
Global Escape in Multiparty Sessions

Sara Capecchi

joint work with Elena Giachino & Nobuko Yoshida

Workshop on Behavioural Types
21 April 2011

Global escape

unexpected condition, computational error

controlled structured interruption requested by some participant

Interactional exceptions (Structured Interactional Exceptions for
Session Types. Carbone, Honda, Yoshida. CONCUR’08)

not only local but also coordinated actions among communicating
peers: exception affects a collection of parallel processes and an
escape needs to move into another dialogue in a concerted manner

Global escape

unexpected condition, computational error

controlled structured interruption requested by some participant

Interactional exceptions (Structured Interactional Exceptions for
Session Types. Carbone, Honda, Yoshida. CONCUR’08)

not only local but also coordinated actions among communicating
peers: exception affects a collection of parallel processes and an
escape needs to move into another dialogue in a concerted manner

Global escape

unexpected condition, computational error

controlled structured interruption requested by some participant

Interactional exceptions (Structured Interactional Exceptions for
Session Types. Carbone, Honda, Yoshida. CONCUR’08)

not only local but also coordinated actions among communicating
peers: exception affects a collection of parallel processes and an
escape needs to move into another dialogue in a concerted manner

Global escape

unexpected condition, computational error

controlled structured interruption requested by some participant

Interactional exceptions (Structured Interactional Exceptions for
Session Types. Carbone, Honda, Yoshida. CONCUR’08)

not only local but also coordinated actions among communicating
peers: exception affects a collection of parallel processes and an
escape needs to move into another dialogue in a concerted manner

Goals & Issues

extension of multiparty sessions to flexible exception handling:
asynchronous escape at any desired point of a conversation,
including nested exceptions;

preserve multiparty session properties:

Subject Reduction Communication Safety Session Fidelity
Progress

how to model
concurrent exceptions
asyncronous notification to multiple partners
nested exceptions

Goals & Issues

extension of multiparty sessions to flexible exception handling:
asynchronous escape at any desired point of a conversation,
including nested exceptions;

preserve multiparty session properties:

Subject Reduction Communication Safety Session Fidelity
Progress

how to model
concurrent exceptions
asyncronous notification to multiple partners
nested exceptions

Goals & Issues

extension of multiparty sessions to flexible exception handling:
asynchronous escape at any desired point of a conversation,
including nested exceptions;

preserve multiparty session properties:

Subject Reduction Communication Safety Session Fidelity
Progress

how to model
concurrent exceptions
asyncronous notification to multiple partners
nested exceptions

Goals & Issues

extension of multiparty sessions to flexible exception handling:
asynchronous escape at any desired point of a conversation,
including nested exceptions;

preserve multiparty session properties:

Subject Reduction Communication Safety Session Fidelity
Progress

how to model

concurrent exceptions
asyncronous notification to multiple partners
nested exceptions

Goals & Issues

extension of multiparty sessions to flexible exception handling:
asynchronous escape at any desired point of a conversation,
including nested exceptions;

preserve multiparty session properties:

Subject Reduction Communication Safety Session Fidelity
Progress

how to model
concurrent exceptions

asyncronous notification to multiple partners
nested exceptions

Goals & Issues

extension of multiparty sessions to flexible exception handling:
asynchronous escape at any desired point of a conversation,
including nested exceptions;

preserve multiparty session properties:

Subject Reduction Communication Safety Session Fidelity
Progress

how to model
concurrent exceptions
asyncronous notification to multiple partners

nested exceptions

Goals & Issues

extension of multiparty sessions to flexible exception handling:
asynchronous escape at any desired point of a conversation,
including nested exceptions;

preserve multiparty session properties:

Subject Reduction Communication Safety Session Fidelity
Progress

how to model
concurrent exceptions
asyncronous notification to multiple partners
nested exceptions

Coordinated Actions Model

From Coordinated Exception handling- Romanovsky et al.

Fault tolerance needs error isolation to define exactly which part of
the system to recover, and to prevent errors from unlimited
propagation. One way to control complexity is to restrict interaction
and communication: exception contexts are defined as regions in
which the same exceptions are treated in the same way

Atomic actions
The activity of a group of components constituites an atomic action
if there are no interactions between that group and the rest of the
systems for the duration of the activity

Coordinated Actions Model

From Coordinated Exception handling- Romanovsky et al.

Fault tolerance needs error isolation to define exactly which part of
the system to recover, and to prevent errors from unlimited
propagation. One way to control complexity is to restrict interaction
and communication: exception contexts are defined as regions in
which the same exceptions are treated in the same way

Atomic actions
The activity of a group of components constituites an atomic action
if there are no interactions between that group and the rest of the
systems for the duration of the activity

Coordinated Actions

Robot

Robot Sensor

Press

Press Sensor

turn
robot &

extend
arm

grab plate

from press

enclosing action: remove plate

{[(s1, s2), {[s1, γTR , γHTR]}; {[s1, γGP , γHGP]}, γHRP]}

Robot = try(s1, s2){try(s1){PR } catch {QR }} catch {Q ′R }
RobotSensor = try(s1, s2){try(s1){PRS } catch {QRS }; try(s1){P′RS } catch {Q ′RS }} catch {Q ′′RS }

Press = try(s1, s2){try(s1){PP } catch {QP }} catch {Q ′P }
PressSensor = try(s1, s2){try(s1){PS } catch {QPS }} catch {Q ′PS }

Coordinated Actions

Robot

Robot Sensor

Press

Press Sensor

turn
robot &

extend
arm

grab plate

from press

enclosing action: remove plate

{[(s1, s2), {[s1, γTR , γHTR]}; {[s1, γGP , γHGP]}, γHRP]}

Robot = try(s1, s2){try(s1){PR } catch {QR }} catch {Q ′R }
RobotSensor = try(s1, s2){try(s1){PRS } catch {QRS }; try(s1){P′RS } catch {Q ′RS }} catch {Q ′′RS }

Press = try(s1, s2){try(s1){PP } catch {QP }} catch {Q ′P }
PressSensor = try(s1, s2){try(s1){PS } catch {QPS }} catch {Q ′PS }

Coordinated Actions

Robot

Robot Sensor

Press

Press Sensor

turn
robot &

extend
arm

grab plate

from press

enclosing action: remove plate

{[(s1, s2), {[s1, γTR , γHTR]}; {[s1, γGP , γHGP]}, γHRP]}

Robot = try(s1, s2){try(s1){PR } catch {QR }} catch {Q ′R }
RobotSensor = try(s1, s2){try(s1){PRS } catch {QRS }; try(s1){P′RS } catch {Q ′RS }} catch {Q ′′RS }

Press = try(s1, s2){try(s1){PP } catch {QP }} catch {Q ′P }
PressSensor = try(s1, s2){try(s1){PS } catch {QPS }} catch {Q ′PS }

Syntax and Semantics

P,Q ::= a[2..n](s̃).P Multicast Request
| a[p](s̃).P Accept
| r!〈ẽ〉 Output
| r?(x̃).P Input
| r C l.P Select
| r B {li : Pi }i∈I Branch
| try(̃r){P} catch {P} Try-Catch
| throw(̃r) Throw

| if e then P else P Conditional
| P | P Parallel
| P; P Sequencing
| 0 Inaction
| (νn)P Hiding
| def D in P Recursion
| X〈ẽs̃〉 Process call
| s : L Named queue

[Thr]
Σ ` try(r̃){C[throw(r̃)] | P} catch {Q}
−→ Σ] throw(r̃) ` try(r̃){C | P} catch {Q}

[RThr]
Σ, throw(r̃) ` try(r̃){P} catch {Q} −→ Σ, throw(r̃) ` Q{sϕ+1/sϕ}sϕ∈r̃
(throw(̃r ′)∈Σ implies try(̃r ′)... <P, r̃ ′⊆r̃)

[ZThr]
Σ ` (νs̃)(

∏
i Ei[try(r̃){0} catch {Qi}])i∈1..n −→ Σ ` (νs̃)(

∏
i Ei)i∈1..n

(throw(̃r)<Σ)

Syntax and Semantics

P,Q ::= a[2..n](s̃).P Multicast Request
| a[p](s̃).P Accept
| r!〈ẽ〉 Output
| r?(x̃).P Input
| r C l.P Select
| r B {li : Pi }i∈I Branch
| try(̃r){P} catch {P} Try-Catch
| throw(̃r) Throw

| if e then P else P Conditional
| P | P Parallel
| P; P Sequencing
| 0 Inaction
| (νn)P Hiding
| def D in P Recursion
| X〈ẽs̃〉 Process call
| s : L Named queue

[Thr]
Σ ` try(r̃){C[throw(r̃)] | P} catch {Q}
−→ Σ] throw(r̃) ` try(r̃){C | P} catch {Q}

[RThr]
Σ, throw(r̃) ` try(r̃){P} catch {Q} −→ Σ, throw(r̃) ` Q{sϕ+1/sϕ}sϕ∈r̃
(throw(̃r ′)∈Σ implies try(̃r ′)... <P, r̃ ′⊆r̃)

[ZThr]
Σ ` (νs̃)(

∏
i Ei[try(r̃){0} catch {Qi}])i∈1..n −→ Σ ` (νs̃)(

∏
i Ei)i∈1..n

(throw(̃r)<Σ)

Typing

Partial γ ::= p1 → p2 : k 〈S̃〉 | p1 → p2 : k {li : γi}i∈I |

{[k̃ , γ, γ]} | γ; γ | γ ‖ γ | µt.γ | t

Global G ::= γ; end | end

Sorts S ::= bool | . . . | 〈G〉

Goals:

to check that the enclosed try-catch block is listening on a
smaller set of channels: independence of the components w.r.t.
exceptions

to check that no session request or accept occurs inside a
try-catch block

Typing

Partial γ ::= p1 → p2 : k 〈S̃〉 | p1 → p2 : k {li : γi}i∈I |

{[k̃ , γ, γ]} | γ; γ | γ ‖ γ | µt.γ | t

Global G ::= γ; end | end

Sorts S ::= bool | . . . | 〈G〉

Goals:

to check that the enclosed try-catch block is listening on a
smaller set of channels: independence of the components w.r.t.
exceptions

to check that no session request or accept occurs inside a
try-catch block

Typing

Partial γ ::= p1 → p2 : k 〈S̃〉 | p1 → p2 : k {li : γi}i∈I |

{[k̃ , γ, γ]} | γ; γ | γ ‖ γ | µt.γ | t

Global G ::= γ; end | end

Sorts S ::= bool | . . . | 〈G〉

Goals:

to check that the enclosed try-catch block is listening on a
smaller set of channels: independence of the components w.r.t.
exceptions

to check that no session request or accept occurs inside a
try-catch block

Conclusions

Our extension is:

consistent: despite asynchrony and nesting of exceptions,
communications in default and exception handling
conversations do not mix

safe: linearity of communications inside sessions and absence
of communication mismatch are enforced carrying out
fundamental properties of session types

We ensure these properties using:

an asynchronous linguistic construct for exceptions signalling

multi-level queues

Conclusions

Our extension is:

consistent: despite asynchrony and nesting of exceptions,
communications in default and exception handling
conversations do not mix

safe: linearity of communications inside sessions and absence
of communication mismatch are enforced carrying out
fundamental properties of session types

We ensure these properties using:

an asynchronous linguistic construct for exceptions signalling

multi-level queues

Conclusions

Our extension is:

consistent: despite asynchrony and nesting of exceptions,
communications in default and exception handling
conversations do not mix

safe: linearity of communications inside sessions and absence
of communication mismatch are enforced carrying out
fundamental properties of session types

We ensure these properties using:

an asynchronous linguistic construct for exceptions signalling

multi-level queues

Conclusions

Our extension is:

consistent: despite asynchrony and nesting of exceptions,
communications in default and exception handling
conversations do not mix

safe: linearity of communications inside sessions and absence
of communication mismatch are enforced carrying out
fundamental properties of session types

We ensure these properties using:

an asynchronous linguistic construct for exceptions signalling

multi-level queues

Conclusions

Our extension is:

consistent: despite asynchrony and nesting of exceptions,
communications in default and exception handling
conversations do not mix

safe: linearity of communications inside sessions and absence
of communication mismatch are enforced carrying out
fundamental properties of session types

We ensure these properties using:

an asynchronous linguistic construct for exceptions signalling

multi-level queues

Conclusions

Our extension is:

consistent: despite asynchrony and nesting of exceptions,
communications in default and exception handling
conversations do not mix

safe: linearity of communications inside sessions and absence
of communication mismatch are enforced carrying out
fundamental properties of session types

We ensure these properties using:

an asynchronous linguistic construct for exceptions signalling

multi-level queues

