
Novel Type Systems for Concurrent Programming Languages

GR/N39494/01

Final Report

Dr S. J. Gay
Department of Computing Science,

University of Glasgow

March 13, 2003

Exceptional Circumstances

This project began on 1st October 1997 for three years under grant GR/L75177, the principal inves-
tigator being Dr Simon Gay who was then at Royal Holloway, University of London. The grant was
restructured in 2000 for two reasons: Dr Gay moved from Royal Holloway to the University of Glas-
gow; and the project student, Malcolm Hole, had been diagnosed with cancer and needed to change
from full-time to part-time working after a period of sick leave. Therefore GR/L75177 was terminated
on 29th February 2000, and the project was reannounced as GR/N39494 (the present grant), with
Professor Steve Schneider as principal investigator, Dr Gay as co-investigator, and a termination date
of 31st March 2002. Subsequently, Mr Hole required another lengthy period of medical treatment and
the grant was extended until 31st December 2002.

This report describes the results of the entire project (under both GR/L75177 and GR/N39494),
although the accompanying financial reports are for GR/N39494 alone, as a final report on GR/L75177
was submitted in May 2000. The report has been written by Dr Gay, the original principal investigator.

1 Background/Context

Types are an important aspect of high-level programming, and the increasing emphasis on static
(compile-time) typechecking is a significant contribution to the development of modern, safe program-
ming languages. Type information allows specifications of desirable program behaviour to be expressed
concisely and verified automatically. For example, in a simply typed language, a function type specifies
that if the parameters have certain types then the result has a certain type; straightforward syntactic
analysis can verify that a given function definition satisfies this property. Convenient compromises
between expressiveness and tractability have emerged, and sophisticated practical type systems have
been developed, initially in the realm of functional languages but more recently for object-oriented
languages.

In concurrent and distributed programming, behaviour is much richer and there is a correspond-
ingly greater range of properties which we would like to verify. The type-theoretic approach to
verification of concurrent systems is just one approach, but it is attractive because typed sequen-
tial programming is already established and we might hope to smoothly extend the type system of
a sequential language by adding typing constructs corresponding to communication or distribution
primitives.

1



The pi calculus is a particular formalism for concurrent systems which has been used for modelling
and analysing a wide range of applications, but also as a vehicle for research into type systems
for concurrent programming. In the pi calculus, point-to-point communication between concurrent
components takes place along named channels. Two key features are responsible for much of its
expressivity: channels are first-class values, and can be transmitted along channels; and new channels
can be created dynamically. In terms of investigating type systems for concurrent programming, the
pi calculus can be viewed as a model of a concurrent programming language which uses this style of
communication.

It is straightforward to assign types to channels (for example, specifying that a particular channel is
always used to carry messages of a particular datatype) and statically check that these constraints are
obeyed throughout a system. From this starting-point, research on type systems for the pi calculus has
developed in several directions. One approach is to specify constraints on the relationship between
communications on different channels (for example, specifying partial orders among channels and
checking that these orders are respected by the actual communications in a program) in order to
eliminate deadlock or race conditions. Another possibility is to constrain the use of individual channels
(for example, specifying that certain channels can only be used once, by means of a linear type
system) in order to enable optimized compilation of common programming idioms. A third approach,
described by the general title of session types, is to provide more sophisticated specifications of the
communication capability of a single channel. For example, instead of specifying that a channel carries
integers, we might specify that it is used first to send an integer, then to receive a boolean value, then
to receive an integer. Branching and recursion allow richer sequences of messages to be constructed.
Session types can be used to specify complex communication protocols, such as those typically found
in client-server systems, and static typechecking can be used to verify that the implementation of a
client or server observes the required protocol.

The main contribution of the project has been to further develop the theory of session types in the
pi calculus. We have reformulated the original version of session types, to remove syntactic irregularity
and make session channels fully first-class values. We have developed a notion of subtyping for session
types, and shown that it increases the expressiveness and flexibility of specifications of client-server
systems. We have investigated bounded polymorphism in session types, and obtained still further
expressiveness. All of these developments in the type system have been supported by rigorous proofs,
with respect to a formal semantics of the pi calculus, that the run-time use of channels corresponds
to the compile-time specification.

Establishing the desirable theoretical properties of a type system requires lengthy combinatorial
proofs by induction over syntactic structures. We have investigated the use of automatic theorem
proving technology for reasoning about type systems in the pi calculus, particularly in the presence
of linear typing features which greatly increase the complexity.

The research has been presented in conference papers and technical reports. A PhD thesis and a
journal paper will be submitted during 2003.

2 Key Advances and Supporting Methodology

The essential idea of session types, developed in a series of papers by Honda et al., is that the type of
a communication channel describes a protocol. A session type specifies the sequence and structure of
messages, and permits much richer behaviour than a simple association of a datatype with a channel.

For example, consider a server which provides a single operation, addition of integers, and specifies
the following protocol.

The client sends two integers. The server sends an integer which is their sum, then closes

2



the connection.

The corresponding session type, from the server’s point of view, is

S =?Int.?Int.!Int.End

in which ? means receive, ! means send, dot (.) is sequencing, and End indicates the end of the session.
This type captures the parts of the specification which we can reasonably expect to verify statically.
The server communicates with a client on a channel called c; we think of the client engaging in a
session with the server, using the channel c for communication.

An implementation of the server in the pi calculus (here we use a more verbose syntax to increase
readability) looks like this:

receive x on c
receive y on c
send x + y on c

If the programmer specifies that channel c has type S, then it is possible to check statically (at
compile-time) that the implementation of the server follows the protocol.

Interchanging ? and ! yields the type describing the client side of the protocol:

S =!Int.!Int.?Int.End

and a client implementation uses the server to add two particular integers; the code may use x but
cannot use the channel c except to close it.

send 2 on c
send 3 on c
receive x on c
code

Again it is possible to check statically that this client follows the protocol specified by S.
More interesting protocols involve branching. If we add a negation operation to the server:

The client selects one of two commands: add or neg. In the case of add the client then
sends two integers and the server replies with an integer which is their sum. In the case
of neg the client then sends an integer and the server replies with an integer which is its
negation. In either case, the server then closes the connection.

The corresponding session type, for the server side, uses the constructor & (branch) to indicate that
a choice is offered.

S = &〈add : ?Int.?Int.!Int.End, neg : ?Int.!Int.End〉

Both services must be implemented. We introduce a case construct:

case c of {
add ⇒ receive x on c

receive y on c
send x + y on c

neg ⇒ receive x on c
send (−x) on c }

The type of the client side uses the dual constructor ⊕ (choice) to indicate that a choice is made.

S = ⊕〈add : !Int.!Int.?Int.End, neg : !Int.?Int.End〉

3



A particular client implementation makes a particular choice, for example:

addclient negclient

select add on c select neg on c
send 2 on c send 4 on c
send 3 on c receive x on c
receive x on c code
code

Note that the type of the subsequent interaction depends on the label which is chosen. In order for
typechecking to be decidable, it is essential that the label add or neg appears as a literal name in the
program; labels cannot result from computations.

Protocols which specify repetitive behaviour require recursive session types. In a typical protocol,
some branches lead to End while others lead to recursive occurrences of a type variable. Alternating
nesting of & and ⊕ describes complex dialogues, for example when certain requests by the client may
produce responsed indicating either successful or unsuccessful execution.

Complete systems can be constructed by using parallel composition: a client and a server in parallel
would communicate along a shared channel. It is essential that any session channel is used by just
two processes at a time: one at each end. Therefore the type system must track the ownership of the
two ends of a session channel.

2.1 Reformulation of Session Types

In the original formulation of session types, session channels were syntactically distinguished from
standard pi calculus channels, special constructs were used to create session channels, and session
channels could not be sent from one process to another.

We have reformulated session types so that session channels can be created by means of the
standard pi calculus new construct, and transmitted in the same way as standard channels. This
change provides greater syntactic regularity, and increased expressive power because session channels
become first-class values.

Each end of a session channel can only be used by one process at a time. This restriction is similar
to the constraint, studied in linear type systems, that each end of a channel can only be used for
a single communication. Our version of session types adapts the techniques of linear type systems,
allowing session channels to be transmitted (delegation of sessions) and ensuring that a process which
delegates a session does not use the channel again.

We have proved that if a system is constructed according to the static typing rules, then at runtime
the actual sequence of messages on any channel is one of the sequences allowed by its session type.

2.2 Subtyping

If a server is upgraded, by the addition of new services or the generalization of existing services,
then an existing client, although still correct, might not match the type of the new server. We have
addressed this problem by defining a notion of subtyping for session types, according to the usual
principle that if S 6 T then at any point where a channel of type T is expected, it is safe to use a
channel of type S instead. For example, if we have

S = &〈add : ?Int.?Int.!Int.End, equal : ?Int.?Int.!Bool.End〉
T = &〈add : ?Int.?Int.!Int.End, equal : ?Real.?Real.!Bool.End〉
U = &〈add : ?Int.?Int.!Int.End, equal : ?Int.?Int.!Bool.End, neg : ?Int.!Int.End〉

4



then in our theory, assuming that Int 6 Real, we have S 6 T and S 6 U . This indicates that a client
which has been verified to follow protocol S (typechecks with a channel of type S) is guaranteed also
to follow protocols T and U .

We have a formal proof of safety of the type system including subtyping.

2.3 Bounded Polymorphism

Our theory of subtyping for session types covers many but not all situations in which a client needs to
be verified with respect to an upgraded server. An example which is not covered is the upgrade from
S to T , where

S = &〈add : ?Int.?Int.!Int.End, equal : ?Int.?Int.!Bool.End〉
T = &〈add : ?Real.?Real.!Real.End, equal : ?Int.?Int.!Bool.End〉

Bounded polymorphism introduces quantified type variables which can be instantiated by any sub-
type of a specified bound. We have added bounded polymorphism to session types, associating type
variables with the branches of the & constructor. This allows us to replace the above types by

S′ = &〈add(X 6 Int) : ?X.?X.!X.End, equal : ?Int.?Int.!Bool.End〉
T ′ = &〈add(X 6 Real) : ?X.?X.!X.End, equal : ?Int.?Int.!Bool.End〉

and again we have S′ 6 T ′. The key point is that we have now specified that the result type of add is
the same as the parameter types.

Bounded polymorphism as a natural combination of subtyping and polymorphism has been exten-
sively studied in the lambda calculus. However, despite the fact that subtyping and polymorphism
have been studied separately in the pi calculus without session types, our work seems to be the first
presentation of any form of bounded polymorphism for pi calculus.

Again we have a formal proof of type safety for this system.

2.4 Automated Proof

Proofs of type soundness are lengthy and tedious, typically involving large structural inductions with
case analysis over a number of syntactic constructors. Dr Gay has investigated the use of automatic
theorem proving technology with the aim of producing formalized, machine-checked, and maintainable
proofs about pi calculus type systems. A linear type system for the pi calculus (without session types)
has been formalized in the Isabelle/HOL theorem proving system, with a certain amount of success
in modularizing the proofs. However, automated theorem proving is no panacea, and setting up the
necessary infrastructure (particularly for linear types) required substantial effort.

This approach does have promise for future work, but the proofs supporting the results on session
types have all been done by hand. To do otherwise would have shifted the whole project into an
automated theorem proving project, and this was not felt to be appropriate.

3 Project Plan Review

There was major disruption to the project timetable, and subsequent restructuring of the grant, due
primarily to the serious illness of the project student, Malcolm Hole. The only significant change to
the spending plans was an increase in staff costs because of the need to provide sick pay for Mr Hole.

The goals of the project shifted away from implementation work, which was originally planned,
towards theoretical investigation. This was partly because of the amount of effort (greater than

5



anticipated) needed to provide a sound theoretical basis for subtyping in session types, and partly
because of the direction in which Mr Hole’s interests developed.

The work on automatic theorem proving was not part of the original proposal, but developed in
response to the labour-intensive nature of conducting the necessary proofs by hand.

4 Research Impact and Benefits to Society

Session types, and particularly the definition of subtyping developed during this project, have been
used by Vallecillo, Ravara and Vasconcelos to add behavioural information to the interfaces of CORBA
objects. This is an interesting direction which could become significant if tool support can be devel-
oped.

We consider that the main potential beneficiaries of this work are the designers of concurrent
programming languages. We have developed in detail the theory of session types with subtyping and
bounded polymorphism, in the context of the pi calculus, and argued that this is a useful type system
for client-server development. However, we recognise that our results need to be pushed down this
avenue of exploitation, and our plans to do this are described in Section 7 below.

5 Explanation of Expenditure

The only deviation from the original plan is that sick leave has resulted in increased staff costs.

6 Dissemination Activities

Papers presenting the results of the project have been presented at international conferences. Malcolm
Hole, the project student, will submit a PhD thesis during 2003, and it is intended that Dr Gay and
Mr Hole will submit one or more journal papers during 2003. A number of technical reports have been
produced.

Dr Gay lectured at an EPSRC MathFIT Instructional Meeting on Types and Semantics for Con-
currency, held in July 1998 at Imperial College, London, and presented some of the project’s initial
results on session types. Malcolm Hole attended the same meeting.

The website www.dcs.gla.ac.uk/~simon/novel collects the results associated with the project.

7 Further Research

If session types are to become useful in practical programming, then they must be transferred from
the pi calculus to a mainstream programming language or at least reformulated in one of the standard
programming language paradigms. During the last year, Dr Gay has been collaborating with Dr
António Ravara (Technical University of Lisbon) and Dr Vasco Vasconcelos (University of Lisbon) on
a formulation of session types in a language based on simply-typed lambda calculus with side-effecting
input/output operations. This is a step towards an object-oriented language with communication
channels and session types; such a language would represent significant technology transfer. This
collaboration has been funded by a grant from the British Council in Portugal and the Portuguese
Council of University Rectors, under the Treaty of Windsor scheme.

6


