
PLACES 2015
Programming Language Approaches to

Communication- and Concurrency-cEntric Software

(8th International Workshop)

An ETAPS Satellite Event

17th April 2015

London, UK

Preliminary Proceedings

Editors: Simon Gay and Jade Alglave

Preface

PLACES 2015 (full title: Programming Language Approaches to Concurrency- and Com-
munication-Centric Software) is the eighth edition of the PLACES workshop series. After the
first PLACES, which was a�liated to DisCoTec in 2008, the workshop has been part of ETAPS
every year since 2009 and is now an established part of the ETAPS satellite events.

The workshop series was started in order to promote the application of novel programming
language ideas to the increasingly important problem of developing software for systems in
which concurrency and communication are intrinsic aspects. This includes software for both
multi-core systems and large-scale distributed and/or service-oriented systems. The scope of
PLACES includes new programming language features, whole new programming language de-
signs, new type systems, new semantic approaches, new program analysis techniques, and new
implementation mechanisms.

This year’s call for papers attracted 13 submissions of abstracts, of which 9 became sub-
missions of full papers. Each paper was reviewed by three PC members. After discussion, the
PC decided to accept all 9 papers. We used EasyChair for the whole process, which, as always,
made everything very straightforward.

We are pleased to be able to o↵er an invited lecture from Martin Vechev from ETH Zurich.
The invited talk and the contributed talks together make up an intersting and attractive pro-
gramme for this year’s PLACES, and we are looking forward to a lively and productive meeting.

Finally, we would like to thank the programme committee members for their hard work,
and the ETAPS workshop chairs and local organizers for their help.

Simon Gay
Jade Alglave

Programme Committee Co-Chairs

i

ii

Organisation

Programme Committee Co-Chairs

Simon Gay University of Glasgow, UK
Jade Alglave University College London, UK

Programme Committee

Josh Berdine Microsoft Research Cambridge, UK
Stefan Blom University of Twente, Netherlands
Nathan Chong University College London, UK
Ornela Dardha University of Glasgow, UK
Alexey Gotsman IMDEA Software Institute, Spain
Hans Hüttel Aalborg University, Denmark
Paul Keir Codeplay Software Ltd, UK
Fabrizio Montesi University of Southern Denmark, Denmark
David Pearce Victoria University of Wellington, New Zealand
Pierre-Yves Strub IMDEA Software Institute, Spain
Jules Villard Imperial College London, UK

Organising Committee

Alastair Beresford University of Cambridge, UK
Simon Gay University of Glasgow, UK
Alan Mycroft University of Cambridge, UK
Vasco Vasconcelos University of Lisbon, Portugal
Nobuko Yoshida Imperial College London, UK

iii

iv

Contents

Invited Lecture

Commutativity Race Detection: Concepts, Algorithms and Open Problems1
Martin Vechev

Contributed Papers

Using session types as an e↵ect system . 3
Dominic Orchard and Nobuko Yoshida

Precise subtyping for synchronous multiparty sessions . 15
Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Svetlana Jaks̆ić, Jovanka Pantović
and Nobuko Yoshida

A Typed Model for Dynamic Authorizations . 27
Silvia Ghilezan, Svetlana Jaks̆ić, Jovanka Pantović, Jorge A. Pérez
and Hugo Torres Vieira

Behavioural types for non-uniform memory accesses .39
Juliana Franco and Sophia Drossopoulou

Broadcast and aggregation in BBC . 51
Hans Hüttel and Nuno Pratas

Communicating machines as a dynamic binding mechanism of services . 63
Ignacio Vissani, Carlos Gustavo Lopez Pombo and Emilio Tuosto

Distributed Programming via Safe Closure Passing .75
Philipp Haller and Heather Miller

Reversible Communicating Processes . 87
Geo↵rey Brown and Amr Sabry

Retractable contracts . 97
Franco Barbanera, Mariangiola Dezani-Ciancaglini, Ivan Lanese and Ugo de’Liguoro

v

vi

Commutativity Race Detection: Concepts, Algorithms and

Open Problems

(Invited Lecture)

Martin Vechev

Software Reliability Lab, ETH Zurich, Switzerland

Abstract

In this talk I will introduce the notion of a commutativity race. A commutativity race occurs

when two method invocations happen concurrently yet they do not commute (according to a logical

specification). Commutativity races are an elegant concept which generalize classic data races and

enable reasoning about concurrent interaction at the library interface. I will then present an approach

which takes as input a logical specification that captures commutativity and automatically synthesizes

an e�cient concurrency analyzer for that specification. The resulting analyzers have been used to find

concurrency errors in large scale production applications. Finally, generalization of classic data race

detection leads to many fundamental research questions, which I will discuss, including: black box

specification learning, impossibility of simulating race detectors, connections between logical fragments

and asymptotic complexity of the analysis, as well as various practical applications.

1

Commutativity Race Detection Martin Vechev

2

Using session types as an e↵ect system

Dominic Orchard and Nobuko Yoshida

Imperial College London

Abstract

Side e↵ects are a core part of practical programming. However, they are often hard to reason about,

particularly in a concurrent setting. We propose a foundation for reasoning about concurrent side

e↵ects using sessions. We show that session types are expressive enough to encode an e↵ect system for

stateful processes. This is formalised via an e↵ect-preserving encoding of a simple imperative language

with an e↵ect system into the ⇡-calculus with sessions and session types (into which we encode e↵ect

specifications). We demonstrate how this technique can be used to reason about, specify, and control

the scope of concurrent side e↵ects.

1 Introduction

Side e↵ects such as input-output and mutation of memory are important features of practical
programming. However, e↵ects are often di�cult to reason about due to their implicit impact.
Reasoning about e↵ects is even more di�cult in a concurrent setting, where interference may
cause unintended non-determinism. For example, consider a parallel program: putx ((getx)+
2) | putx ((getx) + 1) where x is a mutable memory cell. Given an initial assignment x 7! 0,
the final value stored at x may be any of 3, 2, or 1 since calls to get and put may be interleaved.

Many approaches to reasoning, specifying, and controlling the scope of e↵ects have therefore
been proposed. Seemingly orthogonally, various approaches for specifying and reasoning about
concurrent interactions have also been developed. In this paper, we show that two particular
approaches for reasoning about e↵ects and concurrency are in fact non-orthogonal; one can be
embedded into the other. We show that session types [9] for concurrent processes are expressive
enough to encode e↵ect systems [3] for state. We formalise this ability by embedding/encoding
a simple imperative language with an e↵ect system into the ⇡-calculus with session types:
sessions simulate state and session types become e↵ect annotations. Formally, our embedding
maps type-and-e↵ect judgements to session type judgements:

� `M : ⌧, F
embedding������! J�K; res : !J⌧K.end, e↵ : JF K ` JMK (1)

That is, an expression M of type ⌧ in context �, performing e↵ects F is mapped to a process
JMK which sends its result over session channel res and simulates e↵ects by interactions JF K
(defined by an interpretation of the e↵ect annotation) over session channel e↵.

We start with the traditional encoding of a mutable store into the ⇡-calculus (Section 2)
and show how its session types provide a kind of e↵ect system. Section 2 introduces a simple
imperative language, which we embed into the ⇡-calculus with sessions (sometimes called the
session calculus) (Section 3). The embedding is shown sound with respect to an equational
theory for e↵ects. Section 4 demonstrates how to build upon the encoding to guard against
e↵ect interference in a concurrent setting and to safely introduce implicit parallelism.

Our embedding has been formalised in Agda to account for all details and is available at
https://github.com/dorchard/effects-as-sessions (Appendix B gives a brief description).

The main result of this paper is technical, about the expressive power of the ⇡-calculus with
session primitives and session types. This technical result has a number of possible uses:

3

Using session types as an e↵ect system Dominic Orchard and Nobuko Yoshida

• E↵ects systems for the ⇡-calculus: rather than adding an additional e↵ect system on top of
the ⇡-calculus, we show that existing work on session types can be reused for this purpose.

• Semantics of concurrency and e↵ects: our approach provides an intermediate language for
the semantics of e↵ects in a concurrent setting. We demonstrate this in Section 4, with a
semantics for parallel composition in the source language which avoids race conditions.

• Compilation: Related to the above, the session calculus can be used as a typed interme-
diate language for compilation, where our embedding provides the translation. Section 4
demonstrates an optimisation step where safe implicit parallelism is introduced based on
e↵ect information and soundness results of our embedding.

E↵ect systems have been used before to reason about e↵ects in concurrent programs. For ex-
ample, Deterministic Parallel Java uses an e↵ect system to check that parallel processes can
safely commute without memory races, and otherwise schedules processes to ensure determin-
ism [1]. Our approach allows state e↵ects to be incorporated directly into concurrent protocol
descriptions, reusing session types, without requiring interaction between two distinct systems.

2 Simulating state with sessions

2.1 State via processes A well-known way to implement state in a process algebra is to
represent a mutable store as a server-like process (often called a variable agent) that o↵ers two
modes of interaction (get and put). In the get mode, the agent waits to receive a value on its
channel which is then “stored”; in the put it sends the stored value. This can be implemented
in the ⇡-calculus with branching and recursive definitions as follows (Figure 1 describes the
syntax), where Store is parameterised by a session channel c and the stored value x:

def Store(c, x) = c⇤ {get : c!hxi.Storehc, xi, put : c?(y).Storehc, yi, stop : 0} in Storehe↵ , ii (2)

That is, Store provides a choice (by ⇤) over channel c between three behaviours labelled get, put,
and stop. The get branch sends the state x on c and then recurses with the same parameters,
preserving the stored value. The put branch receives y which then becomes the new state
by continuing with recursive call Storehc, yi. The stop branch provides finite interaction by
terminating the agent. The store agent is initialised with channel e↵ and initial value i.

The following parameterised operations get and put then provide interaction with the store:

get(c)(x).P = c� get . c?(x).P put(c)hV i.P = c� put . c!hV i.P (3)

where c is the opposite endpoint of a channel, and get selects (by the � operator) the get branch
then receives a value which is bound to x in the scope of P , and put selects its relevant branch
then sends a value V before continuing as P .

A process can then use get and put for stateful computation by parallel composition with
Store, e.g. get(e↵)(x).put(e↵)hx+ 1i.end | Storehe↵ , ii increments the initial value.

2.2 Session types Session types provide descriptions (and restrictions) of the interactions
that take place over channels [9]. Session types record sequences of typed send (![⌧]) and
receive (?[⌧]) interactions, terminated by the end marker, branched by select (�) and choice
(&) interactions, with cycles provided by a fixed point µ↵ and session variables ↵:

S, T ::= ![⌧].S | ?[⌧].S | �[l1 : S1, . . . , ln : Sn] | &[l1 : S1, . . . , ln : Sn] | µ↵.S | ↵ | end

where ⌧ ranges over value types nat,unit and session channels S, and l ranges over labels.

4

Using session types as an e↵ect system Dominic Orchard and Nobuko Yoshida

(value variables) v ::= x, y, z (session channel variables) c, d, c, d

(values) V ::= C | v constants / variables

(processes) P,Q ::= c?(x).P | c!hV i.P receive / send
| c?(d).P | c!hdi.P channel receive / send

| c⇤ {l̃ : P̃} | c� l.P branching / selection

| def X(x̃, c̃) = P in Q | XhṼ , c̃i recursive definition / use
| ⌫c.P channel restriction
| (P |Q) parallel composition
| 0 nil process

(value-types) ⌧ ::= unit | nat | S (contexts) � ::= ; | �, x : ⌧ | �, X : (⌧̃ , S̃)

(l ranges over labels, l̃ : P̃ over sequences of label-process pairs, and ẽ over syntax sequences)

Figure 1: Syntax of ⇡-calculus with recursion and sessions

Figure 4 (p. 11) gives the rules of the session typing system (based on that in [9]). Session
typing judgements for processes have the form �;� ` P meaning a process P has value variables
� = x1 : ⌧1 . . . xn : ⌧n and session-typed channels � = c1 : S1, . . . cn : Sn.

For some state type ⌧ and initial value i : ⌧ , the Store process (2) has session judgement:

�; e↵ : µ↵.&[get : ![⌧].↵, put :?[⌧].↵, stop : end] ` Storehe↵ , ii

That is, e↵ is a channel over which there is an sequence of o↵ered choice between the get

branch, which sends a value, put branch which receives a value, and terminated by the stop

branch. The session judgements for get and put (3) are then:

�, x : ⌧ ; �, e↵ : S ` P

�;�, e↵ : �[get : ?[⌧].S] ` get(e↵)(x).P

�; ; ` V : ⌧ �;�, e↵ : S ` P

�;�, e↵ : �[put : ![⌧].S] ` put(e↵)hV i.P
(4)

We use a variant of session typing where selection ⇤, used by get and put , has a selection session
type � with only the selected label (seen above), and not the full range of labels o↵ered by its
dual branching process, which would be �[get :?[⌧].S, put :![⌧].S, stop : end] for both. Duality
of select and branch types is achieved by using session subtyping to extend select types with
extra labels [2] (see Appendix A.1 for details).

2.3 E↵ect systems E↵ect systems are a class of static analyses for e↵ects, such as state [3].
Traditionally, e↵ect systems are described as syntax-directed analyses by augmenting typing
rules with e↵ect judgements, i.e., � ` M : ⌧, F where F describes the e↵ects of M – usually a
set of e↵ect tokens. We define the e↵ect calculus, a simple imperative language with e↵ectful
operations and a type-and-e↵ect system defined in terms of an abstract e↵ect algebra.

Terms comprise variables, let-binding, operations, and constants, and types comprise value
types for natural numbers and unit:

M,N ::= x | letx M inN | opM | c ⌧,� ::= unit | nat

where x ranges over variables, op over unary operations, and c over constants. We do not
include function types as there is no abstraction (higher-order calculi are discussed in Section 5).
Constants and operations can be e↵ectful and are instantiated to provide application-specific
e↵ectful operations in the calculus. As defaults we add zero and unit constants 0, unit 2 c and
a pure successor operation for natural numbers suc 2 op.

5

Using session types as an e↵ect system Dominic Orchard and Nobuko Yoshida

(var)
x : ⌧ 2 �

� ` x : ⌧, I
(let)

� `M : �, F �, x : � ` N : ⌧, G

� ` letx M inN : ⌧, F •G (const)
� ` c : C⌧ , CF

(op)
� `M : Op�, I

� ` op M : Op⌧ ,OpF

Figure 2: Type-and-e↵ect system for the e↵ect calculus

Definition 1 (E↵ect system). Let F be a set of e↵ect annotations with a monoid structure
(F, •, I) where • combines e↵ects (corresponding to sequential composition) and I is the trivial
e↵ect (for pure computation). Throughout F,G,H will range over e↵ect annotations.

Figure 2 defines the type-and-e↵ect relation. The (var) rule marks variable use as pure (with
I). In (let), the left-to-right evaluation order of let-binding is exposed by the composition order
of the e↵ect F of the bound term M followed by e↵ect G of the let-body N . The (const) rule
introduces a constant of type C⌧ with e↵ects CF , and (op) applies an operation to its pure
argument of type Op�, returning a result of type Op⌧ with e↵ect OpF .

2.4 State e↵ects The e↵ect calculus can be instantiated with di↵erent notions of e↵ect.
For state, we use the e↵ect monoid (List {G ⌧,P ⌧},++, []) of lists of e↵ect tokens, where G

and P represent get and put e↵ects parameterised by a type ⌧ , ++ concatenates lists and []
is the empty list. Many early e↵ect systems annotated terms with sets of e↵ects. Here we use
lists to give a more precise account of state which includes the order in which e↵ects occur.

Terms are extended with constant get and unary operation put where ; ` get : ⌧, [G ⌧] and
� ` putM : unit, [P ⌧] for � `M : ⌧, I. For example, the following is a valid judgement:

; ` letx get in put (suc x) : nat, [Gnat,Pnat] (5)

Type safety of the store is enforced by requiring that any get e↵ects must have the same type
as their nearest preceding put e↵ect. We implicitly apply this condition throughout.

2.5 Sessions as e↵ects The session types of processes interacting with Store provide the
same information as the state e↵ect system. Indeed, we can define a bijection between state
e↵ect annotations and the session types of get and put (4):

J[]K = end J(G ⌧) :: F K = �[get :?[⌧].JF K] J(P ⌧) :: F K = �[put : ![⌧].JF K] (6)

where :: is the cons operator for lists. Thus processes interacting with Store have session types
corresponding to e↵ect annotations. For example, the following has the same state semantics
as (5) and isomorphic session types:

;; e↵ : J[Gnat,Pnat]K ` get(e↵)(x).put(e↵)hsucxi (7)

3 Embedding the e↵ect calculus into the ⇡-calculus

Our embedding is based on the embedding of the call-by-value �-calculus (without e↵ects) into
the ⇡-calculus [5, 8] taking letx M inN = (�x.N)M . Since e↵ect calculus terms return a
result and ⇡-calculus processes do not, the embedding is parameterised by a result channel r
over which the return value is sent, written J�Kr. Variables and pure let-binding are embedded:

Jletx M inNKr = ⌫q. (JMKq | q?(x).JNKr) JxKr = r!hxi (8)

6

Using session types as an e↵ect system Dominic Orchard and Nobuko Yoshida

Variables are simply sent over the result channel. For let, an intermediate channel q is created
over which the result of the bound term M is sent by the left-hand parallel process JMKq and
received and bound to x by the right-hand process before continuing with JNKr. This enforces
a left-to-right, CBV evaluation order (despite the parallel composition).

Pure constants and unary operations can be embedded similarly to variables and let given
suitable value operations in the ⇡-calculus. For example, successor and zero are embedded as:

JsucMKr = ⌫q. (JMKq | q?(x).r!hsuc xi) JzeroKr = r!hzeroi (9)

Given a mapping J�K from e↵ect calculus types to corresponding value types in the ⇡-calculus,
the above embedding of terms (8),(9) can be extended to typing judgements as follows (where
J�K interprets the type of each free-variable assumption, preserving the structure of �):

J� `M : ⌧Kr = J�K; r : !J⌧K.end ` JMKr (10)

With e↵ects E↵ectful computations are embedded by interactions with a side-e↵ect handling
agent over a session channel. The embedding, written J�Ke↵r , maps a judgement � `M : ⌧, F to
a session type judgement with channels � = (r : !J⌧K.end, e↵ : JF K) i.e., the e↵ect annotation
F is interpreted as the session type of channel e↵ . For state, this interpretation is defined as
in eq. (6). The embedding first requires an intermediate step, written L� Mei,eor

L� `M : ⌧, F Mei,eor = 8g. J�K; r : !J⌧K, ei : ?JF • gK, eo :!JgK ` LM Mei,eor (11)

where ei and eo are session channels over which session channels for simulating e↵ects are
communicated: ei receives a channel of session type JF • gK (i.e., capable of carrying out e↵ects
F • g) and eo sends a channel of session type JgK (capable of carrying out e↵ects g). Here the
e↵ect g is universally quantified at the meta level. This provides a way to thread a channel for
e↵ect interactions through a computation, such as in the case of let-binding.

The interpretation is then defined:

L letx M inN Mei,eor = ⌫q, ea . (LM Mei,eaq | q?(x).LN Mea,eor)

Lx Mei,eor = ei?(c).r!hxi.eo!hci
LC Mei,eor = ei?(c).JCKr.eo!hci (when C is pure)

L opM Mei,eor = ei?(c).JopMKr.eo!hci (when op is pure) (12)

The embedding of variables is straightforward, where the channel for simulating e↵ects is re-
ceived on ei and then sent without use on eo. Embedding pure operations/constants is similar,
reusing the pure embedding defined in equation (9).

The let case resembles the pure embedding of let but threads through an e↵ect-carrying
session channel. Intermediate channel ea is introduced over which the e↵ect channel is passed
from the embedding of M to N . Let � ` M : ⌧, F and �, x : � ` N : ⌧, G then the universally
quantified e↵ect variable 8g for LM Mei,eaq is instantiated to G • g. The following partial session-
type derivation for the let encoding shows the propagation of e↵ects via session types:

q :!J�K, ei :?JF •G • gK, ea :!JG • gK ` LM Mei,eaq q :?J�K, r :!J⌧K, ea :?JG • gK, eo :!JgK ` q?(x).LN Mea,eor

r :!J⌧K, ei :?JF •G • gK, eo :!JgK, q :!J�K, q :?J�K, ea :!JG • gK, ea :?JG • gK ` LM Mei,eaq | q?(x).LN Mea,eor

r :!J⌧K, ei :?JF •G • gK, eo :!JgK ` ⌫q, ea. (LM Mei,eaq | q?(x).LN Mea,eor)

7

Using session types as an e↵ect system Dominic Orchard and Nobuko Yoshida

The get and put operations of our state e↵ects are embedded similarly to equation (3) (page
4), but with the receiving and sending of the session channel which interacts with the store:

L get Mei,eor = ei?(c).c� get . c?(x).r!hxi.eo!hci
L putM Mei,eor = ⌫q. (JMKq | ei?(c).q?(x).c� put . c!hxi.r!huniti.eo!hci) (13)

The embedding of get receives channel c over which it performs its e↵ect by selecting the
get branch and receiving x which is sent as the result on r before sending c on eo. The put

embedding is similar to get and let, but using the pure embedding JMKq since M is pure.
The full embedding is then defined in terms of the intermediate as follows:

J� `M : ⌧, F Ke↵r = J�K; r : !J⌧K, e↵ : JF K ` ⌫ei, eo. (L� `M : ⌧, F Mei,eor | ei!he↵ i.eo?(c)) (14)

where e↵ is the free session channel over which e↵ects are performed.
Finally, the embedded program is composed in parallel with the variable agent, for example:

def Store(c, x) = . . . (see (2)) in Storehe↵ , 0i | Jletx get in put (sucx)Ke↵r (15)

3.1 Soundness The e↵ect calculus exhibits the equational theory defined by the rela-
tion ⌘ in Figure 3, which enforces monoidal properties on e↵ects and the e↵ect algebra (as-
soc),(unitL),(unitR), and which allows pure computations to commute with e↵ectful ones
(comm). Our embedding is sound with respect to these equations and the weak bisimulation
relation of the ⇡-calculus with sessions (see [4] for more on weak bisimulation).

Theorem 1 (Soundness). If � `M ⌘ N : ⌧, F then J�K; (r :!J⌧K.end, e : JF K) ` JMKer ⇡ JNKer
Appendix C provides the proof. The proof of soundness for (comm) uses the following lemma
on the encoding of pure terms (those annotated with I), which requires an additional restriction
on the e↵ect algebra.

Lemma 1 (Pure encoding). An e↵ect system where 8F,G.(F • G ⌘ I)) (F ⌘ G ⌘ I) has
the following property of the intermediate encoding, for all M , �, ⌧ :

L� `M : ⌧, I Mei,eor ⇡ ei?(c).eo!hci.JMKr

That is, the intermediate encoding of a pure term is bisimilar to a pure encoding (without
e↵ect simulation) prefixed by receiving an e↵ect-simulating channel c on ei and sending it on
eo without any use. Appendix C provides the proof. The state e↵ect system described here
satisfies this additional condition on the e↵ect algebra since any two lists whose concatenation
is the empty list implies that both lists are themselves the empty list.

(assoc)
� `M : �, F �, x : � ` N : ⌧ 0, G �, y : ⌧ 0 ` P : ⌧, H x 62 FV (P)

(let y (letx M inN) inP) ⌘ (letx M in (let y N inP)) : ⌧, F •G •H

(unitL)
� ` x : �, I �, y : � `M : ⌧, F

� ` (let y x inM) ⌘M [x/y] : ⌧, F
(unitR)

� `M : ⌧, F
� ` (letx M inx) ⌘M : ⌧, F

(comm)
� `M : ⌧1, I � ` N : ⌧2, F �, x : ⌧1, y : ⌧2 ` P : ⌧, G x 62 FV (N) y 62 FV (M)

� ` letx M in (let y N inP) ⌘ let y N in (letx M inP) : ⌧, F •G

Figure 3: Equations of the e↵ect calculus

8

Using session types as an e↵ect system Dominic Orchard and Nobuko Yoshida

4 Discussion

Concurrent e↵ects In a concurrent setting, side e↵ects can lead to non-determinism and race
conditions. For example, the program in the introduction putx ((getx)+2) |putx ((getx)+1)
has four possible final values for x due to arbitrarily interleaved get and put operations.

Consider an extension to the source language which adds a binary operator for parallel
composition | (we elide details of the type-and-e↵ect rule, but an additional e↵ect operator,
describing parallel e↵ects, might be included). We might then consider the following encoding
using the parallel composition of the ⇡-calculus:

JM |NKe↵r = ⌫q1, q2 . (JMKe↵q1 | JNKe↵q2 | q1?(x).q2?(y).r!h(x, y)i)

where q1 and q2 are the result channels for each term, from which the results are paired and
sent over r. This encoding is not well-typed under the session typing scheme: the (par) rule
(see Figure 4, p. 11) requires that the session channel environments of each process be disjoint
but e↵ appears on both sides. Thus, session types naturally prevent e↵ect interference.

Concurrent e↵ects can be allowed by introducing shared channels, over which sessions can
be initiated [9]. One possible semantics for parallel composition in the source language might
be that the store is “locked” by each process, providing atomicity. This can be described by
the following redefinition of Store and the encoding of parallel composition:

def Store(c, x) = . . . (see(2)) in accept k(c).Storehc, 0i

JM|NKkr = ⌫q1, q2. (request k(c).JMKcq1 | request k(d).JNKdq2 | q1?(x).q2?(y).r!h(x, y)i)

where k is a shared channel and request/accept initiate two separate binary sessions between
the store process and the client processes, ensuring atomicity of side e↵ects within each process.

Various other kinds of concurrent e↵ect interaction can be described using the rich language
of the session calculus and variations of our embedding.

Compiling to the session calculus One use for our embedding is as a typed intermediate
language for a compiler since the ⇡-calculus with sessions provides an expressive language
for concurrency. For example, even without explicit concurrency in the source language our
encoding can be used to introduce implicit parallelism as part of a compilation step via the
session calculus. In the case of compiling a term which matches either side of the (comm) rule
above, a pure term M can be computed in parallel with N , i.e., given terms � `M : ⌧1, I and
� ` N : ⌧2, F and �, x : ⌧1, y : ⌧2 ` P : ⌧, G where x 62 FV (N), y 62 FV (M) then the following
specialised encodings can be given:

L let y N in (letx M inP) Mei,eor =

L letx M in (let y N inP) Mei,eor = ⌫ q, s, eb. (JMKq | LN Mei,ebs | q?(x).s?(y).LP Meb,eor)

This alternate encoding introduces the opportunity for parallel evaluation of M and N . It is
enabled by the e↵ect system (which annotates M with I) and it is sound: it is weakly bisimilar
to the usual encoding (which follows from the soundness proof of (comm) in Appendix C and
the pure encoding lemma 1).

5 Summary and further work

This paper showed that sessions and session types are expressive enough to encode stateful
computations with an e↵ect system. We formalised this via a sound embedding of a simple, and

9

Using session types as an e↵ect system Dominic Orchard and Nobuko Yoshida

general, e↵ect calculus into the session calculus. Whilst we have focussed on causal state e↵ects,
our e↵ect calculus and embedding can also be instantiated for I/O e↵ects, where input/output
operations and e↵ects have a similar form to get/put. We considered only state e↵ects on a
single store, but traditional e↵ect systems account for multiple stores via regions. Our approach
could be extended with a store and session channel per region. Other instantiations of our e↵ect
calculus/embedding are further work, for example, for set-based e↵ects.

E↵ect reasoning is di�cult in higher-order settings as the e↵ects of abstracted computations
are locally unknown. E↵ect systems account for this by annotating function types with the
latent e↵ects of a function which are delayed till application. A possible encoding of a function
type with latent e↵ects into a session type could be following:

J� F�! ⌧K = !J�K . ![?JF •GK] . ![!JGK] . ![!J⌧K]

i.e., a channel over which four things can be sent: a J�K value for the function argument, a
channel which can receive a further channel capable of simulating e↵ects F •G, a channel which
can send a channel capable of simulating e↵ects G, and a channel which can send a J⌧K for the
result. Thus, the encoding of a function receives e↵ect handling channels which have the same
form as the e↵ect channels for first-order term encodings. A full, formal treatment of e↵ects in
a higher-order setting is forthcoming work.

E↵ects systems also commonly include a (partial) ordering on e↵ects, which describes how
e↵ects can be overapproximated [3]. For example, causal state e↵ects are ordered by prefix
inclusion, thus an expression M with judgement � ` M : ⌧, [G ⌧] might have its e↵ects over-
approximated (via a subsumption rule) to � ` M : ⌧, [G ⌧,P ⌧ 0]. It is possible to account for
(some) sube↵ecting using subtyping of sessions. Formalising this is further work.

Whilst we have embedded e↵ects into sessions, the converse seems possible: to embed ses-
sions into e↵ects. Nielson and Nielson previously defined an e↵ect system for higher-order
concurrent programs which resembles some aspects of session types [6]. Future work is to ex-
plore mutually inverse embeddings of sessions and e↵ects. Relatedly, further work is to explore
whether various kinds of coe↵ect system (which dualise e↵ect systems, analysing context and
resource use [7]) such as bounded linear logics, can also be embedded into session types.

Acknowledgements Thanks to Tiago Cogumbreiro and the anonymous reviewers for their
feedback. The work has been partially sponsored by EPSRC EP/K011715/1, EP/K034413/1,
and EP/L00058X/1, and EU project FP7-612985 UpScale.

References

[1] R. L. Bocchino Jr, V. S. Adve, D. Dig, S. V. Adve, S. Heumann, R. Komuravelli, J. Overbey,
P. Simmons, H. Sung, and M. Vakilian. A Type and E↵ect System for Deterministic Parallel Java.
In Proocedings of OOPSLA 2009, pages 97–116, 2009.

[2] T.-C. Chen, M. Dezani-Ciancaglini, and N. Yoshida. On the preciseness of subtyping in session
types. In PPDP 2014, pages 146–135. ACM Press, 2014.

[3] D. K. Gi↵ord and J. M. Lucassen. Integrating functional and imperative programming. In Proceed-
ings of Conference on LISP and func. prog., LFP ’86, 1986.

[4] D. Kouzapas, N. Yoshida, R. Hu, and K. Honda. On asynchronous eventful session semantics.
MSCS. To appear (2015).

[5] R. Milner. Functions as processes. MSCS, 2(2):119–141, 1992.

[6] H. R. Nielson and F. Nielson. Higher-order concurrent programs with finite communication topology.
In Proceedings of the symposium on Principles of programming languages, pages 84–97. ACM, 1994.

10

Using session types as an e↵ect system Dominic Orchard and Nobuko Yoshida

[7] T. Petricek, D. A. Orchard, and A. Mycroft. Coe↵ects: a calculus of context-dependent computa-
tion. In Proceedings of ICFP, pages 123–135, 2014.

[8] D. Sangiorgi and D. Walker. The ⇡-Calculus: a Theory of Mobile Processes. Cambridge University
Press, 2001.

[9] N. Yoshida and V. T. Vasconcelos. Language primitives and type discipline for structured
communication-based programming revisited: Two systems for higher-order session communica-
tion. Electr. Notes Theor. Comput. Sci., 171(4):73–93, 2007.

A Session types

Figure 4 gives the full session typing system used in this work which is close to that of Yoshida
and Vasconcelos [9]. For a session S, its dual S is defined in the usual way [9]. Throughout
we used the usual convention of eliding a trailing 0, e.g., writing r!hxi instead of r!hxi.0, and
likewise for session types, e.g., ![⌧] instead of ![⌧].end.

�;� ` V : ⌧ (value typing) (const)
C : C⌧

�; ; ` C : C⌧
(var)

v : ⌧ 2 �

�; ; ` v : ⌧
(suc)

� ` V : nat

� ` sucV : nat

�;� ` P (process typing)

(end) �; c̃ : end ` 0 (par)
�;�1 ` P �;�2 ` Q

�;�1,�2 ` P | Q (restrict)
�;�, c : S, c : S ` P

�;� ` ⌫c.P

(def)

�, X : (⌧̃ , S̃), x̃ : ⌧̃ ; c̃ : S̃ ` P

�, X : (⌧̃ , S̃);� ` Q

�;� ` def X(x̃, c̃) = P in Q
(dvar)

�; d̃ : end ` ẽ : ⌧̃

�, X : (⌧̃ , S̃); c̃ : S̃, d̃ : end ` Xhẽ, c̃i

(chan-recv)
�;�, c : T, d : S ` P

�;�, c :?[S].T ` c?(d).P
(chan-send)

�;�, c : T ` P

�;�, c : ![S].T, d : S ` c!hdi.P

(recv)
�, x : ⌧ ;�, c : S ` P

�;�, c :?[⌧].S ` c?(x).P
(send)

�; ; ` e : ⌧ �;�, c : S ` P

�;�, c : ![⌧].S ` c!hei.P

(branch)
�;�, c : Si ` Pi

�;�, c : &[l̃ : S̃] ` c⇤ {l̃ : P̃}
(select)

�;�, c : S ` P

�;�, c : �[l : S] ` c� l.P

where x̃ : ⌧̃ is shorthand for a sequence of variable-type pairs, and similarly c̃ : S̃ for
channels, l̃ : S̃ for labels and sessions, and ẽ for a sequence of expressions.

Figure 4: Session typing relation over the ⇡-calculus with recursion and sessions [9].

A.1 Subtyping and selection

Our session typing system assigns selection types that include only the label l being selected
((select) in Figure 4). Duality with branch types is provided by subtyping on selection types:

(sel) �[l̃ : S̃] � �[l̃ : S̃, l̃0 : S̃0]

11

Using session types as an e↵ect system Dominic Orchard and Nobuko Yoshida

(this is a special case of the usual full subtyping rule for selection, see [2, [sub-sel], Table 5,
p. 4]). Therefore, for example, the get process could be typed:

(sub)

�, x : ⌧ ;�; c : S ` P

�;�, c : �[get : ?[⌧].S] ` get(c)(x).P
(sel) �[get : ?[⌧].S] � �[get : ?[⌧].S, put : ![⌧].S]

�;�, c : �[get : ?[⌧].S, put : ![⌧].S] ` get(c)(x).P

However, such subtyping need only be applied when duality is being checked, that is, when
opposing endpoints of a channel are bound by channel restriction, ⌫c.P . We take this approach,
thus subtyping is only used with channel restriction such that, prior to restriction, session types
can be interpreted as e↵ect annotations with selection types identifying e↵ectful operations.

B Agda encoding

The Agda formalisation of our embedding defines data types of typed terms for the e↵ect
calculus , ` , and session calculus * ` , indexed by the terms’ e↵ects, types, and contexts:

data_,_`_,_ (eff : Effect) : (Gam : Context Type) -> Type -> (Carrier eff) -> Set where . . .
data _*_`_: (� : Context VType) -> (⌃ : Context SType) -> (t : PType) -> Set where . . .

These type constructors are multi-arity infix operators. For the e↵ect calculus type, the first
index eff : Effect is a record providing the e↵ect algebra, operations, and constants, of which
the Carrier field holds the type for e↵ect annotations. The embedding is then a function:

embed : forall {� ⌧ F} -> (e : stEff , � ` ⌧ , F)

-> (map interpT �) * ((Em , [interpT ⌧]!· end) , interpEff F) ` proc

where interpT : Type -> VType maps types of the e↵ect calculus to value types for sessions,
and interpEff : List StateEff -> SType maps state e↵ect annotations to session types SType.
Here the constructor []!· is a binary data constructor representing the session type for send.
The intermediate embedding has the type (which also uses the receive session type []?·):

embedInterm : forall {� ⌧ F G}
-> (M : stEff , � ` ⌧ , F)

-> (map interpT � * (((Em , [interpT ⌧]!· end),

, [sess (interpEff (F ++ G))]?· end)

, [sess (interpEff G)]!· end) ` proc

C Soundness proof of embedding, wrt. Figure 3 equations

Theorem (Soundness). If � `M ⌘ N : ⌧, F then J�K; (r : !J⌧K.end, e : JF K) ` JMKer ⇡ JNKer
Proof Since JMKer = ⌫ei, eo. (LM Mei,eor | ei!hei.eo?(c)) and JNKer = ⌫ei, eo. (LN Mei,eor |
ei!hei.eo?(c)) (eq. 14) we need only consider LM Mei,eor ⇡ LN Mei,eor , i.e., bisimilarity of the inter-

mediate embeddings. We address each equation in turn. The relation
def
= denotes definitional

equality based on L� Mei,eor .

(unitR)

L letx M inx Mei,eor
def
= ⌫ q, ea. (LM Mei,eaq | q?(x).ea?(c).r!hxi.eo!hci)
⇡ ⌫ ea. (LM Mei,ear | ea?(c).eo!hci) {forwarding q ! r, �-reduction}
⇡ LM Mei,eor 2 {forwarding ea! eo, �-reduction}

12

Using session types as an e↵ect system Dominic Orchard and Nobuko Yoshida

(unitL)

L let y x inM Mei,eor
def
= ⌫ q, ea.(Lx Mei,eaq | q?(y).LM Mea,eor)
def
= ⌫ q, ea.(ei?(c).q!hxi.ea!hci | q?(y).LM Mea,eor)

⇡ ⌫ ea.(ei?(c).ea!hci | LM Mea,eor [x/y]) {�, structural congruence}
⇡ LM Mei,eor [x/y] {forwarding ei! ea}
⇡ LM [x/y] Mei,eor 2 {var substitution preserved by L� M}

(assoc)

L let y (letx M inN) inP Mei,eor
def
= ⌫ q, ea. (L letx M inN Mei,eaq | q?(y).LP Mea,eor)
def
= ⌫ q, ea. (⌫ q1, eb. (LM Mei,ebq1 | q1?(x).LN Meb,eaq) | q?(y).LP Mea,eor)

(⇤) ⇡ ⌫ q, ea, q1, eb. (LM Mei,ebq1 | q1?(x).LN Meb,eaq | q?(y).LP Mea,eor) {structural congruence}

L letx M in (let y N inP) Mei,eor
def
= ⌫ q, ea. (LM Mei,eaq | q?(x).L let y N inP Mea,eor)
def
= ⌫ q, ea. (LM Mei,eaq | q?(x).⌫ q1, eb. (LN Mea,ebq1 | q1?(y).LP Meb,eor))

⇡ ⌫ q, ea, q1, eb. (LM Mei,eaq | q?(x).LN Mea,ebq1 | q1?(y).LP Meb,eor) {sequentiality, x 62 fv(P)}

⇡ ⌫ q, ea, q1, eb. (LM Mei,ebq1 | q1?(x).LN Meb,eaq | q?(y).LP Mea,eor) {↵, ea$ eb, q $ q1}

⇡ (⇤) 2

(comm)

L letx M in (let y N inP) Mei,eor
def
= ⌫ q, ea. (LM Mei,eaq | q?(x).L let y N inP Mea,eor)
def
= ⌫ q, ea. (LM Mei,eaq | q?(x).⌫ q1, eb. (LN Mea,ebq1 | q1?(y).LP Meb,eor))

⇡ ⌫ q, ea, q1, eb. (LM Mei,eaq | LN Mea,ebq1 | q?(x).q1?(y).LP Meb,eor) {sequentiality, x 62 fv(N)}

⇡ ⌫ q, ea, q1, eb. (ei?(c).ea!hci.JMKq | LN Mea,ebq1 | q?(x).q1?(y).LP Meb,eor) {purity lemma on M}

(⇤) ⇡ ⌫ q, q1, eb. (JMKq | LN Mei,ebq1 | q?(x).q1?(y).LP Meb,eor) {forwarding ei! ea}

L let y N in (letx M inP) Mei,eor
def
= ⌫ q, ea. (LN Mei,eaq | q?(y).L letx M inP Mea,eor)
def
= ⌫ q, ea. (LN Mei,eaq | q?(y).⌫ q1, eb. (LM Mea,ebq1 | q1?(x).LP Meb,eor))

⇡ ⌫ q, ea, q1, eb. (LN Mei,eaq | LM Mea,ebq1 | q?(y).q1?(x).LP Meb,eor) {sequentiality, y 62 fv(M)}

⇡ ⌫ q, ea, q1, eb. (LN Mei,eaq | ea?(c).eb!hci.JMKq1 | q?(y).q1?(x).LP Meb,eor) {purity lemma on M}

⇡ ⌫ q, q1, ea. (LN Mei,eaq | JMKq1 | q?(y).q1?(x).LP Mea,eor) {forwarding ea! eb}

⇡ ⌫ q, q1, ea. (JMKq1 | LN Mei,eaq | q?(y).q1?(x).LP Mea,eor) {structural congruence}

⇡ ⌫ q, q1, eb. (JMKq | LN Mei,ebq1 | q1?(y).q?(x).LP Meb,eor) {↵, q $ q1, ea$ eb}

⇡ ⌫ q, q1, eb. (JMKq | LN Mei,ebq1 | q?(x).q1?(y).LP Meb,eor) {reorder recv.}

⇡ (⇤) 2

13

Using session types as an e↵ect system Dominic Orchard and Nobuko Yoshida

Lemma (Pure encoding) If an e↵ect system has the property that 8F,G.(F •G ⌘ I)) (F ⌘
G ⌘ I) then, for all M , �, ⌧ it follows that:

L� `M : ⌧, I Mei,eor ⇡ ei?(c).eo!hci.JMKr

Proof. By induction on the derivation of type-and-e↵ect judgments with a pure e↵ect.

• (var) � ` v : I, trivial by the definition of L� M.
• (let) � ` letx M inN : ⌧, I, the embedding is:

L letx M inN Mei,eor = ⌫q, ea.(LM Mei,eaq | q?(x).LN Mea,eor)

The condition of the lemma on e↵ect systems means � ` M : �, I and �, x : � ` N : ⌧, I,
therefore the inductive hypotheses are that:

LM Mei,eaq ⇡ ei?(c).ea!hci.JMKq LN Mea,eor ⇡ ea?(c).eo!hci.JNKr

Therefore:

L letx M inN Mei,eor = ⌫q, ea.(LM Mei,eaq | q?(x).LN Mea,eor)

= ⌫q, ea.(ei?(c).ea!hci.JMKq | q?(x).ea?(c).eo!hci.JNKr)
⇡ ⌫q.(ei?(c).(JMKq | q?(x).eo!hci.JNKr))
⇡ ⌫q.(ei?(c).eo!hci.(JMKq | q?(x).JNKr))
⇡ ei?(c).eo!hci.Jletx M inNKr

• (constant) � ` C : ⌧, I, trivial by definition of L� M.
• (op) � ` opM : ⌧, I, where � `M : �, I, trivial by definition of L� M.

14

Precise subtyping for synchronous multiparty sessions

⇤

Mariangiola Dezani-Ciancaglini

1†
, Silvia Ghilezan

2
, Svetlana Jakšić

2
, Jovanka

Pantović

2
, and Nobuko Yoshida

3 ‡

1 Università di Torino, Italy
2 Univerzitet u Novom Sadu, Serbia

3 Imperial College London

1 Introduction

The notion of subtyping has gained an important role both in theoretical and applicative do-
mains: in lambda and concurrent calculi as well as in programming languages. The soundness
and the completeness, together referred to as the preciseness of subtyping, can be considered
from two di↵erent points of view: denotational and operational. The former preciseness is based
on the denotation of a type which is a mathematical object that describes the meaning of the
type in accordance with the denotations of other expressions from the language. The latter
preciseness has been recently developed with respect to type safety, i.e. the safe replacement
of a term of a smaller type when a term of a bigger type is expected. Operational preciseness
has been first introduced in [10] for a call-by-value �-calculus with sum, product and recursive
types. Both operational and denotational preciseness have been studied in [5] for a �-calculus
with choice and parallel constructors and in [2] for binary sessions.

Subtyping for session calculi can be defined to assure safety of substitutability of either
channels [6] or processes [4]. We claim that substitutability of processes better fits the notion
of preciseness.

This paper shows the operational and denotational preciseness of the subtyping introduced
in [4] for a synchronous multiparty session calculus [9]. For the denotational preciseness we
interpret a type as the set of processes having that type. For the operational preciseness we
take the view that well-typed sessions never get stuck.

The most technical challenge is the operational completeness, which requires a non trivial
extension of the method used in the case of binary sessions. The core of this extension is the
construction of characteristic global types. Given a session type T and a session participant p
which does not occur in T, the associated characteristic global type expresses the communica-
tions prescribed by T between p and the participants in T. After each communication involving
p, the characteristic global type creates a cyclic communication between all participants in
T. Such a cyclic communication is essential to project the characteristic global type and to
generate deadlock when the the subtyping relation is extended.

2 Synchronous Multiparty Session Calculus

This section introduces syntax and semantics of a synchronous multiparty session calculus.
Since our focus is on subtyping, we simplify the calculus in [9] eliminating both shared channels

⇤Partly supported by COST IC1201 BETTY and DART bilateral project between Italy and Serbia.
†Partly supported by MIUR PRIN Project CINA Prot. 2010LHT4KM and Torino University/Compagnia

San Paolo Project SALT.
‡Partly supported by EPSRC EP/K011715/1, EP/K034413/1, and EP/L00058X/1, and EU Project FP7-

612985 UpScale.

15

Precise subtyping for synchronous multiparty sessions Dezani, Ghilezan, Jakšić, Pantovic, Yoshida

succ(n) # (n+ 1) neg(i) # (�i) ¬true # false ¬false # true v # v

(i1 > i2) #
(
true if i1 > i2,

false otherwise

e1 # v or e2 # v

e1 � e2 # v

e # v E(v) # v0

E(e) # v0

Table 1: Expression evaluation.

for session initiations and session channels for communications inside sessions. We conjecture
the preciseness of the subtyping in [4] also for the full calculus, but we could not use the present
approach for the proof, since well-typed interleaved sessions can be stuck [3].

Syntax A multiparty session is a series of interactions between a fixed number of partici-
pants, possibly with branching and recursion, and serves as a unit of abstraction for describing
communication protocols.

We use the following base sets: values, ranged over by v, v0, . . .; expressions, ranged over by
e, e0, . . .; expression variables, ranged over by x, y, z . . . ; labels, ranged over by `, `

0
, . . . ; session

participants, ranged over by p, q, . . .; process variables, ranged over by X,Y, . . . ; processes,
ranged over by P,Q, . . . ; and multiparty sessions, ranged over by M,M0

,
The values are natural numbers n, integers i, and boolean values true and false. The expres-

sions e are variables or values or expressions built from expressions by applying the operators
succ, neg,¬,�, or the relation > . An evaluation context E is an expression with exactly one
hole, built in the same manner from expressions and the hole.

Processes P are defined by:

P ::= p?`(x).P || p!`(e).P || P + P || if e then P else P || µX.P || X || 0

The input process p?`(x).P waits for an expression with label ` from participant p and
the output process q!`(e).Q sends the value of expression e with label ` to participant q. The
external choice P +Q o↵ers to choose either P or Q. The process µX.P is a recursive process.
We take an equi-recursive view, not distinguishing between a process µX.P and its unfolding
P{µX.P/X}. We assume that the recursive processes are guarded, i.e. µX.X is not a process.

A multiparty session M is a parallel composition of pairs (denoted by p /P) of participants
and processes:

M ::= p / P || M | M
We will use

P
i2I

Pi as short for P1 + . . .+ Pn, and
Q
i2I

pi / Pi as short for p1 / P1 | . . . | pn / Pn,

where I = {1, . . . , n}.
If p /P is well typed (see Table 8), then participant p does not occur in process P , since we

do not allow self-communications.

Operational semantics The value v of expression e (notation e # v) is as expected, see
Table 1. The successor operation succ is defined only on natural numbers, the negation neg

is defined on integers (and then also on natural numbers), and ¬ is defined only on boolean
values. The internal choice e1 � e2 evaluates either to the value of e1 or to the value of e2.

The computational rules of multiparty sessions (Table 3) are closed with respect to the
structural congruence defined in Table 2 and the following reduction contexts:

C[·] ::= [·] || C[·] | M
In rule [r-comm] participant q sends the value v choosing label `j to participant p which o↵ers
inputs on all labels `i with i 2 I.

16

Precise subtyping for synchronous multiparty sessions Dezani, Ghilezan, Jakšić, Pantovic, Yoshida

[s-extch 1]

P +Q ⌘ Q+ P

[s-extch 2]

(P +Q) +R ⌘ P + (Q+R)
[s-multi]

P ⌘ Q) p / P ⌘ p /Q

[s-par 1]

p / 0 | M ⌘ M
[s-par 2]

M | M0 ⌘ M0 | M
[s-par 3]

(M | M0) | M00 ⌘ M | (M0 | M00)

Table 2: Structural congruence.

[r-comm]

j 2 I e # v

p /
X

i2I

q?`i(x).Pi | q / p!`j(e).Q �! p / Pj{v/x} | q /Q

[t-conditional]

e # true

p / if e then P else Q �! p / P

[f-conditional]

e # false

p / if e then P else Q �! p /Q

[r-context]

M �! M0

C[M] �! C[M0]

[r-struct]

M0
1 ⌘ M1 M1 �! M2 M2 ⌘ M0

2

M0
1 �! M0

2

Table 3: Reduction rules.

In order to define the operational preciseness of subtyping it is crucial to formalise when a
multiparty session contains communications that will never be executed.

Definition 2.1. A multiparty session M is stuck if M 6⌘ p / 0 and there is no multiparty

session M0
such that M �! M0

. A multiparty session M gets stuck, notation stuck(M), if
it reduces to a stuck multiparty session.

3 Type System

This section introduces the type system, which is a simplification of that in [9] due to the new
formulation of the calculus.

Types Sorts are ranged over by S and defined by: S ::= nat || int || bool

Global types generated by:

G ::= p ! q : {`i(Si).Gi}i2I || µt.G || t || end

describe the whole conversation scenarios of multiparty sessions. Session types correspond to
projections of global types on the individual participants. Inspired by [11], we use intersection
and union types instead of standard branching and selection [8] to take advantage from the
subtyping induced by subset inclusion. The grammar of session types, ranged over by T, is
then

T ::=
V

i2I p?`i(Si).Ti ||
W

i2I q!`i(Si).Ti || µt.T || t || end

We require that `i 6= `j with i 6= j and i, j 2 I and recursion to be guarded in both global and
session types. Recursive types are considered modulo fold/unfold. In writing types we omit
unnecessary brackets, intersections, unions and end.

We extend the original definition of projection of global types onto participants [8] in the
line of [13], but keeping the definition simpler than that of [13]. This generalisation is enough
to project the characteristic global types of next Section. We use the partial operator

VV

on session types. This operator applied to two identical types gives one of them, applied to
two intersection types with same sender and di↵erent labels gives their intersection and it is

17

Precise subtyping for synchronous multiparty sessions Dezani, Ghilezan, Jakšić, Pantovic, Yoshida

T
VV

T0 =

8
>>><

>>>:

T if T = T0
,

T ^ T0 if T =
V

i2I p?`i(Si).Ti and T0 =
V

j2J p?`0j(S
0
j).T

0
j

and `i 6= `

0
j for all i 2 I, j 2 J

undefined otherwise.

p ! q : {`i(Si).Gi}i2I � r =

8
><

>:

W
i2I q!`i(Si).Gi � r if r = p,

V
i2I p?`i(Si).Gi � r if r = q,

VV
i2I Gi � r if r 6= p, r 6= q and

VV
i2I Gi � r is defined.

µt.G � r =
(
G � r if r occurs in G,

end otherwise.
t � r = t end � r = end

Table 4: Projection of global types onto participants.

undefined otherwise, see Table 4. The same table gives the projection of the global type G
onto the participant r, notation G � r. This projection allows participants to receive di↵erent
messages in di↵erent branches of global types.

Example 3.1. If G = p ! q : {`1(nat).G1, `2(bool).G2}, where G1 = q ! r : `3(int) and

G2 = q ! r : `4(nat), then

G � r = G1 � rVVG2 � r = q?`3(int)
VV

q?`4(nat) = q?`3(int) ^ q?`4(nat).

[sub-end]

end 6 end

[sub-in]

8i 2 I : S

0
i :

Si Ti 6 T0
i

^

i2I[J

p?`i(Si).Ti 6
^

i2I

p?`i(S
0
i).T

0
i

================================

[sub-out]

8i 2 I : Si :
S

0
i Ti 6 T0

i
_

i2I

p!`i(Si).Ti 6
_

i2I[J

p!`i(S
0
i).T

0
i

===============================

Table 5: Subtyping rules.

Subtyping Subsorting : on sorts is the minimal reflexive and transitive closure of the re-
lation induced by the rule: nat :

int. Subtyping 6 on session types takes into account the
contra-variance of inputs, the covariance of outputs, and the standard rules for intersection
and union. Table 5 gives the subtyping rules: the double line in rules indicates that the rules
are interpreted coinductively [12, 21.1]. Subtyping can be easily decided, see for example [6].
For reader convenience Table 6 gives the procedure S(⇥,T,T0), where ⇥ is a set of subtyping
judgments. This procedure terminates since unfolding of session types generates regular trees,
so ⇥ cannot grow indefinitely and we have only a finite number of subtyping judgments to
consider. Clearly S(;,T,T0) is equivalent to T 6 T0.

S(⇥,T,T0) =

8
>>>>>>>><

>>>>>>>>:

true if T 6 T0 2 ⇥ or T = T0

&i2IS(⇥ [{T 6 T0},Ti,T0
i) if (T =

V
i2I[J

p?`i(Si).Ti and T0 =
V
i2I

p?`i(S0
i).T

0
i

and 8i 2 I : S0
i :

Si) or
(T =

W
i2I

p!`i(Si).Ti and T0 =
W

i2I[J
p!`i(S0

i).T
0
i

and 8i 2 I : Si :
S

0
i)

false otherwise

Table 6: The procedure S(⇥,T,T0).

18

Precise subtyping for synchronous multiparty sessions Dezani, Ghilezan, Jakšić, Pantovic, Yoshida

� ` n : nat � ` i : int � ` true : bool � ` false : bool �, x : S ` x : S

� ` e : nat

� ` succ(e) : nat

� ` e : int

� ` neg(e) : int

� ` e : bool

� ` ¬e : bool

� ` e1 : S � ` e2 : S

� ` e1 � e2 : S

� ` e1 : int � ` e2 : int

� ` e1 > e2 : bool

� ` e : S S :
S

0

� ` e : S0

Table 7: Typing rules for expressions.

�, x : S ` P : T
[t-in]

� ` q?`(x).P : q?`(S).T
� ` 0 : end [t-0]

� ` e : S � ` P : T
[t-out]

� ` q!`(e).P : q!`(S).T

� ` P1 : T1 � ` P2 : T2
[t-choice]

� ` P1 + P2 : T1 ^ T2

� ` e : bool � ` P1 : T1 � ` P2 : T2
[t-cond]

� ` if e then P1 else P2 : T1 _ T2

�, X : T ` P : T
[t-rec]

� ` µX.P : T
�, X : T ` X : T [t-var]

� ` P : T T 6 T0

[t-sub]

� ` P : T0

` P1 : T1 . . . ` Pn : Tn coherent{(T1, p1), . . . , (Tn, pn)}
[t-sess]

` p1 / P1 | . . . | pn / Pn

Table 8: Typing rules for processes and sessions.

Typing system We distinguish three kinds of typing judgments

� ` e : S � ` P : T ` M,

where � is the environment � ::= ; || �, x : S || �, X : T that associates expression variables with
sorts and process variables with session types. The typing rules for expressions are standard,
see Table 7. Table 8 gives the typing rules for processes and multiparty sessions. Processes are
typed as expected, we only notice that the syntax of session types only allows input processes
in external choices and output processes in the branches of conditionals. In order to type a
session, rule [t-sess] requires that the processes in parallel can play as participants of a whole
communication protocol or the terminated process, i.e. their types are projections of a unique
global type. This is assured by the condition coherent{(T1, p1), . . . , (Tn, pn)}. More precisely
we define the set pt{G} of participants of a global type G as follows:

pt{p ! q : {`i(Si).Gi}i2I} = {p, q} [pt{Gi} (i 2 I)1

pt{µt.G} = pt{G} pt{t} = ; pt{end} = ;
and we say that {(T1, p1), . . . , (Tn, pn)} is coherent (notation coherent{(T1, p1), . . . , (Tn, pn)})
if there is a global type G with pt{G} ✓ {p1, p2, . . . , pn} and Ti = G � pi, i = 1, . . . , n. Notice
that in this way we can also type sessions containing p/0, a property needed to assure invariance
of types under structural congruence.

The proposed type system for multiparty sessions enjoys type preservation under reduction
(subject reduction) and the safety property that a typed multiparty session will never get stuck.
The remaining of this section is devoted to the proof of these properties.

1The projectability of G assures pt{Gi} = pt{Gj} for all i, j 2 I.

19

Precise subtyping for synchronous multiparty sessions Dezani, Ghilezan, Jakšić, Pantovic, Yoshida

As usual we start with an inversion and a substitution lemmas.

Lemma 3.2. (Inversion lemma)

1. Let � ` P : T.

(a) If P = p?`(x).Q, then p?`(S0).T0 6 T and �, x : S0 ` Q : T0
.

(b) If P = p!`(e).Q, then p!`(S0).T0 6 T and � ` e : S0
and � ` Q : T0

.

(c) If P = P1 + P2, then T1 ^ T2 6 T, � ` P1 : T1 and � ` P2 : T2.

(d) If P = if e then P1 else P2, then T1 _ T2 6 T and � ` P1 : T1 and � ` P2 : T2.

(e) If P = µX.Q, then �, X : T ` Q : T.

(f) If P = X, then � = �0
, X : T0

and T0 6 T.

(g) If P = 0, then T = end.

2. If ` M, then M = p1 /P1 | . . . | pn /Pn, where n � 0 and ` P1 : T1 . . . ` Pn : Tn and

coherent{(T1, p1), . . . , (Tn, pn)}.

Proof. By induction on type derivations.

Lemma 3.3. (Substitution lemma) If �, x : S ` P : T and � ` v : S, then � ` P{v/x} : T.

Proof. By structural induction on P .

The coherence of a set of pairs (session type, participant) requires that if participant p waits
for inputs from participant q, and participant q is ready to send to participant p, then the
session types of p and q start with dual communications. This is the content of the following
proposition.

Proposition 3.4. If coherent{(
V

i2I q?`i(Si).Ti, p), (T, q), (T1, p1), . . . , (Tn, pn)} and

p!`j(S).T0 6 T, then j 2 I and T =
W

i2I p!`i(Si).T0
i and

coherent{(Ti, p), (T0
i, q), (T1, p1), . . . , (Tn, pn)}

for all i 2 I.

Proof. By definitions of coherence and projection.

We can now show subject reduction.

Theorem 3.5. (Subject reduction) If ` M and M �! M0
, then ` M0

.

Proof. By induction on the multiparty session reduction. We only consider the case of rule
[r-comm] as premise of rule [r-context]. In this case

M ⌘ p /
P
i2I

q?`i(x).Pi | q / p!`j(e).P |
Q
l2L

pl /Ql

and M0 ⌘ p / Pj{v/x} | q / P |
Q
l2L

pl /Ql,

where j 2 I, e # v. By Lemma 3.2(2) ` M implies `
P
i2I

q?`i(x).Pi : T, and ` p!`j(e).P : T0,

and ` Ql : Tl for l 2 L with coherent{(T, p), (T0
, q), (Tl, pl) | l 2 L}. By Lemma 3.2(1c)

and (1a)
V

i2I q?`i(Si).T0
i 6 T, which implies T =

V
i2I0 q?`i(S0

i).T
00
i with S

0
i :

Si, T0
i 6 T00

i

for i 2 I

0 and I

0 ✓ I. By Lemma 3.2(1b) p!`j(S0).T00 6 T0. Proposition 3.4 implies j 2 I

0

and T0 =
W

i2I0 p!`i(S0
i).T

000
i and coherent{(T00

j , p), (T
000
j , q), (Tl, pl) | l 2 L}. By Lemma 3.2(1c)

20

Precise subtyping for synchronous multiparty sessions Dezani, Ghilezan, Jakšić, Pantovic, Yoshida

and (1a) we get x : Sj ` Pj : T0
j , which implies x : S0

j ` Pj : T00
j by rule [t-sub] and the

last rule of Table 7. From p!`j(S0).T00 6 W
i2I0 p!`i(S0

i).T
000
i we get S0 :

S

0
j and T00 6 T000

j . By
Lemma 3.2(1b) we get ` e : S0 and ` P : T00, which implies ` e : S0

j by the last rule of Table 7
and ` P : T000

j by rule [t-sub]. Lastly Lemma 3.3 gives ` Pj{v/x} : T00
j . We can then derive

` M0.

The safety property that a typed multiparty session will never get stuck is a consequence of
subject reduction.

Theorem 3.6. (Safety) If ` M, then it does not hold stuck(M).

4 Operational Preciseness

We adapt the notion of operational preciseness [10, 2, 5] to our calculus.

Definition 4.1. A subtyping relation is operationally precise if for any two types T and T0
the

following equivalence holds:

T 6 T0
if and only if there are no P, p,M such that:

(1) ` P : T; and (2) ` Q : T0
implies ` p /Q | M; and (3) stuck(p / P | M).

The operational soundness, i.e. if for all Q such that ` Q : T0 implies ` p / Q | M, then
p / P | M is not stuck, follows from the subsumption rule [t-sub] and the safety theorem,
Theorem 3.6.

To show the vice versa, it is handy to define the set pt{T} of participants of a session type
T as follows

pt{
V

i2I p?`i(Si).Ti} = pt{
W

i2I p!`i(Si).Ti} = {p} [
S

i2I pt{Ti}
pt{µt.T} = pt{T} pt{t} = pt{end} = ;

The proof of operational completeness comes in four steps.

• [Step 1] We characterise the negation of the subtyping relation by inductive rules (no-
tation 6E).

• [Step 2] For each type T and participant p 62 pt{T}, we define a characteristic global

type G(T, p) such that G(T, p) � p = T.

• [Step 3] For each type T, we define a characteristic process P(T) typed by T, which
o↵ers the series of interactions described by T.

• [Step 4] We prove that if T 6E T0, then stuck(p / P(T) |
Q

1in
pi / P(Ti)), where

G = G(T0
, p) and pt{T0} = {p1, . . . , pn}, and Ti = G � pi for 1 i n. Hence we

achieve completeness by choosing P = P(T) and M =
Q

1in
pi / P(Ti) in the definition

of preciseness (Definition 4.1).

Negation of subtyping Table 9 gives the negation of subtyping, which uses the negation of
subsorting 6: defined as expected. These rules say that a type di↵erent from end cannot be
compared to end, two input or output types with di↵erent participants, or di↵erent labels, sorts
or continuations which do not match cannot be compared. The rules in the last line just take
into account the set theoretic properties of intersection and union. One can show that either
T 6 T0 or T 6E T0 holds for two arbitrary types T,T0 by giving a decision algorithm.

21

Precise subtyping for synchronous multiparty sessions Dezani, Ghilezan, Jakšić, Pantovic, Yoshida

[nsub-end-l]

T 6= end

T 6E end

[nsub-end-r]

T 6= end

end 6E T

[nsub-diff-part]

p 6= q †, ‡ 2 {?, !}
p † `1(S1).T1 6E q ‡ `2(S2).T2

[nsub-out-in]

p!`1(S1).T1 6E p?`2(S2).T2

[nsub-in-out]

p?`1(S1).T1 6E p!`2(S2).T2

[nsub-in-in]

`1 6= `2 or S2 6:
S1 or T1 6E T2

p?`1(S1).T1 6E p?`2(S2).T2

[nsub-out-out]

`1 6= `2 or S1 6:
S2 or T1 6E T2

p!`1(S1).T1 6E p!`2(S2).T2

[nsub-intR]

T 6E T1 or T 6E T2

T 6E T1 ^ T2

[nsub-uniL]

T1 6E T or T2 6E T

T1 _ T2 6E T

[nsub-intR-uniL]

8i 2 I 8j 2 J Ti 6E Tj^

i2I

Ti 6E
_

j2J

Tj

Table 9: Negation of subtyping

G0(
V

i2I pj0?`i(Si).Ti, p, {pj}1jn) = pj0 ! p : {`i(Si).G
j0
i }i2I

G0(
W

i2I pj0 !`i(Si).Ti, p, {pj}1jn) = p ! pj0 : {`i(Si).G
j0
i }i2I

G0(µt.T, p, {pj}1jn) = µt.G0(T, p, {pj}1jn)
G0(t, p, {pj}1jn) = t G0(end, p, {pj}1jn) = end

Gj0
i = pj0 ! pj0+1 : `i(bool). . . . pn�1 ! pn : `i(bool).pn ! p1 : `i(bool).

p1 ! p2 : `i(bool).pj0�1 ! pj0 : `i(bool).G0(Ti, p, {pj}1jn)

Table 10: The function G0(T, p, {pj}1jn).

Lemma 4.2. T 6E T0
is the negation of T 6 T0

.

Proof. We show that either T 6 T0 or T 6E T0 holds for two arbitrary types T,T0 by giving a
decision algorithm. The case in which T,T0 are both end types is immediate. In order to deal
with recursion we unfold types every time we reach a µ-binding.
If T = p†`(S).T0 and T0 = q‡`0(S0).T0

0, then T 6 T0 only if T0 6 T0
0 follows from the assumption

T 6 T0 and p = q and ` = `

0 and either † = ‡ =? and S

0 :
S, or † = ‡ =! and S :

S

0. If
p 6= q, then T 6E T0 by rule [nsub-diff-part]. If † 6= ‡, then T 6E T0 by rule [nsub-out-in] or rule
[nsub-in-out]. If ` 6= `

0, then T 6E T0 by rule [nsub-in-in] or rule [nsub-out-out]. If † = ‡ =?
and S

0 6:
S, then T 6E T0 by rule [nsub-in-in]. If † = ‡ =! and S 6:

S

0, then T 6E T0 by rule
[nsub-out-out]. If T0 6E T0

0, then T 6E T0 by rule [nsub-in-in] or rule [nsub-out-out].
If T0 = T1 ^ T2, then T 6 T0 only if T 6 T1 and T 6 T2 follow from the assumption T 6 T0.
Otherwise T 6E T1 or T 6E T2, then T 6E T0 by rule [nsub-intR].
If T = T1 _ T2, then T 6 T0 only if T1 6 T0 and T2 6 T0 follow from the assumption T 6 T0.
Otherwise T1 6E T or T2 6E T, then T 6E T0 by rule [nsub-uniL].
If T =

V
i2I Ti and T0 =

W
j2J Tj , then T 6 T0 only if there are i 2 I and j 2 J such that

Ti Tj follows from the assumption T 6 T0. This implies that at least one between I and J

must be a singleton set, by the syntax of session types. Otherwise Ti 6E Tj for all i 2 I and all
j 2 J , then T 6E T0 by rule [nsub-intR-uniL].

Characteristic global types The characteristic global type G(T, p) of the type T for the
participant p describes the communications between p and all participants in pt{T} following

22

Precise subtyping for synchronous multiparty sessions Dezani, Ghilezan, Jakšić, Pantovic, Yoshida

P(T) =

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

p?`(x).if succ(x) > 0 then P(T0) else P(T0) if T = p?`(nat).T0
,

p?`(x).if neg(x) > 0 then P(T0) else P(T0) if T = p?`(int).T0
,

p?`(x).if ¬x then P(T0) else P(T0) if T = p?`(bool).T0
,

p!`(5).P(T0) if T = p!`(nat).T0
,

p!`(�5).P(T0) if T = p!`(int).T0
,

p!`(true).P(T0) if T = p!`(bool).T0
,

P(T1) + P(T2) if T = T1 ^ T2

if true� false then P(T1) else P(T2) if T = T1 _ T2,

µXt.P(T0) if T = µt.T0
,

Xt if T = t,
0 if T = end.

Table 11: Characteristic processes

T. In fact after each communication involving p and some q 2 pt{T}, q starts a cyclic commu-
nication involving all participants in pt{T} both as receivers and senders. This is needed for
getting both a projectable global type and a stuck session, see the proof of Theorem 4.5 and
Examples 4.3 and 4.6. More precisely, we define the characteristic global type G(T, p) of the
type T for the participant p 62 pt{T} as G(T, p) = G0(T, p, pt{T}), where G0(T, p, {pj}1jn)
is defined in Table 10.

Example 4.3. Some characteristic global types are projectable thanks to the cyclic communi-

cation. Take for example T = q!`1(nat).r?`2(int).end_ q!`3(int).end. Without the cyclic com-

munication we would get the global type G = p ! q : {`1(nat).r ! p : `2(int).end, `3(int).end}
and G � r = p!`2(int).end

VV
end is undefined. Instead

G(T, p) = p ! q : {`1(nat).q ! r : `1(bool).r ! q : `1(bool).
r ! p : `2(int).r ! q : `2(bool).q ! r : `2(bool).end,
`3(int).q ! r : `3(bool).r ! q : `3(bool).end}

G(T, p) � r = (q?`1(bool).q!`1(bool).p!`2(int).q!`2(bool).q?`2(bool).end)^
(q?`3(bool).q!`3(bool).end)

It is easy to verify that G(T, p) � p = T and G(T, p) � q is defined for all q 2 pt{T} by
induction on the definition of characteristic global types. Since pt{G} = {p} [{pj}1jn we
get the following lemma.

Lemma 4.4. If G = G(T, p) and pt{T} = {pj}1jn and Tj = G � pj (1 j n), then

coherent{(T, p), (T1, p1), . . . , (Tn, pn)}.

Characteristic processes We define the characteristic process P(T) of the type T by using
the operators succ, neg, and ¬ to check if the received values are of the right sort and exploiting
the correspondence between external choices and intersections, conditionals and unions. Con-
ditionals also allow the evaluation of expressions which can be stuck. The definition of P(T)
by induction on T is given in Table 11. By induction on the structure of P(T) it is easy to
verify that ` P(T) : T.

We have now all the necessary machinery to show operational preciseness of subtyping.

Theorem 4.5. (Preciseness) The synchronous multiparty session subtyping is operationally

precise.

Proof. We only need to show completeness of the synchronous multiparty session subtyping.
Let T 6 T0 and p 62 pt{T0} = {pi}1in and G = G(T0

, p) and Ti = G � pi for 1 i n. Then

23

Precise subtyping for synchronous multiparty sessions Dezani, Ghilezan, Jakšić, Pantovic, Yoshida

` Q : T0 implies ` p /Q |
Q

1in
pi / P(Ti) by Lemma 4.4 and [t-sess]. We show that

stuck(p / P(T) |
Q

1in
pi / P(Ti)).

The proof is by induction on the definition of 6E. We only consider some interesting cases.

[nsub-diff-part]

q 6= ph †, ‡ 2 {?, !}
q † `(S).T0 6E ph ‡ `0(S0).T0

0

By definition P(T) = q†`(e).P for suitable e, P . If q 62 {pi}1in, then stuck(p /

P(T) |
Q

1in
pi / P(Ti)), since P(T) will never communicate.

Otherwise let q = pj with 1 j n and j 6= h. By construction P(Th) = p‡`0(eh).Ph, where

‡ =

(
? if ‡ =!

! if ‡ =?
, and P(Tk) = pf(k)?`

0(x).Pk, where f(k) =

(
k � 1 if k > 1

n if k = 1
for 1 k n

and k 6= h. Therefore p / P(T) |
Q

1in
pi / P(Ti) cannot reduce.

[nsub-in-in]

`1 6= `2 or S2 6:
S1 or T1 6E T2

ph?`1(S1).T1 6E ph?`2(S2).T2

A paradigmatic case is `1 = `2 = `, S1 = nat, S2 = int, T1 = T2 = end. By definition
pt{T0} = {ph} and P(T) = ph?`(x).if succ(x) > 0 then 0 else 0 and P(Th) = p!`(�5).0.
Therefore p / P(T) | P(Th) reduces to p / if succ(�5) > 0 then 0 else 0, which is stuck.

[nsub-intR]

T 6E T0
1 or T 6E T0

2

T 6E T0
1 ^ T0

2

By definition T0
1 and T0

2 must be intersections of inputs with the same sender, let it be ph. Let

G1 = G(T0
1, p), G2 = G(T0

2, p), P
(1)
h = P(G1 � ph), P (2)

h = P(G2 � ph). Then by construction

Ph = P(G(T0
1 ^ T0

2, p) � ph) = if true� false then P

(1)
h else P

(2)
h .

This implies that p/P(T) |
Q

1in
pi/P(Ti) reduces to p/P(T) | ph/P (1)

h |
Q

1i 6=hn
pi/P(Ti) and

p/P(T) | ph/P (2)
h |

Q
1i 6=hn

pi/P(Ti). By induction either p/P(T) | ph/P (1)
h |

Q
1i 6=hn

pi/P(Ti)

or p/P(T) | ph /P (2)
h |

Q
1i 6=hn

pi /P(Ti) is stuck, and therefore also p/P(T) |
Q

1in
pi /P(Ti)

is stuck.

[nsub-uniL]

T0
1 6E T or T0

2 6E T

T0
1 _ T0

2 6E T

By definition T0
1 and T0

2 must be unions of outputs with the same receiver, let it be ph. By
definition P(T0

1_T0
2) = if true�false then P(T0

1) else P(T0
2). Then p/P(T0

1_T0
2) |

Q
1in

pi/P(Ti)

reduces to p / P(T0
1) |

Q
1in

pi / P(Ti) and p / P(T0
2) |

Q
1in

pi / P(Ti). By induction

either p / P(T0
1) |

Q
1in

pi / P(Ti) or p / P(T0
2) |

Q
1in

pi / P(Ti) is stuck,

24

Precise subtyping for synchronous multiparty sessions Dezani, Ghilezan, Jakšić, Pantovic, Yoshida

and therefore p / P(T0
1 _ T0

2) |
Q

1in
pi / P(Ti) is stuck too.

[nsub-intR-uniL]

8l 2 L 8j 2 J T0
l 6E T00

j^

l2L

T0
l 6E

_

j2J

T00
j

If L and J are both singleton sets it is immediate by induction.
If L and J both contain more than one index, then by definition T0

i must be intersections of
inputs with the same sender, let it be ph, and T00

j must be unions of outputs with the same
receiver, let it be pk. By definition P(T) =

P
l2L

ph?`l(x).P 0
l , and P(Tk) =

P
j2J

p?`j(x).P 00
j and

P(Tu) = pf(u)?`j(x).Pu, where f is as in the case of rule [nsub-diff-part], for 1 u n and
u 6= k. Therefore p / P(T) |

Q
1in

pi / P(Ti) cannot reduce.

If L contains more than one index and J is a singleton set, then by definition T0
j must be an

intersection of inputs. By definition P(T) =
P
l2L

P

0
l , where P

0
l = P(T0

l) for l 2 L. Let us assume

ad absurdum that p / P(T) |
Q

1in
pi / P(Ti) is not stuck. Then there must be l0 2 L such

that p / P 0
l0

|
Q

1in
pi / P(Ti) is not stuck, contradicting the hypothesis.

If L is a singleton set and J contains more than one index, T00
j must be a union of outputs

with the same receiver, let it be ph. Let Gj = G(T00
j , p) and P

(j)
h = P(Gj � ph). Then Ph =

P(G(
W

j2J T00
j , p) � ph) =

P
j2J

P

(j)
h . Let us assume ad absurdum that p /P(T) |

Q
1in

pi /P(Ti)

is not stuck. In this case there must be j0 2 J such that p/P(T) | ph/P (j0)
h |

Q
1i 6=hn

pi/P(Ti)

is not stuck, contradicting the hypothesis.

Example 4.6. An example showing the utility of the cyclic communication in the definition of

characteristic global types is T = p1!`1(nat).p2!`2(nat) and T0 = p2!`2(nat).p1!`1(nat). In fact

without the cyclic communication the characteristic global type of T0
would be

G = p ! p2 : `2(nat).p ! p1 : `1(nat)

and then M = p1 / P(G � p1) | p2 / P(G � p2) = p1 / p?`1(x).0 | p2 / p?`2(x).0. Being

P(T) = p1!`1(5).p2!`2(5).0, the session p / P(T) | M reduces to p / 0. Instead

G(T0
, p) = p ! p2 : `2(nat).p2 ! p1 : `2(bool).p1 ! p2 : `2(bool).

p ! p1 : `1(nat).p1 ! p2 : `1(bool).p2 ! p1 : `1(bool),

which implies P(G(T0
, p) � p1) = p2?`2(x). . . . and P(G(T0

, p) � p2) = p?`2(x). It is then

easy to verify that p / P(T) | p1 / P(G(T0
, p) � p1) | p2 / P(G(T0

, p) � p2) is stuck.

5 Denotational Preciseness

In �-calculus types are usually interpreted as subsets of the domains of �-models [1, 7]. Deno-

tational preciseness of subtyping is then:

T 6 T0 if and only if [[T]] ✓ [[T0]],

using [[]] to denote type interpretation.

25

Precise subtyping for synchronous multiparty sessions Dezani, Ghilezan, Jakšić, Pantovic, Yoshida

In the present context let us interpret a session type T as the set of closed processes typed
by T, i.e.

[[T]] = {P | ` P : T}
We can then show that the subtyping is denotationally precise. The subsumption rule [t-sub]

gives the denotational soundness. Denotational completeness follows from the following key
property of characteristic processes:

` P(T) : T0 implies T 6 T0
.

If we could derive ` P(T) : T0 with T 66 T0, then the multiparty session

p / P(T) |
Q

1in
pi / P(Ti),

where pt{T0} = {pi}1in and G = G(T0
, p) and Ti = G � pi for 1 i n, could be typed.

Theorem 4.5 shows that this process is stuck, and this contradicts the soundness of the type
system. We get the desired property, which implies denotational completeness, since if T 66 T0,
then P(T) 2 [[T]], but P(T) 62 [[T0]].

Theorem 5.1. (Denotational preciseness) The subtyping relations is denotationally precise.

Acknowledgments. We are grateful to the anonymous reviewers for their useful remarks.

References

[1] Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A filter lambda model and
the completeness of type assignment. Journal of Symbolic Logic, 48(4):931–940, 1983.

[2] Tzu-Chun Chen, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida. On the preciseness of
subtyping in session types. In PPDP, pages 135–146. ACM Press, 2014.

[3] Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and Luca Padovani. Global
progress for dynamically interleaved multiparty sessions. Mathematical Structures in Computer
Science, 2015. to appear.

[4] Romain Demangeon and Kohei Honda. Full abstraction in a subtyped pi-calculus with linear
types. In CONCUR, volume 6901 of LNCS, pages 280–296. Springer, 2011.

[5] Mariangiola Dezani-Ciancaglini and Silvia Ghilezan. Preciseness of subtyping on intersection and
union types. In RTATLCA, volume 8560 of LNCS, pages 194–207. Springer, 2014.

[6] Simon Gay and Malcolm Hole. Subtyping for session types in the pi calculus. Acta Informatica,
42(2/3):191–225, 2005.

[7] J. Roger Hindley. The completeness theorem for typing lambda-terms. Theoretical Computer
Science, 22:1–17, 1983.

[8] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types. In
POPL, pages 273–284. ACM Press, 2008.

[9] Dimitrios Kouzapas and Nobuko Yoshida. Globally governed session semantics. In CONCUR,
volume 8052 of LNCS, pages 395–409. Springer, 2013.

[10] Jay Ligatti, Jeremy Blackburn, and Michael Nachtigal. On subtyping-relation completeness, with
an application to iso-recursive types. Technical report, University of South Florida, 2014.

[11] Luca Padovani. Session types = intersection types + union types. In ITRS, volume 45 of EPTCS,
pages 71–89. Open Publishing Association, 2011.

[12] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

[13] Nobuko Yoshida, Pierre-Malo Deniélou, Andi Bejleri, and Raymond Hu. Parameterised multiparty
session types. In FOSSACS, volume 6014 of LNCS, pages 128–145. Springer, 2010.

26

A Typed Model for Dynamic Authorizations
Silvia Ghilezan1, Svetlana Jakšić1, Jovanka Pantović1, Jorge A. Pérez2, and

Hugo Torres Vieira3

1 University of Novi Sad, Serbia
2 University of Groningen, The Netherlands

3 IMT Institute for Advanced Studies Lucca, Italy

Abstract

Security requirements in distributed software systems are inherently dynamic. In the case of authorization
policies, resources are meant to be accessed only by authorized parties, but the authorization to access a resource
may be dynamically granted/yielded. We describe ongoing work on a model for specifying communication and
dynamic authorization handling. We build upon the ⇡-calculus so as to enrich communication-based systems with
authorization specification and delegation; here authorizations regard channel usage and delegation refers to the act
of yielding an authorization to another party. Our model includes: (i) a novel scoping construct for authorization,
which allows to specify authorization boundaries, and (ii) communication primitives for authorizations, which allow
to pass around authorizations to act on a given channel. An authorization error may consist in, e.g., performing an
action along a name which is not under an appropriate authorization scope. We introduce a typing discipline that
ensures that processes never reduce to authorization errors, even when authorizations are dynamically delegated.

1 Introduction

Nowadays, computing systems operate in distributed environments, which may be highly heteroge-
neous, including at the level of trustworthiness. It is often the case that collaborating systems need to
protect themselves from malicious entities by enforcing authorization policies that ensure actions are
carried out by properly authorized parties. Such authorizations to act upon a resource may be statically
prescribed — for instance, a determined party is known to have a determined authorization — but may
also be dynamically established — for example, when a server delegates a task to a slave it may be
sensible to pass along the appropriate authorization to carry out the delegated task.

As a motivating example, consider the message sequence chart given in Figure 1 describing a sce-
nario where a client interacts with a bank portal in order to request a credit. After the client submits the
request, the bank portal asks a teller to approve the request, allowing him/her to join the ongoing inter-
action. Apart from some rating that could be automatically calculated by the bank portal, it is the teller
who ultimately approves/declines the request. It then seems reasonable that the teller impersonates the
bank when informing the client about the outcome of the request. At this point we may ask: is the teller
authorized to act on behalf of the bank portal in this structured interaction? Even if the teller gained
access to the communication medium when joining the interaction, the authorization to act on behalf of
the bank portal may not be necessarily granted; in such cases an explicit mechanism that dynamically
grants such an authorization is required. To account for this kind of scenarios, in previous work [3] we
explored the idea of role authorizations. It appears to us that the key notions underlying this idea can be
well explored in a more general setting; here we aim at distilling such notions in a simple setting.

We distinguish an authorization from the resource itself: a system may already know the identity
of the resource (say, an email address or a file name) but may not be authorized to act upon it (e.g., is
not able to send an email on behalf of a given address or to write on a file). Also, it might be the case
that the system acquires knowledge about the resource (for instance, by receiving an email address or
a file) but not necessarily is immediately granted access to act upon it. We focus on communication-
centered systems in which authorizations are a first-class notion modeled in a dedicated way, minimally

27

A Typed Model for Dynamic Authorizations Ghilezan, Jakšić, Pantović, Pérez, Vieira

14/2/2015 /22

A!TYPED!MODEL!FOR!DYNAMIC!AUTHORIZATIONS!

Roles!in!a!Bank!Credit!Request

5

Client Bank Teller

request

submit

rate

approved

Figure 1: Credit request scenario.

extending the ⇡-calculus [7] to capture dynamic authorization handling. As such, the resources that we
consider are communication channels; authorizations regard the ability to communicate on channels.

Authorizations may be associated with a spatial connotation, as it seems fairly natural that a deter-
mined part of the system has access to a resource while the rest of the system does not. To this end,
we introduce a scoping operator to specify delimited authorizations: we write (a)P to specify that pro-
cess P is authorized to act upon the resource a. For example, by (a)a!b.Q we specify a process that is
authorized on channel a and that is willing to use it to send b after which it behaves as Q.

Also, since we are interested in addressing systems in which authorizations are dynamically passed
around, we model authorization communication in a distinguished way by means of dedicated commu-
nication actions: we write ahbi.P to specify the action of sending an authorization to act upon b (and
proceeding as P) and a(b).P to specify the action of receiving an authorization to act upon b (and pro-
ceeding as P), where in both cases channel a is used as the underlying communication medium. We
remark that both in the authorization scoping (a)P and in the authorization reception b(a).P the name
a is not bound so as to capture the notion that authorizations are handled at the level of known identities.

Given the sensitive nature of an authorization, we believe it is natural to enforce a specialized disci-
pline regarding authorization manipulation. Namely, we consider that the act of passing along an autho-
rization —authorization delegation— entails the yielding of the communicated authorization. That is,
a party willing to communicate an authorization loses it after synchronization. Consider, for example, a
process

S = (a)(a(b).P | (b)ahbi.Q)

while the process on the left-hand side of the parallel composition (|) is awaiting an authorization to
act on b (via a synchronization on channel a), the process on the right-hand side is willing to delegate
authorization to act on b. In one reduction step, process S evolves to (a)(((b)P) | Q), thus capturing
the fact that the process on the right (Q) has now lost the authorization to act on b. Notice that this
authorization transfer may have influence on the resources already known to the receiving party (i.e.,
process P may specify communications on channel b).

The fact that authorizations are yielded when communicated allows us to model a form of autho-
rization accounting, in the sense that authorizations are viewed as a “countable” resource. As such, in

28

A Typed Model for Dynamic Authorizations Ghilezan, Jakšić, Pantović, Pérez, Vieira

P,Q ::= 0 (Inaction)
| P | Q (Parallel)
| (⌫a)P (Restriction)
| (a)P (Authorization)
| ↵.P (Prefix)

↵ ::= a!b (Output)
| a?x (Input)
| ahbi (Send authorization)
| a(b) (Receive authorization)

Table 1: Syntax of processes.

general we would expect (a)(a)P to differ from (a)P . However, since we intuitively interpret (a)P as
“the whole of P is authorized to interact on a”, it does not seem sensible that part of P can completely
yield the authorization. Consider, e.g., process (a)(bhai.P | Q) where it does not seem reasonable that
the authorization delegation expressed by prefix bhai interferes with the authorization on a already held
by Q which is (concurrently) active in the authorization scope. Hence, a system cannot create/discard
valid authorizations (that are scoping active processes); authorizations can only float around. It is also
reasonable to allow that a party that delegates an authorization may get it back via another synchroniza-
tion step. This way, our model allows for reasoning about authorization ownership and lending. Finally,
we envisage (in our untyped model) a possibility for sharing a given authorization scope with a speci-
fied number of parties. This may be represented by specifying multiple copies of the same authorization
scope. For example, process (a)(a)(b)bhai.P (or (a)(b)bhai.(a)P) will retain authorization scope for a
and reduce to (a)(b)P, after communication with (b)b(a).Q

Although some previous works have explored dedicated scoping operators with security motiva-
tions (see, e.g., [9, 4]), to our knowledge the particular combination of a (non binding) scoping con-
struct with ⇡-calculus name passing present in our model seems to be new. The syntactic elements of
our process model, together with the dynamic nature of authorizations, pose challenges at the level of
statically identifying processes that act only upon resources for which they are properly authorized. In
this paper we start exploring a typing discipline for authorization manipulation that allows to statically
ensure that processes never incur in authorization errors, essentially by accounting process authorization
requirements. In the remaining, we formally present the language and type system, and state our results.

2 Process Model

We introduce our process calculus with authorization scoping and authorization delegation. Let N
be a countable set of names, ranged over by a, b, c, . . . , x, y, z. The syntax of processes is given
in Table 1. Processes 0, P | Q, (⌫a)P, a!b.P and a?x.P comprise the usual ⇡-calculus operators
for specifying inaction, parallel composition, name restriction, and output and input communication
actions, respectively. We introduce three novel operators, motivated earlier:

1. ahbi.P sends an authorization for the name b on a and proceeds as P ;

2. a(b).P receives an authorization for the name b on a and proceeds as P ;

3. (a)P authorizes all actions on the channel a in P .

We remark on the novel reasoning regarding scope authorization (a)P in combination with ⇡-calculus-
like name passing, since all actions on channel a in process P are authorized, including actions originally
specified for received names. For example, consider a process P = (a)b?x.x!c.0 that interacts in a
context that sends name a on b. Then P may evolve to P

0 = (a)a!c.0, which is authorization safe. Still,
authorizations may be “revoked” via authorization delegations.

We introduce some auxiliary notions and abbreviations, useful for the remaining formal presenta-
tion. The set of free names of a process P , denoted fn(P), accounts for authorization constructs in the

29

A Typed Model for Dynamic Authorizations Ghilezan, Jakšić, Pantović, Pérez, Vieira

P | 0 ⌘ P P | Q ⌘ Q | P (P | Q) | R ⌘ P | (Q | R) (⌫a)0 ⌘ 0
(⌫a)(⌫b)P ⌘ (⌫b)(⌫a)P P | (⌫a)Q ⌘ (⌫a)(P | Q) if a /2 fn(P) P ⌘↵ Q =) P ⌘ Q

(a)(b)P ⌘ (b)(a)P (a)0 ⌘ 0 (a)(P | Q) ⌘ (a)P | (a)Q (a)(⌫b)P ⌘ (⌫b)(a)P if a 6= b

Table 2: Structural congruence.

following way:

fn((a)P) , {a} [fn(P)

fn(ahbi.P) = fn(a(b).P) , {a, b} [fn(P)

Given a name a, we use ↵a to refer to either a!b, a?x, ahbi, or a(b). We abbreviate (⌫a1)(⌫a2) . . . (⌫ak)P
by (⌫~a)P and likewise (a1)(a2) . . . (ak)P by (~a)P .

Structural congruence expresses basic identities on the structure of processes, defined as the least
equivalence relation between processes that satisfies the rules given in Table 2. Apart from the usual
identities for the static fragment of the ⇡-calculus (cf. first seven rules in Table 2), structural congruence
gives basic principle for the novel authorization scope: (i) authorizations can be swapped around; (ii)
authorizations can be discarded/created only for the inactive process; (iii) authorizations distributes over
parallel composition; and (iv) authorizations and name restrictions can be swapped if the correspond-
ing names differ. We remark that, differently from name restrictions, authorization scopes can neither
be extruded/confined: since authorizations are specified for free names (that cannot be ↵-converted),
extruding/confining authorizations actually changes the meaning of processes. For example, processes
(b)b?x.x!b.0 and (a)(b)b?x.x!b.0 are not considered as structurally congruent, as the latter one autho-
rizes the action on a in case it receives a through b, while the former one does not. Another distinc-
tive property comes from the significance of multiplicity of authorization scopes. We do not adopt
(a)P ⌘ (a)(a)P for P 6= 0, for the sake of authorization accounting. Before presenting the operational
semantics of the language, we ensure that the rewriting supported by structural congruence is enough to
isolate top level communication actions together with their respective authorization scopes.

Proposition 1 (Normal Form). For any process Q we have that there are P1, . . . , Pk, ↵1, . . . , ↵k, ~c,
and ~a1, . . . , ~ak, where (⌫~c) and (~ai) for i 2 1, . . . , k can be empty sequences, such that

Q ⌘ (⌫~c)((~a1)↵1.P1 | (~a2)↵2.P2 | . . . | (~ak)↵k.Pk) (1)

Proof. (by induction on the structure of Q)
Q ⌘ 0 : It is in the form (1).
Q ⌘ Q

0 | Q00 : By induction hypothesis, we have that

Q

0 ⌘ (⌫~c)((~a1)↵1.P1 | . . . | (~ak)↵k.Pk) Q

00 ⌘ (⌫ ~d)((~b1)�1.Q1 | . . . | (~bl)�l.Ql)

and we can assume, by application of ↵-conversion, that ~d \ fn(Q0) = ;. Therefore,

Q ⌘ (⌫~c)(⌫ ~d)((~a1)↵1.P1 | . . . | (~ak)↵k.Pk | (~b1)�1.Q1 | . . . | (~bl)�l.Ql).

Q ⌘ (⌫a)P : Applying the induction hypothesis on P , we have that

Q ⌘ (⌫a)(⌫~c)((~a1)↵1.P1 | (~a2)↵2.P2 | . . . | (~ak)↵k.Pk).

30

A Typed Model for Dynamic Authorizations Ghilezan, Jakšić, Pantović, Pérez, Vieira

(STRU)
P ⌘ P

0 ! Q

0 ⌘ Q

P ! Q

(PARC)
P ! Q

P | R ! Q | R

(NEWC)
P ! Q

(⌫a)P ! (⌫a)Q

(AUTC)
P ! Q

(a)P ! (a)Q

(COMM)
(~a1)(b)b!c.P | (~a2)(b)b?x.Q ! (~a1)(b)P | (~a2)(b)Q{c/x}

(AUTH)
(~a1)(b)(c)bhci.P | (~a2)(b)b(c).Q ! (~a1)(b)P | (~a2)(b)(c)Q

Table 3: Reduction rules.

Q ⌘ (a)P : By induction hypothesis and ↵-conversion, we have that

Q ⌘ (a)(⌫~c)((~a1)↵1.P1 | (~a2)↵2.P2 | . . . | (~ak)↵k.Pk),

where a 62 {c1, . . . , ck}. Hence,

Q ⌘ (⌫~c)((a)(~a1)↵1.P1 | . . . | (a)(~ak)↵k.Pk).

Q ⌘ ↵.P : It is in the form (1).

We may then characterize the evolution of systems via a reduction relation, denoted by !, defined
as the least relation that satisfies the rules given in Table 3, focusing on the representative cases for
synchronization and closing the relation under structural congruence (STRU) and static contexts (PARC),
(NEWC), and (AUTC). Rule (COMM) formalizes communication of names, stating that it can be performed
only via authorized channel names — notice we single out authorization scopes on channel b both for
output and input. Authorization delegation is formalized by rule (AUTH). It meets the following re-
quirements: synchronization is realized via an authorized channel and the emitting process must have
the authorization in order to delegate it away (names b and c in the rule, respectively); after sending an
authorization for a name the emitting process proceeds (P) falling outside of authorization scope of that
name (losing authorization), and after receiving an authorization for a name the receiving process pro-
ceeds (Q) under the scope of the received authorization (acquiring authorization). Notice rules (COMM)
and (AUTH) address action prefixes up to the relevant authorizations (cf. Proposition 1). We denote by
!? the reflexive and transitive closure of ! .

We introduce some auxiliary notions in order to syntactically characterize authorization errors in
our setting. First of all, we define the usual notion of active contexts for our calculus:

Definition 1 (Active Context). C[·] ::= · | P | C[·] | (⌫a)C[·] | (a)C[·]

Active contexts allow us to talk about any active communication prefixes of a process. Also, we
may introduce a predicate that states that an active context authorizes actions on a given channel. More
precisely, for a given context and a channel, when the hole of the context is filled with an action on the
channel, it is authorised for that action.

Definition 2 (Context Authorization). For an active context C[·] and a channel a, the context authoriza-
tion predicate, denoted auth(C[·], a), is defined inductively on the structure of C[·] as

auth(C[·], a) ,

8
>>>><

>>>>:

false if C[·] = ·
true if C[·] = (a)C0[·]
auth(C0[·], a) if C[·] = (b)C0[·] and a 6= b

auth(C0[·], a) if C[·] = P | C0[·]
auth(C0[·], a) if C[·] = (⌫b)C0[·]

31

A Typed Model for Dynamic Authorizations Ghilezan, Jakšić, Pantović, Pérez, Vieira

(TSTOP)
; ` 0

(TPAR)
⇢1 ` P ⇢2 ` Q

⇢1 [⇢2 ` P | Q

(TNEW)
⇢ ` P a 62 ⇢

⇢ ` (⌫a)P

(TAUTH)
⇢ ` P

⇢ \ {a} ` (a)P

(TSEND)
⇢ ` P

⇢ [{a} ` a!b.P

(TRECV)
⇢ ` P x 62 ⇢

⇢ [{a} ` a?x.P

(TDELEG)
⇢ ` P b 62 ⇢

⇢ [{a, b} ` ahbi.P

(TRECP)
⇢ ` P

(⇢ \ {b}) [{a} ` a(b).P

Table 4: Typing rules.

We may then use active contexts and context authorization to precisely characterize errors in our
model, since active contexts allow us to talk about any communication prefix in the process and the
context authorization predicate allows to account for the authorizations granted by the context: processes
that have active communication prefixes which are not authorized are errors.

Definition 3 (Error). We say process P is an error if P ⌘ C[↵a.Q] where

1. auth(C[·], a) = false or

2. ↵a = ahbi and auth(C[·], b) = false .

Notice that by ↵a we refer to any communication action on channel a, so essentially any communi-
cation action that may cause a stuck configuration according to our semantics (where synchronizations
only occur when processes hold the proper authorizations) is seen as an error.

3 Type System

In order to statically single out the processes that can never evolve into authorization errors, we introduce
a suitable type system that accounts for the authorizations required by the processes.

Typing Judgment and Typing Rules. The typing judgment ⇢ ` P , where ⇢ denotes a set of names,
states that process P is typed if the context provides authorizations for names ⇢; hence the process per-
forms actions in the (unauthorized) names ⇢ (i.e., actions along names not under respective authorization
scopes). Thus, ; ` P says that all communication actions prescribed by process P are authorized, i.e.,
occur within the scope of the appropriate authorizations. We say that process P is well typed if ; ` P .

Typing rules are given in Table 4. The inactive process contains no actions along unauthorized
channel names (TSTOP). If two processes act along unauthorized channel names ⇢1 and ⇢2, their parallel
composition performs actions along the union ⇢1 [⇢2 of unauthorized names (TPAR). If a typed process
P does not perform actions along a channel a, the process where name a is restricted is typed under the
same set of names as P (TNEW). If P acts under a set of unauthorized names ⇢, then (a)P authorizes a
in P and thus performs actions under the set of unauthorized names ⇢ \ {a} (TAUTH). Sending a name
along a channel a extends the set of unauthorized names with the name a (TSEND). Receiving a name x

along a channel a extends the set of unauthorized names with the name a and it is typed only if there is
no unauthorized actions along x within P (TRECV). Sending authorization for a name b along a channel
a extends the set of unauthorized names with both names a and b (TDELEG). Receiving authorization for
a name b along a name a is typed under the set of unauthorized names that is extended with a and does
not contain b (since the reception authorizes b in P).

32

A Typed Model for Dynamic Authorizations Ghilezan, Jakšić, Pantović, Pérez, Vieira

Main Results. Our main result is type safety: well-typed processes never evolve into an (authoriza-
tion) error, in the sense of Definition 3. This is stated as Corollary 1; before giving the main statement
we show its supporting results. We first state a basic property of typing derivations: unauthorized names
must be included in the free names of the process.

Proposition 2. If ⇢ ` P then ⇢ ✓ fn(P).

Proof. (by induction on the depth of the derivation of ⇢ ` P)
If ; ` 0 then fn(0) = ;.
The following cases follow by definition of free names and the induction hypothesis.
Case ⇢1 [⇢2 ` P | Q is derived from ⇢1 ` P and ⇢2 ` Q : fn(P | Q) = fn(P) [fn(Q) ◆ ⇢1 [⇢2.

Case ⇢ ` (⌫a)P is derived from ⇢ ` P and a 62 ⇢ : fn((⌫a)P) = fn(P) \ {a} ◆ ⇢ \ {a} = ⇢.

Case ⇢ \ {a} ` (a)P is derived from ⇢ ` P : fn((a)P) = fn(P) [{a} ◆ ⇢ [{a} ◆ ⇢ \ {a}.
Case ⇢ [{a} ` a!b.P is derived from ⇢ ` P : fn(a!b.P) = fn(P) [{a} ◆ ⇢ [{a}.
Case ⇢ [{a} ` a?x.P is derived from ⇢ ` P and x 62 ⇢ : fn(a?x.P) = (fn(P) \ {x}) [{a} ◆
(⇢ \ {x}) [{a} = ⇢ [{a}.
Case ⇢ [{a, b} ` ahbi.P is derived from ⇢ ` P and b 62 ⇢ : fn(ahbi.P) = fn(P) [{a, b} ◆ ⇢ [{a, b}.
Case (⇢ \ {b}) [{a} ` a(b).P is derived from ⇢ ` P : fn(a(b).P) = fn(P) [{a, b} ◆ ⇢ [{a, b} ◆
(⇢ \ {b}) [{a}.

We now state results used to prove that typing is preserved under system evolution, namely that (i)
typing is preserved under structural congruence, as reduction is closed under structural congruence, and
that (ii) typing is preserved under name substitution, since channel passing involves name substitution.

Lemma 1 (Inversion Lemma). 1. If ⇢ ` 0 then ⇢ = ;.
2. If ⇢ ` P | Q then there are ⇢1 and ⇢2 such that ⇢ = ⇢1 [⇢2 and ⇢1 ` P and ⇢2 ` Q.

3. If ⇢ ` (⌫a)P then ⇢ ` P and a 62 ⇢.

4. If ⇢ ` (a)P then there is ⇢0 such that ⇢ = ⇢

0 \ {a} and ⇢

0 ` P.

5. If ⇢ ` a!b.P then there is ⇢0 such that ⇢ = ⇢

0 [{a} and ⇢

0 ` P.

6. If ⇢ ` a?x.P then there is ⇢0 such that ⇢ = ⇢

0 [{a} and x 62 ⇢

0 and ⇢

0 ` P.

7. If ⇢ ` ahbi.P then there is ⇢0 such that ⇢ = ⇢

0 [{a, b} and b 62 ⇢

0 and ⇢

0 ` P.

8. If ⇢ ` a(b).P then there is ⇢0 such that ⇢ = (⇢0 \ {b}) [{a} and ⇢

0 ` P.

Lemma 2 (Subject Congruence). If ⇢ ` P and P ⌘ Q then ⇢ ` Q.

Proof. (by induction on the depth of the derivation of P ⌘ Q)

We only write the following two interesting cases, and other cases can be obtained by similar reasoning.

Case P | (⌫a)Q ⌘ (⌫a)(P | Q) and a /2 fn(P) :

From ⇢ ` P | (⌫a)Q, by Lemma 1. 2, there are ⇢1 and ⇢2 such that ⇢1 ` P and ⇢2 ` (⌫a)Q. Therefore,
by Lemma 1. 3, ⇢2 ` Q and a 62 ⇢2. Since a /2 fn(P) we conclude by Proposition 2 that a /2 ⇢1. By
the rule (TPAR) we get that ⇢1[⇢2 ` P | Q, and from a 62 ⇢1[⇢2, by (TNEW) we derive ⇢ ` (⌫a)(P | Q).

Case (a)(⌫b)P ⌘ (⌫b)(a)P and a 6= b :

If ⇢ ` (a)(⌫b)P then by Lemma 1. 4 there is ⇢0 such that ⇢0 ` (⌫b)P and ⇢ = ⇢

0 \ {a}. By Lemma 1. 3,
⇢

0 ` P and b 62 ⇢

0 (and so b 62 ⇢

0 \ {a}). Hence, by (TAUTH) and (TNEW), we get ⇢ ` (⌫b)(a)P.

33

A Typed Model for Dynamic Authorizations Ghilezan, Jakšić, Pantović, Pérez, Vieira

Lemma 3 (Substitution). If ⇢ ` P then ⇢{a/b} ` P{a/b}.

Proof. (by induction on the depth of the derivation of ⇢ ` P)

We give only one interesting case. If ⇢ [{b, c} ` chbi.P is derived from ⇢ ` P and b 62 ⇢. It holds
that (⇢ [{b, c}){a/b} = ⇢ [{a, c} and (chbi.P){a/b} = chai.P{a/b}. By induction hypothesis,
⇢{a/b} ` P{a/b}, and by the rule (TDELEG), ⇢ [{a, c} ` chai.P{a/b}.

We may now state our soundness result which ensures typing is preserved under reduction.

Theorem 1 (Subject reduction). If ⇢ ` P and P ! Q then ⇢ ` Q.

Proof. (by induction on the depth of the derivation of P ! Q)

Base case 1: Assume that ⇢ ` (~a1)(b)b!c.P | (~a2)(b)b?x.Q and

(COMM) (~a1)(b)b!c.P | (~a2)(b)b?x.Q ! (~a1)(b)P | (~a2)(b)Q{c/x}.

By Lemma 1. 2, there are ⇢1 and ⇢2 such that ⇢ = ⇢1 [⇢2 and

⇢1 ` (~a1)(b)b!c.P and ⇢2 ` (~a2)(b)b?x.Q.

By consecutive application of Lemma 1. 4, there are ⇢

0
1 and ⇢

0
2 such that ⇢1 = ⇢

0
1 \ { ~a1, b} and ⇢2 =

⇢

0
2 \ { ~a2, b} and

⇢

0
1 ` b!c.P and ⇢

0
2 ` b?x.Q.

By Lemma 1. 5-6, there are ⇢

00
1 and ⇢

00
2 such that ⇢01 = ⇢

00
1 [{b} and ⇢

0
2 = ⇢

00
2 [{b} and x 62 ⇢

00
2 and

⇢

00
1 ` P and ⇢

00
2 ` Q.

One should notice that ⇢1 = (⇢001 [{b}) \ { ~a1, b} = ⇢

00
1 \ { ~a1, b} and ⇢2 = (⇢002 [{b}) \ { ~a2, b} =

⇢

00
2 \ { ~a2, b} and ⇢

00
2{c/x} = ⇢

00
2 (since x 62 ⇢

00
2). By Lemma 3 and consecutive application of the typing

rules (TAUTH) we get
⇢1 ` (~a1)(b)P and ⇢2 ` (~a2)(b).Q{c/x}.

and finally, by (TPAR), we have ⇢ ` (~a1)(b)P | (~a2)(b).Q{c/x}.

Base case 2: Assume that ⇢ ` (~a1)(b)(c)bhci.P | (~a2)(b)b(c).Q and

(AUTH) (~a1)(b)(c)bhci.P | (~a2)(b)b(c).Q ! (~a1)(b)P | (~a2)(b)(c)Q

By Lemma 1. 2, there are ⇢1 and ⇢2 such that ⇢ = ⇢1 [⇢2 and

⇢1 ` (~a1)(b)(c)bhci.P and ⇢2 ` (~a2)(b)b(c).Q

By consecutive application of Lemma 1. 4, there are ⇢

0
1 and ⇢

0
2 such that ⇢1 = ⇢

0
1 \ { ~a1, b, c} and

⇢2 = ⇢

0
2 \ { ~a2, b} and

⇢

0
1 ` bhci.P and ⇢

0
2 ` b(c).Q

By Lemma 1. 7-8, there are ⇢001 and ⇢

00
2 such that ⇢01 = ⇢

00
1 [{b, c} and c 62 ⇢

00
1 and ⇢

0
2 = (⇢002 \ {c})[{b}

and
⇢

00
1 ` P and ⇢

00
2 ` Q.

34

A Typed Model for Dynamic Authorizations Ghilezan, Jakšić, Pantović, Pérez, Vieira

We conclude that ⇢1 = (⇢001 [{b, c}) \ { ~a1, b, c} = ⇢

00
1 \ { ~a1, b} (since c 62 ⇢

00
1) and ⇢2 = ⇢

00
2 \ { ~a2, b, c}.

By consecutive application of the typing rule (TAUTH), we get

⇢1 ` (~a1)(b)P and ⇢2 ` (~a2)(b)(c)Q

and by (TPAR)
⇢ ` (~a1)(b)P | (~a2)(b)(c)Q.

Case 3: Assume that ⇢ ` P | R and P | R ! Q | R is derived from P ! Q. By Lemma 1. 2,
there are ⇢1 and ⇢2 such that ⇢ = ⇢1 [⇢2 and

⇢1 ` P and ⇢2 ` R.

By induction hypothesis, it holds that ⇢1 ` Q and therefore we have, by (TPAR), that ⇢ ` Q | R.

Case 4: Assume that ⇢ ` (⌫a)P and (⌫a)P ! (⌫a)Q is derived from P ! Q. By Lemma 1. 3, it
holds that a 62 ⇢ and ⇢ ` P. By induction hypothesis, it holds that ⇢ ` Q and therefore, by (TNEW), we
get ⇢ ` (⌫a)Q.

Case 5: Assume that ⇢ ` (a)P and (a)P ! (a)Q is derived from P ! Q. By Lemma 1. 4, it holds
that there is ⇢

0 such that ⇢ = ⇢

0 \ {a} and ⇢

0 ` P. By induction hypothesis, it holds that ⇢0 ` Q and
therefore, by (TAUTH), we get ⇢ ` (a)Q.

Case 6: Assume that ⇢ ` P and P ! Q is derived from P

0 ! Q

0
, where P ⌘ P

0 and Q

0 ⌘ Q.

We conclude by Lemma 2 that ⇢ ` P

0
. Than, by induction hypothesis, we get ⇢ ` Q

0
, and applying

again Lemma 2, we have that ⇢ ` Q.

Theorem 1 ensures, considering ⇢ = ;, that well-typed processes always reduce to well-typed pro-
cesses. We now express the basic property for well-typed systems, namely that they do not expose any
authorization errors up to the ones granted by pending authorizations ⇢.

Proposition 3 (Error Free). If ⇢ ` C[↵a.Q] and a 62 ⇢ then auth(C[·], a).

Proof. (by induction on the structure of C[·])

Case C[·] = [·] : If ⇢ ` ↵a.Q we conclude that a 2 ⇢, by Lemma 1.
Case C[·] = P | C0[·] : If ⇢ ` P | C0[↵a.Q], by Lemma 1. 2, there are ⇢1 and ⇢2 such that
⇢ = ⇢1 [⇢2 and ⇢1 ` P and ⇢2 ` C0[↵a.Q]. By induction hypothesis, auth(C0[·], a), while by def-
inition auth(P | C0[·], a) = auth(C0[·], a).
Case C[·] = (⌫b)C0[·] : If a 62 ⇢ and ⇢ ` (⌫b)C0[↵a.Q], by Lemma 1. 3, ⇢ ` C0[↵a.Q] and b 62 ⇢. By
induction hypothesis, auth(C0[·], a). By definition, auth((⌫b)C0[·], a) = auth(C0[·], a).
Case C[·] = (b)C0[·] and a 6= b : If a 62 ⇢ and ⇢ ` (b)C0[↵a.Q], by Lemma 1. 4, there is ⇢

0 such that
⇢ = ⇢

0 \{b} and ⇢

0 ` C0[↵a.Q]. If a 6= b and a 62 ⇢ then a 62 ⇢

0
. By induction hypothesis, auth(C0[·], a).

By definition, auth((b)C0[·], a) = auth(C0[·], a).
Case C[·] = (a)C0[·] : By definition auth((a)C0[·], a) = true.

Proposition 3 thus ensures that active communication prefixes that do not involve a pending autho-
rization (outside of ⇢) are not errors. Considering ⇢ = ; we thus have that well-typed processes do not
have any unauthorized prefixes and thus are not errors. Along with Theorem 1 we may then state our
safety result which says well-typed processes never evolve into an error.

35

A Typed Model for Dynamic Authorizations Ghilezan, Jakšić, Pantović, Pérez, Vieira

Corollary 1 (Type Safety). If ; ` P and P !?
Q then Q is not an error.

Proof. Immediate from Theorem 1 and Proposition 3.

Corollary 1 attests that well-typed systems never reduce to authorization errors, including when au-
thorizations are dynamically delegated. The presented type system allows for a streamlined analysis on
process authorization requirements, which we intend to exploit as the building block for richer analysis.

4 Concluding Remarks

The work presented here builds on our previous work [3], in which we explored authorization passing
in the context of communication-centered systems. In [3], the analysis addressed not only authorization
passing but also role-based protocol specification, building on the conversation type analysis presented
in [1]. Here we focussed exclusively on the authorization problem, obtaining a simple model which
paves the way for further investigation, since the challenges involved may now be highlighted in a
crisper way. As usual, there are non typable processes that are authorized for all the actions and reduce
to 0. This is unsurprising, given the simplicity of the analysis. An example is

(a)(b)(b?x.x!b.0 | b!a.a?x.0).

For the same reason, even though our untyped model enables to keep existing copies of delegated autho-
rization scopes, the type system restricts the usage of their scopes. For example, the current discipline
can not type the process

(b)(a)(a)bhaia!b.0 | (b)b(a)a?x.0

even though it safely reduces to 0. We believe it would be interesting to enrich the typing analysis
so that it encompasses the contextual information (authorizations already held by the process) so as
to address name reception and authorization delegation in a different way. We also believe it would be
interesting to discipline authorization usage so as to ensure absence of double authorizations for the sake
of authorization accountability, so as to ensure only the strictly necessary authorizations are specified.

Naturally, it would also be interesting to integrate the analysis presented here in richer settings, for
instance (i) considering the need to ensure protocol fidelity using session types [6], or (ii) ensuring live-
ness properties so that security critical events are guaranteed to take place, or (iii) exploring an ontology
on names so that authorizations to act upon higher ranked names automatically yield authorization for
lower-level ones. While relevant, these extensions appear as orthogonal developments to the analysis
presented here and therefore should be studied in depth in a dedicated way.

We briefly review some related works. Scoping operators have been widely used for the purpose of
modeling security aspects (e.g., [4]) but typically they use bound names (e.g., to model secrets). With
the aim of representing secrecy and confidentiality requirements in process specifications, an alterna-
tive scoping operator called hide is investigated in [4]. The hide operator is embedded in the so-called
secrecy ⇡-calculus, tailored to program secrecy in communications. The expressiveness of the hide oper-
ator is investigated in the context of a behavioral theory, by means of an Spy agent. In contrast, our (free
name) scoping operator focuses on authorization, a different security concern. In [9], a scoping operator
(called filter) is proposed for dynamic channel screening. In a different setting (higher-order commu-
nication) and with similar properties, the filter operator blocks all the actions that are not contained in
the corresponding filter (which contains polarised channel names). Contrary to the authorization scope,
filters are statically assigned to processes, while the authorization scope assigned to a process may be
dynamically changed. To the best of our knowledge, the authorization scoping proposed here has not
been explored before for the specification of communication-centered systems. There are high-level

36

A Typed Model for Dynamic Authorizations Ghilezan, Jakšić, Pantović, Pérez, Vieira

similarities between our work and the concept of ownership types, as well studied for object-oriented
languages [2]. Although in principle ownership types focus on static ownership structures, assessing
their use for disciplining dynamic authorizations is interesting future work. We also plan to compare
our approach with different forms of authorization handling, such as those defined in [5] and [8].

Acknowledgments. We thank the anonymous referees for their insightful and useful remarks. This
work was supported by COST Action IC1201: Behavioural Types for Reliable Large-Scale Software
Systems (BETTY) via Short-Term Scientific Mission grants (to Pantović and Vieira).

References

[1] P. Baltazar, L. Caires, V. T. Vasconcelos, and H. T. Vieira. A type system for flexible role assignment in
multiparty communicating systems. In Trustworthy Global Computing - 7th International Symposium, TGC
2012, Revised Selected Papers, volume 8191 of LNCS, pages 82–96. Springer, 2012.

[2] D. G. Clarke, J. Potter, and J. Noble. Ownership types for flexible alias protection. In B. N. Freeman-Benson
and C. Chambers, editors, Proceedings of the 1998 ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems, Languages & Applications (OOPSLA ’98), Vancouver, British Columbia, Canada, October
18-22, 1998., pages 48–64. ACM, 1998.

[3] S. Ghilezan, S. Jaksic, J. Pantovic, J. A. Pérez, and H. T. Vieira. Dynamic role authorization in multiparty
conversations. In Proc. of BEAT 2014, volume 162 of EPTCS, pages 1–8, 2014.

[4] M. Giunti, C. Palamidessi, and F. D. Valencia. Hide and new in the pi-calculus. In Proceedings Combined
19th International Workshop on Expressiveness in Concurrency and 9th Workshop on Structured Operational
Semantics, EXPRESS/SOS 2012, volume 89 of EPTCS, pages 65–79, 2012.

[5] D. Gorla and R. Pugliese. Dynamic management of capabilities in a network aware coordination language. J.
Log. Algebr. Program., 78(8):665–689, 2009.

[6] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type discipline for structured
communication-based programming. In Programming Languages and Systems - ESOP’98, 7th European Sym-
posium on Programming, 1998, Proceedings, volume 1381 of LNCS, pages 122–138. Springer, 1998.

[7] D. Sangiorgi and D. Walker. The Pi-Calculus - a theory of mobile processes. CUP, 2001.
[8] N. Swamy, J. Chen, and R. Chugh. Enforcing stateful authorization and information flow policies in fine. In

Programming Languages and Systems, 19th European Symposium on Programming, ESOP 2010, Proceedings,
volume 6012 of LNCS, pages 529–549. Springer, 2010.

[9] J. Vivas and N. Yoshida. Dynamic channel screening in the higher order pi-calculus. Electr. Notes Theor.
Comput. Sci., 66(3):170–184, 2002.

37

A Typed Model for Dynamic Authorizations Ghilezan, Jakšić, Pantović, Pérez, Vieira

38

Behavioural types for non-uniform memory accesses

Juliana Franco and Sophia Drossopoulou

Imperial College London, United Kingdom

Abstract

Concurrent programs executing on NUMA architectures consist of concurrent entities (e.g. threads,

actors) and data placed on di↵erent nodes. Execution of these concurrent entities often reads or

updates states from remote nodes. The performance of such systems depends on the extent to which

the concurrent entities can be executing in parallel, and on the amount of the remote reads and writes.

We consider an actor-based object oriented language, and propose a type system which expresses

the topology of the program (the placement of the actors and data on the nodes), and an e↵ect system

which characterises remote reads and writes (in terms of which node reads/writes from which other

nodes). We use a variant of ownership types for the topology, and a combination of behavioural and

ownership types for the e↵ect system.

1 Introduction

A prevalent paradigm in high performance machines is NUMA (non uniform memory access)
systems, e.g., the AMD Bulldozer server[1]. NUMA systems have many nodes which contain pro-
cessors and memory; Figure 1 shows the common NUMA structure.

Figure 1: NUMA system [13].

The nodes are connected with the other nodes
through a system bus that allows processes
running on a specific node to access the mem-
ory of the other nodes.

Memory access is either local, i.e. access-
ing memory in the local node, or remote, i.e.
accessing memory of remote nodes. Remote
accesses require requests to the system bus,
and are thus more expensive than local ac-
cesses. Moreover, di↵erent remote accesses do
not necessarily have the same cost (the time to
obtain/write data in memory). Therefore, to
characterize the communication (read/write)
costs of a concurrent program, we need to
know its topology (the placement of the actors and data on the nodes), and a characterisa-
tion of the reads and writes across nodes.

In this work we consider a concurrent language based on actors (or active objects) and
objects [5], which we call Lnuma, a language where, for the sake of simplicity, mutually recursive
(synchronous and asynchronous) method invocations with communication are assumed to be
not allowed and all the active objects must be created in the main class.

We develop a variant of ownership types [6] to express the location of actors and of data. In
particular, we propose two levels of abstraction: classes have ownership (location) parameters,
the main program defines the abstract locations and creates objects in these abstract locations;
and at runtime the abstract locations are mapped to nodes (cf. Appendix C). We also propose a
combination of behavioural and ownership types to characterise the interactions (reads, writes
and messages sent) among objects located in di↵erent nodes.

39

Behavioural types for NUMA Franco & Drossopoulou

Ownership types [4, 6, 12] were first introduced to statically describe the heap topology.
Here we introduce ownership-like annotations to describe the system topology, that is, its nodes
and where threads are running and data is allocated. Behavioural types [2, 8, 9, 14, 18] are
usually used to describe and statically, or dynamically, verify patterns of interaction between
processes/threads/participants of concurrent and parallel computations. Here we present a
type system that allows the programmer to specify the interactions among objects located in
di↵erent nodes, and therefore we abstract the communication made through the system bus.

Outline. This paper is organised as follows: Section 2 introduces the syntax of Lnuma,
Section 3 gives the operational semantics, Section 4 presents the typing rules, and Section 4
shows properties of Lnuma, and finally Section 6 concludes. Several definitions are given in the
appendix.

2 Syntax

Figure 2 presents the syntax of Lnuma. A program consists of a set of class declarations
representing actors and passive objects. The use of the keyword active in a class declaration
indicates that the class represents actors. Passive objects are similar to ordinary Java objects
while actors have all the properties of passive objects, but in addition also have their own
execution thread and may send messages to other actors. As in actor-based languages, messages
are stored in private queues. A more detailed definition can be found in [5].

P 2 Program ::= Cd⇤

Cd 2 ClassDecl ::= [active] class Chp+i Fd Md

Fd 2 FieldDecl ::= f : T

Md 2 MethodDecl ::= def m(x : T) : T as b {e}
ot 2 OwnershipType ::= Chl+i

T 2 Type ::= bool | nil | int | ot
l 2 Location ::= p | L
val 2 Value ::= null | true | false

var 2 Variable ::= x | this

e 2 Expr ::= var | val | if e then e else e

| e.m(e) | e!m(e) | e.f
| e.f = e | new ot

| for i in n1..n2 do e

| let x = e in e | return e

⇡ 2 RemAccess ::= rd(l, l) | wrt(l, l) | msg(l, l,m)

bop ::= ⇡ | {b or b} | Loop(n : b)

b 2 Behaviour ::= " | bop.b | [b, b]

Figure 2: Syntax of classes and (behavioural) types. The boxed constructs are not user syntax.
In the class declaration Cd the use of [] means that the keyword active is optional.

Each class, active or passive, is annotated with a set of location parameters p1, . . . , pn where
p1 represents the place where the instance of the class is allocated and p2, . . . , pn locations that
can be used in the types of the rest of the class. The location parameters of the main class,
L1, ..., Ln, are abstractions of the concrete nodes, and at runtime will be mapped to concrete
node identifiers.

A class declaration might have field and method declarations. A field declaration consists of
a field identifier and its type; a method declaration consists of a method identifier, one parameter
(variable and type), return type, behavioural type and an expression (method body). Lnuma

has the types bool, nil, and an ownership type Chl1, ..., lni which represents objects located in
l1 that may contain references to objects in locations l2, ..., ln. The syntax of expressions is
similar to other OO programming languages; note only the asynchronous method call (message

40

Behavioural types for NUMA Franco & Drossopoulou

sending), e!m(e).
The most interesting part of the syntax is our treatment of behavioural types. We have

basic operations, ⇡, which are reading from a remote node (rd(l, l)), writing to a remote node
(wrt(l, l)), and message sending (msg(l, l,m))—this has to be reflected in the behaviour, as it
adds messages to queues in remote memory. For all of them the first location is where the
expression is running and the second is the location where a read/write is made or a message
sent. We also have types to describe conditional expressions, {b or b}, (the two branches in the
expression imply two branches in the type), and for-loops, Loop(n : b). A behavioural type, b,
may be empty, ", meaning that there is no “communication” across di↵erent nodes, the sequence
of operations, bop.b, and two types in parallel, [b, b], introduced by message sendings.

3 Semantics

We now describe the dynamic semantics of Lnuma. Nodes, N , defined in Figure 3, aim to
reflect NUMA nodes. Namely, a node in our formalism has an identifier, a heap with all the
data allocated in it, and several execution threads Ethread. An execution thread belongs to an
actor, and has a stack and an expression being executed. A heap is a mapping from addresses

N 2 Node = NodeId ⇥ Heap ⇥ EThread

T 2 EThread = Stack ⇥ Expr

h 2 Heap = Addr ! Object

� 2 Stack = Addr ⇥ Frame

' 2 Frame = var ! value

Q 2 Queue ::= • | ; | m(v) :: Q

L 2 LocsMap = LocId ! NodeId

 2 NodeId = N

o 2 Object = ClassId ⇥ NodeId⇥
(FieldId ! value)⇥Queue

↵ 2 Addr = NodeId⇥N
v 2 value = val | Addr | skip | NPE

E[] ::= [·] | [·].m(e) | ↵.m([·]) | [·]!m(e) | ↵!m([·])
| [·].f | [·].f = e | let x = [·] in e | ↵.f = [·]
| if [·] then e1 else e2 | let x = [·] in e | return [·]

l 2 Location ::= as before |

Figure 3: Dynamic Entities. We assume the existence of a map L that maps abstract locations
(declared by the programmer in the main class) to NUMA node identifiers.

to (passive and active) objects. An object consists of a class identifier C, a sequence of node
identifiers representing the actual location parameters, a mapping from field identifiers to their
values, and a message queue, where the queue of a passive object is •. An address, ↵, consists
of a node identifier, 2 NodeId , and an o↵set, n 2 N.

In our system, a configuration N can be reduced to another configuration N 0
either without

any communication or implying a remote access from one of the nodes to another node. In
the first case, the rule [GsExec1] should be applied, where only one node is involved in the
reduction. In the second case the rule [GsExec2] should be used, where two nodes are involved
in the reduction, as shown in Figure 4.

In the same way, expression reduction may result in accessing remote memory or not; there-
fore we divide the operational semantics rules as follows:

1. Expressions that do not access memory or send messages. These are defined in Figure 5.

2. Expressions that result in accesses to memory. These are defined in Figure 6 and are
further divided in:

(a) The access happens locally—only one node required.

41

Behavioural types for NUMA Franco & Drossopoulou

[GsExec1]

, h,�, e

⇡! h

0
,�

0
, e

0

N , (, h, T , h�, ei) ⇡! N , (, h0
, T , h�0

, e

0i)
[GsExec2]

1, h1,�1, e1 k 2, h2
⇡! h

0
1,�

0
1, e

0
1 k h

0
2

N , (1, h1, T1, h�1, e1i), (2, h2, T2)
⇡! N , (1, h

0
1, T1, h�0

1, e
0
1i), (2, h

0
2, T2)

Figure 4: Global semantics

(b) The access happens remotely—two di↵erent nodes required.

Figure 5 shows shows the rules for the point 1, where no accesses to memory, eiher in
the same node or not, are made. Each rule takes a node identifier, its heap, a stack and an

[SIfTrue]

, h,�, if true then e1 else e2
"! h,�, e1

[SIfFalse]

, h,�, if false then e1 else e2
"! h,�, e2

[SLet]

x fresh in' '

0 = '[x 7! v]

, h,�.', let x = v in e

"! h,�.'

0
, e

[SRet]

, h,�.', return v

"! h,�, v

[SVar]

'(x) = v

, h,�.', x

"! h,�.', v

[SFor]

x fresh in' e

0 = (let x = e[n1/i]in for i in (n1 + 1)..n2 do e)

, h,�.', for i in n1..n2 do e

"! h,�.', e

0

[SForSkip]

n2 > n1

, h,�, for i in n1..n2 do e

"! h,�, skip

[SSkip]

, h,�, skip

"! h,�, null

[SCallL]

owners(h,↵) = Chi ' = ↵ · (this 7! ↵, x 7! v)

, h,�,↵.m(v)
"! h,�.', return M(C,m)#3 []

[SReceiveL]

↵#1= h(↵) = (C,, ,m(v) :: Q) e = M(C,m)[]

, h,↵ · ;, null

"! h[↵ 7! Q],↵ · (this 7! ↵, x 7! v), return e

[SContextNPE]

, h,�, E[NPE]
"! h,�,NPE

[SNPE]

, h,�, enpe
"! h,�,NPE

where enpe can be null.f, null.f = e, null.m(e), null!m(e), null[i], null[i] = e

0

Figure 5: Semantic rules for expressions that do not perform remote operations. Null-pointer
exceptions included.

expression, and reduces to a new heap, a new stack and a new expression. They have the form
, h,�, e

⇡! h

0
,�

0
, e

0. These rules reduce without any communication among di↵erent nodes,
and therefore they show reduction of expressions through ". The intuition behind these rules is
standart and similar can be found in the literature. Note only the rule for the message receiving,
[SReceiveL], which takes an empty stack and a null expression, meaning that the expression of
the thread being executed is fully reduced, and returns a new frame and expression after taking
the next message in the queue to be processed. The expression returned is the body of the
method asynchronously invoked, as the new frame has the values passed as arguments.

42

Behavioural types for NUMA Franco & Drossopoulou

Figure 6 shows the semantic rules for the point 2. The rules on the left belong to 2(a);
they have the same form of the rules introduced in Figure 5. The rules on the right belong
to 2(b); they take two node identifiers, their heaps, a stack and an expression, and reduce to
two new heaps, a new stack and a new expression. They have the form 1, h1,�, e k 2, h2

⇡!
h

0
1,�

0
, e

0 k h

0
2. In both cases they reduce through an operation described by ⇡—the remote

operation made or empty, " (in the case of the absence of a remote operation). For instance,

[SMsgL]

h

0 = h[h.ni :: m(v)]

, h,�, h.ni!m(v)
"! h

0
,�, null

[SMsgR]

⇡ = msg(1,2,m) h

0
2 = h2[h2.ni :: m(v)]

1, h1,�, h2.ni!m(v) k 2, h2
⇡! h1,�, null k h

0
2

[SFReadL]

, h,�, h.ni.f "! h,�, h(.n)(f)

[SFReadR]

⇡ = rd(1,2) v = h2(h2.ni)(f)
1, h1,�, h2.ni.f k 2, h2

⇡! h1,�, v k h2

[SFWriteL]

, h,�, h.ni.f = v

"! h[h.ni, f 7! v],�, v

[SFWriteR]

⇡ = wrt(1,2) h

0
2 = h2[h2.ni, f 7! v]

1, h1,�, h2.ni.f = v k 2, h2
⇡! h1,�, v k h

0
2

[SNewL]

 = L(L1) h.ni /2 dom(h)
h

0 = h[h.ni 7! initObj(ChLi)]
, h,�, new ChLi "! h

0
,�, h.ni

[SNewR]

2 = L(L1) h2.ni /2 dom(h2) ⇡ = wrt(1,2)
h

0
2 = h2[h2.ni 7! initObj(ChLi)]

1, h1,�, new ChLi k 2, h2
⇡! h1,�, h2.ni k h

0
2

[SContextL]

, h,�, e

⇡! h

0
,�

0
, e

0

, h,�, E[e]
⇡! h

0
,�

0
, E[e0]

[SContextR]

1, h1,�, e k 2, h2
⇡! h

0
1,�

0
, e

0 k h

0
2

1, h1,�, E[e] k 2, h2
⇡! h

0
1,�

0
, E[e0] k h

0
2

Figure 6: Set of semantic rules described in 2. The left rules show the reduction of expressions
that execute locally (a) and the right rules, expressions that interact with remote objects (b).

message sending in rule [SMsgL] adds a message to the queue of an actor in the same node as
this, while [SMsgR] adds the message to the queue of an object in a di↵erent node. In the first
case ⇡ is empty and in the second case it is msg(1,2,m). In both cases, the stack remains
unchanged and the returned expression is null; namely execution is asynchronous. All the other
rules, except the context rules, on the left show, as expected, reads and writes to the local heap
and on the right present reads and writes to a remote heap.

4 Type Checking

Figure 7 shows the typing rules of Lnuma. They have the form � ` e .T, b where an expression
e is verified against a sequence of typing contexts � resulting in a type T and an e↵ect b. A
typing context is a mapping from variables and addresses to types:

� 2 TypingContext = (var [Addr) ! Type

The e↵ect b describes the behaviour of e, that is, the memory accesses and messages sent to
remote locations. E↵ects are concatenated via the function � as defined below.

" � b = b (bop.b1) � b2 = bop.(b1 � b2) [b1, b2] � b3 = [b1 � b3, b2]

43

Behavioural types for NUMA Franco & Drossopoulou

The type T associated to an expression is found in a standard way: similar can be found

[T-Var/Addr]

�.� ` var . �(var), "
�.� ` ↵ . �(↵), "

[T-True/False]

� ` true . bool, "

� ` false . bool, "

[T-Skip/Null]

� ` skip . nil, "

� ` null . nil, "

[T-Let]

�.� ` e1 . T1, b1 x /2 dom(�)
�.�[x 7! T1] ` e2 . T2, b2

�.� ` let x = e1 in e2 . T2, b1 � b2
[T-Cond]

� ` e1 . bool, b1 � ` e2 . T, b2 � ` e3 . T, b3
� ` if e1 then e2 else e3 . T, b1 � {b2 or b3}

[T-For]

k > j � = �
0
.� �

0
.�[i 7! int] ` e . T, b

� ` for i in j..k do e . T, Loop(k � j + 1: b)

[T-Ret]

� ` e . T, b
�.� ` return e . T, b

[T-NewO]

isActive(C) =) isMain(�, this) ot = Chl1, ..., lni l1 6= ... 6= ln

� ` new ot . ot ,wrt(`(�), l1)

[T-FWrite]

� ` e . Chli, b1 F(C, f)[l] = T � ` e

0
. T, b2

� ` e.f = e

0
. T, b1 � b2 � wrt(`(�), l1)

[T-FRead]

� ` e . Chli, b1 F(C, f)[l] = T

� ` e.f . T, b1 � rd(`(�), l1)

[T-Call]

� ` e1 . Chli, b1 � ` e2 . T
0
, b2

`(�) = l1 M(C,m)[l] = (T, T 0
, e3, b3)

� ` e1.m(e2) . T, b1 � b2 � b3

[T-Message]

� ` e1 . Chli, b1 � ` e2 . T
0
, b2

`(�) = l0 M(C,m)[l] = (nil, T

0
, e3, b)

� ` e1!m(e2) . nil, b1 � b2 � msg(l0, l1,m).[", b]

Figure 7: Typing rules

in [4], therefore we focus only in the behaviour produced. The rules for variables and values,
[T-Var/Addr], [T-True/False], [T-Skip/Null] result in empty e↵ects, ", because they do not
represent any communication. The typing rule [T-Let] results in the concatenation of the
behaviour of both expressions. The resulting behaviour of the rule [T-Cond] is the behaviour of
the predicate concatenated with a choice type which describes the behaviour of both branches.
The rule [T-For] returns a loop type Loop(n : b), where n is the number of iterations of the loop
and b is the behavioural type of its body.

The behaviour of the creation of an object, with [T-NewO], is a write behaviour, from the
location of this to the location of the new object, as new data is written to memory. The
predicate isActive(C) is true if the class of the object being created in annotated as active and
the predicate isMain(�, this) is true if the class being verified is the main class. The field write is
also represented by the write behaviour, given that it changes data already in memory. Typing
the expression e.f = e

0 with the rule [T-FWrite] returns the concatenation of the behaviour
of e, the behaviour of e0 and the write from the location of this to the location of the object
changed. Following the same idea, the field read, e.f , is represented by the read behaviour and
therefore the rule [T-FRead] gives the concatenation of the behaviour of e with a read type from
the location of this and to the location of the object read. The typing rule, [T-Call], describes
synchronous method invocation which is only allowed if the receiver is in the same location as
the this object. Its behaviour is the behaviour of the receiver concatenated with the behaviour
of the expression passed as argument and the behavioural type annotated in the body of the
invoked method. The typing rule for the message send, [T-Message], is similar. However, it is
possible to send a message to a di↵erent location and moreover it introduces parallelism in our
types: the receiving of the message should be executed in parallel with the continuation of the
message sending—the resulting behaviour has the continuation type, which in this case is ", in
parallel with the expression to be executed due the message received.

44

Behavioural types for NUMA Franco & Drossopoulou

5 The global behaviour

We define a global behaviour, ⌃, as a sequence of behavioural types

⌃ 2 Behaviour

The behaviour of a node N describes the remote reads, writes and message sends to be executed
by the node; it is obtained from the behaviour of the execution threads and message queues of all
actors in that node. The global behaviour of a runtime configuration, N , describes the remote
reads, writes and message sends to be executed by all nodes; it is the parallel combination of
the behaviours of each the nodes Ni. Both definitions, the behaviour of a node and the global
behaviour of a configuration, are below.

Definition 1 (The global behaviour).

(1) N1, . . . ,Nn I b1, . . . , bn i↵ 8i 2 1..n : Ni I bi

(2) , h, h�1, e1i, . . . , h�n, eni I b1, . . . , bn i↵ 8i 2 1..n : h,�i, ei I bi

(3) h,�, e I filter(b � b1 � ... � bn) i↵ 9T : h,� ` e . T, b ^
(h(�#1) = (C,+

, ,m1(v1) :: ... :: mn(vn) :: ;) ^ 8j 2 1..n : 9Ti : h,� ` M(C, n)[+] . Ti, bi)

Using this notion of global behaviour, we implicitly assume a well-formed program and we
state soundness of our typing, which says that if a well-formed configuration, N , with a global
behaviour ⌃, reduces to another configuration N 0

through a communication step ⇡ then the
resulting configuration N 0

will have behaviour ⌃0 which is a reduction of ⌃ through ⇡.

Theorem 1. If ` N ^ N I ⌃ ^ N ⇡! N 0
then 9⌃0 : N 0 I ⌃0 ^ ⌃ v⇡ ⌃0

The definitions of well-formed configuration (including well-formed heap and well-formed
stack) and (global) behaviour reduction are defined below:

Definition 2 (Well-formed (1) configuration, (2) node, (3) heap, (4) stack and (5) stack frame).

(1) ` N i↵ 8i, j : Ni#1= Nj#1 =) i = j ^ 8N 0 : N ` N 0

(2) N ` , h, (h�1, e1i, ..., h�n, eni) i↵

8↵ 2 dom(h) : ↵#1= ^ h(↵)#2= , ^ N ` h

^ 8i 2 {1..n} : heaps(N) ` �i ^ 9Ti, bi : h,�i ` ei . Ti, bi

(3) N ` h i↵ 8↵ 2 dom(h) : heaps(N) ` ↵ : owners(h,↵)

(4) h ` ↵ · '1, ...,'n i↵ 8i 2 {1..n} : h ` 'i

(5) h ` (this 7! ↵, x1 7! v1, . . . , xn 7! vn) i↵ {↵, v1...vn} ✓ {true, false, null} [dom(h)

Definition 3 (Global behaviour reduction).

⌃ v⇡ ⌃0 i↵ ⌃ = b1, b, b2 ^ ⌃0 = b
0
1, b

0
, b

0
2 ^ b v⇡ b0 ^

(b = [b1, b2] =) b0 = b1 ^ 9bj 2 ⌃, b0j 2 ⌃0 : b0j = bj � b2)
Definition 4 (Behaviour reduction).

b1 v⇡ b2 i↵ b1 = ⇡.b2

b1 v" b2 i↵ b1 = b2 _ b1 = {b2 or } _ b1 = { or b2} _
(b1 = Loop(n : b).b0 ^ b2 = b.Loop(n� 1: b).b0) _ b1 = [b2,]

45

Behavioural types for NUMA Franco & Drossopoulou

Theorem 1 is a corollary of Lemmas 1 and 2.

Lemma 1. If N ` h ^ h ` � ^ , h,�, e

⇡! h

0
,�

0
, e

0 ^ h,� ` e .T, b ^ ¬(�#2= ; ^ e = null)
then 9b0 : h0

,�

0 ` e

0
. T, b0 ^ filter(b) v⇡ filter(b0)

Lemma 2. If N ` h1 ^ N ` h2 ^ h1 [h2 ` � ^ 1, h1,�, e k 2, h2
⇡! h

0
1,�

0
, e

0 k h

0
2 ^ h1 [

h2,� ` e . T, b then 9b0 : h0
1 [h

0
2,�

0 ` e

0
. T, b0 ^ filter(b) v⇡ filter(b0)

6 Final Remarks

Related Work. To the best of our knowledge there is no integration of behavioural types
in the active/passive object paradigm, or any formalism that combines behavioural types with
ownership types to describe memory accesses; however there are already a few programming
languages that use session (behavioural) types in actor-based languages, namely: the integration
of session types in a Featherweight Erlang introduced by Mostrous and Vasconcelos [10]; an
implementation of multiparty session types in an actor library written in Python presented by
Neykova and Yoshida [11]; and the behavioural type system for an actor calulus, proposed by
Crafa [7].

With respect to programming languages with the notion of locations and proximity among
processes and data, Rinard presented an extension of the programming language Jade (an
implicitly parallel programming language designed to explore task-level concurrency [16]) that
allows the execution of tasks close to the data that they will use [15]. The language has
constructs to describe how the processes access to the data; this information is analysed and used
to improve the communication. Given that it is more expensive to access data remotely than
locally, the author introduces a locality optimization algorithm that schedules the execution of
tasks on places (processors) close to the data. The programming language X10 [17], developed
by IBM, also features a notion of locality/places. In X10, each object can be either assigned to a
place or distributed among di↵erent places. Chandra et al. [3] presented a new dependent type
system for X10 that captures information about the locality of the resources in a partitioned
heap for distributed data structures, called place types. It provides information not only about
whether a reference is local or remote, but also if two remote references point to resources in the
same place or not. Therefore, the compiler may use this information to decrease the runtime
overhead.

Conclusion. This paper presents the fomalisation of a small oject-oriented programming
language that amalgamates behavioural types with ownership types in order to describe remote
memory accesses in NUMA systems. Ownership types play a role in the representation of the
topology and behavioural types in the definition of reads, writes and messages sent to remote
locations. This sequence of memory access operations are annotated in the method declarations
as the ownership/location parameters are annotated in class declarations. This formalisation
is just the first step towards a programming language that optimises performance by moving
objects to nodes where they have a cheaper cost (the cost of interacting with other objects and
of doing remote accesses).

Acknowledgements. This work was funded by the EU project UpScale FP7-612985 (http:
//www.upscale-project.eu/).

46

Behavioural types for NUMA Franco & Drossopoulou

References

[1] Amd bulldozer server. http://www.amd.com/en-us/products/server.

[2] Giuseppe Castagna and Luca Padovani. Contracts for mobile processes. In CONCUR 2009, volume
5710 of LNCS, pages 211–228. Springer, 2009.

[3] Satish Chandra, Vijay Saraswat, Vivek Sarkar, and Rastislav Bodik. Type inference for locality
analysis of distributed data structures. In PPoPP ’08, pages 11–22. ACM, 2008.

[4] Dave Clarke and Sophia Drossopoulou. Ownership, encapsulation and the disjointness of type and
e↵ect. SIGPLAN Not., 37:292–310, 2002.

[5] Dave Clarke, Tobias Wrigstad, Johan Östlund, and Einar Broch Johnsen. Minimal ownership for
active objects. In APLAS ’08, pages 139–154. Springer, 2008.

[6] David G. Clarke, John M. Potter, and James Noble. Ownership types for flexible alias protection.
In OOPSLA ’98, pages 48–64. ACM, 1998.

[7] Silvia Crafa. Behavioural types for actor systems. Technical report, 2012.

[8] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and type disciplines
for structured communication-based programming. In European Symposym on Programming, vol-
ume 1381, pages 22–138, 1998.

[9] Naoki Kobayashi. Type systems for concurrent programs. In Formal Methods at the Crossroads.
From Panacea to Foundational Support, volume 2757 of LNCS, pages 439–453. Springer, 2003.

[10] Dimitris Mostrous and Vasco Thudichum Vasconcelos. Session typing for a featherweight Erlang.
In COORDINATION 2011, volume 6721 of LNCS, pages 95–109. Springer, 2011.

[11] Rumyana Neykova and Nobuko Yoshida. Multiparty session actors. In COORDINATION 2014,
volume 8459 of LNCS, pages 131–146. Springer, 2014.

[12] James Noble, Jan Vitek, and John Potter. Flexible alias protection. In ECOOP’98, pages 158–185.
Springer, 1998.

[13] Optimizing applications for numa. https://software.intel.com/en-us/articles/

optimizing-applications-for-numa.

[14] B. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. In LICS’93, pages 376–385,
1993.

[15] Martin C. Rinard. Locality optimizations for parallel computing using data access information.
International Journal of High Speed Computing, 9(2):161–179, 1997.

[16] Martin C. Rinard, Daniel J. Scales, and Monica S. Lam. Jade: A high-level, machine-independent
language for parallel programming. IEEE Computer, 26, 1993.

[17] Vijay A. Saraswat, Vivek Sarkar, and Christoph von Praun. X10: Concurrent programming for
modern architectures. In PPoPP ’07, pages 271–271. ACM, 2007.

[18] R.E. Strom and S. Yemini. Typestate: A programming language concept for enhancing software
reliability. IEEE Transactions on Software Engineering, pages 157–171, 1986.

A Identifier Conventions and Semantics

Identifier conventions.

n 2 N C 2 ClassId m 2 MethId f 2 FieldId L 2 LocId p 2 OwnershipId x, i 2 varId

47

Behavioural types for NUMA Franco & Drossopoulou

B Auxiliary definitions, shorthands and lookup functions

Definition 5 (Well-formed program and class).

` P ⌘ 8([active] class Ch...i... 2 P) : P ` C P ` C ⌘

8
>>><

>>>:

O(C) = {p1, ..., pn} ^
8m : M(C,m) = (T, x : T 0

, e, b) ^
(this 7! Chp1, ..., pni, x 7! T

0) ` e . T, b0

=) b = filter(b0)

Given that the e↵ects returned during type checking do not exclude reads and writes hap-
pening in the same node, we apply a function filter(b) in order to exclude such annotations.
The function is define as follows.

filter(") = " filter([b1, b2]) = [filter(b1), filter(b2)]

filter(⇡.b) = (if source(⇡) = dest(⇡) then " else ⇡). filter(b)

filter({b1 or b2}.b3) = (if filter(b1) = " ^ filter(b2) = " then " else {filter(b1) or filter(b2)}). filter(b3)
filter(Loop(n : b).b0) = (if filter(b) = " then " else Loop(n : filter(b))). filter(b0)

Note that if the expressiosns nested in for-loops or conditional expressions have behaviour ", then the
the loop or choice types are not annotated.

Definition 6 (Value agreement).

[WFTrue]

h ` true : bool

[WFFalse]

h ` false : bool

[WFNull]

T = nil _ isValid(T)
h ` null : T

[WFObj]

h(↵) = (C, (), (fi 7! vi)i2I , •)
8i 2 I : h ` vi : F(C, fi)[]

h ` ↵ : Chi
[WFAObj]

For I some index set h(↵) = (C, (), (fi 7! vi)i2I ,m1(v1) :: ... :: mn(vn) :: ;)
8i 2 I : h ` vi : F(C, fi)[] h,↵ · (this 7! ↵, x 7! vi) ` vi .M(C,mi)#2 [], b

h ` ↵ : Chi

Lookup functions Considering P , the globally accessible program, and the class declaration
class Chp+i{Fd Md} 2 P :

O(C) = {p+} F(C, f) = T i↵ f : T 2 Fd Fs(C) = {Fd}
M(C,m) = (T, T 0

, e, b) i↵ def m(x : T 0) : T in b {e} 2 Md

F(C, f)[l1, ..., ln] = F(C, f)[l1/p1, . . . , ln/pn] where O(C) = {p1, . . . , pn}

Operations on the heap

h[↵ 7! o] = h

0
where h

0(↵) = o ^ 8↵i 2 dom(h) \ {↵} : h(↵i) = h

0(↵i)

h[↵, f 7! v] = h

0
where h

0(↵) = h(↵)[f 7! v] ^ 8↵i 2 dom(h) \ {↵} : h(↵i) = h

0(↵i)

h[↵ :: m(v)] = h

0
where h(↵) = o ^ o#4 6= • ^ h

0 = h[↵ 7! (o#1, o#2, o#3,m(v) :: o#4)]
^ 8↵i 2 dom(h) \ {↵} : h(↵i) = h

0(↵i)

owners(h,↵) = Chi where h(↵)#1= C ^ h(↵)#2=

h1 [h2 = h where 8↵ 2 dom(h) : h1(↵) = h(↵) _ h2(↵) = h(↵)

48

Behavioural types for NUMA Franco & Drossopoulou

Operations on objects

o(f) ⌘ o#3 (f)

o[f 7! v] ⌘ (o#1, o#2, (f 7! v, fi 7! vi), o#4) where o#3= f 7! , fi 7! vi

initObj(ChL1, ..., Lmi) ⌘
(
(C,1, ...,m, (fi 7! init(Ti))i21..n, ;) isActive(C)

(C,1, ...,m, (fi 7! init(Ti))i21..n, •) otherwise

where Fs(C) = {f1 : T1, . . . , fn : Tn} and 8j 2 {1..m} : j = L(Lj)

Operations on types

init(T) ⌘ if T = bool then false else null `(�) = l i↵ � = .� ^ �(this) = Chl, i

Other definitions

e[C,1, . . . ,n] = e[1/p1, . . . ,n/pn] where O(C) = {p1, . . . , pn}
heaps(N1, . . . ,Nn) = h1 [· · · [hn i↵ 8i 2 {1..n} : Ni#2= hi

h,� ` e . T, b i↵ buildContext(h,�) ` e . T, b

typeOf(h, v) ⌘ if v = true _ v = false then bool else owners(h, v)

buildContext(h,'1) = �n

. . .

buildContext(h,'n) = �1

buildContext(h,↵ · '1 . . .'n)

Tthis = typeOf(h,↵)
T1 = typeOf(h, v1) . . . Tn = typeOf(h, vn)

� = (this 7! Tthis, x1 7! T1, . . . , xn 7! Tn)

buildContext(h, this 7! ↵, x1 7! v1, . . . , xn 7! vn) = �

C Topology Example

Consider the following code with three class declarations: an active class C, a passive D and the class
Main. An active object, instance of C, has three fields pointing to three objects in di↵erent locations
of type D. The class main creates three abstract (or symbolic) locations L1, L2, L3 and the body of the
main method.

act ive class Chp1 , p2 , p3i
d1 : Dhp1i
d2 : Dhp2i
d3 : Dhp3i

class Dhpi

class MainhL1 , L2 , L3i
def main () : n i l

as b w r i t e (L1 , L2) . w r i t e (L1 , L3) {
l e t x = new C hL1 , L2 , L3i in
l e t y = (x . d1 = new DhL1i) in
l e t z = (x . d2 = new DhL2i) in

x . d3 = new DhL3i
}

The topology after execution of the main method is depicted in the following figure. In the abstract

Figure 8: The ownership topology after the execution of the expression in the method main.

49

Behavioural types for NUMA Franco & Drossopoulou

location L1 there is an instance of class C and an instance of class D. Abstract locations L2 and L3 have
both an instance of class D. Although the programmer define 3 abstract locations, the machine might
have a di↵erent number of nodes. For instance, in a system with two di↵erent nodes, we could have the
mapping (L1 7! 1, L2 7! 2, L3 7! 2) between abstract locations and node identifiers, which means
that the objects in L1 are in the node 1, and objects from L2 and L3 are in the same node, as depicted
in Figure 9.

Figure 9: NUMA system with two di↵erent nodes

50

Broadcast and aggregation in BBC

Hans Hüttel1 and Nuno Pratas2

1 Department of Computer Science, Selma Lagerlöfs Vej 300, 9220 Aalborg Ø, Aalborg University,
Denmark

hans@cs.aau.dk
2 Department of Electronic Systems, Fredrik Bajers Vej 7, 9220 Aalborg Ø, Aalborg University,

Denmark
nup@es.aau.dk

Abstract

In this paper we introduce a process calculus BBC that has both forms of communication. For both

many-to-one and one-to-many communication, it is often a natural assumption that communication is

bounded; this reflects two distinct aspects of the limitations of a medium. In the case of broadcast, the

bound limits the number of possible recipients of a message. In the case of collection, the bound limits

the number of messages that can be received. For this reason, BBC uses a notion of bounded broadcast

and collection. Moreover, the syntax of the calculus introduces an explicit notion of connectivity that

makes it possible to represent a communication topology directly. By using a proof technique introduced

by Palamidessi we show that even a version of BBC that only uses collection is more expressive than

the ⇡-calculus.

1 Introduction

In the setting of distributed systems, interprocess communication will often be in the form of
multi-party communication. Here there are two dual paradigms: that of one-to-many commu-
nication, commonly denoted as broadcast, and that of many-to-one, denoted as aggregation or
collection.

Many-to-one communication is a commonly occurring phenomenon and often occurs in
settings with intricate network topologies. As an example consider the case of a smart grid
with thousands of meters (such as electricity, water, heating, etc . . .) that report their current
measurements. A central server somewhere will collect these data; however, the server will
usually not be directly reachable from the meters – there will be several intermediate hops,
each one facilitated by a relay. If the underlying protocol of the network is correct, we would
expect this complicated network to be semantically equivalent to a simple planar network, where
each node is at one-hop distance from the server.

There has already been considerable interest in understanding the semantic foundations
of one-to-many communication in the process calculus community, starting with the work by
Prasad [6] on a broadcast version of CCS. Later, Ene and Muntean extended the notion to a
broadcast version of the ⇡-calculus [1] and proved that this notion is strictly more expressive
than standard ⇡-calculus synchronization.

Other process calculi with a notion of broadcast arise in the search for behavioral models
of protocols for wireless networks. Singh et al. describe a process calculus with localities [9],
and Kouzapas and Philippou [4] introduce another process calculus with a notion of localities,
whose configuration can evolve dynamically.

In this paper we introduce a process calculus BBC that has both forms of communication.
For both many-to-one and one-to-many communication, it is often a natural assumption that
communication is bounded ; this reflects two distinct aspects of the limitations of a medium.

51

Broadcast and aggregation in BBC Hüttel and Pratas

M ::= x | S | (M1, . . . ,Mk

) | g(E) | f(M)

P ::= a (�~xM)P1 | a [�~xM.S]P1 | ahMi.P1 | (⌫x : �
x

)P1 | [M1 = M2]P1 | [M1 6= M2]P1 | (P1 | P2)

| (P1 + P2) | 0 | A
⇣
~M
⌘

E ::= {M1, . . . ,Mk

} | S

N ::= l[P] | (N1 | N2) | (⌫x : b)N | l .m

Table 1: Formation rules for BBC

In the case of broadcast, the bound limits the number of possible recipients of a message. In
the case of collection, the bound limits the number of messages that can be received. For
this reason, BBC uses a notion of bounded broadcast and collection. Moreover, the syntax of
the calculus introduces an explicit notion of connectivity that makes it possible to represent a
communication topology directly. By using a proof technique introduced by Palamidessi [5] we
show that even a version of BBC that only uses collection is more expressive than the ⇡-calculus.

The remainder of our paper is organized as follows. We start by introducing the syntax
of BBC in Section 2, followed by Section 3 where we provide an example of a broadcast and
collection protocol modeled using BBC. Then, in Section 4 we expose the reduction semantics.
In Section 5 we introduce a notion of barbed bisimilarity, which is then used in Section 6 to
prove the correctness of the exposed protocol example. Finally, in Section 7 we show that even
a version of BBC that only uses collection is more expressive than the ⇡-calculus.

2 The syntax of BBC

In this section we describe the syntax of BBC.

2.1 The syntactic categories

A central notion in BBC is that of names. Processes reside at named sites, called locations, and
use named channels for communication. We assume that names are taken from a countably
infinite set Names. In general, we denote names of channels by a, b, c . . ., names of locations by
l,m, n . . . and if nothing is assumed about the usage of the name we denote them by x, y, z

We let M 2 Msg range over the set of messages, let P range over the set of processes and
let N range over the set of networks. Since a collecting input (defined below) can receive a
multiset of messages, each coming from a distinct sender, we also consider multiset expressions

E and multiset variables S that can be instantiated to multiset expressions. The formation
rules defining the syntactic categories of BBC are given below.

2.2 Messages and patterns

For ordinary expressions we assume a collection of term constructors ranged over by f , that
build messages out of other messages. Moreover, we assume the existence of a collection of

52

Broadcast and aggregation in BBC Hüttel and Pratas

multiset selectors ranged over by g; these can be used to build messages out of multisets.
If a channel is to be chosen among a collection of candidate channels, we can use a multiset

selector to describe this.

Example 1. An example of a multiset selector is the function find-a that intuitively returns the

name a if this name occurs as the first component in a multiset of pairs of names and the name

k 6= a otherwise. This function is defined by find-a(S) = a if (a, x) 2 S for some x, otherwise
by k.

A practical example of interest is the election of a common channel in a ad-hoc network.
An important notion is that of an input pattern which is of the form (�~xM), where the

variable names in ~x are distinct and occur free in M . A message O matches this pattern, if it
can be obtained from it through substitution.

More formally, a term substitution is a finite function ✓ : Names ! Msg. The substitution
can also be written as a list of bindings ✓ = [x1 7! M1, . . . , xk

7! M
k

]. The action of ✓ on an
arbitrary message or multiset expression is defined in the expected way. M 0 is said to match
(�~xM) with ✓ if for a substitution ✓ with dom(✓) = ~x if M 0 = M✓ is true.

2.3 Processes

In a collecting communication setting, the receiver can make no assumption about the number
of messages that will be received, nor on the order in which they are received. Moreover, we
cannot assume that a message that has arrived will only occur once among the messages received
during a single collecting communication. We shall therefore think of a collecting input as the
reception of a multiset of messages.

There are two kinds of input prefixes in BBC:

• The broadcast input a (�~xM)P1 in which a single term matching the pattern (�~xM) is
received on the channel a. The pattern variables in ~x are bound in P1 and get instantiated
with the appropriate subterms that correspond to the pattern.

• The collection input a [�~xM.S]P1 in which a non-empty multiset of terms {M1, . . . ,MK

}
each of which matches the pattern [�~xM] is received on the channel a. Note that in this
case the scope of the pattern variables in ~x does not extend to P1. Following the input,
the multiset variable S is instantiated to the multiset {M1, . . . ,MK

}.
In a restriction (⌫x : �

x

)P1 the bounded capacity of the bound name x is described by the
function �

x

, where �
x

: Names ! N is a function such that for any location name m we have
that �

x

(m) = k, if it is the case that for a process located at m there are at most k senders
that are able to send a message to (in the case of collection) or receive from (in the case of
broadcast) using the channel x. For free names their capacity bound is given by a function
b : Names⇥Names ! N; we return to this in Section 4.

The remaining process constructs are standard. The output process ahMi.P1 sends out
the message M on the channel named a and then continues as P1. Match [M1 = M2]P1 and
mismatch [M1 6= M2]P1 proceed as P1 if M1 and M2 are equal, respectively distinct. Parallel

composition P1 | P2 runs the components P1 and P2 in parallel. Nondeterministic choice P1+P2

can proceed as either P1 or P2; inaction 0, has no behavior.
Finally, we allow agent identifiers A(~M) parameterized by a sequence of messages; an iden-

tifier must be defined using an equation of the form A(~x)
def
= P . The only names free in P must

be the parameters found in ~x, that is fn(P) ✓ ~x. Definitions of this form can be recursive, with
occurrences of A(~x) (with names in ~x instantiated by concrete messages) occurring within P .

53

Broadcast and aggregation in BBC Hüttel and Pratas

Restriction and broadcast input are name binders; for a process P , the sets of free names

fn(P) and bound names bn(P) of P are defined as expected. For collection input we define

bn(a [�~xM S]P1) = bn(P1)

Replication, denoted as ! P , is a derived construct in BBC; a replicated process ! P is
expressed by the agent identifier A

P

whose defining equation is A
P

= P | A
P

and should
therefore be thought of as an unbounded supply of parallel copies of P .

2.4 Networks

As in the distributed ⇡-calculus [7] a parallel composition of located processes is called a network.
According to the formation rules, a network N can be a process P running at location l, which
is denoted as l[P]. We also allow parallel composition P1 | P2 and restriction (⌫x)N at network
level. Moreover, the neighborhood predicate l . k denotes that location l is close to k.

For the neighbourhood predicate, parallel composition is thought of as logical conjunction.
So, if l and k are close to each other, then l ./ m can be written instead of l .m|m . l.

For any term M , the set of free names fn(M) is defined in the standard way.
The usual notions of ↵-conversion also apply here. We write P1 ⌘

↵

P2 if P1 can be obtained
from P2 by renaming bound names in P2, and likewise we write N1 ⌘

↵

N2 if N1 can be obtained
from N2 by renaming bound names in N2.

3 A hierarchical protocol

In this section we outline how one can use BBC to describe a distributed protocol that in-
volves both collection and broadcast. The protocol itself is generic but representative of the
current trend in distributed communication systems with a large number of devices and very
few controlling/central entities. In essence, this protocol uses tra�c collection in the upstream
direction, i.e. from the leaves to the central entity, and tra�c broadcast in the downstream
direction, i.e. from the central entity to the leaf nodes.

Figure 1 shows the multi-level network topology assumed for this protocol; the topology is
that of a tree. Each level of the network is connected to the one above through a local collection
and broadcast node, which we simply denote as local central node. This node is then a leaf
node of the above level, e.g. the nodes denoted as C1 are leaf nodes of the level l0, while being
the local central nodes at each of the locations of li1, which for ease of notation we denote solely
as l1. We assume that there can be at most � nodes connected to every central node, meaning
that the bound of every channel should be �.

The goal of the distributed protocol is to collect information from all leaf nodes in the
network; and then communicate it to a central entity, denoted as C0. The central entity C0,
then reaches a global decision, which is then communicated to the leaf nodes. For simplicity,
we assume that this decision only depends on the data collected from the leaves.

3.1 The n-level protocol in BBC

In what follows, we define the components of the network and protocol inductively. We assume
the network to have n levels or depth n, where level 0 corresponds to the central entity, while
level n denotes the level where all the leaf nodes are.

One of the sub-networks of the n-level protocol at level k, as depicted in Figure 1, is composed
by m nodes and a local central node C

k

. We denote this sub-network by the agent identifier

54

Broadcast and aggregation in BBC Hüttel and Pratas

C0

C1 C1 C1

C2 C2 C2 C2 C2 C2 C2

Figure 1: A multi-level network.

Dk,n (a0
k

, a00
k

, b0
k

, b00
k

,L, `
k�1) where L is a set of locations and `

k�1 is the local central location
at k � 1 level. The other name parameters are

• a0
k

, a00
k

- names of the channels used for communications at location l
k

, i.e. between the
leaf nodes and the local central entity; the names transmitted are collected by the central
node at level k + 1.

• b0
k

, b00
k

- names of the channels that the local central entity uses to communicate to the local
central entity for which it is a lead, i.e. the channel over which the local central entity C

k

communicates with the local central entity C
k�1. The names transmitted are broadcast

to the child nodes of the local central (at level k � 1).

• L is the set of nodes at this level.

At the leaf level, k = 0 we have,

D0,n(a00, a
00
0 , b

0
0, b

00
0L, `0)

def
=

Y

`i2L
`
i

[P
i

(a00, a
00
0)] |

Y

`i2L
`
i

. `1 | `0[C0(a00, a
00
0 , b

0
0, b

00
0)]

The subprocess P
i

where `
i

2 L is defined by

P
i

(a00, a
00
0)

def
= (⌫!

i

)a00h!i

i.a000(z).(Qi

(z) | P
i

(a00, a
00
0))

where Q
i

(z) depicts the computation that occurs at the leaf `
i

; we shall not describe this here
and !

i

is the local name that is the contribution made by the process.
The local central node is defined by

C0,n(a0, a00, b0, b00)
def
= a0(S).b0hf(S)i.b00(z).a00hzi.C0,n(a0, a00, b0, b00)

This process will receive names that are collected to the set S and then pass the processed
information f(S) upwards on the b channel. After this, the local central node waits for a
response to the information sent and passes on the received name to its children.

55

Broadcast and aggregation in BBC Hüttel and Pratas

The selection function f : P(N) ! N processes the messages received from the leaf nodes
and selects a name; this could be e.g. a channel estimate. We require that selection is idempotent

in the sense that for any family of multisets S1, . . . , Sk

we have

f({f(S1), . . . , f(Sk

)}) = f([k

i=1Si

)

If we think of names as natural numbers, the function f(S) = min
x2S

x is an example of an
idempotent selection function.

For intermediate levels, 0 < k < n, Dk (a
k

, b
k

, `
k

, `
k�1) is defined as follows,

Dk+1,n(a0
k+1, a

00
k+1, b

0
k+1, b

00
k+1,L, `k+1)

def
= (⌫~̀, a0

k

: �, a00
k

: �, b0
k

: �, b00
k

: �)
0

@
Y

Li2Locs(L,k)

Dk,n(a0
k

, a00
k

, b0
k

, b00
k

,L
i

, `
i

) |
mY

i=1

`
i

. `
k

| `
k+1[C

k+1(a0
k

, a00
k

, b0
k

, b00
k

)]

!

where the set of locations Locs(L, k) can be partitioned as Locs(L, k) =
S

i2I

L
i

where I is some
index set and L

i

\ L
j

= ; for all i 6= j and i, j 2 I. m0
i

is the number of neighbours in the i’th

sub-network found at level k + 1 and `
i

2 ~̀.
The definition of local central nodes is (for k < n)

Ck,n((a
k

, b
k

)
def
= a

k

(S).b
k

hf(S)i.b
k

(z).a
k

hzi.(Q
c

(z) |Ck(a
k

, b
k

))

Finally, at level n the information collected from all the leaf nodes reaches the central entity,
where the final processing of the received information is performed. The description of the entire
network Dn is Dn,n

m

(a0, `c), defined as

Dn,n(a0
n

, a00
n

, b0
n

, b00
n

, `
n

)

def
= (⌫~̀, a0

n�1 : �, a00
n�1 : �, b0

n�1 : �, b00
n�1 : �)

0

@
Y

Li2Locs(L,n)

D1,n
m

0
i
(a0

n�1, a
00
n�1, b

0
n�1, b

00
n�1,Li

, `
n

) |

mY

i=1

`
i

. `0 | `0[Cn(a0
n

, a00
n

, b0
n

, b00
n

)]

!

Here the central entity will collect the estimates from its children and then broadcast back the
value of the selection.

Cn,n(a0
n

, a00
n

, b0
n

, b00
n

)
def
= a0

n

(S).b0
n

hf(S)i.Cn,n(a0
n

, a00
n

, b0
n

, b00
n

)) (1)

4 The semantics of BBC

In this section we give a reduction semantics of BBC.

4.1 Evaluation of message terms

In our semantics, we rely on an evaluation relation ; defined for both message terms and
multiset expressions.

56

Broadcast and aggregation in BBC Hüttel and Pratas

Example 2. Assume that our set of function symbols contains the projection function which

extracts the first coordinate of a pair of names and that this is the only function symbol that

can lead to evaluation. The evaluation relation can then be defined by the axiom

first(x, y) ; x

and the rules

M ; M 0

{|M, . . . |} ; {|M 0, . . . |}
M ; M 0

f(M) ; f(M 0)

E ; E0

g(E) ; g(E0)

A message term M is normal if M 6; M1 for any M1.

4.2 Structural congruence and normal form

Structural congruence ⌘ is defined for both processes and networks; two processes (or networks)
are related, if they are identical up to simple structural modifications such as the ordering of
parallel components.

Most axioms defining ⌘ are omitted here, as they are standard and identical to those for
the distributed ⇡-calculus [7]. The most interesting axiom is

l[P | Q] ⌘ l[P] | l[Q]

since this lets us fuse located processes that have the same location name.
By using the laws of structural congruence, any network can be rewritten to normal form.

Informally, a network is in normal form if it consists of the total neighborhood information
as one parallel component and the location information as the other. In the following, the
notation

Q
i2I

P
i

is used to denote iterated parallel composition, i.e. the parallel composition
of P1, . . . , Pk

, where I = {1, . . . , k}.

Definition 1. A network N is in normal form if N = (⌫ ~m)(C |
Q

k2K

l
k

[P
k

]) where C =Q
i2I

Q
j2I\{i} li .mj

.

We write l .m 2 C if C ⌘ l .m | C0 for some C0. It is easy to see that any network N can
be rewritten into normal form.

Theorem 1. For any network N , there exists a network N1 such that N1 ⌘ N and N1 is on

normal form.

Proof. Induction in the structure of N . The proof is similar to that for the ⇡-calculus [8]; the
idea is to use the scope extension axioms to push out restrictions while ↵-converting bound
names whenever needed.

4.3 The reduction relation

We now present a reduction semantics of BBC. We assume that free names have their capacity
found given by a function b : Names ⇥ Names ! N and that b(a, l) = k denotes that there
are at most k recipients that can receive a message broadcast on channel a. In our reduction
rules, we assume that network terms are on normal form, as defined above. The rules are given
in Table 2. We call a location that contains an available input a receiving location for channel a
and a location which contains an available output a sending location. For broadcast, we require
that if the number of receiving locations for a channel a exceeds the bound b(a, l) for a (or

57

Broadcast and aggregation in BBC Hüttel and Pratas

(R-Broadcast)

(⌫~n : ~�)(C | l[ahMi.P
k

] |
Q

k

i=1 mi

[a (�~xM 0
i

)Q
i

] | N1)

�!
(⌫~n : ~�)(C | l[P

k

] |
Q

k

i=k

0+1 mi

[a (�~xM 0
i

)Q
i

] |
Q

k

0

i=1 m`

[Q
i

✓
i

] | N1)

where l .m
i

2 C for all 1 i k and either

(1) a 62 ~n, k0 |{m
`

| l
k

.m
`

2 C}| b(a, l) for all ` 2 L, or

(2) a 2 ~n, k0 |{m
`

| l
k

.m
`

2 C}| �
a

(l) for all ` 2 L,

and for all 1 i k0 we have M = M 0
i

✓
i

for some ✓
i

,

(R-Local)

(⌫~n : ~�)(C | D | l[ahMi.P | a (�~xM 0)Q | P 0] | N1)

�!
(⌫~n : ~�)(C1 | D1 | l

k

[P | Q✓ | P 0] | N1)

where M = M 0✓ for some ✓

(R-Collect)

(⌫~n : ~�)(C |
Q

k2K

l
k

[ahM
k

i.P
k

| P 0
k

] | m[a [�~xM.S]Q
`

] | N1)

�!
(⌫~n : ~�)(C |

Q
k2K

l
k

[P
k

| P 0
k

] | m[Q
`

[S 7! {|M1, . . . ,M|K| |}] | N1)

where l
j

.m 2 C for all j 2 K and either

(1) a 62 ~n, and 1 |K| b(a,m) or

(2) a 2 ~n and 1 |K| �
a

(m)

and for all j 2 K we have M
j

= M✓
`

for some ✓
`

Table 2: Reduction rules for communication in BBC networks on normal form, assuming con-
nectivity b(a,m)

�
a

(m), if a is a bound name), then at most b(a, l) receiving locations can receive the message.
All other receiving locations do not receive anything and will still be waiting for an input. Each
of the receiving locations must be connected to the sending location l. This is captured by the
rule (R-Broadcast).

For collection, the number of locations that can simultaneously send messages on a channel
a cannot exceed the bound b(a, l) for a (or �

a

(m), if a is a bound name). Moreover, each
sending location must be connected to the receiving location m. This is captured by the rule
(R-Collect). Finally, the reduction rule (R-Local) describes local communication within
the confines of a single location.

Example 3. Consider the network

N = l1 . l3 | l2 | l3 | l1[ah(a, b)i]paral2[ah(c, b)i] | l3[a [�x(x, b).S] .dhfind-a(S)i]

Assume that b(a) = 2. This network consists of three locations. Location l1 o↵ers an output

on the a-channel of the pair (a, b), and location l2 o↵ers an output on the a-channel of the pair

(c, b). At location l3 we have a process that on the channel a will receive a set of messages, all

of which are of the form (x, b) for some x, and subsequently output a if one of the pairs received

contained a.

58

Broadcast and aggregation in BBC Hüttel and Pratas

We have N ! l1 . l3 | l2 | l3 | l1[0] | l2[0] | l3[dhai].

5 Bisimilarity in BBC

5.1 Barbs

In our treatment of bisimilarity, we define an observability predicate (aka barbs) We write
P #

a,B

if P admits a broadcast observation on channel a, and ` P #
a,C

if P admits a collection
observation on channel a. We can define a similar predicate for networks. We write N #

a,d

@l
if N allows a barb #

a,d

at location l. Table 3 contains the most interesting rules.

(Inp-B) a (�~xM)P1 #
a,B

(Inp-C) a [�~xM.S]P1 #
a,C

(Outp) ahMi.P #
a,d

(Par)
P1 #

a,d

P1 | P2 #
a,d

(New)
P1 #

a,d

(⌫x : �
n

)P1 #
a,d

x 6= a (Locate)
P #

a,d

l[P] #
a,d

@`

(Cong)
N1 #

a,d

@l N1 ⌘ N

N #
a,d

@l

Table 3: Selected rules for barbs

Definition 2. A weak barbed bisimulation R is a symmetric binary relation on networks which

satisfies that whenever N1RN2 we have

1. If N1 ! N 0
1 then for some N 0

2 we have N2 !⇤ N 0
2 where N 0

1RN 0
2

2. For every location l, if N1 #
a,d

@l then also N2 #
a,d

@l

We write N1
·⇡ N2 if N1RN2 for some weak barbed bisimulation R.

Theorem 2. Weak barbed bisimilarity is an equivalence.

As in other process calculi, the notion of barbed bisimilarity is unfortunately not a congru-
ence, as it is not preserved under parallel composition.

Two networks are weak barbed congruent if they are barbed bisimilar in every parallel
context, i.e. no surrounding network can tell them apart.

Definition 3. We write N1 ⇡ N2 if for all networks N we have that N1 | N ·⇡ N2 | N

6 Correctness of the hierarchical protocol

Let us now return to the hierarchical protocol from Section 3. We would like the multi-level
network that serves K leaf nodes to be equivalent to a single-level network containing the same
K leaf nodes but now connected to a single central entity.

59

Broadcast and aggregation in BBC Hüttel and Pratas

To this end we define the flattened version of a hierarchical network N , denoted flat(N, `).
This is precisely a network in which all nodes are connected to the same central node at location
`.

This operation is defined inductively as follows.

flat(D0,n(a00, a
00
0 , b

0
0, b

00
0 ,L, `0), `)

def
=

D0,n(a00, a
00
0 , b

0
0, b

00
0 ,L, `0)flat(Dk+1,n(a0

k+1, a
00
k+1, b

0
k+1, b

00
k+1,L, `k+1), `)

def
=

(⌫~̀, a0
k

, a00
k

, b0
k

, b00
k

)

0

@
mY

Li2Locs(L,k)

flat(Dk,n(a0
k

, a00
k

, b0
k

, b00
k

,L
i

, `
i

)) |
mY

i=1

`
i

. `

1

Awhere 0 < k < n

Theorem 3. For every n � 0, for every set of distinct names {a00, a000 , b00, b000} and set of locations

L we have

D0,n(a00, a
00
0 .b

0
0, b

00
0 ,L, `)

·⇡ flat(D0,n(a00, a
00
0 , b

0
0, b

00
0 ,L, `), `)

7 The expressive power of BBC

There is no compositional encoding of BBC into the ⇡-calculus. In the presence of broadcast
this follows from the negative result due to Ene and Muntean [1]. However, the result also holds
if we only consider collection. The following criteria for compositionality are due to Palamidessi
[5] and Ene and Muntean [1].

Definition 4. An encoding [[]] is compositional if

1. [[N1 | N2]] = [[N1]] | [[N2]].

2. For any substitution � we have [[N�]] = [[N]]�

3. If N !⇤ N 0
then [[N]] !⇤ [[N 0]].

4. If [[N]] !⇤ M then [[N]] !⇤ M !⇤ [[N 0]] for some N 0
.

A central notion in the study of process calculi is that of an electoral system. This is a
network in which the participants perform a computation that elects a unique leader. Following
[5, 1], our definition assumes a network in which the names used are the ‘natural names’ that
represent the identity of the n processes in the network.

Definition 5 (Electoral system). A network N = P1 | · · · | P
n

is an electoral system if for

every computation C, there exists an extension C 0
of C, and an index k 2 {1, . . . , n} such that

for every i 2 {1, . . . , n} the projection C 0
i

contains exactly one output action of the form k and

any trace of a P
i

may contain at most one action of the form l with l 2 {1, . . . , n}.

We now describe such a system in BBC. The system uses a common channel a whose bound
is n, where n is the number of principals. The idea is to collect names until n sets of names
have been collected. The first to do so sends out a success announcement to everyone in the
form of a name chosen(m); the collection function g(S) is defined to select the name with the
minimal index among the names of S unless S contains one or more occurrences of a name of
the form chosen(m0) for some m. Thus, the first component to receive su�ciently many names
from all other components chooses the leader.

Our network is of the form

N =
nY

i=1

l[l
i

]P
i

|
nY

i=1

mY

j=1,j 6=i

l
i

. l
j

60

Broadcast and aggregation in BBC Hüttel and Pratas

We define the n components as follows:

P
i

def
= ahii.a [�x.S1] . . . a [�x.Sk

]ahchosen(g({{g(S1), . . . g(Sk

)}}))i.P

The selection function is defined by

g(S) =

(
min

x2S

x if S ✓ {1, . . . , n}
chosen(n) if chosen(n) 2 S

As there is no such electoral system for the ⇡-calculus [5], we can use the same proof as that
given by Ene and Muntean to conclude that there can be no composition encoding of BBC in
the ⇡-calculus.

8 Directions for further work

In this paper we have presented the BBC calculus, which is a distributed process calculus
that generalizes the ⇡-calculus with notions of channels with bounded forms of broadcast and
collection and an explicit notion of connectivity.

The present work only considers barbed bisimulation; it is well-known that this relation is not
preserved by parallel composition and that the notion of barbed congruence does not lend itself
well to co-inductive proof techniques. Further work includes finding a labeled characterization
of barbed congruence; this requires a labeled transition semantics in the spirit of [1].

At present, we informally distinguish between channels for broadcast and collection. An
interesting direction of work is to develop a type system that will allow the same channel to be
used in both modes and according to a protocol. This is similar to the idea of dyadic session
types [2], and a further step in this direction is to study multiparty session types [3] and how
projection to dyadic session types can defined in the setting of BBC.

References

[1] Cristian Ene and Traian Muntean. A broadcast-based calculus for communicating systems. In
Proceedings of IPDPS’1. IEEE Computer Society, 2001.

[2] Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language primitives and type
discipline for structured communication-based programming. In ESOP, volume 1381 of LNCS,
pages 122–138. Springer, 1998.

[3] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types. In
George C. Necula and Philip Wadler, editors, POPL, pages 273–284. ACM, 2008.

[4] Dimitrios Kouzapas and Anna Philippou. A process calculus for dynamic networks. In Roberto
Bruni and Juergen Dingel, editors, Formal Techniques for Distributed Systems, volume 6722 of
Lecture Notes in Computer Science, pages 213–227. Springer Berlin Heidelberg, 2011.

[5] Catuscia Palamidessi. Comparing the expressive power of the synchronous and asynchronous pi-
calculi. MSCS, 13(5):685–719, 2003.

[6] K. V. S. Prasad. A calculus of broadcasting systems. Sci. Comput. Prog., 25(2-3):285–327, 1995.

[7] James Riely and Matthew Hennessy. A typed language for distributed mobile processes (extended
abstract). In POPL, pages 378–390, 1998.

[8] Davide Sangiorgi and David Walker. The ⇡-Calculus: A Theory of Mobile Processes, Cambridge
University Press, 2001.

[9] Anu Singh, C. R. Ramakrishnan, and Scott A. Smolka. A process calculus for mobile ad hoc
networks. Science of Computer Programming, 75(6):440–469, 2010.

61

Broadcast and aggregation in BBC Hüttel and Pratas

62

Communicating machines as a dynamic binding
mechanism of services*

Ignacio Vissani1, Carlos Gustavo Lopez Pombo1,2, and Emilio Tuosto3

1 Department of computing, School of Science, Universidad de Buenos Aires
2 Consejo Nacional de Investigaciones Cientı́ficas y Tecnolópicas

3 Department of Computer Science, University of Leicester

Abstract

Distributed software is becoming more and more dynamic to support applications able to respond and adapt to
the changes of their execution environment. For instance, service-oriented computing (SOC) envisages applications
as services running over globally available computational resources where discovery and binding between them
is transparently performed by a middleware. Asynchronous Relational Networks (ARNs) is a well-known formal
orchestration model, based on hypergraphs, for the description of service-oriented software artefacts. Choreography
and orchestration are the two main design principles for the development of distributed software. In this work, we
propose Communicating Relational Networks (CRNs), which is a variant of ARNs, but relies on choreographies for
the characterisation of the communicational aspects of a software artefact, and for making their automated analysis
more efficient.

1 Introduction and motivation
Distributed software is becoming more and more dynamic to support applications able to respond and
adapt to the changes of their execution environment. For instance, service-oriented computing (SOC)
envisages applications as services running over globally available computational resources; at run-time,
services search for other services to bind to and use. Software architects and programmers have no
control as to the nature of the components that an application can bind to due to the fact that the discovery
and binding are transparently performed by a middleware.

Choreography and orchestration are the two main design principles for the development of dis-
tributed software (see e.g., [6]). Coordination is attained in the latter case by an orchestrator, specifying
(and possibly executing) the distributed work-flow. Choreography features the notion of global view,
that is a holistic specification describing distributed interactions amenable of being “projected” onto
the constituent pieces of software. In an orchestrated model, the distributed computational components
coordinate with each other by interacting with a special component, the orchestrator, which at run time
decides how the work-flow has to evolve. For example the orchestrator of a service offering the booking
of a flight and a hotel may trigger a service for hotel and one for flight booking in parallel, wait for the
answers of both sites, and then continue the execution. In a choreographed model, the distributed com-
ponents autonomously execute and interact with each other on the basis of a local control flow expected
to comply with their role as specified in the “global viewpoint”. For example, the choreography of
hotel-flight booking example above could specify that the flight service interacts with the hotel service
which in turns communicates the results to the buyer.

We use Asynchronous relational networks (ARNs) [8] as the basis of our approach. In ARNs, sys-
tems are formally modelled as hypergraphs obtained by connecting hyperarcs which represent unit of

*This work has been supported by the European Union Seventh Framework Programme under grant agreement no. 295261
(MEALS)

63

Communicating machines as a dynamic binding mechanism of services Vissani, Lopez Pombo, Tuosto

computations and communication. More precisely, hyperarcs are interpreted as either processes (ser-
vices or unit of computation) or as communication channels (unit of communication). The nodes can
only be adjacent to: 1. 1. one process hyperarc and one communication hyperarc, meaning that the com-
putation formalised by the process hyperarc is bound through the communication channel formalised
by the communication hyperarc, 2. one process hyperarc, meaning that it is a provides-points through
which the computation formalised by the process hyperarc can be bound to and activity that requires
that particular service, or 3. one communication hyperarc, meaning that it is a requires point to which
a given service can be bound using one of its provides-points. The rationale behind this separation
is that a provides-point yields the interface through which a service exports its functionality while a
requires-point is the interface through which an activity expects certain service to provide a functional-
ity. Composition of services can then be understood as fusing a provides-point with a requires-point in
a way that the service exported by the former satisfy the expectations of the latter, usually formalised as
contracts in some formal language.

Hyperarcs are labelled with (Müller) automata; in the case of process hyperarcs, automata formalise
the interactions carried out by that particular service while, in the case of communication hyperarcs,
they represent the orchestrator coordinating the behaviour of the participants of the communication. In
fact, the automaton ⇤ associated to a communication hyperarc coordinates the processes bound to its
ports by, at each time, interacting with one of the processes and deciding, depending on the state ⇤ is
in, what is the next interaction (if any) to execute. The global behaviour of the system is then obtained
by composing the automata associated to process and communication hyperarcs. In the forthcoming
sections we will introduce a running example to show how definitions work and concretely discuss the
contributions of the present work.

As anticipated, the composition of ARNs yields a semantic definition of a binding mechanism of
services in terms of “fusion” of provides-points and requires-points. Once coalshed, the nodes become
“internal”, that is they are no longer part of the interface and cannot be used for further bindings. In
existing works, like [8], the binding is subject to an entailment relation between linear temporal logic [7]
theories attached to the provides- and requires-points that can be checked by resorting to any decision
procedure for LTL (for example, [4])

Although the orchestration model featured by ARNs is rather expressive and versatile, we envisage
two drawbacks:

1. the binding mechanism based on LTL-entailment establishes an asymmetric relation between
requires-point and provides-point as it formalises a notion of trace inclusion; also,

2. including explicit orchestrators (the automaton labelling the communication hyperarcs), in the
composition, together with the computational units (the automaton labelling the process hyperarcs)
increases the size of the resulting automaton making the analysis more expensive.

In the present work we propose Communicating Relational Networks (CRNs), a variant of ARNs
relying on choreographies to overcome those issues, where provides-points are labelled with Communi-
cating Finite State Machines [2] declaring the behaviour (from the communication perspective) exported
by the service, and communication hyperarcs are labelled with Global Graphs [3] declaring the global
behaviour of the communication channel. In this way, our proposal blends the orchestration framework
of ARNs with a choreography model based on global graphs and communicating machines. Unlike most
of the approaches in the literature (where choreography and orchestration are considered antithetical),
we follow a comprehensive approach showing how choreography-based mechanisms could be useful in
an orchestration model.

The present work is organised as follows; in Section 2 we provide the formal definitions of most of
the concepts used along this paper. Such definitions are illustrated with a running example introduced in
Section 3. In Section 4 we introduce the main contribution of this paper, being the definition of CRNs,
we show how they are used to rewrite the running example and we discuss several aspects regarding the

64

Communicating machines as a dynamic binding mechanism of services Vissani, Lopez Pombo, Tuosto

design-time checking to assert internal coherence of services, the run-time checking ruling the binding
mechanism and the cost of software analysis. Finally, in Section 5 we draw some conclusions and
discuss some further research directions.

2 Preliminaries
In this section we present the preliminary definitions used throughout the rest of the present work. We
first summarise communicating machines and global graphs borrowing definitions from [5] and from [3].
Finally we introduce some basic definitions in order to present ARNs; the definition here are adapted
from [8].

2.1 Communicating machines and global graphs
Communicating machines were introduced in [2] to model and study communication protocols in terms
of finite transition systems capable of exchanging messages through some channels. We fix a finite set
Msg of messages, a finite set P of participants

Definition 1 ([2]). A communicating finite state machine on Msg (CFSMs, for short) is a finite transi-
tion system (Q,C, q0,Msg, �) where

• Q is a finite set of states;

• C = {pq ∈ P2 � p �= q} is a set of channels;

• q0 ∈ Q is an initial state;

• � ⊆ Q × (C × {!, ?} ×Msg) ×Q is a finite set of transitions.
A communicating system is a map S assigning a CFSM S(p) to each p ∈ P. We write q ∈ S(p) when q
is a state of the machine S(p) and likewise and t ∈ S(p) when t is a transition of S(p).

The execution of a system is defined in terms of transitions between configurations as follows:

Definition 2. The configuration of communicating system S is a pair s = (→q , →w) where
→
q = (qp)p∈P

where qp ∈ S(p) for each p ∈ P and
→
w = (wpq)pq∈C with wpq ∈ Msg�. A configuration s′ = (→q′, →w′) is

reachable from another configuration s = (→q , →w) by the firing of the transition t (written s
t→ s′) if there

exists m ∈Msg such that either:

1. t = (qp,pq!m, q′p) ∈ �p and

(a) q′p′ = qp′ for all p′ �= p; and
(b) w′pq = wpq ⋅m and w′p′q′ = wp′q′ for all p′q′ �= pq; or

2. t = (qq,pq?m, q′q) ∈ �q and

(a) q′p′ = qp′ for all p′ �= q; and
(b) m ⋅w′pq = wpq and w′p′q′ = wp′q′ for all p′q′ �= pq

A global graph is a finite graph whose nodes are labelled over the set L = {�,�,�,�} ∪ {s → r ∶
m � s, r ∈ P ∧m ∈Msg} according to the following definition.

Definition 3. A global graph (over P and Msg) is a labelled graph �V,A,⇤� with a set of vertexes V ,
a set of edges A ⊆ V × V , and labelling function ⇤ ∶ V → L such that ⇤−1(�) is a singleton and, for
each v ∈ V

65

Communicating machines as a dynamic binding mechanism of services Vissani, Lopez Pombo, Tuosto

1. if ⇤(v) is of the form s→ r ∶ m then v has a unique incoming and unique outgoing edges,
2. if ⇤(v) ∈ {�,�} then v has at least one incoming edge and one outgoing edge and,
3. ⇤(v) =� then v has zero outgoing edges.

Label s→ r ∶ m represents an interaction where machine s sends a message m to machine r. A vertex
with label� reperesents the source of the global graph,� represents the termination of a branch or of a
thread, � indicates forking or joining threads, and � marks vertexes corresponding to branch or merge
points, or to entry points of loops.

In the following we use a projections algorithms that given a global graph retrieves communicating
machines for each of its participants. Undestranding such algorithm is not necessary for the sake of this
paper and the interested reader is referred to [5] for its definition.

2.2 Asynchronous relational networks
A Müller automaton is a finite state automaton where final states are replaced by a family of states to
define an acceptance condition on infinite words.

Definition 4 (Müller automaton). A Müller automaton over a finite set A of actions is a structure of the
form �Q,A,�, I,F� , where

1. Q is a finite set (of states)

2. � ⊆ Q ×A ×Q is a transition relation (we write p
◆�→ q when (p, ◆, q) ∈�),

3. I ⊆ Q is the set of initial states, and
4. F ⊆ 2Q is the set of final-state sets.

We say that an automaton accepts an inifinite trace ! = q0
◆0�→ q1

◆1�→ . . . if and only if q0 ∈ I and
there exists i ≥ 0 and S ∈ F such that for all s ∈ S, the set �i≤j∧qj=s{j} is infinite.

Asynchronous relational networks are hypergraphs connecting ports that can be thought of as com-
munication end-points through which messages can be sent to or received from other ports.

Definition 5 (Port). A port is a structure ⇡ = �⇡+,⇡−� where ⇡+,⇡− are disjoint finite sets of messages.
We say that two ports are disjoint when they are formed by componentwise disjoint sets of messages.
The actions over ⇡ are A⇡ = {m! �m ∈ ⇡−} ∪ {m¡ �m ∈ ⇡+}.

The computational agents of ARNs are processes formalised as a set of ports togetherr with a Müller
automaton describing the communication pattern of the agents.

Definition 6 (Process). A process ��,⇤� consists of a set � of pairwise disjoint ports and a Müller
automaton ⇤ over the set of actions A� = �⇡∈� A⇡ .

Processes are connected through connections whose basic role is to establish relations among the
messages that processes exchange on the ports of processes and communication hyperedges. Intuitively,
one can thing of the messages used by processes and communication hyperedges as ’local’ messages
whose ’global’ meaning is established by connections.

Definition 7 (Connection). Given a set of pairwise disjoint ports �, an attachment injection on � is a
pair �M,µ� where and a finite set M of messages and µ = {µ⇡}⇡∈� is a family of finite partial injections
µ⇡ ∶M ⇀ ⇡− ∪ ⇡+. We say that �M,µ,⇤� is a connection on � iff �M,µ� is an attachment injection on
� and a Müller automaton ⇤ over {m! �m ∈M} ∪ {m¡ �m ∈M} such that:

µ−1⇡ (⇡−) ⊆ �
⇡̂∈��{⇡}

µ−1⇡̂ (⇡̂+) and µ−1⇡ (⇡+) ⊆ �
⇡̂∈��{⇡}

µ−1⇡̂ (⇡̂−).
for each ⇡ ∈ �.

66

Communicating machines as a dynamic binding mechanism of services Vissani, Lopez Pombo, Tuosto

Definition 8 (Asynchronous Relational Network [8]). Let M be a finite set of messages. An asyn-
chronous relational net ↵ on M is a structure �X,P,C,{⇡x}x∈X ,{µc}c∈C ,{�}x∈X ,{⇤e}e∈P∪C� where

• �X,P ∪C� is a hypergraph, with X is a (finite) set of vertexes, P is a set of hyperedges (non-empty
subsets of X) computation hyperedges, and C is a set of communication hyperedges such that X ,
P , and C are pairwise disjoint, no adjacent hyperedges belong to the same partition,

• three labelling functions that assign (a) a port ⇡x with messages in M to each point x ∈ X ,
(b) a process ��p,⇤p� to each hyperedge p ∈ P such that �p ⊆ {⇡x}x∈X , and (c) a connection�Mc, µc,⇤c� to each hyperedge c ∈ C.

An ARN with no provides-point is called activity and formalises the notion of a software artefact that
can execute, while an ARN that has at least one provides-point is called a service and can only execute
provided it is bound through one of them to a requires-point of an activity.

3 The running example
The following running example will help us to present intuitions behind the definitions, and later, to
introduce and motivate our contributions. Consider an application providing the service of hotel reser-
vation and payment processing. A client activity TravelClient asks for hotel options made available by a
provider HotelsService returning a list of offers. If the client accepts any of the offers, then HotelsService
calls for a payment processing service PaymentProcessService which will ask the client for payment
details, and notify HotelsService whether the payment was accepted or rejected. Finally, HotelsService
notifies the outcome of the payment process to the client.

Figures 1, 2, and 3 show the ARNs (including the automata), for the TravelClient, HotelsService,
and PaymentProcessService respectively. The ARN in Fig. 1(a) represents an activity composed with a
communication channel. More precisely, TravelClient (in the solid box on the left) represents a process
hyperedge whose Müller automaton is ⇤TC (depicted in Fig. 1(b)). The solid “y-shaped” contour em-
bracing the three dashed boxes represents a communication hyperedge used to specify the two requires-
points (i.e., HS and PPS) of the component necessary to fulfill its goals. Note that such ARN does not
provide itself any service to other components and that the dashed box lists the outgoing and incoming
messages expected (respectively denoted by names prefixed by ’+’ and ’-’ signs).

It is worth remarking that communication hyperarcs in ARNs yield the coordination mechanism
among a number of services. In fact, a communication hyperarc enables the interaction among the ser-
vices that bind to its requires-points such as TravelClient, HotelsService, and PaymentProcessService in
our example. The coordination is specified through a Müller automaton associated with the communi-
cation hyperarc that acts as the orchestrator of the servises. In our running example, the communication
hyperarc of Fig. 1 is labeled with the automaton ⇤CC of Fig. 1(c) where, for readability and conciseness,
the dotted and dashed edges stand for the paths

bookHotels!������→ ⋅ bookHotels¡�������→ ⋅ hotels!����→ ⋅ hotels¡����→
and

accept!����→ ⋅ accept¡����→ ⋅ askForPayment!����������→ ⋅ askForPayment¡����������→ ⋅ paymentData!��������→ ⋅ paymentData¡��������→
respectively. As we will see, such automaton corresponds to a global choreography when replacing the
binding mechanism of ARNs with choreography-based mechanisms. The transitions of the automata
are labelled with input/output actions; according to the usual ARNs notation, a label m! stands for the
ouput of message m while label m¡ stands for the input of message m.

Figures 2 and 3 represent two services with their automata (resp. ⇤HS and ⇤PPS) and their
provides-point (resp. HS and PPS) not bound to any communication channel yet.

67

Communicating machines as a dynamic binding mechanism of services Vissani, Lopez Pombo, Tuosto

Travel
Client

⇤TC

− bookHotels+ hotels− accept− decline+ pleasePay− paymentData+ reservations+ paymentRejected

TC

CC
⇤CC

+ bookHotels− hotels+ accept+ decline− askForPayment+ accepted+ rejected− reservations− paymentRejected

HS

+ askForPayment− pleasePay+ paymentData− accepted− rejected

PPS

(a) The TravelClient activity

bookHotels!

hotels¡¬ho
te
ls

¡

d
ec
li
n
e!

accept!

pleasePay¡

¬pl
ea
se
P
a
y

¡

p
a
y
m
en

tD
a
ta!

reservations¡

paymentRejected¡

¬(reserv
a
tion

s¡∨
p
a
y
m
en

tR
ejected¡)

(b) Müller automaton ⇤TC

¬bookHotels¡

decline!

decline¡

¬dec
lin
e!

rejected!

rejected¡

paymentRejected!

¬paymentRejected!

paymentRejected¡

accepted!

accepted¡

reservations!

¬reservations!

reservations¡

¬(accepted! ∨ rejected!)

(c) Müller automaton ⇤CC .

Figure 1: The TravelClient activity together with the Müller automata.

Hotels
Service

⇤HS

+ bookHotels− hotels+ accept+ decline− askForPayment+ accepted+ rejected− reservations− paymentRejected

HS

(a) The HotelsService partic-
ipant

bookHotels¡

¬bookHotels¡

hotels! accept¡

decline¡ ¬(accept¡ ∨ decline¡)
askForPayment!

rejected¡

paymentRejected!

accepted¡

reservations!

¬(accepted¡ ∨ rejected¡)

(b) Müller automaton ⇤HS

Figure 2: The HotelsService participant together with the machine Hs

Payment
Process
Service

⇤PPS

+ askForPayment− pleasePay+ paymentData− accepted− rejected

PPS

(a) The PaymentProcessService participant

askForPayment¡

¬askForPayment¡

pleasePay! paymentData¡

¬paymentData¡

rejected!

(b) Müller automaton ⇤PPS , that only reject paymens

Figure 3: The PaymentProcessService participant.

68

Communicating machines as a dynamic binding mechanism of services Vissani, Lopez Pombo, Tuosto

The composition of ARNs yields a semantic definition of a binding mechanism of services in terms
of “fusion” of provides-points and requires-points. More precisely, the binding is subject to an entail-
ment relation between linear temporal logic [7] theories attached to the provides- and requires-points as
illustrated in the following.

4 Communicating Relational Networks
As we mentioned before, even when the orchestration model featured by ARNs is rather expressive and
versatile, we envisage two drawbacks which now can be presented in more detail.

4.1 On the binding mechanism
If we consider the binding mechanism based on LTL entailment presented in previous works, the relation
between requires-point and provides-point is established in an asymmetric way whose semantics is read
as trace inclusion. This asymmetry leads to undesired situations. For instance, if we return to our
running example, a contract stating that the outcome of an execution is either accept or reject of a
payment could be specified by assigning the LTL formula

�((−accept ∨ −reject) ∧ ¬(−accept ∧ −reject))
to the requires-point PPS of Fig. 1(a). Likewise, one could specify a contract for the provides-point
PPS of the ARN in Fig. 3(b) stating that payments are always rejected by including the formula1

�(−reject ∧ ¬ − accept)
It is easy to show that

�(−reject ∧ ¬ − accept) �LTL �((−accept ∨ −reject) ∧ ¬(−accept ∧ −reject))
by resorting to any decision procedure for LTL (see for instance, [4]). The intuition is that every state
satisfying −reject ∧¬−accept also satisfies (−accept ∨−reject)∧¬(−accept ∧−reject) so if the former
eventually happens, then also the latter.

The reader should note that this scenario leads us to accept a service provider that, even when it can
appropriately ensure a subset of the expected outcomes, cannot guaranty that all possible outcomes will
eventually be produced.

Communicating Relational Networks are defined exactly as ARNs but with definition of Connection
based global graphs where, given a set of ports, the messages are related to the messages in the ports,
and the participants are identified by the ports themselves.

Definition 9 (Connection). We say that �M,µ,�� is a connection on � iff �M,µ� is an attachment
injection on � and � is a global graph where the set of participants is {p⇡}⇡∈� exchanging messages in
M such that:

µ−1⇡ (⇡−) ⊆ �
⇡̂∈��{⇡}

µ−1⇡̂ (⇡̂+) and µ−1⇡ (⇡+) ⊆ �
⇡̂∈��{⇡}

µ−1⇡̂ (⇡̂−).
for each ⇡ ∈ �.

1In this examples we use two propositions, accept and reject , forcing us to include in the specification their complementary
behaviour, but making the formulae easier to read.

69

Communicating machines as a dynamic binding mechanism of services Vissani, Lopez Pombo, Tuosto

TcHs!bookHotels

HsTc?hotels

TcHs!accept

TcHs!decline

PpsTc?pleasePay

TcPps!paymentData

HsTc?paymentRejected HsTc?reservations

(a) Communicating machine for the port TC

TcHs?bookHotels

HsTc!hotels

TcHs?accept

TcHs?decline

HsPps!askForPayment

PpsHs?rejected

HsTc!paymentRejected

PpsHs?accepted

HsTc!reservations

(b) Communicating machine for the port HS

HsPps?askForPayment

PpsTc!pleasePay

TcPps?paymentData

PpsHs!rejected PpsHs!accepted

(c) Communicating machine for the port PPS

Figure 4: Communicating machines labelling the ports TC, HS and PPS.

Definition 10 (Communicating relational network). A communicating relational net ↵ is a structure�X,P,C,�,M,µ,⇤� consisting of:
• a hypergraph �X,E�, where X is a (finite) set of points and E = P ∪ C is a set of hyperedges

(non-empty subsets of X) partitioned into computation hyperedges p ∈ P and communication
hyperedges c ∈ C such that no adjacent hyperedges belong to the same partition, and

• three labelling functions that assign (a) a port Mx to each point x ∈ X , (b) a process ��p,⇤p� to
each hyperedge p ∈ P , and (c) a connection �Mc, µc,⇤c� to each hyperedge c ∈ C.

Figures 4 and 5 show the communicating machines and global graphs that can be used to redefine
of the same services of the running example presented in Sec. 2, but as CRNs.

The machine in Fig. 4(a) specifies that upon reception of a bookHotel message from the client,
HotelsService sends back a list of hotels; if the client accepts then computation continues, otherwise
the HotelsService returns to its initial state, etc.. Also, Figs. 4(b) and (c) depict the communicating
machines associated to the provides-points of services HotelsService and PaymentProcessService, re-
spectively. From the point of view of the requires-points, the expected behaviour of the participants
of a communication is declared by means of a choreography associated to communication hyperarcs.
We illustrate such graphs by discussing the choreography in Fig. 5 (corresponding to the automaton in
Fig. 1(c)). The graph dictates that first client and HotelsService interact to make the request and receive
a list of available hotels, then the client decides whether to accept or decline the offer, etc. Global graphs
are a rather convenient formalism to express distributed choices (as well as parallel computations) of

70

Communicating machines as a dynamic binding mechanism of services Vissani, Lopez Pombo, Tuosto

Tc→ Hs ∶ bookHotels
Hs→ Tc ∶ hotels

Tc→ Hs ∶ accept Tc→ Hs ∶ decline
Hs→ Pps ∶ askForPayment

Pps→ Tc ∶ pleasePay
Tc→ Pps ∶ paymentData

Pps→ Hs ∶ accepted Pps→ Hs ∶ rejected
Hs→ Tc ∶ reservations Hs→ Tc ∶ paymentRejected

Figure 5: Global graph of the running example

work-flows. As we mentioned before, an interesting feature of global graph is that they can easily show
branch/merge points of distributed choices; for instance, in the global graph of Fig. 5 branching points
merge in the loop-back node underneath the initial node.

Based on Definition 10, we can define two new binding mechanisms by exploiting the “top-down”
(projection) and “bottom-up” (synthesis) nature offered by choreographies.
Top-Down According to the first mechanism, provides-points are bound to require points when the

projections of the global graph attached to the communication hyperarc are bisimilar to the corre-
sponding communicating machine (exposed on the provides-points of services being evaluated for
binding).

Bottom-Up The second mechanism is more flexible and it is based on a recent algorithm to synthe-
sise choreographies out of communicating machines [5]. More precisely, one checks that the
choreographies synthesised from the communicating machines, associated to the provides-points
of services being evaluated for binding are isomorphic to the one labelling the communication
hyperarc.

For example, the projections of the global graph of Fig. 5 with respect to the components HotelsService
and PaymentProcessService yields the communicating machines in Figures 4(b) and 4(c) respectively;
so, when adopting the first criterion, the binding is possible and it is guaranteed to be well-behaved (e.g.,
there will be no deadlocks or unspecified receptions [2]). Likewise, when adopting the second criterion,
the binding is possible because the synthesis of the machines in Fig. 4 yields the global graph of Fig. 5.

In this way, our approach combines choreography and orchestration by exploiting their complemen-
tary characteristics at two different levels. On the one hand, services use global graphs to declare the

71

Communicating machines as a dynamic binding mechanism of services Vissani, Lopez Pombo, Tuosto

behaviour expected from the composition of all the parties and use communicating machines to declare
their exported behaviour. On the other hand, the algorithms available on choreographies are used for
checking the run-time conditions on the dynamic binding.

The resulting choreography-based semantics of binding guarantees properties of the composition
of services that are stronger than those provided by the traditional binding mechanism of ARNs, and
yielding a more symmetric notion of interoperability between activities and services.

4.2 Comparison of the analysis and the binding mechanism
Among the many advantages of developing software using formal tools, is the possibility of providing
analysis as a means to cope with (critical) requirements. This approach generally involves the formal
description of the software artefact through some kind of contract describing its behaviour. As we
mentioned before, in SOC, services are described by means of their contracts associated to their provide-
and require-points, playing the role that in structured programming play post- and pre-conditions of
functions, respectively. From this point of view, analysing a software artefact requires:

• the verification of the computational aspects of a service with respect to its contracts, yielding a
coherence condition, whose checking takes place at design-time, and

• the verification of the satisfaction of a property by an activity with respect to a given service
repository, yielding a quality assessment of the software artefact, whose checking takes place also
at design-time.

On the other hand, service-oriented software artefacts require the run-time checking associated to
the binding mechanism, in order to decide whether a given service taken from the repository provides
the service required by an executing activity.

Table 1 shows a comparison of the procedures that have to be implemented for checking the coher-
ence condition of a service, the quality assessment of a service-oriented software artefact with respect
to a particular repository, and for obtaining a binding mechanism for both of the approaches, the one
based on ARNs, and the one based on CRNs.

5 Concluding Remarks
We propose the use of communicating relational networks as a formal model for service-oriented soft-
ware design. CRNs are a variant of ARNs that harnesses the orchestration perspective underlying ARNs
with a choreography viewpoint for characterising the behaviour of participants (services) over a com-
munication channel. The condition for binding a provides-points of services to the require points of
a communication channel of an activity relies on checking the compliance of the local perspective of
the process, declared as communicating machines, with the global view implicit in the choreography
associated to the communication channel. The binding mechanisms of ARNs (i.e., the inclusion of the
set of traces of the provides-point of the service bound in the set of traces allowed by the requires-point
of the activity) yields an asymmetric acceptation condition. Our approach provides a more symmetric
mechanism based on rely-guarantee types of contracts.

Our framework requires the definition of a criterion to establish the coherence among the Müller
automaton ⇤ of a process hyperedge and the communicating machines associated to its provides-points.
This criterion, checked only at design time, is the bisimilarity of the communicating machine projected
from ⇤ and the ones associated to the provides-points. The reader familiar with Mu¨ller automata should
note that defining such projection is not trivial when the automata are defined over a powerset of ac-
tions. The definition of the projection from Müller automata to communicating machine is conceptually
straightforward (although technically not trivial) if the automata are defined over sets of actions (instead

72

Communicating machines as a dynamic binding mechanism of services Vissani, Lopez Pombo, Tuosto

Formalisation Coherence Condition Quality assessment Binding Mechanism
ARNs

{�⇤p �LTL �⇡}⇡∈�p

where p ∈ P , ��p,⇤p� is
a process, �⇤p the set of
traces of the Müller au-
tomaton ⇤p and �⇡ is the
LTL contract associated
to port ⇡.

�
m∈P∪C

⇤m �⇡ �LTL �⇢

where ⇡ is a provides point of a
service, ⇢ is a requires point of
an activity, and �⇡ and �⇢ their
LTL contract respectively.

CRNs

{⇤�p⇡ ≈ A⇡}⇡∈�p

where ⇤�p⇡ is the projec-
tion of Müller automaton
⇤ over the alphabet of
port ⇡, A⇡ is the com-
munication machine la-
belling port ⇡ and ≈ de-
notes bisimilarity.

�
m∈P

⇤m

Top-Down:

G�⇢ ≈ A⇡

where ⇡ is a provides point of a
service, ⇢ is a requires point of
an activity, Gc�p⇢ is the projec-
tion of the global graph Gc over
the language of the port ⇢, A⇡

is the communication machine
labelling port ⇡ and ≈ denotes
bisimilarity.
Bottom-Up:

S({A⇡}⇡∈⇧) ≡ Gc

where ⇧ is the set of provides-
points of the services to be
bound, Gc is the global graph
associated to c ∈ C, S(●) is
the algorithm for synthesising
choreographies from communi-
cation machines [5] and ≡ de-
notes isomorphism.

Table 1: Comparison of the procedures for the approaches based in ARNs and CRNs

of powersets of them). Altough this is enough for the purposes of this paper, a better solution would be
to extend communicating machines so to preserve the semantics of Müller automata even when they are
defined on powersets of actions. This is however more challenging (as the reader familiar with Muller
automata would recognise) and it is left as a future line of research.

We strived here for simplicity suggesting trivial acceptance conditions. For instance, in the “bottom-
up” binding mechanism we required that the exposed global graph coincides (up to isomorphism) to the
synthesised one. In general, one could extend our work with milder conditions using more sophisticated
relations between choreographies. For instance, one could require that the interactions of the synthesised
graph can be simulated by the ones of the declared global graph.

We also envisage benefits that the orchestration model of ARNs could bring into the choreography

73

Communicating machines as a dynamic binding mechanism of services Vissani, Lopez Pombo, Tuosto

model we use (similarly to what suggested in [1]). In particular, we argue that the ’incremental binding’
naturally featured in the ARN model could be integrated with the choreography model of global graphs
and communicating machines. This would however require the modifications of algorithms based on
choreography to allow incremental synthesis of choreographies.

References
[1] D. Basile, P. Degano, G. L. Ferrari, and E. Tuosto. From orchestration to choreography through contract

automata. In Proceedings 7th Interaction and Concurrency Experience, ICE 2014, Berlin, Germany, 6th June
2014., pages 67–85, 2014.

[2] D. Brand and P. Zafiropulo. On communicating finite-state machines. JACM, 30(2):323–342, Apr. 1983.
[3] P. Deniélou and N. Yoshida. Multiparty session types meet communicating automata. In ESOP, pages 194–213,

2012.
[4] Y. Kesten, Z. Manna, and H. M. A. Pnueli. A decision algorithm for full propositional temporal logic. In CAV,

pages 97–109, 1993.
[5] J. Lange, E. Tuosto, and N. Yoshida. From communicating machines to graphical choreographies. In Principles

of Programming Languages (PoPL), 2015. To appear.
[6] C. Peltz. Web services orchestration and choreography. Computer, 36(10):46–52, 2003.
[7] A. Pnueli. The temporal semantics of concurrent programs. Theoretical Comput. Sci., 13(1):45–60, 1981.
[8] I. Ţuţu and J. L. Fiadeiro. A logic-programming semantics of services. In CALCO, pages 299–313, 2013.

74

Distributed Programming via Safe Closure Passing
Philipp Haller1 and Heather Miller2

1 KTH Royal Institute of Technology, Sweden
phaller@kth.se
2 EPFL, Switzerland

heather.miller@epfl.ch

Abstract

Programming systems incorporating aspects of functional programming, e.g., higher-order func-
tions, are becoming increasingly popular for large-scale distributed programming. New frameworks
such as Apache Spark leverage functional techniques to provide high-level, declarative APIs for in-
memory data analytics, often outperforming traditional “big data” frameworks like Hadoop MapReduce.
However, widely-used programming models remain rather ad-hoc; aspects such as implementation
trade-offs, static typing, and semantics are not yet well-understood. We present a new asynchronous pro-
gramming model that has at its core several principles facilitating functional processing of distributed
data. The emphasis of our model is on simplicity, performance, and expressiveness. The primary means
of communication is by passing functions (closures) to distributed, immutable data. To ensure safe and
efficient distribution of closures, our model leverages both syntactic and type-based restrictions. We
report on a prototype implementation in Scala. Finally, we present preliminary experimental results
evaluating the performance impact of a static, type-based optimization of serialization.

1 Introduction

Programming systems for large-scala data processing are increasingly embracing functional programming,
i.e., programming with first-class functions and higher-order functions. Arguably, one of the first widely-
used programming models for “big data” processing making use of concepts from functional programming
is Google’s MapReduce [3]. Indeed, [7] shows a precise executable semantics of MapReduce in Haskell.
While leveraging functional programming concepts, popular implementations of the MapReduce model,
such as Hadoop MapReduce1 for Java, have been developed without making use of functional language
features such as closures. In contrast, a new generation of programming systems for large-scale data
processing, such as Apache Spark [17], Twitter’s Scalding2, and Scoobi3 build on functional language
features in order to provide high-level, declarative APIs.

However, these programming systems suffer from several problems that negatively affect their usage,
maintenance, and optimization:

• Their APIs cannot statically prevent common usage errors. As a result, users are often confronted
with runtime errors that are hard to debug. A common example is unsafe closure serialization [12].

• Typically, only high-level user-facing abstractions are statically typed. The absence of static types
in lower layers of the system makes maintenance tasks, such as code refactorings, more difficult.

• The absence of certain kinds of static type information precludes systems-centric optimizations.
Importantly, type-based static meta-programming enables fast serialization [11], but this is only
possible if also lower layers (namely those dealing with object serialization) are statically typed.
Several studies [2, 8, 14, 16] report on the high overhead of serialization in widely-used runtime
environments such as the JVM. This overhead is so important in practice that popular systems, like

1See http://hadoop.apache.org/
2See https://github.com/twitter/scalding/
3See http://nicta.github.io/scoobi/

75

Safe Closure Passing Haller and Miller

Spark [17] and Akka [15], leverage alternative serialization frameworks such as Protocol Buffers
(Google), Apache Avro [1], or Kryo [13].

Contributions This paper makes the following contributions:

• A new asynchronous programming model, called SCP (“safe closure passing”), for functional
processing of distributed data (see Sec. 2). We propose to address the above problems through a
novel combination of: (a) safe closures; to prevent common usage errors. Closures that are not
guaranteed to be serializable are rejected at compile time; (b) a statically-typed implementation of a
generic distributed, persistent data structure. Preserving static types through more system layers
improves maintainability and enables type-based optimizations.

• An implementation of the SCP model in Scala (see Sec. 3). In addition, we report on preliminary
experimental experience using SCP to evaluate the end-to-end performance impact of a type-based
optimization of serialization.

An important goal of our model is to better understand programming systems such as Spark, Scalding,
and Scoobi, by incorporating several of their core principles; namely, immutable distributed data and
distributed closure passing. By focussing on simplicity, expressiveness, and performance (and ignoring
many of the more ad-hoc refinements of the mentioned programming models) our programming model–
together with its prototype implementation–enables exploring implementation trade-offs, and capturing
the semantics of the core constructs more precisely.

To ensure safe and efficient distribution of closures, our model leverages both syntactic and type-
based restrictions. For instance, closures sent to remote nodes are required to conform to the restrictions
imposed by the so-called “spore” abstraction that the authors presented in previous work [12]. Among
others, the syntax and static semantics of spores can guarantee the absence of runtime serialization errors
due to closure environments that are not serializable.

The following sections 2 (programming model) and 3 (implementation) present our main contributions.
Section 4 relates to prior work. Section 5 summarizes future work and concludes.

2 Programming Model

The programming model has a few basic abstractions at its center: first, the so-called silo. A silo is a
typed data container. It is stationary in the sense that it does not move between machines. A silo remains
on the machine where it was created. Data stored in a silo is typically loaded from stable storage, such as
a distributed file system. A program operating on data stored in a silo can only do so using a reference to
the silo, a so-called SiloRef. Similar to a proxy object, a SiloRef represents, and allows interacting with,
a silo possibly located on a remote node. Some programming patterns require combining data contained
in silos located on different nodes (e.g., joins). To support such patterns, our model includes a pump
primitive for emitting data to silos on arbitrary nodes (explained further below).

A SiloRef has the following main operations:

trait SiloRef[T] {
def apply(s: Spore[T, S]): SiloRef[S]
def send(): Future[T]

}

Apply The apply method takes a spore, a kind of closure (see Appendix A for an overview), that is
to be applied to the data in the silo of the receiver SiloRef. Rather than immediately sending the spore

76

Safe Closure Passing Haller and Miller

across the network, and waiting for the operation to finish, the apply method is lazy. It immediately
returns a SiloRef that refers to the result silo.

To realize something like the map combinator of a (distributed) collection using apply, it is helpful
to think of the spore argument to apply (“s”) as the composition of a user-defined function passed to
the map combinator with the actual implementation of map:

val ref: SiloRef[List[Int]] = ...
val userFun: Int => String = ...
val mapFun: (Int => String) => List[Int] => List[String] = ...
val ref2: SiloRef[List[String]] = ref.apply(mapFun(userFun))

In the above example, the higher-order mapFun function is expressed in curried style where the
user’s function argument is passed as the first argument. Applying mapFun to a function of type
Int => String returns a function of type List[Int] => List[String].

The result of invoking apply is another SiloRef, which has a reference to the spore and the SiloRef
that it was derived from. Note that this is semantically the same as programming with normal functional
data structures, where a new data structure is defined by a transformation of an original data structure.

Send The send method takes no argument, and returns a future. Unlike apply, send is eager
(readers familiar with the concept of views might recognize a similarity to forcing a view). That is, it
sends whatever operations are queued up (by invocations of apply) on a given SiloRef to the node
that contains the corresponding silo, and kicks off the materialization of the result silo. Once the
materialization is done, the future returned by send is completed. Example:

val ref2 = ref1.apply(s) // lazy
val fut = ref2.send() // eager

The invocation of send kicks off the following sequence of actions:

1. A “send” control message is sent to the node where ref2’s silo is located.

2. Since ref2 is derived from ref1, ref1’s silo is located on the same node. Thus, the runtime
demands ref1 to be materialized; once this is done, spore s is applied, populating ref2’s silo
(on the same node).

3. Once ref2’s silo is materialized, its data is sent to the node executing the send, completing fut.

Note that since a send operation sends the data of a silo across the network, it should only be invoked
on silos containing small bits of data.

pumpTo The SiloRef singleton object provides an additional method for combining silos storing
collections:

def pumpTo[T <: Traversable[U], V, R](
p: Place,
silo1: SiloRef[T],
silo2: SiloRef[T],
fun: Spore[(U, Emitter[V]), Unit],
bf: BuilderFactory[V, R]): SiloRef[R]

77

Safe Closure Passing Haller and Miller

The pumpTo method requires the silos silo1 and silo2 to contain collections of element type U
(Traversable[U]). Using pumpTo, the elements (of type U) of the two silos are passed one-by-one
to the user-provided spore fun. This spore takes a pair as argument containing two components: first,
a single element of one of the silo’s collections, and second, an emitter to which the spore can output
values of type V. By emitting such elements, a new silo at the destination (Place p) is filled, yielding a
collection of type R. A BuilderFactory[V, R] provides the functionality for building a collection
of type R based on elements of type V. Finally, pumpTo returns the SiloRef of the silo that was created
at Place p.

Although conceptually related, the Emitter and the BuilderFactory address two separate
issues: the Emitter provides a way to output elements from the source silo; the BuilderFactory
provides a way to input data into a newly created silo at the destination.

An Emitter is a simple trait which allows the spore parameter fun of pumpTo to emit zero, one,
or multiple values per element of a silo’s collection, using an emit function:

def emit(v: T)(implicit p: Pickler[T]): Unit

Note that Emitter differs from the well-known observable abstraction [10] in one important way: the
emit method requires an implicit type-specific pickler. In Scala, type-specialized picklers enable fast
serialization through compile-time meta-programming [11]. Thus, Emitter is an abstraction specially
designed for distributed programming. The main reason why the pickler is required already at this point
is that we would like to enable picklers to be specialized to the type of the pickled values. However,
this means a pickler has to be constructed at the point when the static type of the emitted value is still
available (essentially, before the value loses its type when treated as generic data to be sent across the
network).

2.1 Combining Multiple Silos

Operations on distributed collections such as union, groupByKey, or join, involve multiple data sets,
possibly located on different nodes. In the following we explain how such operations can be expressed
using the introduced primitives.

union The union of two unordered collections stored in two different silos can be expressed directly
using the above pumpTo primitive.

join Suppose we are given two silos with the following types:

val silo1: SiloRef[List[A]]
val silo2: SiloRef[List[B]]

as well as two hash functions computing hashes for elements of type A and B, respectively:

val hashA: A => K = ...
val hashB: B => K = ...

The goal is to compute the hash-join of silo1 and silo2:

val hashJoin: SiloRef[List[(K, (A, B))]] = ???

To be able to use pumpTo, the types of the two silos first have to be made equal, through initial apply
invocations:

78

Safe Closure Passing Haller and Miller

val silo12: SiloRef[List[(K, Option[A], Option[B])] =
silo1.apply { x => (hashA(x), Some(x), None) }

val silo22: SiloRef[List[(K, Option[A], Option[B])] =
silo2.apply { x => (hashB(x), None, Some(x)) }

Then, we can use pumpTo to create a new silo (at some destination place), which contains the elements
of both silo12 and silo22:

val combined = SiloRef.pumpTo(destPlace, silo12, silo22,
(elem, emitter) => emitter.emit(elem),
listBuilderFactory[...])

The combined silo contains triples of type (K, Option[A], Option[B]). Using an additional
apply, the collection can be sorted by key, and adjacent triples be combined, yielding finally a
SiloRef[List[(K, (A, B))]] as required.

Partitioning and groupByKey A groupByKey operation on a group of silos containing collections
needs to create multiple result silos, on each node, with ranges of keys supposed to be shipped to
destination nodes. These destination nodes are determined using a partitioning function. Our goal,
concretely:

val groupedSilos = groupByKey(silos)

Furthermore, we assume that silos.size = N where N is the number of nodes, with nodes N1,
N2, etc. We assume each silo contains an unordered collection of key-value pairs (a multi-map). Then,
groupByKey can be implemented as follows:

• For each node Ni, the master node creates N SiloRefs.

• Each node Ni applies a partitioning function (example: hash(key) mod N) to the key-value
pairs in its silo, yielding N (local) silos.

• Using pumpTo, each pair of silos containing keys of the same range can be combined and material-
ized on the right destination node.

3 Implementation and Preliminary Experimental Results

We have developed a prototype4 of the SCP model in Scala, which builds on our earlier work on Scala
Pickling [11] and Spores [12]. The implementation does not require extensions to the Scala language or
compiler; it is developed using the current stable Scala release 2.11.

We have used our implementation to measure the impact of compile-time-generated serializers [11]
on end-to-end application performance. We ran our experiments on a 2.3 GHz Intel Core i7 with 16 GB
RAM under Mac OS X 10.9.5 using Java HotSpot Server 1.8.0-b132. In our benchmark application, a
group of 4 silos is distributed across 4 different nodes/JVMs. The silos are first transformed using map,
and then using groupBy. For an input size of 100’000 “person” records, the use of compile-time-generated
serializers resulted in an overall speedup of about 48% with respect to the same system but without using
compile-time-generated serializers.

4See https://github.com/heathermiller/f-p

79

Safe Closure Passing Haller and Miller

4 Related Work

Cloud Haskell [4] leverages guaranteed-serializable, static closures for a message-passing communication
model inspired by Erlang. In contrast, in our model spores are sent between passive, persistent silos.
Closures and continuations in Termite Scheme [5] are always serializable; references to non-serializable
objects (like open files) are automatically wrapped in processes that are serialized as their process ID.
Similar to Cloud Haskell, Termite is inspired by Erlang. In contrast to Termite, SCP is statically typed,
enabling advanced type-based optimizations. In non-process-oriented models, parallel closures [9] and
RiverTrail [6] address important safety issues. SCP integrates a distributed, persistent data structure.
Other prior work related to spores is discussed in [12].

5 Conclusion and Future Work

We have presented a new asynchronous distributed programming model. A novel combination of (a)
closures with syntactic and semantic restrictions and (b) abstractions for distributed data “silos” prevents
usage errors common in widely-used “big data” frameworks. We have implemented our model in Scala;
preliminary experimental results evaluate the performance impact of a static type-based optimization. In
future work, we intend to expand the practical experiments and explore the impact of implementation
trade-offs. Furthermore, we would like to exploit the simplicity of the programming model for a formal
treatment of its properties.

References

[1] Apache. Avro R�. http://avro.apache.org. Accessed: 2013-08-11.
[2] Bryan Carpenter, Geoffrey Fox, Sung Hoon Ko, and Sang Lim. Object serialization for marshalling data in a

Java interface to MPI. In Java Grande, pages 66–71, 1999.
[3] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters. Commun. ACM,

51(1):107–113, 2008.
[4] Jeff Epstein, Andrew P. Black, and Simon Peyton-Jones. Towards Haskell in the cloud. In Proc. Haskell

Symposium, pages 118–129. ACM, 2011.
[5] Guillaume Germain. Concurrency oriented programming in Termite Scheme. In Erlang Workshop, 2006.
[6] Stephan Herhut, Richard L. Hudson, Tatiana Shpeisman, and Jaswanth Sreeram. River trail: a path to

parallelism in JavaScript. In OOPSLA, pages 729–744, 2013.
[7] Ralf Lämmel. Google’s mapreduce programming model - revisited. Sci. Comput. Program, 70(1):1–30, 2008.
[8] Jason Maassen, Rob van Nieuwpoort, Ronald Veldema, Henri E. Bal, and Aske Plaat. An efficient implementa-

tion of Java’s remote method invocation. In PPOPP, pages 173–182, August 1999.
[9] Nicholas D. Matsakis. Parallel closures: a new twist on an old idea. In HotPar. USENIX, 2012.

[10] Erik Meijer. Your mouse is a database. Commun. ACM, 55(5):66–73, 2012.
[11] Heather Miller, Philipp Haller, Eugene Burmako, and Martin Odersky. Instant pickles: generating object-

oriented pickler combinators for fast and extensible serialization. In OOPSLA. ACM, 2013.
[12] Heather Miller, Philipp Haller, and Martin Odersky. Spores: A type-based foundation for closures in the age of

concurrency and distribution. In ECOOP, pages 308–333. Springer, 2014.
[13] Nathan Sweet et al. Kryo. https://code.google.com/p/kryo/. Accessed: 2013-08-11.
[14] Michael Philippsen, Bernhard Haumacher, and Christian Nester. More efficient serialization and RMI for Java.

Concurrency - Practice and Experience, 12(7):495–518, 2000.
[15] Typesafe. Akka. http://akka.io/, 2009. Accessed: 2013-08-11.
[16] Matt Welsh and David E. Culler. Jaguar: enabling efficient communication and I/O in Java. Concurrency -

Practice and Experience, 12(7), 2000.
[17] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Murphy McCauley, Michael Franklin, Scott

Shenker, and Ion Stoica. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster
computing. In NSDI. USENIX, 2012.

80

Safe Closure Passing Haller and Miller

² :H�SUHVHQW�DQ�LPSOHPHQWDWLRQ�RI�VSRUHV�LQ�DQG�IRU�WKH�IXOO�6FDOD�ODQJXDJH��
² :H�GHPRQVWUDWH�WKH�SUDFWLFDOLW\�RI�VSRUHV��D��WKURXJK�DQ�VPDOO�HPSLULFDO�VWXG\�XVLQJ

D�FROOHFWLRQ�RI�6FDOD�SURJUDPV��DQG��E��VKRZ�WKH�SRZHU�RI�WKH�JXDUDQWHHV�VSRUHV
SURYLGH�WKURXJK�D�FDVH�VWXG\�RI�QHZ�GLVWULEXWHG�DQG�FRQFXUUHQW�IUDPHZRUNV�WKDW
WKLV�VDIH�IRXQGDWLRQ�IRU�PLJUDWDEOH�FORVXUHV�FDQ�HQDEOH�

� 6SRUHV

6SRUHV�DUH�D�FORVXUH�OLNH�DEVWUDFWLRQ�ZKLFK�DLP�WR�JLYH�XVHUV�D�SULQFLSOHG�ZD\�RI�FRQ�
WUROOLQJ�WKH�HQYLURQPHQW�ZKLFK�D�FORVXUH�FDQ�FDSWXUH��7KLV�LV�DFKLHYHG�E\��D��HQIRUFLQJ�D
VSHFLÀF�V\QWDFWLF�VKDSH�ZKLFK�GLFWDWHV�KRZ�WKH�HQYLURQPHQW�RI�D�VSRUH�LV�GHFODUHG��DQG
�E��SURYLGLQJ�DGGLWLRQDO�W\SH�FKHFNLQJ�WR�HQVXUH�WKDW�W\SHV�EHLQJ�FDSWXUHG�KDYH�FHUWDLQ
SURSHUWLHV�

:H�GHVFULEH�EHORZ�WKH�V\QWDFWLF�VKDSH�RI�VSRUHV��DQG�LQ�6HFWLRQ "" ZH�LQIRUPDOO\
GHVFULEH�WKH�W\SH�V\VWHP��,Q�D�ODWHU�VHFWLRQ ""��ZH·OO�GHVFULEH�KRZ�WR�XVH�VSRUHV�ZLWK�WKH
W\SH�V\VWHP�H[WHQVLRQ�SURSRVHG�LQ�WKLV�SDSHU�

��� 6SRUH�6\QWD[

$ VSRUH�LV�D�FORVXUH�ZLWK�D�VSHFLÀF�VKDSH�WKDW�GLFWDWHV�KRZ�WKH�HQYLURQPHQW�RI�D�VSRUH
LV�GHFODUHG��,Q�JHQHUDO��D�VSRUH�KDV�WKH�IROORZLQJ�VKDSH�
ɨ ����� Ƈ
ɩ ��� �ɨś �ɨ ʰ ʳ����ɨʴ
ɪ ŜŜŜ
ɫ ��� ��ś �� ʰ ʳ�����ʴ
ɬ ſ�ś �ƀ ʰʴ Ƈ
ɭ � � � � �
ɮ ƈ
ɯ ƈ

$ VSRUH�FRQVLVWV�RI�WZR�SDUWV��WKH�KHDGHU�DQG�WKH�ERG\��7KH�OLVW�RI�YDOXH�GHÀQLWLRQV
DW�WKH�EHJLQQLQJ�LV�FDOOHG�WKH�VSRUH�KHDGHU��7KH�KHDGHU�LV�IROORZHG�E\�D�UHJXODU�FORVXUH�
WKH�VSRUH·V�ERG\��7KH�FKDUDFWHULVWLF�SURSHUW\�RI�D�VSRUH�LV�WKDW�WKH�ERG\�RI�LWV�FORVXUH
LV�RQO\�DOORZHG�WR�DFFHVV�LWV�SDUDPHWHU��YDOXHV�LQ�WKH�VSRUH�KHDGHU��DV�ZHOO�DV�WRS�OHYHO
VLQJOHWRQ�REMHFWV��SXEOLF��JOREDO�VWDWH���,Q�SDUWLFXODU��WKH�VSRUH�FORVXUH�LV�QRW�DOORZHG
WR�FDSWXUH�YDULDEOHV�LQ�WKH�HQYLURQPHQW��2QO\�DQ�H[SUHVVLRQ�RQ�WKH�ULJKW�KDQG�VLGH�RI�D
YDOXH�GHÀQLWLRQ�LQ�WKH�VSRUH�KHDGHU�LV�DOORZHG�WR�FDSWXUH�YDULDEOHV�

%\�HQIRUFLQJ�WKLV�VKDSH��WKH�HQYLURQPHQW�RI�D�VSRUH�LV�DOZD\V�GHFODUHG�H[SOLFLWO\�LQ
WKH�VSRUH�KHDGHU�ZKLFK�DYRLGV�DFFLGHQWDOO\�FDSWXULQJ�SUREOHPDWLF�UHIHUHQFHV��0RUHRYHU�
DQG�WKDW·V�LPSRUWDQW�IRU�22 ODQJXDJHV��LW·V�QR�ORQJHU�SRVVLEOH�WR�DFFLGHQWDOO\�FDSWXUH
WKH ���� UHIHUHQFH�

1RWH�WKDW�WKH�HYDOXDWLRQ�VHPDQWLFV�RI�D�VSRUH�LV�HTXLYDOHQW�WR�D�FORVXUH�REWDLQHG�E\
OHDYLQJ�RXW�WKH ����� PDUNHU�
ɨ Ƈ
ɩ ��� �ɨś �ɨ ʰ ʳ����ɨʴ
ɪ ŜŜŜ
ɫ ��� ��ś �� ʰ ʳ�����ʴ

� 85/ ZLWKKHOG�IRU�WKH�VDNH�RI�DQRQ\PLW\�RI�UHYLHZ�

spore header

closure/spore body

}
}

Figure 1: The syntactic shape of a spore.

1 {
2 val y1: S1 = <expr1>
3 ...
4 val yn: Sn = <exprn>
5 (x: T) => {
6 / / . . .
7 }
8 }

(a) A closure block.

1 spore {
2 val y1: S1 = <expr1>
3 ...
4 val yn: Sn = <exprn>
5 (x: T) => {
6 / / . . .
7 }
8 }

(b) A spore.

Figure 2: The evaluation semantics of a spore is equivalent to that of a closure, obtained by simply
leaving out the spore marker.

A Spores

Spores are a closure-like abstraction and type system which aims to give users a principled way of
controlling the environment which a closure can capture. This is achieved by (a) enforcing a specific
syntactic shape which dictates how the environment of a spore is declared, and (b) providing additional
type-checking to ensure that types being captured have certain properties. A crucial insight of spores is
that, by including type information of captured variables in the type of a spore, type-based constraints for
captured variables can be composed and checked, making spores safer to use in a concurrent, distributed,
or in arbitrary settings where closures must be controlled.

A.1 Spore Syntax

A spore is a closure with a specific shape that dictates how the environment of a spore is declared. The
shape of a spore is shown in Figure 1. A spore consists of two parts:

• the spore header, composed of a list of value definitions.

• the spore body (sometimes referred to as the “spore closure”), a regular closure.

The characteristic property of a spore is that the spore body is only allowed to access its parameter,
the values in the spore header, as well as top-level singleton objects (public, global state). In particular,
the spore closure is not allowed to capture variables in the environment. Only an expression on the
right-hand side of a value definition in the spore header is allowed to capture variables.

By enforcing this shape, the environment of a spore is always declared explicitly in the spore header,
which avoids accidentally capturing problematic references. Moreover, importantly for object-oriented
languages, it’s no longer possible to accidentally capture the this reference.

81

Safe Closure Passing Haller and Miller

1 trait Function1[-A, +B] {
2 def apply(x: A): B
3 }

(a) Scala’s arity-1 function type.

1 trait Spore[-A, +B]
2 extends Function1[A, B] {
3 type Captured
4 type Excluded
5 }

(b) The arity-1 Spore type.

Figure 3: The Spore type.

A.1.1 Evaluation Semantics

The evaluation semantics of a spore is equivalent to a closure obtained by leaving out the spore marker,
as shown in Figure 2. In Scala, the block shown in Figure 2a first initializes all value definitions in
order and then evaluates to a closure that captures the introduced local variables y1, ..., yn. The
corresponding spore, shown in Figure 2b has the exact same evaluation semantics. Interestingly, this
closure shape is already used in production systems such as Spark in an effort to avoid problems with
accidentally captured references, such as this. However, in systems like Spark, the above shape is
merely a convention that is not enforced.

A.2 The Spore Type

Figure 3 shows Scala’s arity-1 function type and the arity-1 spore type.5 Functions are
contravariant in their argument type A (indicated using -) and covariant in their result type B (indicated
using +). The apply method of Function1 is abstract; a concrete implementation applies the body
of the function that is being defined to the parameter x.

Individual spores have refinement types of the base Spore type, which, to be compatible with normal
Scala functions, is itself a subtype of Function1. Like functions, spores are contravariant in their
argument type A, and covariant in their result type B. Unlike a normal function, however, the Spore type
additionally contains information about captured and excluded types. This information is represented as
(potentially abstract) Captured and Excluded type members. In a concrete spore, the Captured
type is defined to be a tuple with the types of all captured variables. [12] discusses the Excluded type
member in detail.

A.3 Basic Usage

A.3.1 Definition

A spore can be defined as shown in Figure 4a, with its corresponding type shown in Figure 4b. As can
be seen, the types of the environment listed in the spore header are represented by the Captured type
member in the spore’s type.

A.3.2 Using Spores in APIs

Consider the following method definition:

def sendOverWire(s: Spore[Int, Int]): Unit = ...

5For simplicity, we omit Function1’s definitions of the andThen and compose methods.

82

Safe Closure Passing Haller and Miller

1 val s = spore {
2 val y1: String = expr1;
3 val y2: Int = expr2;
4 (x: Int) => y1 + y2 + x
5 }

(a) A spore s which captures a String and an Int in its
spore header.

1 Spore[Int, String] {
2 type Captured = (String, Int)
3 }

(b) s’s corresponding type.

Figure 4: An example of the Captured type member.
Note: we omit the Excluded type member for simplicity; we discuss it in detail in [12].

In this example, the Captured (and Excluded) type member is not specified, meaning it is left
abstract. In this case, so long as the spore’s parameter and result types match, a spore type is always
compatible, regardless of which types are captured.

Using spores in this way enables libraries to enforce the use of spores instead of plain closures,
thereby reducing the risk for common programming errors, even in this very simple form.

A.3.3 Composition

Like normal functions, spores can be composed. By representing the environment of spores using
refinement types, it is possible to preserve the captured type information (and later, constraints) of spores
when they are composed.

For example, assume we are given two spores s1 and s2 with types:

s1: Spore[Int, String] { type Captured = (String, Int) }
s2: Spore[String, Int] { type Captured = Nothing }

The fact that the Captured type in s2 is defined to be Nothing means that the spore does not capture
anything (Nothing is Scala’s bottom type). The composition of s1 and s2, written s1 compose s2,
would therefore have the following refinement type:

Spore[String, String] { type Captured = (String, Int) }

Note that the Captured type member of the result spore is equal to the Captured type of s1, since it
is guaranteed that the result spore does not capture more than what s1 already captures. Thus, not only
are spores composable, but so are their (refinement) types.

83

Safe Closure Passing Haller and Miller

84

Reversible Communicating Processes

Geo↵rey Brown and Amr Sabry

School of Informatics and Computing
Indiana University
Bloomington, IN

geobrown@indiana.edu, sabry@indiana.edu

Abstract

Reversible distributed programs have the ability to abort unproductive computation paths and
backtrack, while unwinding communication that occurred in the aborted paths. While it is natural to
assume that reversibility implies full state recovery (as with traditional roll-back recovery protocols),
an interesting alternative is to separate backtracking from local state recovery. For example, such a
model could be used to create complex transactions out of nested compensable transactions where a
programmer supplied compensation defines the work required to “unwind” a transaction.

Reversible distributed computing has received considerable theoretical attention, but little re-
duction to practice; the few published implementations of languages supporting reversibility depend
upon a high degree of central control. The objective of this paper is to demonstrate that a practical
reversible distributed programming language can be e�ciently implemented in a fully distributed
manner.

We discuss such a language, supporting CSP-style synchronous communication, embedded in
Scala. While this language provided the motivation for the work described in this paper, our focus
is upon the distributed implementation. In particular, we demonstrate that a “high-level” semantic
model can be implemented using a simple point-to-point protocol.

1 Introduction

Speculative execution either by intent or through misfortune (in response to error conditions) is pervasive
in system design and yet it remains di�cult to handle at the program level [10]. Indeed, we find that
despite the importance of speculative computation, there is very little programmatic support for it in
distributed languages at the foundational level it deserves. We note that, from a programming language
perspective, speculative execution requires a backtracking mechanism and that, even in the sequential
case, backtracking in the presence of various computational e↵ects (e.g. assignments, exceptions, etc.)
has significant subtleties [12]. The introduction of concurrency additionally requires a “distributed
backtracking” algorithm that must “undo” the e↵ects of any communication events that occurred in the
scope over which we wish to backtrack. While this has been successfully accomplished at the algorithmic
level (e.g. in virtual time based simulation [15, 14]), in models of concurrent languages (e.g.[2, 3, 16, 17,
22]) and in some restricted parallel shared-memory environments (e.g. [6, 11, 18, 23, 20]), it does not
appear that any concurrent languages based upon message passing have directly supported backtracking
with no restrictions. The language constructs we introduce are inspired by the stabilizers of [24]; however,
that work depends upon central control to manage backtracking. Our work was also inspired by the
work of Hoare and others [19, 13]. Communicating message transactions [6, 18] is an interesting related
approach that relies upon global shared data structures.

The work presented in this paper has a natural relationship to the rich history of rollback-recovery
protocols [8]. Rollback-recovery protocols were developed to handle the (presumably rare) situation
where a processor fails and it is necessary to restart a computation from a previously saved state. The
fundamental requirement of these protocols is that the behavior is as if no error ever occurred. In
contrast, we are interested in systems where backtracking might take the computation in a new direction
based upon state information gleaned from an abandoned execution path; the (possibly frequent) decision
to backtrack is entirely under program control. Because check-pointing in traditional rollback-recovery
protocols involves saving a complete snapshot of a process’s state, it is a relatively expensive operation.
Much of the research in rollback-recovery protocols focuses upon minimizing these costs. The cost of
check-pointing is much lower for our domain – saving control state is no more expensive than for a
conventional exception handler; the amount of data state preserved is program dependent.

85

Implementing a reversible concurrent language is not a trivial undertaking and, as we found, there
are many opportunities to introduce subtle errors. Ideally, such a language implementation should be
accompanied by a suitable semantics that provides both a high-level view which a programmer can use to
understand the expected behavior of a program text, and a low-level view which the language implementer
can use to develop a correct implementation. In order to accommodate these two constituencies, we have
developed two separate semantic models. We have developed a refinement mapping to demonstrate that
the low-level model is a correct implementation of the high-level model, which is outlined in the paper.

The remainder of this paper is organized as follows. We begin with a small example that illustrates
the main ideas using our Scala implementation. We then, in Sec. 3, present a formal “high-level” semantic
model focusing on the semantics of forward communication and backtracking. In Sec. 4, we discuss a
communication protocol for maintaining backtracking state across distributed communicating agents.
Sec. 5 introduces (a fragment of) a “low-level” model that utilizes the channel protocol to implement
the high-level model, and Sec. 6 outlines the proof of correctness of the low-level semantics with respect
to the high-level semantics. We end with a brief discussion.

2 Example

We illustrate the main ideas of our language with an example written in our Scala realization. A
programmer wishing to use our distributed reversible extensions imports our libraries for processes and
channels and then defines extensions of the base class CspProc by overriding the method uCode. The
user-defined code must use our channel implementation for communication and may additionally use
the keywords stable and backtrack for managing backtracking over speculative executions. The
following excerpt provides the code for two processes p1 and p2 that communicate over channel c – not
shown is the code that creates these processes and the channel:

7 class p1 (c: SndPort, name: String)
extends CspProc(name) {

9 override def uCode = {
println("p1: start")

11 var count = 2
stable {

13 println("p1: snd " + count)
send(c,count)

15 stable {
println("p1: snd " + count)

17 send(c,count)
count = count - 1

19 if (count > 0) {
println ("p1: backtrack")

21 backtrack }
}}

23 }}

25 class p2 (c: RcvPort, name: String)
extends CspProc(name) {

27 override def uCode = {
println("p2: start")

29 stable {
var x = receive(c)

31 println("p2: recv " + x)
var y = receive(c)

33 println("p2: recv " + y)
}

35 }}

Output:

p1: start
p2: start
p1: snd 2
p2: recv 2
p1: snd 2
p2: recv 2
p1: backtrack
p2: start
p1: snd 1
p2: recv 1
p1: snd 1
p2: recv 1

In the code, the stable regions denote the scope of saved contexts; executing backtrack within a
stable region returns control to the beginning of the stable region – much like “throwing” an exception,
but with the additional e↵ect of unwinding any communication that may have occurred within the stable
region. Process p1 starts its execution by sending a first message to p2, entering a nested stable region,
and sending another message to p2. Meanwhile process p2 also starts a stable region in which it receives
the two messages. At this point in the execution, process p1 decides at line 15 to backtrack. As a
result, process p1 transfers its control to the inner stable region (line 9). This jump invalidates the
communication on channel c at line 11. Process p1 then blocks until process p2 takes action. When
process p2 notices that the second communication event within the stable region (line 8) was invalidated,
it backtracks to the start of its stable region. This jump invalidates the first communication action (line
6) which in turn invalidates the corresponding action in p1 at line 8. In other words, process p1 is
forced to backtrack to its outer stable region to establish a causally consistent state. The trace in the
output shows a possible interleaving of the execution – it is important to remember that all processes
have an implicit stable region that includes their full code body; in this case p2 is forced to backtrack to
the beginning of its code. The crucial point is that after the backtracking, both communication events
between p1 and p2 are re-executed.

86

3 High-Level Semantics of a Reversible Process Language

We will present two semantic models for our language. The first “high-level” semantics formalizes both
the forward communication events that occur under “normal” program execution and the backwards
communication events that occur when processes are backtracking to previously saved states as atomic
steps. In the low-level semantics, these communication events are further subdivided into actions that
communicating senders and receivers may take independently in a distributed environment and hence
trades additional complexity for a specification that is close to a direct implementation. This low-level
semantics is based upon a channel protocol that we have verified using the SAL infinite-state model
checker [4, 5, 7]; the invariants validated using SAL were necessary to prove that the low-level semantics
is a refinement of the high level semantics. Both of our semantic models are based upon virtual time –
a commonly used technique for conventional rollback recovery protocols [9, 21]. Our approach di↵ers in
utilizing synchronous communication and also by providing a fully distributed rollback protocol.

3.1 User-Level Syntax

We begin with the syntax of a core calculus which is rich enough to express the main semantic notions
of interest:

(channel name) `

(constants) c ::= () | 0 | 1 | . . . | + | � | � | . . .

(expression) e ::= c | x | �x.e | e1e2 | send ` e | recv `(x).e | stable e | backtrack e

(process) p ::= p1 k p2 | hei

A program is a collection of processes executing in parallel. Expressions extend the call-by-value �-
calculus with communication and backtracking primitives. The communication primitives are send ` e

which commits to sending the value of e on the channel ` and recv `(x).e which receives x on channel `.
Both our Scala implementation and full model support input “choice”; we have omitted the details in the
interest of brevity. The backtracking primitives are stable e which is used to delimit the scope of possible
backtracking events within e. The expression backtrack e typically has two e↵ects: the control state in
the process executing the instruction jumps back to the dynamically closest nested block with the value
of e and all intervening communication events are invalidated. The latter action might force neighboring
processes to also backtrack, possibly resulting in a cascade of backtracking for a poorly written program.

3.2 Internal Syntax

In order to formalize the semantics, we define a few auxiliary syntactic categories that are used to model
run-time data structures and internal states used by the distributed reversible protocol. These additional
categories include process names, time stamps, channel maps, evaluation contexts, and stacks and are
collected below:

(process name) n

(time stamp) t

(values) v ::= c | x | �x.e | stable (�x.e)
(expressions) e ::= . . . | stable e

(evaluation contexts) E ::= 2 | E e | v E | send ` E | stable E | stable E | backtrack E

(channel map) ⌅ = ` 7! (n, t, n)
(stacks) � = • | �, (E, t,⌅)
(processes) p ::= p1 k p2 | hn@t : �, ei

Expressions are extended with stable e which indicates an active region. The syntax of processes
hn@t : �, ei is extended to record additional information: a process id n, a virtual time t, a context
stack �, and an expression e to evaluate. The processes communicate using channels ` whose state is
maintained in a global map ⌅. Each entry in ⌅ maps a channel to the sender and receiver processes
(which are fixed throughout the lifetime of the channel) and the current virtual time of the channel.
Contexts are pushed on the stack when a process enters a new stable region and popped when a process
backtracks or exits a stable region. Each context includes a conventional continuation (modeled by an

87

evaluation context), a time stamp, and a local channel map describing the state of the communication
channels at the time of the checkpoint. An invariant maintained by the semantics is that a process
executing in the forward direction will have the times of its channels in the global map greater than or
equal to the times associated with the channels in the top stack frame. Similarly, the time associated with
a process will always be at least as great as the times associated with its channels. We assume that in the
initial system state, all channels have time 0 and every process is of the form hn@0 : •, stable (� .e) ()i;
i.e. process n is entering a stable region containing the expression e with an empty context stack at time
0.

We now informally describe the key semantic specifications that the above structures must satisfy
and illustrate some of the key points using examples. Aiming for clarity, the presentation is simplified
in several inessential aspects that are formalized in the remaining sections. Any computation step that
does not involve communication, stable regions, or backtracking is considered a local computation step.
None of the above structures need to be consulted or updated during such local computation steps. In
particular, the virtual time stamp is not incremented and local computation steps proceed at “full native
speed.” In order to establish notation for the remaining examples, here is a simple computation step:

{`1 7! (p1, 2, p2)} # hp1@5 : •, 1 + 2i ! {`1 7! (p1, 2, p2)} # hp1@5 : •, 3i

In this example, a process p1 with local virtual time 5 and making forward progress encounters the
computation 1 + 2. The process’s context stack is currently empty (•).1 We also assume the existence
of a channel `1 which is associated with time 2 and connects p1 to p2. Intuitively this means that the
last communication by that process on that channel happened three virtual time units in the past. The
reduction rule leaves all structures intact and simply performs the local calculation.

Communication between processes is synchronous and involves a handshake. We require that in ad-
dition to the usual exchange of information between sender and receiver, that the handshake additionally
exchanges several virtual times to establish the following invariant. At the end of handshake, the virtual
times of the sending process, the receiving process, and the used channel are all equal, and that this new
virtual time is larger than any of the prior times for these structures. Here is a small example illustrating
this communication handshake:

{`1 7! (p1, 3, p2)} # hp1@5 : •, send `1 10ikhp2@4 : •, recv `1(x).x+ 1i
! {`1 7! (p1, 6, p2)} # hp1@6 : •, ()ikhp2@6 : •, 10 + 1i

Initially, we have two processes willing to communicate on channel `1. Process p1 is sending the value
10 and process p2 is willing to receive an x on channel `1 and proceed with x+ 1. After the reduction,
the value 10 is exchanged and each process proceeds to the next step. The important invariant that has
been established is that the virtual times of the two processes as well as the virtual time of the channel
`1 have all been synchronized to time 6 which is greater than any of the previous times.

When a process executing in the forward direction encounters a new stable region, it increments
its virtual time and pushes a new context containing a continuation (or an exception handler) and the
current virtual times of all its current communication ports. If the execution of this stable region ends
“normally,” the context is popped and forward execution continues. As an example, consider:

{`1 7! (p1, 2, p2)} # hp1@5 : •, 7 + (stable f) vi
! {`1 7! (p1, 2, p2)} # hp1@6 : •, (7 + (stable f) 2, 5, {`1 7! (p1, 2, p2)}), 7 + stable (f v)i

Process p1 encounters the expression 7 + (stable f) v where f is some function and v is some value. The
stable construct indicates that execution might have to revert back to the current state if any backtracking
actions are encountered during the execution of f v. The first step is to increase the virtual time to
establish a new unique event. Then to be prepared for the eventuality of backtracking, process p1 pushes
(7 + (stable f) 2, 5, {`1 7! (p1, 2, p2)}) on its context stack. The pushed information consists of the
continuation 7 + stable f 2 which indicates the local control point to jump back to, the virtual time 5
which indicates the time to which to return, and the current channel map which captures the state of the
communication channels to be restored. Execution continues with 7 + stable (f v) where the underline
indicates that the region is currently active. If the execution of f v finishes normally, for example, by

1
Actually, each process starts with an implicit stable region which is omitted for clarity.

88

performing communication on channel `1 and then returning the value 100, then the evaluation progresses
as follows:

{`1 7! (p1, 8, p2)} # hp1@8 : •, (7 + (stable f) 2, 5, {`1 7! (p1, 2, p2)}), 7 + stable 100i
! hp1@8 : •, 7 + 100i

The context stack is popped and execution continues in the forward direction.
The more challenging situation occurs when the execution of f v encounters a backtracking command

(whether directly initiated by the process itself or indirectly initiated via a communicating partner). This
case will be described in detail in the next section.

3.3 Forward Semantics

In the remainder of this section we define the high-level semantics through a set of transition rules on
semantic configurations where a semantic configuration ⌅ # p1 k p2 . . . consists of the global channel map
⌅ and a number of processes.

Internal evaluation by a single process is captured with fairly conventional rules. We present the rule
for application of �-expressions; the rules for applying primitive operations are similar:

⌅ # hn@t : �, E[(�x.e) v]i ✏�! ⌅ # hn@t : �, E[e[v/x]]i (H1)

In the rule, the runnable expression in the process is decomposed into an evaluation context E and a
current “instruction” (�x.e) v. This instruction is performed in one step that replaces the parameter x
with the value v in the body of the procedure e. The notation for this substitution is e[v/x].2

The rule for forward communication is:

⌅{` 7! (n1, tc, n2)} # hn1@t1 : �1, E1[send ` v]i k hn2@t2 : �2, E2[recv `(x).e]i
`@t[v]����!
⌅{` 7! (n1, t, n2)} # hn1@t : �1, E1[()]i k hn2@t : �2, E2[e[v/x]]i

(H2)

Where t > max(t1, t2). The notation ⌅{` 7! (n1, tc, n2)} says that, in channel map ⌅, channel ` connects
sender n1 and receiver n2 and has time tc. Two processes communicate on a shared channel when one
is prepared to send and the other is prepared to receive. The act of communication causes data to
be transferred from the sender to receiver and a new (later) virtual time to be assigned to each of the
processes and the channel. An important model invariant is that t1 � tc ^ t2 � tc. Notice further that
this transition produces a visible event `@t[v] signifying that value v was transferred on channel ` at
time t.

Finally there are rules corresponding to entering and exiting stable regions. Entry into a stable region
causes a new context to be pushed onto the stack. Notice that a value is passed into the stable region
being executed. The syntax stable e means that e is being evaluated within a stable region:

⌅ # hn@t : �, E[(stable (�x.e)) v]i
✏�!
⌅ # hn@t

0 : (�, (E[(stable (�x.e)) 2], t,⌅n)), E[stable e[v/x]]i
(H3)

Where t0 > t and ⌅n is the subset of ⌅ referring to the channels of n. The saved context E[(stable (�x.e))2]
on the stack will be reinstated in case of a backtracking action. As the rules in the next section will show,
backtracking may occur either from within the current process or indirectly because another neighboring
process has retracted a communication event. In the first case, the context will be resumed with a value
of the programmer’s choice; in the latter case, the context will be resumed, asynchronously, with the
value (). A well-typed program should have the function argument to stable (�x.e in the rule above) be
prepared to handle either situation.

When a stable region is completed, the stored context is popped:

⌅ # hn@t : (�, (E0
, t

0
,⌅0)), E[stable v]i ✏�! ⌅ # hn@t : �, E[v]i (H4)

2
For readability, the color version of the paper highlights the components of the configuration that are modified by each

rule.

89

3.4 Backtracking Semantics

The novelty of our language is in its support of backtracking. Backtracking is initiated by a process that
encounters a backtrack expression. A process executing a backtrack event can synchronize with other pro-
cesses through “backwards communication events.” Any process engaging in a backwards communication
event is forced into the backtracking state:

⌅{` 7! (c1, tc, c2)} # hn1@t1 : �1, e1i k hn2@t2 : �2, E2[backtrack v]i
`@t��!
⌅{` 7! (c1, t, c2)} # hn1@t1 : �1, backtrack ()i k hn2@t2 : �2, E2[backtrack v]i

(H5)

Where 0 t < tc and {c1, c2} = {n1, n2}. (Case where n1 is already backtracking omitted).
A backwards communication event occurs between two processes sharing a channel where at least

one of the processes is in the backtracking state. The label `@t means that all communication events on
channel ` at times later than t are retracted. Notice that only the channel time is reduced – this preserves
our invariant that the virtual time of every process is greater than or equal to that of its channels. The
virtual time of a backtracking process is only updated when it returns to forward execution.

While our semantic rules impose as few constraints as possible, our Scala implementation demon-
strates that it is possible to constrain the application of these rules to obtain an e�cient implementation.

A backwards communication event may bring a process to a state in which the top context on its
stack is “later” than required by one of its channels. In this case, repeated backtracking is required – in
e↵ect popping its context stack.

⌅{` 7! (�, t,�)} # hn1@t1 : �1, (E1, t
0
1,⌅1{` 7! (�, t

0
,�)}), E[backtrack v]i

!
⌅ # hn1@t1 : �1, E[backtrack v]i

(H6)

Where t < t

0. Because of our initial conditions, this rule is always possible if 0 < t

0 – in e↵ect we
guarantee there is a such a stored context.

Finally, a process that is backtracking can return to forward action if all its channels are in a “con-
sistent” state – that is, when all channels in its stored channel map have time-stamps matching what is
found in the global channel map.

⌅ # hn1@t1 : �1, (E1, t
0
1,⌅1), E[backtrack v]i ! ⌅ # hn1@t

0
1 : �1, E1[v]i (H7)

Where ⌅1{` 7! (�, t,�)}) ⌅{` 7! (�, t,�)}. Again, our initial conditions guarantee that such a state
is possible.

4 Channel Protocol

The principal di↵erence between the low-level (Section 5) and high-level semantics is that the low-level
communication is implemented using a multi-phase handshaking protocol where the sender requests a
communication event that the receiver subsequently acknowledges. The state corresponding to a channel
is divided into two parts – one maintained by the sender and the other maintained by the receiver. A
process may only write the state associated with its channel end, but may read (a delayed version of)
that maintained by its communicating partner. Necessarily, the channel implementation has two time-
stamps – one maintained by the sender and one maintained by the receiver. It is convenient to think
of the time-stamp maintained by the receiver as the “true” channel time. In addition to independent
time-stamps, each end of the channel has a token bit and a “direction” flag. The token bits jointly
determine which end of the channel may make the next “move,” and the flag (loosely) determines the
direction of communication, forward or backwards.

We developed a formal model for the channel protocol using the Symbolic Analysis Laboratory (SAL)
tools [5, 4, 7] and present the protocol using the SAL syntax. The invariants verified with the SAL model
are crucial to the refinement proofs that link our two semantic models. For example, the SAL invariants
show that if the processes using a channel obey the protocol, the various timestamps will obey the
ordering assertions our semantics depend upon.

In the SAL language the key protocol types are defined as:

90

TIME : TYPE = NATURAL;
DIR : TYPE = { B, I, F }; % backwards, idle, forward

The sender state is defined by four state variables:

OUTPUT s_b : BOOLEAN % sender token
OUTPUT s_t : TIME % sender time
OUTPUT s_d : DIR % sender direction
OUTPUT v : NATURAL % sender data

Similarly for the receiver state:

OUTPUT r_b : BOOLEAN % receiver token
OUTPUT r_t : TIME % receiver time
OUTPUT r_d : DIR % receiver direction

The state of the channel consists of the union of the sender and receiver states. In general, the right to
act alternates between the sender and the receiver. The sender is permitted to initiate a communication
event (forwards or backwards) when the two token bits are equal. The receiver is permitted to complete
a communication event when the two token bits are unequal. Thus the sender (receiver) “holds” the
token when these bits are equal (unequal). This alternating behavior is a characteristic of handshake
protocols.

An important wrinkle in our protocol is the ability of blocked sender or receiver to signal its partner
that it wishes to switch from forward to backwards communication. The receiver state also includes an
auxiliary Boolean variable sync used to support the proof. The receiver sets sync when it completes a
communication event and resets it when it refuses a communication event. This variable is not visible
to the sender; however, our automated proof demonstrates that the sender can infer its value from the
visible state even in the presence of potential races.

Forward communication is initiated when the sender executes the guarded transition:

Trans 1. (s_b = r_b) AND (r_d = F) --> s_b’ = NOT s_b;
s_t’ IN { x : TIME | x > r_t} ;
s_d’ = F;
v’ IN { x : NATURAL | true}

In the SAL language, transition rules are simply predicates defining pre- and post-conditions; the
next state of s_b is s_b’. Thus, the sender may initiate forward communication whenever it holds the
“token” (s_b = r_b) and the receiver is accepting forward transactions (r_d = F). By executing the
transition, the sender selects a new time (s_t’), relinquishes the token, indicates that it is executing a
forward transaction (s_d’ = F), and selects (arbitrary) data to transfer.

The receiver completes the handshake by executing the following transition in which it updates its
clock (to a value at least that o↵ered by the sender), and flips its token bit. This transition is only
permitted when both the sender and the receiver wish to engage in forward communication.

Trans 2. (s_b /= r_b) AND (s_d /= B) AND (r_d = F) --> r_b’ = s_b;
r_t’ IN { x : TIME | x >= s_t};

A receiver may also refuse a forward transaction by indicating that it desires to engage only in
backwards communication.

Trans 3. (s_b /= r_b) AND (s_d = F) --> r_b’ = s_b;
r_d’ = B;

Our protocol also supports backwards communication events. The sender may initiate a backwards
event whenever it holds the token.

Trans 4. (s_b = r_b) --> s_b’ = NOT s_b;
s_t’ IN { x : TIME | x < r_t} ;
s_d’ = B

91

In a manner analogous to forward communication, the receiver may complete the event by executing
the following transition. One subtlety of this transition is that the receiver may also signal whether it
is ready to resume forward communication (r_d’ = F) or wishes to engage in subsequent backward
events (r_d’= B). The latter occurs when the sender has o↵ered a new time that is not su�ciently in
the past to satisfy the needs of the receiver.

Trans 5. (s_b /= r_b) AND (s_d = B) --> r_b’ = s_b;
r_d’ IN { x : DIR | x = B or x = F };
r_t’ = s_t;

While the protocol presented supports both forward and backwards communication, the sender may
be blocked waiting for a response from a receiver when it wishes to backtrack. The following transition
allows the sender to request that a forward transaction be retracted.

Trans 6. (s_b /= r_b) AND (s_d = F) --> s_d’ = I

The receiver may either accept the original o↵er to communicate (Trans 2) or allow the retraction:

Trans 7. (s_b /= r_b) AND (s_d = I) --> r_b’ = s_b;
r_d’ IN {x : DIR | x = r_d or x = B};

Similarly a blocked receiver may signal the sender that it wishes to backtrack.

Trans 8. (s_b = r_b) --> r_d’ = B

In a distributed environment, where channel state changes made by the sender or receiver take time
to propagate, these two rules introduce potential race conditions. Our SAL model accounts for race
conditions by verifying a model where communication is bu↵ered. Thus, the invariants proved using the
SAL tools are valid in a distributed environment. Our SAL model includes a “shadow variable,” sync,
that the receiver sets whenever it accepts a communication event and clears whenever it rejects one.
Whenever the sender holds the token, sync is true exactly when r_t >= s_t. Thus, the sender can
determine which of the racing events occurred.

Consider that the sender may attempt to retract a forward request while the receiver simultaneously
acknowledges that request. Similarly, the receiver may decide, after it has acknowledged a request, that
it wishes to backtrack. In either case the later decision “overwrites” state that may or may not have been
seen by the partner. For our semantic model, it is crucial that the sender be able to determine whether
the synchronization event occurred or was successfully retracted. Indeed we prove a key invariant:

(s_b = r_b) => ((s_t <= r_t)) = sync)

Thus, when the sender holds the token, it can determine whether its last communication request was
completed.

5 Low-Level Processes

Our low-level model is derived from the high-level model by implementing those rules involving syn-
chronization using finer-grained rules based upon the the protocol model. Necessarily, there are more
transition rules associated with the low-level model. For example, the single high-level transition im-
plementing forward communication requires three transitions (two internal and one external or visible)
in the low-level model. High level transitions not involving communication (H1, H3, H4, and H6) are
adopted in the low-level model with minimal changes to account for the di↵erences in channel state. Due
to space limitations, we consider only those transitions relating to forward communication. We use these
transitions to illustrate how low-level events “map” to high-level events.

We define the state of a channel as a tuple:

(s : (n, t, b, d, v), r : (n, t, b, d))

92

where s is the state of the sender and r is the state of the receiver; s.n is the sender id and r.n is
the receiver id. As mentioned, the sender and receiver both maintain (non-negative) time-stamps (s.t,
r.t) and Boolean tokens (s.b, r.b). Each also maintains a direction flag (s.d, r.d) indicating “forward” or
“backward” synchronization. The sender state includes a value s.v to be transferred when communication
occurs. These state elements correspond the those of the channel protocol.

Where the high-level semantics included rules H2 and H5 that require simultaneous changes in two
processes, none of the low-level rules a↵ects more than one process. Indeed, the only preconditions on
any of our low-level rules are the state of a single process and the state of its channels. Furthermore,
these rules modify only the process state and the portion of a channel state (send or receive) owned by
the process.

Forward communication (H2 in the High-level model) is executed in three steps by the underlying
channel protocol.

1. In the first step, which corresponds to Trans 1 of the SAL model, the sender initiates the commu-
nication. The sender marks its state as “in progress” with the new expression send ` v, which has
no direct equivalent in the high-level model and which may only occur as a result of this transition
rule.

⌅{` 7! (s : (n, ts, b,�,�), r : (nr, tr, b, F)} # hn@t : �, E[send ` v]i
✏�!
⌅{` 7! (s : (n, t0s, b, F, v), r : (nr, tr, b, F)} # hn@t : �, E[send ` v]i

(L1)

Where t

0
s > tr. Recall that the sender has the “token” when the two channel token bits are equal

(s.b = r.b), and initiates communication by inverting its token bit (s.b).

2. In the second step, (Trans 2) the receiver “sees” that the sender has initiated communication,
reads the data, updates its local virtual time, updates the channel’s time, and flips its token bit
to enable the sender to take the next and final step in the communication. (Note that the sender
stays blocked until the receiver takes this step.) After taking this step the receiver can proceed
with its execution.

⌅{` 7! (s : (ns, ts, b, ds, v), r : (n, tr, b, F)} # hn@t : �, E[recv `(x).e]i
`@t[v]����!
⌅{` 7! (s : (ns, ts, b, ds, v), r : (n, t, b, F)} # hn@t : �, E[e[v/x]]i

(L2)

Where t > max(ts, t) and ds 2 {F, I}. From L1 we can show that ts > tr. A required invariant for
our model is that when the conditions of this rule are satisfied, the sender ns is executing send ` .

3. In the final step, the sender notes that its active communication event has been acknowledged by
the receiver. It updates its local time and unblocks.

⌅{` 7! (s : (n, ts, b, ds, v), r : (nr, tr, b, dr)} # hn@t : �, E[send ` v]i
✏�!
⌅{` 7! (s : (n, ts, b, ds, v), r : (nr, tr, b, dr)} # hn@tr : �, E[()]i

(L3)

Where ds 6= B and ts tr.

6 Refinement Mapping Proof Outline

We have (partially) presented two semantic models and and a channel protocol. We can use the high-
level model to inform programmers about expected program behavior, the low-level model to guide
implementers, and the channel protocol to help prove invariant properties about the low-level model.
In this section we outline the refinement mapping that we used to prove that the low level processes
(henceforth LP); i.e., a function that maps every state of LP to a state of HP and where every transition
of LP maps to a transition of HP.

Following Abadi and Lamport [1], a specification S is defined by (⌃, F,N) where ⌃ is a state space, F
is the set of initial states, and N is the next-state relation. To prove that S1 = (⌃1, F1, N1) implements
S2 = (⌃1, F2, N2) we need to define a mapping f : ⌃1 ! ⌃2 such that:

93

R2. For all f(F1) ✓ F2 (f takes initial states into initial states.)

R3. If hs, ti 2 N1 then hf(s), f(t)i 2 N2 or f(s) = f(t). (A state transition allowed by N1 is mapped
into a [possibly stuttering] transition allowed by N2.)

Note that we have omitted the portions of the Abadi and Lamport definition that handle supple-
mental properties along with rules R1 and R4 which deal with externally visible state and supplemental
properties (respectively).

The states of HP are defined by parallel composition of a finite set of processes as defined by syntax
of Section 3.2. The initial states of HP are those where every context stack is empty, every process is of
the form hn@0 : •, stable (� .e) ()i, and every channel is at time 0. The initial states of LP are exactly
the initial states of HP but where each channel state has two additional token bits, both false, two clocks,
both 0, and two direction flags, both F.

We can quickly dispense with mapping rule R2 by stating that our mapping function converts channel
maps of LP to those of HP by dropping the additional state information, and maps the syntax to LP to
that of HP except for two process forms, neither of which is permitted in the initial state:

hn@t : �, send ` ei
hn@t : �, backtrack ` ei

send ` was discussed in Section 5 where it was used to capture the intermediate state of a forward
communication transaction; backtrack ` serves as an intermediate state for the backtracking rules that
we have omitted due to space limitations.

As an example of mapping transition rules, consider the following cases for mapping of send ` v. The
first case corresponds to the state after transition L1 and the second to the state after transition L2.
(recall that ` is a channel, and `.x.y correspond to fields of the channel state).

f(E[send ` v]) = E[send ` v] if (`.s.b 6= `.r.b) _ `.s.t > `.r.t

f(E[send ` v]) = E[()] if (`.s.b = `.r.b) ^ `.s.t `.r.t

Thus in the mapping, L1 is a “silent” transition and L2, which is only executed in parallel with a
process executing send ` v, corresponds to high-level transition H2.

Validating the (complete) refinement mapping requires proving that every LP transition maps to a
HP transition.

7 Discussion

We have introduced a CSP based language supporting reversible distributed computing along with two
semantic models – a high-level model in which synchronous events are modeled by transitions that a↵ect
two processes simultaneously, and a low-level model in which transitions a↵ect a single process. These
two models are related by a verified communication protocol which is the basis for the finer grained
transitions of the low-level model. We outlined a refinement mapping that we developed proving that
the low-level model implements the high-level model. This proof required the invariants of the protocol
that were verified with the SAL model checker. We have also proved that the high-level model obeys
sensible causal ordering properties even in the face of backtracking.

While our Scala language implementation is somewhat richer than the simple models presented here
(e.g., it supports communication choice, and dynamic process and channel creation); at its core it is
implemented exactly as indicated by our low-level model. Channels are implemented via message passing
where the messages carry the channel state of our protocol. Processes are implemented as Java threads.
Processes learn that their peers wish to backtrack by examining the (local) state of their channels. Stable
sections consist of: saving the channel timestamps on the context stack, executing the Stable code in
a try/catch block, and popping the stack; backtracking is implemented by throwing an exception. The
implementation required approximately 1200 lines of code. 3

3
Download: http://cs.indiana.edu/⇠geobrown/places-code.tar.gz.

94

This paper provides clear evidence that implementing reversible communicating processes in a dis-
tributed manner is both feasible and, from the perspective of communication overhead, relatively e�cient.
As we noted, our “high-level” model is unsatisfying because it exposes the programmer to the mechanics
of backtracking. In our current model, even when a process has decided that it wishes to backtrack, its
peers may continue forward execution for a period during which they may learn from their peers. If we
were to restrict our attention to traditional roll-back recovery, where nothing is “learned” from unsuc-
cessful forward execution, this could easily be abstracted. We continue to work towards a “compromise”
between traditional rollback and the unrestricted model we have presented.

Acknowledgment This material is based upon work supported by the National Science Foundation
under grant numbers 1116725 and 1217454 and while the first author was an NSF program o�cer. Any
opinion, findings, and conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science Foundation.

References

[1] Mart́ın Abadi and Leslie Lamport. The existence of refinement mappings. Theor. Comput. Sci., 82(2):253–
284, May 1991.

[2] V. Danos and J. Krivine. Transactions in RCCS, pages 398–412. Springer-Verlag, London, UK, 2005.

[3] V. Danos, J. Krivine, and F. Tarissan. Self-assembling trees. Electron. Notes Theor. Comput. Sci., 175:19–32,
May 2007.

[4] Leonardo de Moura. SAL: tutorial. Technical report, SRI International, 2004.

[5] Leonardo de Moura, Sam Owre, and N. Shankar. The SAL language manual. Technical report, SRI
International, 2002.

[6] Edsko de Vries, Vasileios Koutavas, and Matthew Hennessy. Communicating transactions. In Proceedings
of the 21st international conference on Concurrency theory, CONCUR’10, pages 569–583. Springer-Verlag,
2010.

[7] Bruno Dutertre and Maria Sorea. Timed systems in SAL. Technical Report SRI-SDL-04-03, SRI Interna-
tional, 2004.

[8] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson. A survey of rollback-recovery
protocols in message-passing systems. ACM Comput. Surv., 34(3):375–408, September 2002.

[9] Colin J. Fidge. Timestamps in message-passing systems that preserve the partial ordering. In Proc. of the
11th Australian Computer Science Conference (ACSC’88), pages 56–66, February 1988.

[10] Rachid Guerraoui. Foundations of speculative distributed computing. In Nancy Lynch and Alexander
Shvartsman, editors, Distributed Computing, volume 6343 of Lecture Notes in Computer Science, pages
204–205. Springer-Verlag, 2010.

[11] M. Hermenegildo and K. Greene. The &-prolog system: Exploiting independent and-parallelism. New
Generation Computing, 9:233–256, 1991.

[12] Ralf Hinze. Deriving backtracking monad transformers. In Proceedings of the fifth ACM SIGPLAN inter-
national conference on Functional programming, ICFP ’00, pages 186–197. ACM, 2000.

[13] Tony Hoare. Compensable transactions. In Peter Mller, editor, Advanced Lectures on Software Engineering,
volume 6029 of Lecture Notes in Computer Science, pages 21–40. Springer Berlin Heidelberg, 2010.

[14] D. Je↵erson, B. Beckman, F. Wieland, L. Blume, and M. Diloreto. Time warp operating system. In
Proceedings of the eleventh ACM Symposium on Operating systems principles, SOSP ’87, pages 77–93. ACM,
1987.

[15] David R. Je↵erson. Virtual time. ACM Transactions on Programming Languages and Systems, 7:404–425,
1985.

[16] Ivan Lanese, Claudio Antares Mezzina, Alan Schmitt, and Jean-Bernard Stefani. Controlling reversibility in
higher-order Pi. In Proceedings of the 22nd international conference on Concurrency theory, CONCUR’11,
pages 297–311. Springer-Verlag, 2011.

[17] Ivan Lanese, ClaudioAntares Mezzina, and Jean-Bernard Stefani. Reversing higher-order Pi. In Paul Gastin
and Franois Laroussinie, editors, CONCUR 2010 - Concurrency Theory, volume 6269 of Lecture Notes in
Computer Science, pages 478–493. Springer Berlin Heidelberg, 2010.

[18] Mohsen Lesani and Jens Palsberg. Communicating memory transactions. In Proceedings of the 16th ACM
symposium on Principles and practice of parallel programming, PPoPP ’11, pages 157–168. ACM, 2011.

[19] Jing Li, Huibiao Zhu, and Jifeng He. Specifying and verifying web transactions. In Kenji Suzuki, Teruo Hi-
gashino, Keiichi Yasumoto, and Khaled El-Fakih, editors, Formal Techniques for Networked and Distributed

95

Systems FORTE 2008, volume 5048 of Lecture Notes in Computer Science, pages 149–168. Springer Berlin
Heidelberg, 2008.

[20] Michael Lienhardt, Ivan Lanese, Claudio Antares Mezzina, and Jean-Bernard Stefani. A reversible abstract
machine and its space overhead. In Holger Giese and Grigore Rosu, editors, Formal Techniques for Distributed
Systems, volume 7273 of Lecture Notes in Computer Science, pages 1–17. Springer-Verlag, 2012.

[21] Friedemann Mattern. Virtual time and global states of distributed systems. In Parallel and Distributed
Algorithms, pages 215–226. North-Holland, 1988.

[22] Iain Phillips and Irek Ulidowski. Reversibility and models for concurrency. Electron. Notes Theor. Comput.
Sci., 192:93–108, October 2007.

[23] John H. Reppy. Concurrent programming in ML. Cambridge University Press, New York, NY, USA, 1999.

[24] Lukasz Ziarek and Suresh Jagannathan. Lightweight checkpointing for concurrent ML. J. Funct. Program.,
20(2):137–173, March 2010.

96

Retractable Contracts

⇤

Franco Barbanera

1
, Mariangiola Dezani-Ciancaglini

2 †

,

Ivan Lanese

3 ‡

and Ugo de’Liguoro

2 §

1 Dipartimento di Matematica e Informatica, University of Catania, barba@dmi.unict.it
2 Dipartimento di Informatica, University of Torino, dezani@di.unito.it, deliguoro@di.unito.it

3 Dipartimento di Informatica - Scienza e Ingegneria, University of Bologna/INRIA,
ivan.lanese@gmail.com

Abstract

In calculi for modelling communication protocols, internal and external choices play
dual roles. Two external choices can be viewed naturally as dual too, as they represent an
agreement between the communicating parties. If the interaction fails, the past agreements
are good candidates as points where to roll back, in order to take a di↵erent agreement.
We propose a variant of contracts with synchronous rollbacks to agreement points in case
of deadlock. The new calculus is equipped with a compliance relation which is shown to
be decidable.

1 Introduction

In human as well as automatic negotiations, an interesting feature is the ability of rolling back to
some previous point in case of failure, undoing previous choices and possibly trying a di↵erent
path. Rollbacks are familiar to the users of web browsers, and so are also the troubles that
these might cause during “undisciplined” interactions. Clicking the “back” button, or going
to some previous point in the chronology when we are in the middle of a transaction, say the
booking of a flight, can be as smart as dangerous. In any case, it is surely a behaviour that
service programmers want to discipline. Also the converse has to be treated with care: a server
discovering that an auxiliary service becomes available after having started a conversation could
take advantage of it using some kind of rollback. However, such a server would be quite unfair
if the rollback were completely hidden from the client.

Let us consider an example. A Buyer is looking for a bag (bag) or a belt (belt); she will decide
how to pay, either by credit card (card) or by cash (cash), after knowing the price from a Seller.
The Buyer behaviour can be described by the process:

Buyer = bag.price.(card � cash)� belt.price.(card � cash)

where dot is sequential composition and � is internal choice. The Seller does not accept credit
card payments for items of low price, like belts, but only for more expensive ones, like bags:

Seller = belt.price.cash + bag.price.(card + cash)

where + is external choice. According to contract theory [6], Buyer is not compliant with Seller,
since she can choose to pay the belt by card. Also, there is no obvious way to represent the

⇤This work was partially supported by Italian MIUR PRIN Project CINA Prot. 2010LHT4KM and COST
Action IC1201 BETTY.

†This author was partially supported by the Torino University/Compagnia San Paolo Project SALT.
‡This author was partially supported by the French ANR project REVER n. ANR 11 INSE 007.
§This author was partially supported by the Torino University/Compagnia San Paolo Project SALT.

97

Retractable contracts Barbanera, Dezani, Lanese and de’Liguoro

buyer’s will to be free in her decision about the payment and be compliant with a seller without
asking the seller in advance. Nonetheless, when interacting with Seller, the buyer’s decision is
actually free at least in the case of purchase of a bag. For exploiting such a possibility the client
(but also the server) should be able to tolerate a partial failure of her protocol, and to try a
di↵erent path.

To this aim we add to (some) choices a possibility of rollback, in case the taken path fails to
reach a success configuration. In this setting, choices among outputs are no more purely internal,
since the environment may oblige to undo a wrong choice and choose a di↵erent alternative.
For this reason, we denote choices between outputs which allow rollback as external, hence we
use Buyer

0 below instead of Buyer:

Buyer

0 = bag.price.(card � cash) + belt.price.(card � cash)

We thus explore a model of contract interaction in which synchronous rollback is triggered when
client and server fail to reach an agreement.

In defining our model we build over some previous work reported in [2], where we have
considered contracts with rollbacks. However, we depart from that model on three main aspects.
First, in the present model rollback is used in a disciplined way to tolerate failures in the
interaction, thus improving compatibility, while in [2] it is an internal decision of either client
or server, which makes compatibility more di�cult. Second, we embed checkpoints in the
structure of contracts, avoiding explicit checkpoints. Third, we consider a stack of “pasts”,
called histories, instead of just one past for each participant, as in [2], thus allowing to undo
many past choices looking for a successful alternative.

2 Contracts for retractable interactions

Our contracts can be obtained from the session behaviours of [1] or from the session contracts
of [3] just adding external retractable choices between outputs.

Definition 2.1 (Retractable Contracts). Let N (set of names) be some countable set of symbols

and N = {a | a 2 N} (set of conames), with N \N = ;. The set RC of retractable contracts

is defined as the set of the closed expressions generated by the following grammar,

�, ⇢ := | 1 success

|
P

i2I ai.�i (retractable) input

|
P

i2I ai.�i retractable output

|
L

i2I ai.�i unretractable output

| x variable

| recx.� recursion

where I is non-empty and finite, the names and the conames in choices are pairwise distinct

and � is not a variable in recx.�.

Note that recursion in RC is guarded and hence contractive in the usual sense. We take an
equi-recursive view of recursion by equating recx.� with �[recx.�/x]. We use ↵ to range over

N [N , with the convention ↵ =

(
a if ↵ = a,

a if ↵ = a.

We write ↵1.�1 + ↵2.�2 for binary input/retractable output and a1.�1 � a2.�2 for binary unre-
tractable output. They are both commutative by definition. Also, a.� may denote both unary

98

Retractable contracts Barbanera, Dezani, Lanese and de’Liguoro

retractable choice and unary unretractable choice. This is not a source of confusion since they
have the same semantics.

From now on we call just contracts the expressions in RC. They are written by omitting all
trailing 1’s.

In order to deal with rollbacks we decorate contracts with histories, which memorise the
alternatives in choices which have been discharged. We use ‘�’ as a placeholder for no-remaining-

alternatives.

Definition 2.2 (Contracts with histories). Let Histories be the expressions (referred to also as

stacks) generated by the grammar:

� ::= [] | � :�

where � 2 RC [{�} and � 62 RC. Then the set of contracts with histories is defined by:

RCH = {� � � | � 2 Histories,� 2 RC [{�} }.

We write just �1 : · · · :�k for the stack (· · · ([] :�1) : · · ·) :�k. With a little abuse of notation we
use ‘ : ’ also to concatenate histories, and to add contracts in front of histories.

We can now discuss the operational semantics of our calculus (Definition 2.3). The reduction
rule for the internal choice (�) is standard, but for the presence of the � � ·. Whereas, when
reducing retractable choices (+), the discharged branches are memorised. When a single action
is executed, the history is modified by adding a ‘�’, intuitively meaning that the only possible
branch has been tried and no alternative is left. Rule (rb) recovers the contract on the top of
the stack, replacing the current one with it.

Definition 2.3 (LTS of Contracts with Histories).

(+) � � ↵.� + �

0 ↵�! � :�0 � � (�) � � a.� � �

0 ⌧�! � � a.�

(↵) � � ↵.�

↵�! � :� � � (rb) � :�0 � �

rb�! � � �

0

The interaction of a client with a server is modelled by the reduction of their parallel
composition, that can be either forward, consisting of CCS style synchronisations and single
internal choices, or backward, only when there is no possible forward reduction, and the client
is not satisfied, i.e. it is di↵erent from 1.

Definition 2.4 (TS of Client/Server Pairs). We define the relation �! over pairs of contracts

with histories by the following rules:

� � ⇢

↵�! �

0 � ⇢

0 � � �

↵�! �0 � �

0

(comm)
� � ⇢ k � � � �! �0 � ⇢

0 k �0 � �

0

� � ⇢

⌧�! � � ⇢

0

(⌧)
� � ⇢ k � � � �! � � ⇢

0 k � � �

� � ⇢

rb�! �0 � ⇢

0 � � �

rb�! �0 � �

0
⇢ 6= 1

(rbk)
� � ⇢ k � � � �! �0 � ⇢

0 k �0 � �

0

plus the rule symmetric to (⌧) w.r.t. k. Moreover, rule (rbk) applies only if neither (comm) nor
(⌧) do.

99

Retractable contracts Barbanera, Dezani, Lanese and de’Liguoro

We will use
⇤�! and 6�! with the standard meanings.

Notice that, since ‘�’ cannot synchronise with anything, in case a partner rolls back to a ‘�’, it
is forced to recover an older past (if any).

The following examples show the di↵erent behaviours of retractable and unretractable out-
puts. We decorate arrows with the name of the used reduction rule. As a first example we
consider a possible reduction of the process discussed in the Introduction.

Example 2.5. As in the Introduction, let Buyer

0 = bag.price.(card�cash)+belt.price.(card�cash)
be a client and Seller = belt.price.cash + bag.price.(card + cash) a server; then

[] � Buyer

0 k [] � Seller

comm�! bag.price.(card � cash) � price.(card � cash) k bag.price.(card + cash) � price.cash

comm�! bag.price.(card � cash) :� � (card � cash) k bag.price.(card + cash) :� � cash

⌧�! bag.price.(card � cash) :� � card k bag.price.(card + cash) :� � cash

rbk�! bag.price.(card � cash) � � k bag.price.(card + cash) � �
rbk�! [] � bag.price.(card � cash) k [] � bag.price.(card + cash)

comm�! � � price.(card � cash) k � � price.(card + cash)

comm�! � :� � (card � cash) k � :� � (card + cash)

⌧�! � :� � card k � :� � (card + cash)

comm�! � :� :� � 1 k � :� :cash � 1

6�!

Example 2.6. Let ⇢ = recx.(b.x� a.c.x) and � = recx.(b.x+ a.e.x). The following reduction
sequence leads the parallel composition of these contracts to a deadlock.

⇢ k �

⌧�! [] � a.c.⇢ k [] � recx.(b.x+ a.e.x)

comm�! � � c.⇢ k b.� � e.�

rbk�! [] � � k [] � b.�

6�!

Example 2.7. Let us now modify the above example by using retractable outputs in the client,
so making the two contracts in parallel always reducible. The following reduction shows that
there can be an infinite number of rollbacks in a sequence, even if it is not possible to have an
infinite reduction containing only rollbacks. Notice how the stack keeps growing indefinitely.

100

Retractable contracts Barbanera, Dezani, Lanese and de’Liguoro

Let ⇢ = recx.(b.x+ a.c.x) and � = recx.(b.x+ a.e.x).

⇢ k �

comm�! b.⇢ � c.⇢ k b.� � e.�

rbk�! [] � b.⇢ k [] � b.�

comm�! � � ⇢ k � � �

comm�! � :b.⇢ � c.⇢ k � :b.� � e.�

rbk�! � � b.⇢ k � � b.�

comm�! � :� � ⇢ k � :� � �

...

3 Compliance

The compliance relation for standard contracts consists in requiring that, whenever no reduction
is possible, all client requests and o↵ers have been satisfied, i.e. the client is in the success state
1. For retractable contracts we can adopt the same definition.

Definition 3.1 (Compliance Relation

�

).

i) The relation

�

on contracts with histories is defined by:

� � ⇢

�
� � � holds whenever � � ⇢ k � � �

⇤�! �0 � ⇢

0 k �0 � �

0 6�! implies ⇢

0 = 1

for any �0, ⇢0,�0
,�

0
.

ii) The relation

�

on contracts is defined by:

⇢

�

� i↵ [] � ⇢

�

[] � �.

We now provide a formal system characterising compliance on retractable contracts.
The judgments are of the shape � B ⇢ a �, where � is a set of expressions of the form
⇢

0 a �

0. We write B ⇢ a � when � is empty. The only non standard rule is rule (+,+), which
assures compliance of two retractable choices when they contain respectively a name and the
corresponding coname followed by compliant contracts. This contrasts with the rules (�,+) and
(+,�), where all conames in unretractable choices between outputs must have corresponding
names in the choices between inputs, followed by compliant contracts.

Definition 3.2 (Formal System for Compliance).

(Ax)
� B 1 a �

(Hyp)
�, ⇢ a � B ⇢ a �

�,↵.⇢+ ⇢

0 a ↵.� + �

0 B ⇢ a �

(+,+)
� B ↵.⇢+ ⇢

0 a ↵.� + �

0

8i 2 I. �,
L

i2Iai.⇢i a
P

j2I[Jaj .�j B ⇢i a �i
(�,+)

� B L
i2Iai.⇢i a

P
j2I[Jaj .�j

8i 2 I. �,
P

j2I[Jaj .�j a
L

i2Iai.⇢i B ⇢i a �i
(+,�)

� B P
j2I[Jaj .�j a

L
i2Iai.⇢i

101

Retractable contracts Barbanera, Dezani, Lanese and de’Liguoro

Notice that rule (+,+) implicitly represents the fact that, in the decision procedure for two
contracts made of retractable choices, the possible synchronising branches have to be tried,
until either a successful one is found or all fail.

Example 3.3. Let us formally show that, for the Buyer

0 and Seller of the Introduction, we have
Buyer

0 a Seller.
For the sake of readability, let
�0 = Buyer

0 a Seller, price.(card� cash) a price.(card+ cash) and �00 = �0
, card� cash a card+ cash

(Ax)
�00 B 1 a 1

(Ax)
�00 B 1 a 1

(�,+)
�0 B card � cash a card + cash

(+,+)
Buyer

0 a Seller B price.(card � cash) a price.(card + cash)
(+,+)

B Buyer

0 a Seller

Example 3.4. The contracts of Example 2.7 can be formally proved to be compliant by means
of the following derivation in our formal system. Actually such a derivation can be looked at
as the result of the decision procedure implicitly described by the formal system.

(Hyp)
b.⇢+ a.c.⇢ a b.� + a.e.� B ⇢ a �

(+,+)
B b.⇢+ a.c.⇢ a b.� + a.e.�

In applying the rules we exploit the fact that we consider contracts modulo recursion fold/un-
fold.

We can show that derivability in this formal system is decidable, since it is syntax directed
and it does not admit infinite derivations.

We denote by D a derivation in the system of Definition 3.2. The procedure Prove in
Figure 1 clearly implements the formal system, that is it is straightforward to check the following

Fact 3.5.

i) Prove(� B ⇢ a �) 6= fail i↵ � B ⇢ a �.

ii) Prove(� B ⇢ a �) = D 6= fail implies

D
� B ⇢ a �

Theorem 3.6. Derivability in the formal system is decidable.

Proof. By Fact 3.5, we only need to show that the procedure Prove always terminates. Notice
that in all recursive calls Prove(�, ⇢ a � B ⇢k a �k) inside Prove(� B ⇢ a �) the expressions
⇢k and �k are subexpressions of ⇢ and � respectively (because of unfolding of recursion they
can also be ⇢ and �). Since contract expressions generate regular trees, there are only finitely
many such subexpressions. This implies that the number of di↵erent calls of procedure Prove

is always finite.

In the remaining of this section we will show the soundness and the completeness of the
formal system using some auxiliary lemmas.

102

Retractable contracts Barbanera, Dezani, Lanese and de’Liguoro

Prove(� B ⇢ a �)

if ⇢ = 1 then

(Ax)
� B 1 a �

else if ⇢ a � 2 � then

(Hyp)
�, ⇢ a � B ⇢ a �

else if ⇢ =
P

i2I ↵i.⇢i and � =
P

j2J ↵j .�j

and exists k 2 I \ J s.t. D = Prove(�, ⇢ a � B ⇢k a �k) 6= fail

then

D
(+,+)

� B ⇢ a �
else fail

else if ⇢ =
L

i2I ai.⇢i and � =
P

j2J aj .�j and I ✓ J

and for all k 2 I Dk = Prove(�, ⇢ a � B ⇢k a �k) 6= fail

then

8k 2 I Dk
(�,+)

� B ⇢ a �

else if ⇢ =
P

i2I ai.⇢i and � =
L

j2J aj .�j and I ◆ J

and for all k 2 J Dk = Prove(�, ⇢ a � B ⇢k a �k) 6= fail

then

8k 2 J Dk
(+,�)

� B ⇢ a �
else fail

else fail

Figure 1: The procedure Prove.

Soundness It is useful to show that if a configuration is stuck, then both histories are empty.
This is a consequence of the fact that the property “the histories of client and server have the
same length” is preserved by reductions.

Lemma 3.7. If � � ⇢

0 k � � �

0 6�!, then � = � = [].

Proof. Clearly � � ⇢

0 k � � �

0 6�! implies either � = [] or � = []. Observe that:

• rule (comm) adds one element to both stacks;

• rule (⌧) does not modify both stacks;

• rule (rbk) removes one element from both stacks.

Then starting from two stacks containing the same number of elements, the reduction always
produces two stacks containing the same number of elements. So � = [] implies � = [] and
vice versa.

Theorem 3.8 (Soundness). If B ⇢ a �, then ⇢

�

�.

Proof. The proof is by contradiction. Assume ⇢ 6

�

�. Then there is a reduction

[] � ⇢ k [] � �

⇤�! [] � ⇢

0 k [] � �

0 6�!

with ⇢

0 6= 1. Note that both the histories are empty thanks to Lemma 3.7. We proceed by
induction on the number n of steps in the reduction.

103

Retractable contracts Barbanera, Dezani, Lanese and de’Liguoro

Let us consider the base case (n = 0). In this case ⇢ 6= 1 and there is no possible synchro-
nization. Rule Ax is not applicable since ⇢ 6= 1. Rule Hyp is not applicable since � is empty.
The other rules are not applicable otherwise we would have a possible synchronization.

Let us consider the inductive case. We have a case analysis on the topmost operators in
⇢ and �. Let us start with the case where both topmost operators are retractable sums, i.e.,
⇢ = a.⇢k + ⇢

00 and � = a.�k + �

00. Thus,

[] � a.⇢k + ⇢

00 k [] � a.�k + �

00 ⇤�! [] � ⇢

00 k [] � �

00 ⇤�! [] � ⇢

0 k [] � �

0 6�! .

By definition ⇢

00 6

�

�

00, and by inductive hypothesis 6B ⇢

00 a �

00. Also,

[] � ⇢k k [] � �k
⇤�! [] � ⇢

0
k k [] � �

0
k 6�! .

By definition ⇢k 6

�

�k, and by inductive hypothesis 6B ⇢k a �k. Hence, rule (+,+) is not
applicable since no possible premise holds. Rule Hyp is not applicable since � is empty. The
other rules are not applicable since the term does not have the correct shape.

Let us consider the case where ⇢ = a.⇢k + ⇢

00 and � = a.�k � �

00 (the other is symmetric).
Thus we have a derivation

[] � a.⇢k + ⇢

00 k [] � a.�k � �

00 �! [] � a.⇢k + ⇢

00 k [] � a.�k �!
⇢

00 � ⇢k k � � �k
⇤�! ⇢

00 � ⇢

000 k � � �

000 �! [] � ⇢

00 k [] � � 6�! .

Then we also have [] � ⇢k k [] � �k
⇤�! [] � ⇢

000 k [] � �

000 6�!. By definition ⇢k 6

�

�k, and
by inductive hypothesis 6B ⇢k a �k. Then rule (+,�) cannot be applied and the thesis follows.

The case of two � follows trivially since there is no applicable rule.

Completeness The following lemma proves that compliance is preserved by the concatena-
tion of histories to the left of the current histories.

Lemma 3.9. If � � ⇢

�

� � �, then �0 :� � ⇢

�

�0 :� � � for all �0 , �0
.

Proof. It su�ces to show that

� � ⇢

�

� � � implies ⇢0 :� � ⇢

�

� � � and � � ⇢

�

�

0 :� � �

which we prove by contraposition.
Suppose that ⇢0 :� � ⇢ 6

�

� � �; then

⇢

0 :� � ⇢ k � � �

⇤�! �0 � ⇢

00 k �0 � �

00 6�! and ⇢

00 6= 1

If ⇢0 is never used, then �0 = ⇢

0 :�00 and �0 = [], so that we get

� � ⇢ k � � �

⇤�! �00 � ⇢

00 k [] � �

00 6�!

Otherwise we have that

⇢

0 :� � ⇢ k � � �

⇤�! ⇢

0 � ⇢

00 k �0 � �

00 �! [] � ⇢

0 k �00 � �

000

and we assume that
⇤�! is the shortest such reduction. It follows that ⇢

00 6= 1. By the
minimality assumption about the length of

⇤�! we know that ⇢0 neither has been restored by
some previous application of rule (rbk), nor pushed back into the stack before. We get

� � ⇢ k � � �

⇤�! [] � ⇢

00 k �00 � �

00 6�!

In both cases we conclude that � � ⇢ 6

�

� � � as desired.

Similarly we can show that � � ⇢ 6

�

�

0 :� � � implies � � ⇢ 6

�

� � �.

104

Retractable contracts Barbanera, Dezani, Lanese and de’Liguoro

The following lemma gives all possible shapes of compliant contracts. It is the key lemma
for the proof of completeness.

Lemma 3.10. If ⇢

�

�, then one of the following conditions holds:

1. ⇢ = 1;

2. ⇢ =
P

i2I ↵i.⇢i, � =
P

j2J ↵j .�j and 9k 2 I \ J. ⇢k

�

�k;

3. ⇢ =
L

i2I ai.⇢i, � =
P

j2J aj .�j, I ✓ J and 8k 2 I. ⇢k

�

�k;

4. ⇢ =
P

i2I ai.⇢i, � =
L

j2J aj .�j, I ◆ J and 8k 2 J. ⇢k

�

�k.

Proof. By contraposition and by cases of the possible shapes of ⇢ and �.

Suppose ⇢ =
P

i2I ↵i.⇢i, � =
P

j2J ↵j .�j , I \ J = {k1, . . . , kn} and ⇢ki 6

�

�ki for 1 i n.
Then we get

[] � ⇢ki k [] � �ki

⇤�! �i � ⇢

0
i k �i � �

0
i 6�!

for 1 i n, where ⇢

0
i 6= 1 and �i = �i = [] by Lemma 3.7. This implies

P
i2I\{k1}↵i.⇢i � ⇢k1 k P

j2J\{k1}↵j .�j � �k1

⇤�! P
i2I\{k1}↵i.⇢i � ⇢

0
1 k P

j2J\{k1}↵j .�j � �

0
1

by Lemma 3.9. Let I 0 = I \ J and J

0 = J \ I. We can reduce [] � ⇢ k [] � � only as follows:

[] � ⇢ k [] � � �!
P

i2I\{k1} ↵i.⇢i � ⇢k1 k
P

j2J\{k1} ↵j .�j � �k1 by (comm)
⇤�!

P
i2I\{k1} ↵i.⇢i � ⇢

0
1 k

P
j2J\{k1} ↵j .�j � �

0
1

�! [] �
P

i2I\{k1} ↵i.⇢i k [] �
P

j2J\{k1} ↵j .�j by (rbk)
...

...
⇤�!

P
i2I0 ↵i.⇢i � ⇢

0
n k

P
j2J 0 ↵j .�j � �

0
n

�! [] �
P

i2I0 ↵i.⇢i k [] �
P

j2J 0 ↵j .�j by (rbk)

and [] �
P

i2I0 ↵i.⇢i k [] �
P

j2J 0 ↵j .�j is stuck since I

0 \ J

0 = ;.

Suppose ⇢ =
L

i2I ai.⇢i and � =
P

j2J aj .�j . If I 6✓ J let k 2 I \ J ; then we get

[] � ⇢ k [] � � �! [] � ak.⇢k k [] � � by (⌧)
6�!

Otherwise I ✓ J and ⇢k 6

�

�k for some k 2 I. By reasoning as above we have

[] � ⇢k k [] � �k
⇤�! [] � ⇢

0 k [] � �

0 6�!

and
� � ⇢k k P

j2J\{k}aj .�j � �k
⇤�! � � ⇢

0 k P
j2J\{k}aj .�j � �

0

which imply

[] � ⇢ k [] � � �! [] � ak.⇢k k [] � � by (⌧)
�! � � ⇢k k

P
j2J\{k} aj .�j � �k by (comm)

⇤�! � � ⇢

0 k
P

j2J\{k} aj .�j � �

0

�! [] � � k [] �
P

j2J\{k} aj .�j by (rbk)
6�!

In both cases we conclude that ⇢ 6

�

�.

The proof for the case ⇢ =
P

i2I ai.⇢i, � =
L

j2J aj .�j is similar.

105

Retractable contracts Barbanera, Dezani, Lanese and de’Liguoro

Theorem 3.11 (Completeness). If ⇢

�

�, then B ⇢ a �.

Proof. By Theorem 3.6 each computation of Prove(B ⇢ a �) always terminates. By Lemma
3.10 and Fact 3.5, ⇢

�

� implies that Prove(B ⇢ a �) 6= fail, and hence B ⇢ a �.

4 Related work and conclusions

Since the pioneering work by Danos and Krivine [7], reversible concurrent computations have
been widely studied. A main point is that understanding which actions can be reversed is not
trivial in a concurrent setting, since there is no unique “last” action. Since [7], the most common
notion of reversibility in concurrency is causal-consistent reversibility: any action can be undone
if no other action depending on it has been executed (and not yet undone). The name highlights
the relation with causality, which makes the approach applicable even in settings where there
is no unique notion of time, but makes it quite complex.

The first calculus for which a causal-consistent reversible extension has been defined is CCS
in [7], using a stack of memories for each thread. Later, causal-consistent reversible extensions
have been defined by Phillips and Ulidowski [14] for calculi definable by SOS rules in a general
format (without mobility), using keys to bind synchronised actions together, and by Lanese
et al. [11] for the higher-order ⇡-calculus, using explicit memory processes to store history
information and tags to track causality. A survey of causal-consistent reversibility can be found
in [12].

In [10], Lanese et al. enrich the calculus of [11] with a fine-grained rollback primitive, showing
the subtleties of defining a rollback operator in a concurrent setting. The first paper exploring
reversibility in a context of sessions (see, e.g., [13] for a comparison between session types and
contracts) is [15], by Tiezzi and Yoshida. This paper defines the semantics for reversible sessions
by adapting the approach in [11], but does not consider compliance. Compliance has been first
studied in [2]. We already discussed the di↵erences between the present work and [2] in the
Introduction.

A main point of our approach is that it exploits the fact that contracts describe sequential
interactions (in a concurrent setting) to avoid the complexity of causal-consistent reversibility,
allowing for a simpler semantics (compared, e.g., to the one of [10]).

Similarly to our approach, long running transactions with compensations, and in particular
interacting transactions [8], allow to undo past agreements. In interacting transactions, however,
a new possibility is tried when an exception is raised, not when an agreement cannot be found
as in our case. Also, the possible options are sorted: first the normal execution, then the
compensation. Finally, compliance of interacting transactions has never been studied. In the
field of sessions, the most related works are probably the ones studying exceptions in binary
sessions [5] and in multi-party sessions [4]. As for transactions, they aim at dealing with
exceptions more than at avoiding to get stuck since an agreement cannot be found.

We plan to investigate whether our approach can be extended to multi-party sessions [9],
the rationale being that parallelism is controlled by the global type, hence possibly part of the
complexity due to concurrency can be avoided. The sub-behaviour relation induced by our
notion of compliance is also worth being thoroughly studied.

Acknowledgments. We are grateful to the anonymous reviewers for their useful remarks.

106

Retractable contracts Barbanera, Dezani, Lanese and de’Liguoro

References

[1] Franco Barbanera and Ugo de’Liguoro. Two notions of sub-behaviour for session-based clien-
t/server systems. In PPDP, pages 155–164. ACM Press, 2010.

[2] Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Ugo de’Liguoro. Compliance for reversible
client/server interactions. In BEAT, volume 162 of EPTCS, pages 35–42, 2014.

[3] Giovanni Bernardi and Matthew Hennessy. Modelling session types using contracts. Math. Struct.
in Comp. Science, 2014. To appear.

[4] Sara Capecchi, Elena Giachino, and Nobuko Yoshida. Global escape in multiparty sessions. In
FSTTCS, volume 8 of LIPIcs, pages 338–351, 2010.

[5] Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured interactional exceptions in session
types. In CONCUR, volume 5201 of LNCS, pages 402–417. Springer, 2008.

[6] Giuseppe Castagna, Nils Gesbert, and Luca Padovani. A theory of contracts for web services.
ACM Trans. on Prog. Lang. and Sys., 31(5):19:1–19:61, 2009.

[7] Vincent Danos and Jean Krivine. Reversible communicating systems. In CONCUR, volume 3170
of LNCS, pages 292–307. Springer, 2004.

[8] Edsko de Vries, Vasileios Koutavas, and Matthew Hennessy. Communicating transactions - (ex-
tended abstract). In CONCUR, volume 6269 of LNCS, pages 569–583. Springer, 2010.

[9] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types. In
POPL, pages 273–284. ACM Press, 2008.

[10] Ivan Lanese, Claudio Antares Mezzina, Alan Schmitt, and Jean-Bernard Stefani. Controlling
reversibility in higher-order pi. In CONCUR, volume 6901 of LNCS, pages 297–311. Springer,
2011.

[11] Ivan Lanese, Claudio Antares Mezzina, and Jean-Bernard Stefani. Reversing higher-order pi. In
CONCUR, volume 6269 of LNCS, pages 478–493. Springer, 2010.

[12] Ivan Lanese, Claudio Antares Mezzina, and Francesco Tiezzi. Causal-consistent reversibility. Bul-
letin of the EATCS, 114, 2014.

[13] Cosimo Laneve and Luca Padovani. The pairing of contracts and session types. In Concurrency,
Graphs and Models, volume 5065 of LNCS, pages 681–700, 2008.

[14] Iain C. C. Phillips and Irek Ulidowski. Reversing algebraic process calculi. J. of Logic and Alg.
Progr., 73(1-2):70–96, 2007.

[15] Francesco Tiezzi and Nobuko Yoshida. Towards reversible sessions. In PLACES, volume 155 of
EPTCS, pages 17–24, 2014.

107

Retractable contracts Barbanera, Dezani, Lanese and de’Liguoro

108

