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Intro

Traditional global progress properties of concurrent programs :

• Deadlock-Freedom

• Starvation-Freedom

⇓ Critical section

→ Lock-based only
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Intro

A more general approach :

• Non-Blockingness

• Wait-Freedom

⇑ Abstraction

⇑ Extensionality

⇓ Lack of rigorous semantic basis
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Intro

Non-Blockingness

“A data structure is non-blocking if it guarantees that some

process will always be able to complete its pending

operation in a finite number of its own steps, regardless of

the execution speed of other processes.” [Taubenfeld, ’06]
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How to formalise:

• “a finite number of its own steps”

• “regardless of the execution speed of other processes”

?
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Intro

How to formalise:

• “a finite number of its own steps”

• “regardless of the execution speed of other processes”

⇒ Fairness

⇒ Partial Failures

⇒ π-calculus
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Intro

AIM :

To provide an extensional theory which is general

enough to cover all the concurrent data structures

whose behaviours are representable in the π-calculus.
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Index

• π-calculus

• Linear/Affine Types

• Asynchronous fair LTS + partial failures

• Global Progress :

– Non-blockingness

– Wait-Freedom

• Case study : Queues

– Correctness (state space)

– Behavioural Classification
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The Calculus

P ::= u&i∈I{li(~xi).Pi}

| u⊕ l〈~e〉

| if e then P else Q

| P |Q

| (νu)P

| (µX(~x).P )〈~e〉

| X〈~x〉

| 0
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Reductions

One rule:

u&i∈I{li(~xi).Pi} | u⊕ lj〈~e〉 −→ Pj{~e/~xj} (j ∈ I)

Closed under the standard structural congruence, ≡.

Note in particular:

(µX(~x).P )〈~e〉 ≡ P{(µX(~x).P )/X}{~e/~x}
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Example

Some simple concurrent data structures :

Ref〈u, v〉
def
= u&







read(z) : z〈v〉 | Ref〈u, v〉,

write(y, z) : z | Ref〈u, y〉







Ref
cas〈u, v〉

def
= u&



























read(z) : z〈v〉 | Ref
cas〈u, v〉,

write(y, z) : z | Ref
cas〈u, y〉,

cas(x, y, z) : if x=v then z〈tt〉 | Ref
cas〈u, y〉

else z〈ff〉 | Ref
cas〈u, v〉
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Example

Reduction :

Ref
cas〈a, 0〉|(νc)(a⊕cas〈0, 1, c〉|c(x).P )

−→ (νc)((if 0 = 0 then c〈tt〉 | Ref
cas〈a, 1〉 else c〈ff〉 | Ref

cas〈a, 0〉) | c(x).P )

−→ (νc)((if tt then c〈tt〉 | Ref
cas〈a, 1〉 else c〈ff〉 | Ref

cas〈a, 0〉) | c(x).P )

−→∗ Ref
cas〈a, 1〉 | P{tt/x}
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Example

Two different mutex agents:

Mtx〈u〉
def
= u(x).x(h)h.Mtx〈u〉

Mtxspin〈u〉
def
= (νc)(!u(x).µX.

(if cas(c, 0, 1) thenx(h)h.CAS(c, 1, 0) else ) |

Ref
cas〈c, 0〉)

where

if cas(u, v, w) then P elseQ
def
= (νc)(u⊕cas〈v, w, c〉|c(x).if x then P elseQ)

and

CAS(u, v, w)
def
= if cas(u, v, w) then 0 else 0
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Types

τ ::= &M

i∈I li(~τi) | ⊕M

i∈I li(~τi) | int | bool | ⊥

Modalities (as in Linear Logic, Games, . . . ):

L channel can be used “exactly once” (linear)

A channel can be used “at most once” (affine)

L* input end always available and shared by unboundedly many

outputs (unbounded l.)

A* input end as above but may be unavailable (unbounded a.)
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Example

Typings for the previously introduced examples :

1.

u : &L∗{read(↑L(nat)),write(nat ↑L())} ⊢ Ref〈u, 3〉

2.

u : &L∗{read(↑L(nat)),write(nat ↑L()), cas(natnat ↑L(bool)), } ⊢ Ref
cas〈u, 0〉

3.

u :↓A∗(↑A(↓A())) ⊢ P ( P ∈ {Mtx〈u〉,Mtxspin〈u〉} )
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Labelled Transition System

Labels :

ℓ ::= τ | (ν~c)a&l(~v) | (ν~c)a⊕ l〈~v〉

Untyped transitions :

(Bra)

P
(ν~c)a&l〈~v〉

−→ P |a⊕ l〈~v〉

(Sel)

(ν~c)(P |a⊕ l〈~v〉)
(ν~c)a⊕l〈~v〉

−→ P
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Labelled Transition System

Environment transitions :

Γ, a : &L∗,A∗{li(~τi)}i∈I

(ν~c)a&lj〈~vj〉
−→ Γ⊙ ~v : ~τj , a : &L∗,A∗{li(~τi)}i∈I

(Γ⊙ ~v : ~τj)/~c, a : ⊕L∗,A∗{li(~τi)}i∈I

(ν~c)a⊕lj〈~vj〉
−→ Γ, a : ⊕L∗,A∗{li(~τi)}i∈I

Γ, a : &L,A{li(~τi)}i∈I

(ν~c)a&lj〈~vj〉
−→ Γ⊙ ~v : ~τj , a : ⊥

(Γ⊙ ~v : ~τj)/~c, a : ⊕L,A{li(~τi)}i∈I

(ν~c)a⊕lj〈~vj〉
−→ Γ

Typed transitions :

Γ ⊢ P
ℓ

−→ Γ′ ⊢ P ′ def
⇔ P

ℓ
−→ P ′ ∧ Γ

ℓ
−→ Γ′
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Bisimilarity

Definition 3.3 (bisimilarity) A typed relation R is a weak

bisimulation or often bisimulation when, for each Γ ⊢ PRQ, we

have: P
ℓ

−→ P ′ implies Q
ℓ̂

=⇒ Q′ s.t. P ′RQ′, and the symmetric

case. The maximum bisimulation is written ≈.

Proposition 3.4 ≈ is a typed congruence.
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Fairness

Definition 3.5 (Fairness) A maximal transition sequence Φ from

closed Γ ⊢ P is fair if no subject is infinitely often enabled in Φ.
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Fairness

Definition 3.5 (Fairness) A maximal transition sequence Φ from

closed Γ ⊢ P is fair if no subject is infinitely often enabled in Φ.

Let P =!a.(b|a)|a and Q = Ref〈r, 3〉|r ⊕ read〈c〉.

Then P |Q admits an infinite unfair transition sequence.
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Fairness

Definition 3.5 (Fairness) A maximal transition sequence Φ from

closed Γ ⊢ P is fair if no subject is infinitely often enabled in Φ.

Let P =!a.(b|a)|a and Q = Ref〈r, 3〉|r ⊕ read〈c〉.

Then P |Q admits an infinite unfair transition sequence.

Fairness induces a fair pre-order wfair, where:

P wfair Q ⇐⇒ P ≈ Q ∧ WFT(P ) ⊇ WFT(Q)
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Partial Failure

We first augment the dynamics with failing reductions:

u⊕Mlj〈~e〉 −→ 0 (M 6= L) if v then P else Q −→ 0

Then we augment the τ -transition accordingly.

NOTE :

Only affine outputs may fail!

⇓

Linearity ⇒ Atomicity
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Global Progress

Definition 3.11 (Resilience) Let Γ ⊢ P such that for all

wft(Φ) ∈ WFT(P ), the set blocked(Φ) is finite. Then we say that

Γ ⊢ P is resilient.

Definition 3.12 (NB/WF) A closed process Γ ⊢ P is:

1. non-blocking (NB) when it is resilient and, for any Φ∈FT(P )

s.t. ∆⊢Q is in Φ and allowed(∆) \ blocked(Φ) 6=∅, some

affine output occurs in Φ.

2. wait-free (WF) when it is resilient and, for any Φ ∈ FT(P ) s.t.

∆ ⊢ Q is in Φ and c ∈ allowed(∆) \ blocked(Φ), an output at

c occurs in Φ.
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Weak Global Progress

Let WNB be as NB but without failures.

Let WWF be as WF but without failures.

Then WF ( NB ∩ WWF and NB ∪ WWF ( WNB.
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Abstract Queue Specification

Abstract Queue:

AQ(r, 〈Rs; Vs; As〉)
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Abstract Queue Specification

Abstract Queue:

AQ(r, 〈Rs; Vs; As〉)

Example:

AQ(r, 〈{enq(6, g1), deq(g2)}, 2·3·1, {g3〈5〉}〉)
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State Space Abstraction

Abstract Queue:

AQ(r, 〈Rs; Vs; As〉)

State Transitions

AQ(r, 〈Rs, Vs, As〉)
r&enq(v,g)

−→ AQ(r, 〈Rs ⊎ enq(v, g), Vs, As〉)

AQ(r, 〈Rs, Vs, As〉)
r&deq(g)
−→ AQ(r, 〈Rs ⊎ deq(g), Vs, As〉)

AQ(r, 〈Rs ⊎ enq(v, g), Vs, As〉)
τ

−→ AQ(r, 〈Rs, Vs·v, As ⊎ g〉)

AQ(r, 〈Rs ⊎ deq(g), v ·Vs, As〉)
τ

−→ AQ(r, 〈Rs, Vs, As ⊎ {g〈v〉}〉)

AQ(r, 〈Rs ⊎ deq(g), , As〉)
τ

−→ AQ(r, 〈Rs, , As ⊎ {g〈KO〉}〉)

AQ(r, 〈Rs, Vs, As ⊎ {g〈v〉}〉)
g〈v〉
−→ AQ(r, 〈Rs, Vs, As〉)
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cas-based Queue in π

Auxiliary data structures :

Node(r, v, ptr)
def
= Ref〈r, 〈v, ptr〉〉

Ptr(r, nd, ctr)
def
= Ref

cas〈r, 〈nd, ctr〉〉

Shortened forms :

x ⊳ read(~y).P
def
= (νc)(x⊕ read〈c〉|c(~y).P )

We use ad-hoc names when we only want to keep a projection of

the contents (getP tr, getV al, . . . ).
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cas-based Queue in π

CQemp(r)
def
= (νh)(νt)(νs)(CQ(r, h, t) | Ptr(h, s, 0) |

Ptr(t, s, 0) | Node(s, 0, null))

CQ(r, h, t)
def
= r&































enqueue(x, u) :

(CQ(r, h, t) | Penq(x, t))

dequeue(u) :

(CQ(r, h, t) | Pdeq(h, t))
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cas-based Queue in π

Penq(x, tail) =

NullPtr(nlP tr) | Node(node, v, nlP tr) |

(µXtag(u
′).

tail ⊳ read(last, ctrT ). last ⊳ getP tr(tP tr). tP tr ⊳ read(next, ctr).

if (next = null) then

if cas(tP tr, 〈next, ctr〉, 〈node, ctr + 1〉) then

if cas(tail, 〈last, ctrT 〉, 〈node, ctrT + 1〉) then u′ else u′

else Xtag〈u
′〉)

else

if cas(tail, 〈last, ctrT 〉, 〈next, ctrT + 1〉) then Xtag〈u
′〉 else Xtag〈u

′〉)

endif)〈u〉
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cas-based Queue in π

Pdeq(head , tail) = (µXtag(u
′).

head ⊳ read(hNdRef, ctrH). tail ⊳ read(tNdRef, ctrT ).

hNdRef ⊳ getP tr(hNdPtr). hNdPtr ⊳ getNxt(next).

if (hNdRef = tNdRef) then

if (next = null) then u′〈null〉 else

if (cas(tail, 〈tNdRef, ctrT 〉, 〈next, ctrT + 1〉)) then Xtag〈u
′〉

else Xtag〈u
′〉)

else next ⊳ getV al(x).

if (cas(head, 〈hNdRef, ctrH〉, 〈next, ctr + 1〉)) then u′〈x〉

else Xtag〈u
′〉)〈u〉

Fossati, Honda - 2011



An Observational Theory of Imperative Concurrent Data Structures in the π-Calculus 35/40

Lock-Based Queue in π

LQemp(r)
def
= (νu)(νh)(νt)(νs)(LQ(r, h, t)|Mtx〈u〉|

LPtr(h, s)|LPtr(t, s)|LENode(s, 0))

LQ(r, h, t, l)
def
= r&



























enqueue(v, u) : LQ(r, h, t, l)|

(l(g)g(y).P lck
enq(v, t, c

′)|c′.(ȳ|ū)),

dequeue(u) : LQ(r, h, t, l)|

(l(g)g(y).P lck
deq(h, t, c

′)|c′.(ȳ|ū))
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Correctness

• state space abstraction (correctness by bisimilarity)

• molecular transitions (;atomic operation)

• commit event (i.e. cas on successor pointer)

• normal form (each thread is either:

1. ready to commit,

2. or ready to output)

• normalisation through linearisation (local permutations)
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Global Progress

Proposition 4.6 Let Φ : CQemp(r) −→∗ P be a queue process.

Then an output is blocked in Φ iff its thread fails in Φ.

Proposition 4.8 ΓQ ⊢ CQemp(r) is non-blocking.
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Behavioural Classification

ΓQ ⊢ LQemp(r) is blocking (it is weakly wait-free).

ΓQ ⊢ LQemp(r) has more fair sequences

Theorem 4.11 AQ(r, ε) ≈ LQemp(r) �fair CQemp(r)
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Results and Future Works

• Fairness

• Fine-grained analysis

• Generality

• Extensionality

• State space abstraction

⇒ Automated verification tools

⇒ Encoding from imperative languages
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Thank you for your attention!
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