tilde{x} \) and the causes of \(\tilde{x} \) in \(T \)

(plus some bookkeeping on names)

E.g.:

\[(c.a|\bar{a}) \downarrow_a = c.a|\bar{a} \not\in Resp(a) \]

relevant names = new names + causally related free names
Main change:

\[\downarrow \tilde{x} \text{ replaced by } \downarrow \tilde{\tilde{x}} \]

where \(T \downarrow \tilde{x} \) keeps the names in \(\tilde{x} \) \textbf{and the causes of} \(\tilde{x} \) in \(T \)

(plus some bookkeeping on names)

E.g.:

\[(c.a|\overline{a}) \downarrow_a = c.a|\overline{a} \not\in \text{Resp}(a) \]

relevant names = new names + causally related free names
Definitions and Results

Consider ϕ of the form

1. either $\Box^* \psi$ with negation not occurring underneath any $\langle \neg \tilde{y} \rangle^*$ in ψ

2. or $\Box^* \neg \tilde{y} \diamond \neg \psi'$, with negation not occurring in ψ'.

Theorem (run-time soundness)

Suppose that $\Gamma \vdash G P : T$ and that P is decorated with formulae of the form (1) or (2) above. Then $P \rightarrow^* P'$ implies that P' is well-annotated.

Responsiveness and Deadlock Freedom are of the form (2) and (1) respectively.
Definitions and Results

Consider \(\phi \) of the form

1. either \(\Box^* \psi \) with negation not occurring underneath any \(\langle \neg \tilde{y} \rangle^* \) in \(\psi \)
2. or \(\Box^* \neg \tilde{y} \Diamond^* \psi' \), with negation not occurring in \(\psi' \).

Theorem (run-time soundness)

Suppose that \(\Gamma \vdash_G P : T \) and that \(P \) is decorated with formulae of the form (1) or (2) above. Then \(P \rightarrow^* P' \) implies that \(P' \) is well-annotated.

Responsiveness and Deadlock Freedom are of the form (2) and (1) respectively.
Decidability of the type system

The type system is decidable provided that:

1. \equiv is decidable
2. \models is decidable
Decidability of the type system

The type system is decidable provided that:

1. \equiv is decidable
2. \models is decidable

1) \equiv is decidable

From [Engelfriet & Gelsema 2004]
Decidability of the type system

The type system is decidable provided that:

1. \(\equiv \) is decidable
2. \(\vdash \) is decidable

1) \(\equiv \) is decidable

From [Engelfriet & Gelsema 2004]

2) \(\vdash \) is decidable (?)

The idea is to extend the approach in [BGZ04] for the decidability of weak barbs on CCS to handle SL
WSTS techniques for deciding “$|=\$”

Given a (decidable) preorder \leq on types in \mathcal{T}

Theorem ([Finkel and Schnoebelen’01])

Under certain conditions for each $I \subseteq \mathcal{T}$ it is possible to compute a *finite* X such that

$$\uparrow X = \text{Pred}^*(I)$$

(finite basis of Pred}^(I))*

Since $\llbracket \diamondsuit^* \phi \rrbracket = \text{Pred}^*(\llbracket \phi \rrbracket)$, to check $T \models \diamondsuit^* \phi$

1. set $I = \llbracket \phi \rrbracket$ above
2. check if $\exists S \in X$ s.t. $S \leq T$

$$\text{Pred}(s) = \{s' \mid s' \rightarrow s\} \quad \text{Pred}^*(s) = \{s' \mid s' \rightarrow^* s\}$$
Conditions [Finkel and Schnoebelen’01]

1. \(\mathcal{T} \) forms a **WSTS** w.r.t. (a decidable) \(\leq \)

2. \(\forall T \in \mathcal{T} \) it is possible to compute a **finite** \(Y \) s.t.
 \[\uparrow Y = \uparrow \text{Pred}(\uparrow T) \quad \text{(effective pred-basis)} \]

3. \(\forall I(= [\phi]) \) it is possible to compute a **finite** \(Z \) s.t.
 \[\uparrow Z = I(= [\phi]) \quad \text{(finite basis)} \]

Our task:
Find a preorder satisfying the three conditions above

Our approach:
Viewing types as forests and defining a preorder similar to Kruskal’s tree-preorder
Conditions [Finkel and Schnoebelen’01]

1. \mathcal{T} forms a WSTS w.r.t. (a decidable) \leq

2. $\forall T \in \mathcal{T}$ it is possible to compute a finite Y s.t.

 \[\uparrow Y = \uparrow \text{Pred}(\uparrow T) \quad \text{(effective pred-basis)} \]

3. $\forall I (= \llbracket \phi \rrbracket)$ it is possible to compute a finite Z s.t.

 \[\uparrow Z = I (= \llbracket \phi \rrbracket) \quad \text{(finite basis)} \]

Our task:
Find a preorder satisfying the three conditions above

Our approach:
Viewing types as forests and defining a preorder similar to Kruskal’s tree-preorder
Preliminary definition

Fix an initial type T_0

Definition (\mathcal{F})

$\mathcal{F} \triangleq$ the set of all terms:
- containing only subterms and restrictions of T_0
- having nesting depth smaller than T_0’s

E.g. $T_0 = (\nu a)(a.b|\overline{a}.\overline{b})$: $\begin{cases} (\nu a)(a.b|\overline{b}|a.b) \in \mathcal{F} \\ (\nu a)(\nu a)(a.b) \notin \mathcal{F} \end{cases}$
We consider types as forests where:

- **internal nodes** = restrictions
- **leaves** = prefix-guarded terms

E.g. \(T = (\nu a) (a.b | \overline{a}.b) | (\nu c) ((\nu d) c.d | \overline{c}.\overline{f}) \)

\[
\begin{align*}
(\nu a) & : a.b & (\nu c) : \overline{a}.b \\
& & (\nu d) : (c.d | \overline{c}.\overline{f}) \\
& & c.d
\end{align*}
\]
Make types a WSTS

Defining the preorder $\leq = \text{rooted tree embedding}$

\[(\nu a) \quad (\nu c) \]
\[\quad (\nu d) \leq \quad \]
\[\quad \]
WSTS III: $\langle \mathcal{F}, \rightarrow, \leq \rangle$ is a WSTS

Theorem

(i) \leq is a well-quasi order over \mathcal{F} and (ii) $\langle \mathcal{F}, \rightarrow, \leq \rangle$ is a WSTS

Proof idea: (i) by induction on the nesting depth of restrictions of terms in \mathcal{F} and by using the Higman's lemma. The base case (height = 0) relies on finiteness of guarded subterms in T_0. The inductive step relies on the fact that each forest can be decomposed into a finite number of subforests with smaller height.

(ii) $\langle \mathcal{F}, \rightarrow, \leq \rangle$ is a finitely branching transition system and \leq is easily proved to be a computable simulation relation in \mathcal{F}.
Theorem

(i) \leq is a well-quasi order over \mathcal{F} and (ii) $\langle \mathcal{F}, \to, \leq \rangle$ is a WSTS

Proof idea: (i) by induction on the nesting depth of restrictions of terms in \mathcal{F} and by using the Higman’s lemma. The base case (height = 0) relies on finiteness of guarded subterms in T_0. The inductive step relies on the fact that each forest can be decomposed into a finite number of subforests with smaller height.

(ii) $\langle \mathcal{F}, \to, \leq \rangle$ is a finitely branching transition system and \leq is easily proved to be a computable simulation relation in \mathcal{F}.
WSTS III: \(\langle F, \rightarrow, \leq \rangle \) is a WSTS

Theorem

(i) \(\leq \) is a well-quasi order over \(F \) and (ii) \(\langle F, \rightarrow, \leq \rangle \) is a WSTS

Proof idea: (i) by induction on the nesting depth of restrictions of terms in \(F \) and by using the Higman’s lemma. The base case (height = 0) relies on finiteness of guarded subterms in \(T_0 \). The inductive step relies on the fact that each forest can be decomposed into a finite number of subforests with smaller height.

(ii) \(\langle F, \rightarrow, \leq \rangle \) is a finitely branching transition system and \(\leq \) is easily proved to be a computable simulation relation in \(F \).

NB: in CCS reductions cannot increase the nesting depth, on the contrary in pi-calculus \((\nu b)\bar{a}\langle b \rangle | (\nu c)a(x).\bar{x}.c \rightarrow (\nu b)(\nu c)\bar{b}.c \)
Effective Pred-basis: \(\text{pb}(T) \)

\(\forall T \in \mathcal{T} \) it is possible to compute a \textbf{finite} \(Y \) s.t. \(\uparrow Y = \uparrow \text{Pred}(\uparrow T) \)
Effective Pred-basis: $\text{pb}(T)$

∀ $T \in \mathcal{T}$ it is possible to compute a finite Y s.t. $\uparrow Y = \uparrow \text{Pred}(\uparrow T)$
Effective Pred-basis: $\text{pb}(T)$

∀ $T \in \mathcal{T}$ it is possible to compute a finite Y s.t. $\uparrow Y = \uparrow \text{Pred}(\uparrow T)$

$G_1, G_2 = \text{prefix-guarded processes (leaves)}$
Effective Pred-basis: $pb(T)$

∀ $T \in \mathcal{T}$ it is possible to compute a [finite] Y s.t. $\uparrow Y = \uparrow Pred(\uparrow T)$

$G_1, G_2 =$ prefix-guarded processes (leaves)
Effective Pred-basis: $\text{pb}(T)$

2. $\forall T \in \mathcal{T}$ it is possible to compute a **finite** Y s.t. $\uparrow Y = \uparrow \text{Pred}(\uparrow T)$

Theorem

$\forall T \in \mathcal{T}: \text{pb}(T)$ is effective and $\uparrow \text{pb}(T) = \uparrow \text{Pred}(\uparrow T)$
Finite-basis: \(\uparrow fb(\phi) = [[\phi]] \cap \mathcal{F} \)

3. \(\forall I (= [[\phi]]) \) it is possible to compute a finite \(Z \) s.t. \(\uparrow Z = I (= [[\phi]]) \)

\[(G = \text{prefix-guarded process (leaf) } \quad D = \text{context of parallel and restrictions}) \]

Definition \(fb(\phi) \)

\[
fb(a) \triangleq \{ D[G] \in \mathcal{F} \mid G \uparrow a \} \quad (\forall a)
\]
Finite-basis: \(\uparrow fb(\phi) = [\![\phi]\!] \cap \mathcal{F} \)

\[\forall I (= [\![\phi]\!]) \text{ it is possible to compute a finite } Z \text{ s.t. } \uparrow Z = I (= [\![\phi]\!]) \]

\(G = \) prefix-guarded process (leaf) \(\quad D = \) context of parallel and restrictions

Definition \(fb(\phi) \)

\[
\begin{align*}
fb(a) &\triangleq \{ D[G] \in \mathcal{F} \mid G \backslash a \} \\
fb(H^*(\phi_1|\phi_2)) &\triangleq \bigcup_{S_i \in fb(\phi_i)} \{ D[\tilde{G}_1, \tilde{G}_2] \in \mathcal{F} \mid \tilde{G}_i = \text{leaves}(S_i) \}
\end{align*}
\]
Finite-basis: \(\uparrow fb(\phi) = \llbracket \phi \rrbracket \cap \mathcal{F} \)

\(\forall I (= \llbracket \phi \rrbracket) \) it is possible to compute a finite \(Z \) s.t. \(\uparrow Z = I (= \llbracket \phi \rrbracket) \)

\(G = \) prefix-guarded process (leaf) \hspace{1cm} D = \) context of parallel and restrictions

Definition (\(fb(\phi) \))

\[
fb(a) \triangleq \{ D[G] \in \mathcal{F} \mid G \searrow a \}
\]

\[
fb(H^*(\phi_1 | \phi_2)) \triangleq \bigcup_{S_i \in fb(\phi_i)} \{ D[\tilde{G}_1, \tilde{G}_2] \in \mathcal{F} \mid \tilde{G}_i = \text{leaves}(S_i) \}
\]
Finite-basis: \[\uparrow fb(\phi) = \llbracket \phi \rrbracket \cap \mathcal{F} \]

\[3 \quad \forall I (= \llbracket \phi \rrbracket) \text{ it is possible to compute a finite } Z \text{ s.t. } \uparrow Z = I (= \llbracket \phi \rrbracket) \]

\[(G = \text{prefix-guarded process (leaf)} \quad - \quad D = \text{context of parallel and restrictions}) \]

Definition (fb(\phi))

\[fb(a) \overset{\Delta}{=} \{ D[G] \in \mathcal{F} \mid G \ \backslash \ a \} \]

\[fb(H^*(\phi_1 | \phi_2)) \overset{\Delta}{=} \bigcup_{S_i \in fb(\phi_i)} \{ D[\tilde{G}_1, \tilde{G}_2] \in \mathcal{F} \mid \tilde{G}_i = \text{leaves}(S_i) \} \]

\[fb(\phi_1 \lor \phi_2) \overset{\Delta}{=} fb(\phi_1) \cup fb(\phi_2) \]
Finite-basis: \(\uparrow fb(\phi) = \llbracket \phi \rrbracket \cap \mathcal{F} \)

\(\forall I (= \llbracket \phi \rrbracket) \) it is possible to compute a finite \(Z \) s.t. \(\uparrow Z = I (= \llbracket \phi \rrbracket) \)

\(G = \) prefix-guarded process (leaf) \hspace{1cm} D = \) context of parallel and restrictions

Definition (\(fb(\phi) \))

\[
\begin{align*}
fb(a) & \triangleq \{ D[G] \in \mathcal{F} \mid G \downarrow a \} \\
fb(H^*(\phi_1 | \phi_2)) & \triangleq \bigcup_{S_i \in fb(\phi_i)} \{ D[\tilde{G}_1, \tilde{G}_2] \in \mathcal{F} \mid \tilde{G}_i = \text{leaves}(S_i) \} \\
fb(\phi_1 \lor \phi_2) & \triangleq fb(\phi_1) \cup fb(\phi_2) \\
fb(\diamond^* \phi) & \triangleq X \hspace{1cm} \text{s.t.} \hspace{1cm} \uparrow X = Pred^*(fb(\phi))
\end{align*}
\]

\[\cdots\]
What about $fb(\phi_1 \land \phi_2)$?

Idea:

$S_1 \in fb(\phi_1)$

$S_2 \in fb(\phi_2)$

$S = \text{least common multiple of } S_1 \text{ and } S_2$

E.g. $S_1 = a | b$, $S_2 = b | c \Rightarrow S = a | b | c$
What about $fb(\phi_1 \land \phi_2)$?

Idea:

- $S_1 \in fb(\phi_1)$
- $S_2 \in fb(\phi_2)$

S_1 and S_2 are the least common multiples of S_1 and S_2 respectively, where $S_1 = a \mid b$ and $S_2 = b \mid c$. Therefore, $S = a \mid b \mid c$.
What about $fb(\phi_1 \land \phi_2)$?

Idea:

- $S_1 \in fb(\phi_1)$
- $S_2 \in fb(\phi_2)$
- $S = \text{"least common multiple" of } S_1 \text{ and } S_2$

E.g. $S_1 = a|b$, $S_2 = b|c \implies S = a|b|c$
Main results

Definition (monotone, anti-monotone and plain formulae)
- ϕ is **monotone** if it does not contain occurrences of \neg
- **anti-monotone** if it is of the form $\neg\psi$, with ψ monotone
- ϕ is **plain** if it does not contain \Diamond^* underneath H^*

Theorem (decidability on types and processes)

For any ϕ plain and (anti-)monotone
- $fb(\phi)$ is a computable finite basis for $[[\phi]] \cap F$
- $T \models \phi$ is decidable for any T
- $P \models \phi$ is decidable for any P well-typed
Examples of decidable formulae

Never two concurrent outputs on a:

$$\text{NoRace}(a) \triangleq \neg \Diamond^* H^*(\bar{a} | \bar{a})$$

Communication on a never occurs more than once:

$$\text{Linear}(a) \triangleq \neg \Diamond^* \langle a \rangle \Diamond^* \langle a \rangle$$

Resource a never acquired in presence of the lock l:

$$\text{Lock}(a,l) \triangleq \neg \Diamond^* H^*(l | \langle a \rangle)$$
1 Introduction
2 Processes, types and formulae
3 The local and the global systems
4 Decidability
5 Conclusion
Further and related works

Further:

- Decidability: relax some constraints? Difficult:
 Known result: $\Diamond^* (a \land \neg b)$ is undecidable [Zavattaro’09]
- Quantitative behavioural types? Ongoing work

Related:

- **Behavioural types**: Acciai and Boreale’08; Chaki et al.’02; Igarashi and Kobayashi’01;
- **Decidability results in CCS**: Valencia et al.’09; Busi et al.’04
- **Spatial logics**: Caires’04
- **Undecidability results**: Kobayashi and Suto 2007
Type system

\[(T\text{-INP}) \quad \frac{\Gamma \vdash a : (\bar{x} : \bar{t}) T \quad fn(\bar{t}) \cup fn(T) \setminus \bar{x} = a, \quad \Gamma, \bar{x} : \bar{t} \vdash P : T|T'} \quad \bar{x} \notin fn(T')}{\Gamma \vdash a(\bar{x}) . P : a^a . T'}\]

\[(T\text{-OUT}) \quad \frac{\Gamma \vdash a : (\bar{x} : \bar{t}) T \quad \Gamma \vdash \bar{b} : \bar{t} \quad \Gamma \vdash P : S}{\Gamma \vdash \bar{a}(\bar{b}) . P : \bar{a} . (T[\bar{b}/\bar{x}]|S)}\]

\[(T\text{-RES}) \quad \frac{\Gamma, a : t \vdash P : T \quad a = fn(t)}{\Gamma \vdash (\nu a : t) P : (\nu a^a) T}\]

\[(T\text{-PAR}) \quad \frac{\Gamma \vdash P : T \quad \Gamma \vdash Q : S}{\Gamma \vdash P|Q : T|S}\]

\[(T\text{-SUM}) \quad |I| \neq 1 \quad \forall i \in I : \Gamma \vdash \alpha_i . P_i : \mu_i . T_i\]

\[(T\text{-EQ}) \quad \frac{\Gamma \vdash P : T \quad T \equiv S}{\Gamma \vdash P : S}\]

\[(T\text{-REP}) \quad \frac{\Gamma \vdash a(\bar{x}) . P : a^a . T}{\Gamma \vdash !a(\bar{x}) . P : !a^a . T}\]

\[(T\text{-TAU}) \quad \frac{\Gamma \vdash P : T}{\Gamma \vdash \tau . P : \tau . T}\]

Example: Unique Receptiveness (a liveness property)

⇒ Local Type System

\[UniRec(a) \trianglerighteq \square^*(a \land \neg H^*(a|a)) \]

\[P = (\nu a, b, c ; UniRec(a))Q \]

\[Q = ((\bar{c}\langle a \rangle | a + b(x).x) | c(y).\bar{b}\langle y \rangle) \]

is well-typed. Indeed, for a suitable \(\Gamma \):

\[\Gamma, a, b, c \vdash_L Q : T \trianglerighteq \bar{c}.\bar{b}.a | a + b | c \]

with

\[T \downarrow_{a,b,c} = T \models UniRec(a) \]

hence well-typed by \((T-RES)\)
Example: Unique Receptiveness (a liveness property)

\[UniRec(a) \triangleq \Box^*(a \land \neg H^*(a|a)) \]

\[P = (\forall a, b, c ; UniRec(a))Q \]

\[Q = ((\bar{c}\langle a \rangle | a + b(x).x) | c(y).\bar{b}\langle y \rangle) \]

is well-typed. Indeed, for a suitable \(\Gamma \):

\[\Gamma, a, b, c \vdash_L Q : T \triangleq \bar{c}.\bar{b}.a | a + b | c \]

with

\[T \downarrow_{a,b,c} = T \models UniRec(a) \]

hence well-typed by \((T-Res)\)
Example: Unique Receptiveness (a liveness property)

⇒ Local Type System

\[UniRec(a) \triangleq \square^*(a \land \neg H^*(a|a)) \]

\[P = (\nu a, b, c ; UniRec(a))Q \]

\[Q = ((\bar{c}\langle a \rangle \mid a + b(x).x) \mid c(y).\bar{b}\langle y \rangle) \]

is well-typed. Indeed, for a suitable \(\Gamma \):

\[\Gamma, a, b, c \vdash_L Q : T \triangleq \bar{c}.\bar{b}.a \mid a + b \mid c \]

with

\[T \downarrow_{a,b,c} = T \models UniRec(a) \]

hence well-typed by \((T-RES)\)
Example: Responsiveness

⇒ Global Type System

\[\text{Resp}(a) \triangleq \Box^*_a \Diamond^* \langle a \rangle \]

\[P = (\nu a : \text{Resp}(a))(\overline{c}\langle a \rangle) | Q \]

\[Q = !c(x). (\overline{x} | x) | \overline{c}\langle b \rangle \]

is well-typed. Indeed, for a suitable \(\Gamma \):

\[\Gamma \vdash_G \overline{c}\langle a \rangle | Q : \overline{c} | (\overline{a} | a) | !c | \overline{c} | (\overline{b} | b) \triangleq T \]

and

\[T \Downarrow_a = \overline{c} | (\overline{a} | a) | !c | \overline{c} | (\tau | \tau) \vdash \text{Resp}(a) \]

hence well-typed by \((T-\text{RES})\)
Example: Responsiveness

⇒ Global Type System

\[\text{Resp}(a) \triangleq \sqcap^*_a \Diamond^*(a) \]

\[P = (\nu a : \text{Resp}(a))(\overline{c}(a))|Q \]

\[Q = !c(x).(x|x)|\overline{c}(b) \]

is well-typed. Indeed, for a suitable \(\Gamma \):

\[\Gamma \vdash_G \overline{c}(a)|Q : \overline{c}.(\overline{a}|a)|!c|\overline{c}.(\overline{b}|b) \triangleq T \]

and

\[T \Downarrow_a = \overline{c}.(\overline{a}|a)|!c|\overline{c}.(\tau|\tau) \models \text{Resp}(a) \]

hence well-typed by \((T\text{-RES})\)
Example: Responsiveness

⇒ Global Type System

\[\text{Resp}(a) \triangleq \Box^* a \diamond^* \langle a \rangle \]

\[P = (\forall a : \text{Resp}(a))(\overline{c}(a))|Q \]

\[Q = !c(x).(\overline{x}|x)|\overline{c}\langle b \rangle \]

is well-typed. Indeed, for a suitable \(\Gamma \):

\[\Gamma \vdash_G \overline{c}\langle a \rangle | Q : \overline{c}(\overline{a}|a)|!c|\overline{c}.(\overline{b}|b) \triangleq T \]

and

\[T \Downarrow_a = \overline{c}.(\overline{a}|a)!c|\overline{c}.(\tau|\tau) \models \text{Resp}(a) \]

hence well-typed by (T-RES)
Shallow Logic (SL)

\[\phi ::= T \]

\[[\neg \phi] = \mathcal{U} \setminus [\phi] \]

\[[\phi \lor \phi] = [\phi_1 \lor \phi_2] = [\phi_1] \cup [\phi_2] \]

\[[\phi \land \phi] = [\phi_1 \land \phi_2] = [\phi_1] \cap [\phi_2] \]

\[[a] = \{ A \mid A \downarrow a \} \]

\[[\bar{a}] = \{ A \mid A \downarrow \bar{a} \} \]

\[[[\phi_1 \mid \phi_2]] = \{ A \mid \exists A_1, A_2 : A \equiv A_1 \upharpoonright A_2, A_1 \in [\phi_1], A_2 \in [\phi_2] \} \]

\[[[H^*\phi]] = \{ A \mid \exists \bar{a}, B : A \equiv (\bar{a})B, \bar{a} \# \phi, B \in [\phi] \} \]

\[[[\langle a \rangle \phi]] = \{ A \mid \exists B : A \xrightarrow{\langle a \rangle} B, B \in [\phi] \} \]

\[[[\langle \bar{a} \rangle^* \phi]] = \{ A \mid \exists \sigma, B : A \xrightarrow{\sigma} B, \mathcal{N} \setminus \bar{a} \# \sigma, B \in [\phi] \} \]

\[[[\langle - \bar{a} \rangle^* \phi]] = \{ A \mid \exists \sigma, B : A \xrightarrow{\sigma} B, \bar{a} \# \sigma, B \in [\phi] \} \]
Shallow Logic (SL)

\[\phi ::= T \]

\[[[T]] = U \]

\[\neg \phi \]

\[[[\neg \phi]] = U \setminus [[\phi]] \]

\[\phi \lor \phi \]

\[[[\phi_1 \lor \phi_2]] = [[\phi_1]] \cup [[\phi_2]] \]

\[\phi \land \phi \]

\[[[\phi_1 \land \phi_2]] = [[\phi_1]] \cap [[\phi_2]] \]

\[a \]

\[[[a]] = \{ A \mid A \downarrow a \} \]

\[\bar{a} \]

\[[[\bar{a}]] = \{ A \mid A \downarrow \bar{a} \} \]

\[\phi \mid \phi \]

\[[[\phi_1 \mid \phi_2]] = \{ A \mid \exists A_1, A_2 : A \equiv A_1 \upharpoonright A_2, A_1 \in [[\phi_1]], A_2 \in [[\phi_2]] \} \]

\[H^* \phi \]

\[[[H^* \phi]] = \{ A \mid \exists \tilde{a}, B : A \equiv (\tilde{\nu} \tilde{a})B, \tilde{a} \# \phi, B \in [[\phi]] \} \]

\[\langle a \rangle \phi \]

\[[[\langle a \rangle \phi]] = \{ A \mid \exists B : A \xrightarrow{\langle a \rangle} B, B \in [[\phi]] \} \]

\[\langle \tilde{a} \rangle^{*} \phi \]

\[[[\langle \tilde{a} \rangle^{*} \phi]] = \{ A \mid \exists \sigma, B : A \xrightarrow{\sigma} B, \mathcal{N} \setminus \tilde{a} \# \sigma, B \in [[\phi]] \} \]

\[\langle - \tilde{a} \rangle^{*} \phi \]

\[[[\langle - \tilde{a} \rangle^{*} \phi]] = \{ A \mid \exists \sigma, B : A \xrightarrow{\sigma} B, \tilde{a} \# \sigma, B \in [[\phi]] \} \]