An Observational Theory of Imperative
Concurrent Data Structures in the m-Calculus

Luca Fossati Kohei Honda

Electronics, Engineering and Computer Science
Queen Mary University of London

Lisboa, 19/04/2011

An Observational Theory of Imperative Concurrent Data Structures in the w-Calculus 1/40

Intro

Traditional global progress properties of concurrent programs :

e Deadlock-Freedom

e Starvation-Freedom

Fossati, Honda - 2011

An Observational Theory of Imperative Concurrent Data Structures in the w-Calculus 2/40

Intro

Traditional global progress properties of concurrent programs :

e Deadlock-Freedom
e Starvation-Freedom
|} Critical section

— Lock-based only

Fossati, Honda - 2011

An Observational Theory of Imperative Concurrent Data Structures in the m-Calculus 3/40

Intro

A more general approach :

e Non-Blockingness

o Wait-Freedom

Fossati, Honda - 2011

An Observational Theory of Imperative Concurrent Data Structures in the w-Calculus 4,/40

Intro

A more general approach :

e Non-Blockingness
o Wait-Freedom

1 Abstraction

I Extensionality

Fossati, Honda - 2011

An Observational Theory of Imperative Concurrent Data Structures in the m-Calculus 5/40

Intro

A more general approach :

e Non-Blockingness
o Wait-Freedom

1 Abstraction

I Extensionality

|} Lack of rigorous semantic basis

Fossati, Honda - 2011

An Observational Theory of Imperative Concurrent Data Structures in the m-Calculus 6/40

Intro

Non-Blockingness

“A data structure is non-blocking if it guarantees that some
process will always be able to complete its pending
operation in a finite number of its own steps, regardless of

the execution speed of other processes.” |Taubenfeld, ’06|

Fossati, Honda - 2011

An Observational Theory of Imperative Concurrent Data Structures in the m-Calculus 7/40

Intro
How to formalise:
° “a finite number of its own steps”
o “regardless of the execution speed of other processes”

Fossati, Honda - 2011

An Observational Theory of Imperative Concurrent Data Structures in the m-Calculus 8/40

Intro
How to formalise:
° “a finite number of its own steps”
o “regardless of the execution speed of other processes”

= Fairness

= Partial Failures

Fossati, Honda - 2011

An Observational Theory of Imperative Concurrent Data Structures in the m-Calculus 9/40

Intro
How to formalise:
° “a finite number of its own steps”
o “regardless of the execution speed of other processes”

= Fairness
= Partial Failures

= m-calculus

Fossati, Honda - 2011

An Observational Theory of Imperative Concurrent Data Structures in the m-Calculus 10/40

Intro

AIM :

To provide an extensional theory which is general
enough to cover all the concurrent data structures

whose behaviours are representable in the m-calculus.

Fossati, Honda - 2011

An Observational Theory of Imperative Concurrent Data Structures in the m-Calculus 11/40

Index

e m-calculus
e Linear/Affine Types
e Asynchronous fair LTS + partial failures

e Global Progress :
— Non-blockingness

— Wait-Freedom

e Case study : Queues
— Correctness (state space)

— Behavioural Classification

Fossati, Honda - 2011

An Observational Theory of Imperative Concurrent Data Structures in the m-Calculus 12/40

The Calculus

P = u&ic{l;(%;).P;}
u @ 1(€)
if e then P else ()

Fossati, Honda - 2011

An Observational Theory of Imperative Concurrent Data Structures in the m-Calculus 13/40

Reductions

One rule:
ubic{1i(Z).Pi} |u®1l5(e) — P{e/z;} (G e€l)

Closed under the standard structural congruence, =.

Note in particular:

(nX(Z).P){€) = P{(uX(Z).P)/ X He/T

Fossati, Honda - 2011

An Observational Theory of Imperative Concurrent Data Structures in the m-Calculus 14/40

Example

Some simple concurrent data structures :

Reflu.v) def o read(z) : Z(v) | Ref(u,v),
write(y, z) : Z | Ref(u, y)

(read(z) : Z{v) | Ref"*(u, v),
write(y, z) : Z | Ref"*(u, y),

cas(x,y,z) : if x=v then Z(tt) | Ref"**(u, y)
else zZ(ff) | Ref"*(u, v)

/

Fossati, Honda - 2011

An Observational Theory of Imperative Concurrent Data Structures in the m-Calculus 15/40

Example

Reduction :

Ref**(a, 0)|(vc)(a® cas(0, 1, c)|c(x).P)
— (ve)((if 0 = Othenc(tt) | Ref"(a, 1) else ¢(ff) | Ref**(a,0)) | ¢(x).P)
— (ve)((if ttthenc(tt) | Ref™(a, 1) else ¢(ff) | Ref**(a,0)) | ¢(x).P)
—* Ref"*{(a,1) | P{tt/z}

Fossati, Honda - 2011

An Observational Theory of Imperative Concurrent Data Structures in the m-Calculus 16/40

Example

Two different mutex agents:

Mix(u) % w(z).Z(h)h.Mtx(u)
M) (we)(lu(z).uX.

(if cas(c,0,1) thenT(h)h.CAS(c,1,0) else) |
Ref***(c, 0))

where

if cas(u,v,w) then P else () def (ve)(udcas{v,w, c)|c(x).if x then P else Q)

and

CAS(u, v, w) L if cas(u,v,w) then 0 else 0

Fossati, Honda - 2011

An Observational Theory of Imperative Concurrent Data Structures in the m-Calculus 17/40

Types

T &%Ili(ﬁ-) | @%\é]li(ﬁ) | int | bool | L

Modalities (as in Linear Logic, Games, ...):
L. channel can be used “exactly once” (linear)
A channel can be used “at most once” (affine)

L* input end always available and shared by unboundedly many
outputs (unbounded I.)

A* input end as above but may be unavailable (unbounded a.)

Fossati, Honda - 2011

An Observational Theory of Imperative Concurrent Data Structures in the m-Calculus 18/40

Example

Typings for the previously introduced examples :

1.
w s &5* {read(1*(nat)), write(nat 1%())} + Ref(u, 3)
2.
u s &5 {read (1 (nat)), write(nat 1%()), cas(natnat 1%(bool)), } + Ref"(u,0)
3.

w M AAA)) B P (P € {Mtx(u), Mtx®*"(u)})

Fossati, Honda - 2011

An Observational Theory of Imperative Concurrent Data Structures in the m-Calculus 19/40

Labelled Transition System

Labels :

¢ = 7| (wO)a&ld(v) | (vé)a @ (V)
Untyped transitions :

(Bra)
p YY) pg g 1)

(Sel)
(wd)(Pla® 1(5) “LE p

Fossati, Honda - 2011

An Observational Theory of Imperative Concurrent Data Structures in the w-Calculus

Labelled Transition System

Environment transitions :

(vE)akl; (T;)

20/40

F, a . &L*’A*{li(ﬁ)}iej 4 r O ?7 . Tjj, a . &L*’A*{li(ﬁ)}iej
- vE)adl; (T e A1 o
COT:7)/E a: @@ A L7 hier "0 D g oA (1,(7) Yier

T, a: &AL ier VO T o7 0 L
o S N N 1/8 a@l Uj
(I’C)t7:73)/c,cz:é%l”A{]iCn)}iEI()——4< ‘T
Typed transitions :

r-p-5S51rp & p S par S

Fossati, Honda - 2011

An Observational Theory of Imperative Concurrent Data Structures in the m-Calculus 21/40

Bisimilarity

Definition 3.3 (bisimilarity) A typed relation R is a weak
bisimulation or often bistmulation when, for each I' - PR(Q), we

have: P —% P’ implies @ N Q' s.t. PR, and the symmetric

case. The maximum bisimulation is written =.

Proposition 3.4 = is a typed congruence.

Fossati, Honda - 2011

An Observational Theory of Imperative Concurrent Data Structures in the m-Calculus 22/40

Fairness

Definition 3.5 (Fairness) A maximal transition sequence ® from

closed I' = P is fair if no subject is infinitely often enabled in ®.

Fossati, Honda - 2011

An Observational Theory of Imperative Concurrent Data Structures in the m-Calculus 23/40

Fairness

Definition 3.5 (Fairness) A maximal transition sequence ® from

closed I' = P is fair if no subject is infinitely often enabled in ®.

Let P =la.(bla)|a@ and Q = Ref(r, 3)|7 © read(c).

Then P|@Q admits an infinite unfair transition sequence.

Fossati, Honda - 2011

An Observational Theory of Imperative Concurrent Data Structures in the m-Calculus 24/40

Fairness

Definition 3.5 (Fairness) A maximal transition sequence ® from

closed I' = P is fair if no subject is infinitely often enabled in ®.

Let P =la.(bla)|a@ and Q = Ref(r, 3)|7 © read(c).

Then P|@Q admits an infinite unfair transition sequence.

Fairness induces a fair pre-order Zfair, where:

PZair@Q < P~Q N WFT(P) 2D WFT(Q)

Fossati, Honda - 2011

An Observational Theory of Imperative Concurrent Data Structures in the m-Calculus 25/40

Partial Failure

We first augment the dynamics with failing reductions:
uoM1;6) — 0 (M#L) if v then Pelse) — O

Then we augment the 7-transition accordingly.

Only affine outputs may fail!
NOTE : [}

Linearity = Atomaicity

Fossati, Honda - 2011

An Observational Theory of Imperative Concurrent Data Structures in the m-Calculus 26/40

Global Progress

Definition 3.11 (Resilience) Let I' = P such that for all
wft(®) € WFT(P), the set blocked(®) is finite. Then we say that
I' = P is resilient.

Definition 3.12 (NB/WF') A closed process I' - P is:

1. non-blocking (NB) when it is resilient and, for any ® €FT(P)
s.t. AFQ is in ® and allowed(A) \ blocked(®)#(), some

affine output occurs in ®.

2. wait-free (WF) when it is resilient and, for any ® € FT(P) s.t.
AFQisin ® and ¢ € allowed(A) \ blocked(®P), an output at

c occurs in P.

Fossati, Honda - 2011

An Observational Theory of Imperative Concurrent Data Structures in the m-Calculus 27/40

Weak Global Progress

Let WNB be as NB but without failures.

Let WWPF be as WF but without failures.

Then WF C NBNWWF and NBUWWF C WNB.

Fossati, Honda - 2011

An Observational Theory of Imperative Concurrent Data Structures in the m-Calculus 28/40

Abstract Queue Specification

Abstract Queue:
AQ(r, (Rs; Vs; As))

Fossati, Honda - 2011

An Observational Theory of Imperative Concurrent Data Structures in the m-Calculus 29/40

Abstract Queue Specification

Abstract Queue:
AQ(r, (Rs; Vs; As))

Example:

AQ(r, ({enq(6, g1),deq(g2)},2-3-1,{g5(5)}))

Fossati, Honda - 2011

An Observational Theory of Imperative Concurrent Data Structures in the m-Calculus 30/40

State Space Abstraction

Abstract Queue:
AQ(r, (Rs; Vs; As))

State Transitions

r&enq(’u g)

AQ(r, (Rs, Vs, As)) AQ(r, (Rs W enq(v, g), Vs, As))
AQ(r, (Rs, Vs, As)) "%9 AQ(r, (Rs & deq(g), Vs, As))
AQ(r, (Rs W enq(v, g), Vs, As)) — AQ(r, (Rs, Vs-v, As & g))
AQ(r, (Rswdeq(g), v-Vs, As)) — AQ(r, (Rs, Vs, Asw {g(v)}))
AQ(r, (Rs W deq(g), , As)) — AQ((Rs, , Asw {g(KO)}))
AQ(r, (Rs, Vs, As W {g(v)})) 2% AQ(r, (Rs, Vs, As))

Fossati, Honda - 2011

An Observational Theory of Imperative Concurrent Data Structures in the m-Calculus 31/40

cas-based Queue in 7

Auxiliary data structures :

Node(r,v,ptr) = Ref(r, (v, ptr))
Ptr(r,nd,ctr) = Ref™(r,(nd,ctr))

Shortened forms :

x < read(y).P def (ve)(T @ read(c)|c(y).P)

We use ad-hoc names when we only want to keep a projection of
the contents (getPtr, getVal, ...).

Fossati, Honda - 2011

An Observational Theory of Imperative Concurrent Data Structures in the m-Calculus 32/40

cas-based Queue in 7

CQemp(r) ¥ (wWh)(wt)(vs)(CQ(r, h,t) | Ptr(h, s,0) |

Ptr(¢,s,0) | Node(s, 0, null))

()
enqueue(x,u) :

CQ(r,h,t) | Popg(x,t
CQ(T,h,t) d:ef e 4 ((T)| Q(x)) >

dequeue(u) :

(CQ(Tv hvt) | PdBQ(hv t))

/

Fossati, Honda - 2011

An Observational Theory of Imperative Concurrent Data Structures in the m-Calculus 33/40

cas-based Queue in 7

Peng(x, tail) =
NullPtr(nlPtr) | Node(node, v, nl Ptr) |
(1Xtag(u').
tail <read(last, ctrT). last<getPtr(tPtr). tPtr<read(next,ctr).
if (next = null) then
if cas(tPtr, (next,ctr), (node,ctr + 1)) then
if cas(tail, (last, ctrT), (node, ctrT + 1)) then u’ else u’
else Xiqq(u'))
else
if cas(tail, {last, ctrT), (next,ctrT + 1)) then Xiq,(u') else Xiqg(u'))
endif)(u)

Fossati, Honda - 2011

An Observational Theory of Imperative Concurrent Data Structures in the m-Calculus 34,/40

cas-based Queue in 7

Pyeq(head, tail) = (uXiag(u').
head < read(hNdRef,ctrH). tail <read(t NdRef, ctrT).
hNdRef < getPtr(hNdPtr). hINdPtr < get Nxt(next).
if (hNdRef = tNdRef) then
if (next = null) then u'(null) else
if (cas(tail, (tNdRef,ctrT), {next,ctrT + 1))) then Xiqq{u')
else Xiaq(u'))
else next<getVal(z).
if (cas(head, (hNdRef,ctrH), (next,ctr +1))) then u/{(x)
else Xiag(u')){(u)

Fossati, Honda - 2011

An Observational Theory of Imperative Concurrent Data Structures in the m-Calculus 35/40

Lock-Based Queue in 7

LQemp(r) = (vu)(vh)(vt)(vs)(LQ(r, h,t)|Mtx(u)|
LPtr(h, s)|LPtr(¢, s)|LENode(s, 0))
[enqueue(v,u) : LQ(r, h,t,1)| \
Q] g (I(9)9(y)-Perg (v, L,)|’ (gl|u)), >

dequeue(u) : LQ(r, h,t,1)]
L (U9)g(y)- Py (h.t.)| (glw))

Fossati, Honda - 2011

An Observational Theory of Imperative Concurrent Data Structures in the m-Calculus 36,/40

Correctness

e state space abstraction (correctness by bisimilarity)
e molecular transitions (~atomic operation)
e commit event (i.e. cas on successor pointer)

e normal form (each thread is either:
1. ready to commit,

2. or ready to output)

e normalisation through linearisation (local permutations)

Fossati, Honda - 2011

An Observational Theory of Imperative Concurrent Data Structures in the m-Calculus 37/40

Global Progress

Proposition 4.6 Let ® : CQemp(r) —* P be a queue process.
Then an output is blocked in ® iff its thread fails in ®.

Proposition 4.8 I'g F CQemp(r) is non-blocking.

Fossati, Honda - 2011

An Observational Theory of Imperative Concurrent Data Structures in the m-Calculus 38/40

Behavioural Classification

I'o F LQemp(r) is blocking (it is weakly wait-free).
I'o F LQemp(r) has more fair sequences

Theorem 4.11 AQ(r,¢) =~ LQemp(r) ;éfair CQemp(r)

Fossati, Honda - 2011

An Observational Theory of Imperative Concurrent Data Structures in the m-Calculus 39/40

Results and Future Works

e [airness

e Fine-grained analysis

e Generality

e LEixtensionality

e State space abstraction

Automated verification tools

4

4

Encoding from imperative languages

Fossati, Honda - 2011

An Observational Theory of Imperative Concurrent Data Structures in the m-Calculus 40/40

References

|1] D. Cacciagrano, F. Corradini and C. Palamidessi. Fair .
Proc. EXPRESS’06. ENTCS, 175:3-26. Elsevier Science, 2007.

12| M. M. Michael and M. L. Scott. Simple, fast, and practical
non-blocking and blocking concurrent queue algorithms.
PODC-15. 267-275. ACM, 1996.

|3] R. Milner and J. G. Parrow and D. J. Walker, A calculus of
Mobile Processes, Information and Computation 100(1), 1-77,
1992.

|4] G. Taubenfeld. Synchronization Algorithms and Concurrent
Programming. Pearson—Prentice Hall, 2006.

Thank you for your attention!

Fossati, Honda - 2011

