
Communicating Quantum Processes

Simon J. Gay
Department of Computing Science

University of Glasgow, UK

simon@dcs.gla.ac.uk

Rajagopal Nagarajan
∗

Department of Computer Science
University of Warwick, UK

biju@dcs.warwick.ac.uk

ABSTRACT
We define a language CQP (Communicating Quantum Pro-
cesses) for modelling systems which combine quantum and
classical communication and computation. CQP combines
the communication primitives of the pi-calculus with primi-
tives for measurement and transformation of quantum state;
in particular, quantum bits (qubits) can be transmitted from
process to process along communication channels. CQP has
a static type system which classifies channels, distinguishes
between quantum and classical data, and controls the use
of quantum state. We formally define the syntax, opera-
tional semantics and type system of CQP, prove that the
semantics preserves typing, and prove that typing guaran-
tees that each qubit is owned by a unique process within
a system. We illustrate CQP by defining models of several
quantum communication systems, and outline our plans for
using CQP as the foundation for formal analysis and verifi-
cation of combined quantum and classical systems.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory; F.3.1 [Logics and Meanings of Programs]: Spe-
cifying and Verifying and Reasoning about Programs—spec-
ification techniques; F.3.1 [Logics and Meanings of Pro-

grams]: Semantics of Programming Languages—operation-
al semantics

General Terms
Languages, Theory, Verification

Keywords
Formal language, quantum communication, quantum com-
puting, semantics, types, verification

∗Partially supported by the UK EPSRC (GR/S34090) and
the EU Sixth Framework Programme (Project SecoQC).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
POPL’05, January 12–14, 2005, Long Beach, California, USA.
Copyright 2005 ACM 1-58113-830-X/05/0001 ...$5.00.

1. INTRODUCTION
Quantum computing and quantum communication have

attracted growing interest since their inception as research
areas more than twenty years ago, and there has been a
surge of activity among computer scientists during the last
few years. While quantum computing offers the prospect
of vast improvements in algorithmic efficiency for certain
problems, quantum cryptography can provide communica-
tion systems which will be secure even in the presence of hy-
pothetical future quantum computers. As a practical tech-
nology, quantum communication has progressed far more
rapidly than quantum computing. Secure communication
involving quantum cryptography has recently been demon-
strated in a scenario involving banking transactions in Vi-
enna [21], systems are commercially available from Id Quan-
tique, MagiQ Technologies and NEC, and plans have been
reported to establish a nationwide quantum communication
network in Singapore. Secure quantum communication will
undoubtedly become a fundamental part of the technologi-
cal infrastructure of society, long before quantum computers
can tackle computations of a useful size.
However, secure quantum communication is not a solved

problem. Although particular protocols have been mathe-
matically proved correct (for example, Mayers’ analysis [13]
of the Bennett-Brassard protocol (BB84) [3] for quantum
key distribution), this does not guarantee the security of
systems which use them. Experience of classical security
analysis has shown that even if protocols are theoretically
secure, it is difficult to achieve robust and reliable imple-
mentations of secure systems: security can be compromised
by flaws at the implementation level or at the boundaries be-
tween systems. To address this problem, computer scientists
have developed an impressive armoury of techniques and
tools for formal modelling, analysis and verification of clas-
sical security protocols and communication systems which
use them [23]. These techniques have been remarkably suc-
cessful both in establishing the security of new protocols
and in demonstrating flaws in protocols which had previ-
ously been believed to be secure. Their strength lies in the
ability to model systems as well as idealized protocols, and
the flexibility to easily re-analyze variations in design.
Our research programme is to develop techniques and

tools for formal modelling, analysis and verification of quan-
tum communication and cryptographic systems. More pre-
cisely we aim to handle systems which combine quantum and
classical communication and computation, for two reasons:
the first quantum communication systems will implement
communication between classical computers; and protocols

such as BB84 typically contain classical communication and
computation as well as quantum cryptography. We cannot
simply make use of existing techniques for classical secu-
rity analysis: for example, treating the security of quantum
cryptography axiomatically would not permit analysis of
the protocols which construct quantum cryptographic keys.
Furthermore, the inherently probabilistic nature of quantum
systems means that not all verification consists of checking
absolute properties; we need a probabilistic modelling and
analysis framework.
Any formal analysis which involves automated tools re-

quires a modelling language with a precisely-defined seman-
tics. The purpose of this paper is to define a language, CQP
(Communicating Quantum Processes), which will serve as
the foundation for the programme described above. CQP
combines the communication primitives of the pi-calculus
[15, 25] with primitives for transformation and measurement
of quantum state. In particular, qubits (quantum bits, the
basic elements of quantum data) can be transmitted along
communication channels. In Section 3 we introduce CQP
through a series of examples which cover a wide spectrum of
quantum information processing scenarios: a quantum coin-
flipping game; a quantum communication protocol known
as teleportation; and a quantum bit-commitment protocol.
The latter will lead naturally to a model of the BB84 quan-
tum key-distribution protocol in future work. In Section 4
we formalize the syntax of CQP and define an operational
semantics which combines non-determinism (arising in the
same way as in pi-calculus) with the probabilistic results of
quantum measurements. In Section 5 we define a static type
system which classifies data and communication channels,
and crucially treats qubits as physical resources: if process
P sends qubit q to process Q, then P must not access q
subsequently, and this restriction can be enforced by static
typechecking. In Section 6 we prove that the invariants of
the type system are preserved by the operational semantics,
guaranteeing in particular that at every point during execu-
tion of a system, every qubit is uniquely owned by a single
parallel component. In Section 7 we outline our plans for
further work, focusing on the use of both standard (non-
deterministic) and probabilistic model-checking systems.

Related Work
There has been a great deal of interest in quantum pro-
gramming languages, resulting in a number of proposals in
different styles, for example [10, 18, 24, 26, 29]. Such lan-
guages can express arbitrary quantum state transformations
and could be used to model quantum protocols in those
terms. However, our view is that any model lacking an
explicit treatment of communication is essentially incom-
plete for the analysis of protocols; certainly in the classical
world, standard programming languages are not considered
adequate frameworks in which to analyze or verify proto-
cols. Nevertheless, Selinger’s functional language QPL [26]
in particular has influenced our choice of computational op-
erators for CQP.
The closest work to our own, developed simultaneously

but independently, is Jorrand and Lalire’s QPAlg [9], which
also combines communication in process calculus style with
transformation and measurement of quantum state. The
most distinctive features of our work are the type system and

associated proofs, the explicit formulation of an expression
language which can easily be extended, and our emphasis
on a methodology for formal verification.
The work of Abramsky and Coecke [2] is also relevant.

They define a category-theoretic semantic foundation for
quantum protocols, which supports reasoning about systems
and exposes deep connections between quantum systems and
programming language semantics, but they do not define a
formal syntax in which to specify models. It will be inter-
esting to investigate the relationship between CQP and the
semantic structures which they propose.

Acknowledgements We have benefitted from discussions
with Philippe Jorrand, Marie Lalire and Nick Papanikolaou,
and from the insightful comments of several referees.

2. PRELIMINARIES
We briefly introduce the aspects of quantum theory which

are needed for the rest of the paper. For more detailed
presentations we refer the reader to the books by Gruska [8]
and Nielsen and Chuang [17]. Rieffel and Polak [22] give an
account aimed at computer scientists.
A quantum bit or qubit is a physical system which has

two basis states, conventionally written |0〉 and |1〉, corre-
sponding to one-bit classical values. These could be, for
example, spin states of a particle or polarization states of a
photon, but we do not consider physical details. According
to quantum theory, a general state of a quantum system is
a superposition or linear combination of basis states. Con-
cretely, a qubit has state α|0〉 + β|1〉, where α and β are
complex numbers such that |α|2 + |β|2 = 1; states which
differ only by a (complex) scalar factor with modulus 1 are
indistinguishable. States can be represented by column vec-
tors: (

α
β

)
= α|0〉+ β|1〉.

Superpositions are illustrated by the quantum coin-flipping
game which we discuss in Section 3.1. Formally, a quantum
state is a unit vector in a Hilbert space, i.e. a complex vector
space equipped with an inner product satisfying certain ax-
ioms. In this paper we will restrict attention to collections
of qubits.
The basis {|0〉, |1〉} is known as the standard basis. Other

bases are sometimes of interest, especially the diagonal (or
dual, or Hadamard) basis consisting of the vectors |+〉 =
1√
2
(|0〉 + |1〉) and |−〉 = 1√

2
(|0〉 − |1〉). For example, with

respect to the diagonal basis, |0〉 is in a superposition of
basis states:

|0〉 = 1√
2
|+〉+ 1√

2
|−〉.

Evolution of a closed quantum system can be described
by a unitary transformation. If the state of a qubit is repre-
sented by a column vector then a unitary transformation U
can be represented by a complex-valued matrix (uij) such
that U−1 = U∗, where U∗ is the conjugate-transpose of U
(i.e. element ij of U∗ is ūji). U acts by matrix multiplica-
tion: (

α′

β′

)
=

(
u00 u01

u10 u11

)(
α
β

)

A unitary transformation can also be defined by its effect on
basis states, which is extended linearly to the whole space.

For example, the Hadamard transformation is defined by

|0〉 7→ 1√
2
|0〉+ 1√

2
|1〉

|1〉 7→ 1√
2
|0〉 − 1√

2
|1〉

which corresponds to the matrix

H =
1√
2

(
1 1
1 −1

)
.

The Hadamard transformation creates superpositions:

H|0〉 = |+〉 H|1〉 = |−〉.
We will also make use of the Pauli transformations, denoted
by either I, σx, σy, σz or σ0, σ1, σ2, σ3:

I or σ0 σx or σ1 σy or σ2 σz or σ3

(
1 0
0 1

) (
0 1
1 0

) (
0 −i
i 0

) (
1 0
0 −1

)

A key feature of quantum physics is the role of measure-
ment. If a qubit is in the state α|0〉 + β|1〉 then measuring
its value gives the result 0 with probability |α|2 (leaving it
in state |0〉) and the result 1 with probability |β|2 (leaving
it in state |1〉). Protocols sometimes specify measurement
with respect to a different basis, such as the diagonal basis;
this can be expressed as a unitary change of basis followed
by a measurement with respect to the standard basis. Note
that if a qubit is in state |+〉 then a measurement with re-
spect to the standard basis gives result 0 (and state |0〉) with
probability 1

2
, and result 1 (and state |1〉) with probability

1
2
. If a qubit is in state |0〉 then a measurement with respect

to the diagonal basis gives result1 0 (and state |+〉) with
probability 1

2
, and result 1 (and state |−〉)) with probability

1
2
, because of the representation of |0〉 in the diagonal basis

noted above. If a classical bit is represented by a qubit using
either the standard or diagonal basis, then a measurement
with respect to the correct basis results in the original bit,
but a measurement with respect to the other basis results
in 0 or 1 with equal probability. This behaviour is used by
the quantum bit-commitment protocol which we discuss in
Section 3.3.
To go beyond single-qubit systems, we consider tensor

products of spaces (in contrast to the cartesian products
used in classical systems). If spaces U and V have bases {ui}
and {vj} then U⊗V has basis {ui⊗vj}. In particular, a sys-
tem consisting of n qubits has a 2n-dimensional space whose
standard basis is |00 . . . 0〉 . . . |11 . . . 1〉. We can now consider
measurements of single qubits or collective measurements of
multiple qubits. For example, a 2-qubit system has basis
|00〉, |01〉, |10〉, |11〉 and a general state is α|00〉 + β|01〉 +
γ|10〉+δ|11〉 with |α|2+ |β|2+ |γ|2+ |δ|2 = 1. Measuring the
first qubit gives result 0 with probability |α|2 + |β|2 (leaving
the system in state 1√

|α|2+|β|2
(α|00〉 + β|01〉)) and result

1 with probability |γ|2 + |δ|2 (leaving the system in state
1√

|γ|2+|δ|2
(γ|10〉 + δ|11〉)); in each case we renormalize the

state by multiplying by a suitable scalar factor. Measuring
both qubits simultaneously gives result 0 with probability
|α|2 (leaving the system in state |00〉), result 1 with proba-
bility |β|2 (leaving the system in state |01〉) and so on; note

1Strictly speaking, the outcome of the measurement is just
the final state; the specific association of numerical results
with final states is a matter of convention.

that the association of basis states |00〉, |01〉, |10〉, |11〉 with
results 0, 1, 2, 3 is just a conventional choice. The power of
quantum computing, in an algorithmic sense, results from
calculating with superpositions of states; all the states in
the superposition are transformed simultaneously (quantum
parallelism) and the effect increases exponentially with the
dimension of the state space. The challenge in quantum al-
gorithm design is to make measurements which enable this
parallelism to be exploited; in general this is very difficult.
We will make use of the conditional not (CNot) trans-

formation on pairs of qubits. Its action on basis states is
defined by

|00〉 7→ |00〉 |01〉 7→ |01〉 |10〉 7→ |11〉 |11〉 7→ |10〉
which can be understood as inverting the second qubit if
and only if the first qubit is set, although in general we need
to consider the effect on non-basis states.
Systems of two or more qubits can exhibit the phenomenon

of entanglement, meaning that the states of the qubits are
correlated. For example, consider a measurement of the first
qubit of the state 1√

2
(|00〉 + |11〉). The result is 0 (and

resulting state |00〉) with probability 1
2
, or 1 (and result-

ing state |11〉) with probability 1
2
. In either case a subse-

quent measurement of the second qubit gives a definite (non-
probabilistic) result which is always the same as the result
of the first measurement. This is true even if the entangled
qubits are physically separated. Entanglement illustrates
the key difference between the use of tensor product (in
quantum systems) and cartesian product (in classical sys-
tems): an entangled state of two qubits is one which cannot
be decomposed as a pair of single-qubit states. Entangle-
ment is used in an essential way in the quantum teleporta-
tion protocol which we discuss in Section 3.2. That exam-
ple uses the CNot transformation to create entanglement:
CNot((H⊗ I)|00〉) = 1√

2
(|00〉+ |11〉).

3. EXAMPLES OF MODELLING IN CQP

3.1 A Quantum Coin-Flipping Game
Our first example is based on a scenario used by Meyer

[14] to initiate the study of quantum game theory. Players
P and Q play the following game: P places a coin, head
upwards, in a box, and then the players take turns (Q, then
P , then Q) to optionally turn the coin over, without being
able to see it. Finally the box is opened and Q wins if the
coin is head upwards.
Clearly neither player has a winning strategy, but the sit-

uation changes if the coin is a quantum system, represented
by a qubit (|0〉 for head upwards, |1〉 for tail upwards). Turn-
ing the coin over corresponds to the transformation σ1, and
this is what P can do. But suppose that Q can apply
H, which corresponds to transforming from head upwards
(|0〉) to a superposition of head upwards and tail upwards
(1√

2
(|0〉+ |1〉)), and does this on both turns. Then we have

two possible runs of the game, (a) and (b):

(a)

Action State

|0〉
Q: H 1√

2
(|0〉+ |1〉)

P : σ1
1√
2
(|1〉+ |0〉)

Q: H |0〉

(b)

Action State

|0〉
Q: H 1√

2
(|0〉+ |1〉)

P : − 1√
2
(|0〉+ |1〉)

Q: H |0〉

P(s :̂[Qbit,̂[Qbit]]) = s?[y :Qbit, t :̂[Qbit]] . t![y] .0
| s?[y :Qbit, t :̂[Qbit]] . {y ∗= σ1} . t![y] .0

Q(x :Qbit, s :̂[Qbit,̂[Qbit]]) = {x ∗= H} . (new t :̂[Qbit])(s![x, t] . t?[z :Qbit] . {z ∗= H} .C (z))

System(x :Qbit) = (new s :̂[Qbit,̂[Qbit]])(P(s) |Q(x, s))

Figure 1: The quantum coin-flipping game in CQP

x = |0〉 ; ∅ ;System(x)
↓ expand definition

x = |0〉 ; ∅ ; (new s :̂[Qbit,̂[Qbit]])(P(s) |Q(x, s))
↓ create channel s

x = |0〉 ; s ;P(s) |Q(x, s)
↓ expand definitions

x = |0〉 ; s ;
s?[y :Qbit, t :̂[Qbit]] . t![y] .0 | s?[y :Qbit, t :̂[Qbit]] . {y ∗= σ1} . t![y] .0

| {x ∗= H} . (new t :̂[Qbit])(s![x, t] . t?[z :Qbit] . {z ∗= H} .C (z)
↓ transform x

x = 1√
2
(|0〉+ |1〉) ; s ;

s?[y :Qbit, t :̂[Qbit]] . t![y] .0 | s?[y :Qbit, t :̂[Qbit]] . {y ∗= σ1} . t![y] .0
| (new t :̂[Qbit])(s![x, t] . t?[z :Qbit] . {z ∗= H} .C (z))

↓ create channel t

x = 1√
2
(|0〉+ |1〉) ; s, t ;

s?[y :Qbit, t :̂[Qbit]] . t![y] .0 | s?[y :Qbit, t :̂[Qbit]] . {y ∗= σ1} . t![y] .0
| s![x, t] . t?[z :Qbit] . {z ∗= H} .C (z)

↙ ↘ communication

x = 1√
2
(|0〉+ |1〉) ; s, t ; x = 1√

2
(|0〉+ |1〉) ; s, t ;

t![x] .0 | Garbage Garbage | {x ∗= σ1} . t![x] .0
| t?[z :Qbit] . {z ∗= H} .C (z) | t?[z :Qbit] . {z ∗= H} .C (z)

↓ ↓ transform x

x = 1√
2
(|0〉+ |1〉) ; s, t ; x = 1√

2
(|0〉+ |1〉) ; s, t ;

0 | Garbage | {x ∗= H} .C (x) Garbage | t![x] .0
| t?[z :Qbit] . {z ∗= H} .C (z)

↓ ↓ communication

x = |0〉 ; s, t ;Garbage | C (x) x = 1√
2
(|0〉+ |1〉) ; s, t ;

Garbage | 0 | {x ∗= H} .C (x)
↓ transform x

x = |0〉 ; s, t ;Garbage | C (x)

Figure 2: Execution of the coin-flipping game

Alice(x :Qbit, c :̂[0..3], z :Qbit) = {z, x ∗= CNot} . {z ∗= H} . c![measure z, x] .0

Bob(y :Qbit, c :̂[0..3]) = c?[r :0..3] . {y ∗= σr} .Use(y)

System(x :Qbit, y :Qbit, z :Qbit) = (new c : [̂0..3])(Alice(x, c, z) | Bob(y, c))

Figure 3: Quantum teleportation in CQP

x, y, z = 1√
2
|001〉+ 1√

2
|111〉 ; ∅ ;System(x, y, z)

↓ expand definition

x, y, z = 1√
2
|001〉+ 1√

2
|111〉 ; ∅ ; (new c :̂[0..3])(Alice(x, c, z) | Bob(y, c))

↓ create channel c

x, y, z = 1√
2
|001〉+ 1√

2
|111〉 ; c ;Alice(x, c, z) | Bob(y, c)

↓ expand definitions

x, y, z = 1√
2
|001〉+ 1√

2
|111〉 ; c ;

{z, x ∗= CNot} . {z ∗= H} . c![measure z, x] .0 | c?[r :0..3] . {y ∗= σr} .Use(y)
↓ permute x, y, z; transform z, x

z, x, y = 1√
2
|110〉+ 1√

2
|101〉 ; c ; {z ∗= H} . c![measure z, x] .0 | c?[r :0..3] . {y ∗= σr} .Use(y)

↓ transform z

z, x, y = 1
2
|001〉+ 1

2
|010〉 − 1

2
|101〉 − 1

2
|110〉 ; c ; c![measure z, x] .0 | c?[r :0..3] . {y ∗= σr} .Use(y)

↓ measure z, x
1
4
• (z, x, y = |001〉; a, c; c![0] .0 | c?[r :0..3] . {y ∗= σr} .Use(y))

¢
1
4
• (z, x, y = |010〉; a, c; c![1] .0 | c?[r :0..3] . {y ∗= σr} .Use(y))

¢
1
4
• (z, x, y = |101〉; a, c; c![2] .0 | c?[r :0..3] . {y ∗= σr} .Use(y))

¢
1
4
• (z, x, y = |110〉; a, c; c![3] .0 | c?[r :0..3] . {y ∗= σr} .Use(y))

1
4
↓ 1

4
↓ 1

4
↓ 1

4
↓

z, x, y = |001〉 ; c ; z, x, y = |010〉 ; c ; z, x, y = |101〉 ; c ; z, x, y = |110〉 ; c ;
c![0] .0 | c?[r :0..3] . c![1] .0 | c?[r :0..3] . c![2] .0 | c?[r :0..3] . c![3] .0 | c?[r :0..3] .
{y ∗= σr} .Use(y) {y ∗= σr} .Use(y) {y ∗= σr} .Use(y) {y ∗= σr} .Use(y)

↓ ↓ ↓ ↓ comm.

z, x, y = |001〉 ; c ; z, x, y = |010〉 ; c ; z, x, y = |101〉 ; c ; z, x, y = |110〉 ; c ;
{y ∗= σ0} .Use(y) {y ∗= σ1} .Use(y) {y ∗= σ2} .Use(y) {y ∗= σ3} .Use(y)

↓ ↓ ↓ ↓ trans. y

z, x, y = |001〉 ; c ; z, x, y = |011〉 ; c ; z, x, y = −i|101〉 ; c ; z, x, y = −|111〉 ; c ;
Use(y) Use(y) Use(y) Use(y)

Figure 4: Execution of the quantum teleportation protocol

and in each case the coin finishes head upwards. To verify
this we calculate that the state 1√

2
(|0〉 + |1〉) is invariant

under σ1: (
0 1
1 0

)
1√
2

(
1
1

)
=

1√
2

(
1
1

)

and that the Hadamard transformation H is self-inverse:

1√
2

(
1 1
1 −1

)
1√
2

(
1 1
1 −1

)
=

(
1 0
0 1

)

Meyer considers game-theoretic issues relating to the ex-
pected outcome of repeated runs, but we just model a sin-
gle run in CQP (Figure 1). Most of the syntax of CQP
is based on typed pi-calculus, using fairly common nota-
tion (for example, see Pierce and Sangiorgi’s presentation
[20]). P and Q communicate by means of the typed chan-
nel s :̂[Qbit,̂[Qbit]] which carries qubits. It is a parameter
of both P and Q. At the top level, System creates s with
(new s :̂[Qbit,̂[Qbit]]) and starts P and Q in parallel. Q
and System are also parameterized by x, the qubit repre-
senting the coin in its initial state.
Q applies (x ∗= H) the Hadamard transformation to x;

this syntax is based on Selinger’s QPL [26]. This expression
is converted into an action by {. . .}. Using a standard pi-
calculus programming style, Q creates a channel t and sends
(s![x, t]) it to P along with the qubit x. P will use t to send
the qubit back, and Q receives it with t?[z :Qbit], binding it
to the name z in the rest of the code. Finally Q applies H

again, and continues with some behaviour C(z).
P contains two branches of behaviour, corresponding to

the possibilities of applying (second branch) or not applying

(first branch) the transformation σ1. Both branches termi-
nate with the null process 0. The branches are placed in
parallel2 and the operational semantics means that only one
of them interacts with Q. The other branch takes no further
part in the execution of the system, because there is noth-
ing for it to interact with; in Figure 2 (see below) we call it
Garbage.
Figure 2 shows the execution (combining some steps) of

System according to the operational semantics which we will
define formally in Section 4. Reduction takes place on con-
figurations (σ;φ;P) where σ is a list of qubits and their
collective state, φ lists the channels which have been cre-
ated, and P is a process term. Note that the state of the
qubits must be a global property in order to be physically
realistic. We record the channels globally in order to give
the semantics a uniform style; this is different from the usual
approach to pi-calculus semantics, but (modulo garbage col-
lection) is equivalent to expanding the scope of every new

before beginning execution.
The execution of System tracks the informal calculation

which we worked through above. Our CQP model makes
the manipulation of the qubit very explicit; there are other
ways to express the behaviour (including putting everything
into a single process with no communication), but the point
is that we have a framework in which to discuss such issues.

2Simpler definitions can be obtained if we add guarded sums
to CQP; there is then no need for the channel t. This is
straightforward but we have chosen instead to simplify the
presentation of the semantics.

Alice ′(s :̂[Qbit], c :̂[0..3], z :Qbit) = s?[x :Qbit] .Alice(x, c, z)

Bob′(t :̂[Qbit], c :̂[0..3]) = t?[y :Qbit] .Bob(y, c)

Source(s :̂[Qbit], t :̂[Qbit]) = (qbit x, y)({x ∗= H} . {x, y ∗= CNot} . s![x] . t![y] .0)

System ′(z :Qbit) = (new c :̂[0..3], s :̂[Qbit], t :̂[Qbit])(Alice ′(s, c, z) | Bob′(t, c) | Source(s, t))

Figure 5: Quantum teleportation with an EPR source

3.2 Quantum Teleportation
The quantum teleportation protocol [4] is a procedure for

transmitting a quantum state via a non-quantum medium.
This protocol is particularly important: not only is it a fun-
damental component of several more complex protocols, but
it is likely to be a key enabling technology for the develop-
ment of the quantum repeaters [6] which will be necessary
in large-scale quantum communication networks.
Figure 3 shows a simple model of the quantum telepor-

tation protocol. Alice and Bob each possess one qubit (x
for Alice, y for Bob) of an entangled pair whose state is
1√
2
(|00〉+ |11〉). At this point we are assuming that appro-

priate qubits will be supplied to Alice and Bob as parame-
ters of the system. Alice is also parameterized by a qubit z,
whose state is to be teleported. She applies (z, x∗=CNot) the
conditional not transformation to z and x and then applies
(z ∗=H) the Hadamard transformation to z, finally measur-
ing z and x to yield a two-bit classical value which she sends
(c![measure z, x]) to Bob on the typed channel c :̂[0..3] and
then terminates (0). Bob receives (c?[r :0..3]) this value and
uses it to select3 a Pauli transformation σ0 . . . σ3 to apply
(y ∗=σr) to y. The result is that Bob’s qubit y takes on the
state of z, without a physical qubit having been transmitted
from Alice to Bob. Bob may then use y in his continuation
process Use(y).
This example introduces measurement, with a syntax sim-

ilar to that of Selinger’s QPL [26]. We treat measurement
as an expression, executed for its value as well as its side-
effect on the quantum state. Because the result of a mea-
surement is probabilistic, evaluation of a measure expres-
sion introduces a probability distribution over configura-
tions: ¢06i6n pi • (σi;φi;Pi). The next step is a proba-
bilistic transition to one of the configurations; no reduction
takes place underneath a probability distribution. In gen-
eral a configuration reduces non-deterministically to one of
a collection of probability distributions over configurations
(in some cases this is trivial, with only one distribution or
only one configuration within a distribution). A non-trivial
probability distribution makes a probabilistic transition to
a single configuration; this step is omitted in the case of a
trivial distribution.
Figure 4 shows the complete execution of System in the

particular case in which z, the qubit being teleported, has
state |1〉. The measurement produces a probability distri-
bution over four configurations, but in all cases the final
configuration (process Use(y)) has a state consisting of a
single basis vector in which y = |1〉. To verify the protocol

3We can easily extend the expression language of CQP to
allow explicit testing of r.

for an arbitrary qubit, we can repeat the calculation with
initial state x, y, z = 1√

2
(|00〉+ |11〉)⊗ (α|0〉+ β|1〉).

Alice and Bob are parameterized by their parts (x, y) of
the entangled pair (and by the channel c). We can be more
explicit about the origin of the entangled pair by intro-
ducing what is known in the physics literature as an EPR
source4 (computer scientists might regard it as an entan-
glement server). This process constructs the entangled pair
(by using the Hadamard and controlled not transformations;
note that our semantics (Section 4) specifies that the qubits
x and y are each initialized to |0〉) and sends its components
to Alice and Bob on the typed channels s, t :̂[Qbit]. Figure 5
shows the revised model.

3.3 Bit-Commitment
The bit-commitment problem is to design a protocol such

that Alice chooses a one-bit value which Bob then attempts
to guess. The key issue is that Alice must evaluate Bob’s
guess with respect to her original choice of bit, without
changing her mind; she must be committed to her choice.
Similarly, Bob must not find out Alice’s choice before mak-
ing his guess. Bit-commitment turns out to be an impor-
tant primitive in cryptographic protocols. Classical bit-
commitment schemes rely on assumptions on the compu-
tational complexity of certain functions; it is natural to ask
whether quantum techniques can remove these assumptions.
We will discuss a quantum bit-commitment protocol due

to Bennett and Brassard [3] which is closely related to the
quantum key-distribution protocol proposed in the same pa-
per and known as BB84. The following description of the
protocol is based on Gruska’s [8] presentation.

1. Alice randomly chooses a bit x and a sequence of bits
xs. She encodes xs as a sequence of qubits and sends
them to Bob. This encoding uses the standard basis
(representing 0 by |0〉 and 1 by |1〉) if x = 0, and the
diagonal basis (representing 0 by |+〉 and 1 by |−〉) if
x = 1.

2. Upon receiving each qubit, Bob randomly chooses to
measure it with respect to either the standard basis
or the diagonal basis. For each measurement he stores
the result and his choice of basis. If the basis he chose
matches Alice’s x then the result of the measurement
is the same as the corresponding bit from xs; if not,
then the result is 0 or 1 with equal probability. After
receiving all of the qubits, Bob tells Alice his guess at
the value of x.

3. Alice tells Bob whether or not he guessed correctly. To
certify her claim she sends xs to Bob.

4EPR stands for Einstein, Podolsky and Rosen.

Alice(x :Bit, xs :Bit List, c :̂[Qbit], d :̂[Bit], e :̂[Int], f :̂[Bit List]) =
e![length(xs)] .AliceSend(x, length(xs), xs, xs, c, d, e, f)

AliceSend(x :Bit, n : Int, xs :Bit List, ys :Bit List, c :̂[Qbit], d :̂[Bit], e :̂[Int], f :̂[Bit List]) =
if n = 0 then AliceReceive(x, length(ys), ys, c, d, e, f)
else (qbit q)({if hd(xs) = 1 then q ∗= σx else unit} . {if x = 1 then q ∗= H else unit} . c![q] .

AliceSend(x, n− 1, tl(xs), ys, c, d, e, f))

AliceReceive(x :Bit, n : Int, ys :Bit List, d :̂[Bit], f :̂[Bit List]) = d?[g :Bit] . d![x] . f ![ys] .0

Bob(c :̂[Qbit], d :̂[Bit], e :̂[Int], f :̂[Bit List], r :̂[Bit]) = e?[n : Int] .BobReceive([], n, c, d, f, r)

BobReceive(m : (Bit ∗ Bit) List, n : Int, c :̂[Qbit], d :̂[Bit], e :̂[Int], f :̂[Bit List], r :̂[Bit]) =
if n = 0 then r?[g :Bit] . d![g] . d?[a :Bit] . f?[vs :Bit List] .BobVerify(m, vs, a, length(m))
else c?[x :Qbit] . r?[y :Bit] . {if y = 1 then x ∗= H else unit} .BobReceive(m@[(y,measure x)], n− 1, c, d, r)

BobVerify(m : (Bit ∗ Bit) List, vs :Bit List, a :Bit, n : Int) =
if n = 0 then Verified
else if fst(hd(m)) = a then

if snd(hd(m)) = hd(vs) then BobVerify(tl(m), tl(vs), a, n− 1)
else NotVerified

else BobVerify(tl(m), tl(vs), a, n− 1)

Random(r :̂[Bit]) = (qbit q)({q ∗= H} . r![measure q] .Random(r))

System(x :Bit, xs :Bit List) =
(new c :̂[Qbit], d :̂[Bit], e :̂[Int], f :̂[Bit List], r :̂[Bit])(Alice(x, xs, c, d, e, f) | Bob(c, d, e, f, r) | Random(r))

Figure 6: Quantum bit-commitment in CQP

4. Bob verifies Alice’s claim by looking at the measure-
ments in which he used the basis corresponding to x,
and checking that the results are the same as the cor-
responding bits from xs. He can also check that the
results of the other measurements are sufficiently ran-
dom (i.e. not significantly correlated with the corre-
sponding bits from xs).

Figure 6 shows our model of this protocol in CQP. The
complexity of the definitions reflects the fact that we have
elaborated much of the computation which is implicit in
the original description. The definitions use the following
features which are not present in our formalization of CQP,
but can easily be added.

• The type constructor List and associated functions and
constructors such as hd, tl, length, [], @.

• Product types (∗) and functions such as fst, snd.

• if − then− else for expressions and processes.

• Recursive process definitions.

Alice is parameterized by x and xs; they could be explicitly
chosen at random if desired. In AliceSend , the encoding of
xs relies on the fact that (qbit q) initializes q to |0〉. Bob
uses m to record the results of his measurements, and n
(received from Alice initially) as a recursion parameter. Bob
receives random bits, for his choices of basis, from the server
Random; he also guesses x randomly. The state BobVerify
carries out the first part of step (4) above, but we have
not included a check for non-correlation of the remaining

bits. The states Verified and NotVerified stand for whatever
action Bob takes after discovering whether or not Alice’s
statement in step (3) is true.
All measurement in CQP is with respect to the standard

basis. We express measurements with respect to other bases
by first applying a unitary transformation corresponding to
a change of basis. This can be seen in the else branch of
BobReceive, where the code {if y = 1 then x ∗= H else unit}
applies a change of basis if necessary.
Communication between Alice and Bob uses four sepa-

rate channels, c, . . . , f . This proliferation of channels is a
consequence of the fact that our type system associates a
unique message type with each channel. Introducing ses-
sion types [27] would allow a single channel to be used for
the entire protocol, although it is worth noting that depend-
ing on the physical implementation of qubits, separation of
classical and quantum channels might be the most accurate
model.
We intend to use this CQP model as the basis for various

kinds of formal analysis of the bit-commitment protocol; we
make some specific suggestions in Section 7. We should
point out, however, that this bit-commitment protocol is
insecure in that it allows Alice to cheat: if each qubit which
she sends to Bob is part of an entangled pair, then Bob’s
measurements transmit information back to Alice which she
can use to change x after receiving Bob’s guess. The real
value of quantum bit-commitment is as a stepping-stone to
the BB84 quantum key-distribution protocol, which has a
very similar structure and is already being used in practical
quantum communication systems.

T ::= Int | Unit | Qbit | ̂[T̃] | Op(1) | Op(2) | . . .
v ::= x | 0 | 1 | . . . | unit | H | . . .
e ::= v | measure ẽ | ẽ ∗= e | e+e
P ::= 0 | (P | P) | e?[x̃ : T̃] . P | e![ẽ] . P | {e} . P | (new x :T)P | (qbit x)P

Figure 7: Syntax of CQP

v ::= . . . | q | c
E ::= [] | measure E, ẽ | measure v,E, ẽ | . . . | measure ṽ, E | E, ẽ ∗= e | v,E, ẽ ∗= e

| . . . | ṽ ∗= E | E+e | v+E
F ::= []?[x̃ : T̃] . P | []![ẽ] . P | v![[], ẽ] . P | v![v, [], ẽ] . P | . . . | v![ṽ, []] . P | {[]} . P

Figure 8: Internal syntax of CQP

4. SYNTAX AND SEMANTICS
We now formally define the syntax and operational seman-

tics of the core of CQP, excluding named process definitions
and recursion, which can easily be added.

4.1 Syntax
The syntax of CQP is defined by the grammar in Figure 7.

Types T consist of data types such as Int and Unit (oth-
ers can easily be added), the type Qbit of qubits, channel
types ̂[T1, . . . , Tn] (specifying that each message is an n-
tuple with component types T1, . . . , Tn) and operator types
Op(n) (the type of a unitary operator on n qubits). The
integer range type 0..3 used in the teleportation example is
purely for clarification and should be replaced by Int; we do
not expect to typecheck with range types.

We use the notation T̃ = T1, . . . , Tn and ẽ = e1, . . . , en
and write |ẽ| for the length of a tuple. Values v consist of
variables (x, y, z etc.), literal values of data types (0, 1, . . .
and unit) and unitary operators such as the Hadamard op-
erator H. Expressions e consist of values, measurements
measure e1, . . . , en, applications e1, . . . , en ∗= e of unitary
operators, and expressions involving data operators such as
e+ e′ (others can easily be added). Note that although the
syntax refers to measurements and transformation of expres-
sions e, the type system will require these expressions to re-
fer to qubits. Processes P consist of the null (terminated)

process 0, parallel compositions P |Q, inputs e?[x̃ : T̃] . P (no-

tation: x̃ : T̃ = x1 :T1, . . . , xn :Tn, declaring the types of all
the input-bound variables), outputs e![ẽ] . P , actions {e} . P
(typically e will be an application of a unitary operator),
channel declarations (new x : T)P and qubit declarations
(qbit x)P . In inputs and outputs, the expression e will be
constrained by the type system to refer to a channel.
The grammar in Figure 8 defines the internal syntax of

CQP, which is needed in order to define the operational
semantics. Values are extended by two new forms: qubit
names q, and channel names c. Evaluation contexts E[]
(for expressions) and F [] (for processes) are used in the
definition of the operational semantics, in the style of Wright
and Felleisen [30]. The structure of E[] is used to define call-
by-value evaluation of expressions; the hole [] specifies the
first part of the expression to be evaluated. The structure
of F [] is used to define reductions of processes, specifying
which expressions within a process must be evaluated.

Given a process P we define its free variables fv(P), free
qubit names fq(P) and free channel names fc(P) as usual;

the binders (of x or x̃) are y?[x̃ : T̃], (qbit x) and (new x :T).

4.2 Operational Semantics
The operational semantics of CQP is defined by reduc-

tions (small-step evaluations of expressions, or inter-process
communications) and probabilistic transitions. The general
form of a reduction is t −→ ¢i pi • ti where t and the ti
are configurations consisting of expressions or processes with
state information. The notation ¢i pi • ti denotes a prob-
ability distribution over configurations, in which Σipi = 1;
we may also write this distribution as p1•t1¢ · · ·¢pn•tn. If
the probability distribution contains a single configuration
(with probability 1) then we simply write t −→ t′. Probabil-
ity distributions reduce probabilistically to single configura-

tions: ¢i pi • ti pi−→ ti (with probability pi, the distribution
¢i pi • ti reduces to ti).
This separation of reductions and probabilistic transitions

is necessary because of non-determinisim. A general state
of a process may have a number of possible reductions,
arising from communication or evaluation of expressions,
as well as a possible measurement step with a probabilis-
tic outcome. In order to meaningfully interpret the proba-
bilities in such a state, we must decide whether to resolve
the non-determinism or the probability first. We have cho-
sen to resolve the non-determinism first; thus, one of the
non-deterministic reductions is the measurement, resulting
in a probability distribution over configurations. This means
that our semantics is consistent with the PRISM probabilis-
tic model-checker [12], which we intend to use for verifica-
tion. Cazorla et al. [5] discuss this issue further, and survey
the approaches taken by several authors.
The semantics of expressions is defined by the reduction

relations −→v and −→e (Figure 10), both on configura-
tions of the form (σ;φ; e). If n qubits have been declared
then σ has the form q0, . . . , qn−1 = |ψ〉 where |ψ〉 = α0|ψ0〉+
· · ·+α2n−1|ψ2n−1〉 is an element of the 2n-dimensional vec-
tor space with basis |ψ0〉 = |0 . . . 0〉, . . . , |ψ2n−1〉 = |1 . . . 1〉.
The remaining part of the configuration, φ, is a list of chan-
nel names, which plays little part in the semantics but allows
bookkeeping lemmas to be proved. Reductions −→v are
basic steps of evaluation, defined by the rules R-Plus (and
similar rules for any other data operators), R-Measure and
R-Trans. Rule R-Perm allows qubits in the state to be
permuted, compensating for the way that R-Measure and

(S-Nil) P | 0 ≡ P (S-Comm) P |Q ≡ Q | P (S-Assoc) P | (Q |R) ≡ (P |Q) |R

Figure 9: Structural congruence

R-Trans operate on qubits listed first in the state. Mea-
surement specifically measures the values of a collection of
qubits; in the future we should generalize to measuring ob-
servables as allowed by quantum physics.
Reductions −→e extend execution to evaluation con-

texts E[], as defined by rule R-Context. Note that the
probability distribution remains at the top level.
Figure 11 defines the reduction relation −→ on configu-

rations of the form (σ;φ;P). Rule R-Expr lifts reductions
of expressions to F [] contexts, again keeping probability dis-
tributions at the top level. Rule R-Com defines communica-
tion in the style of pi-calculus, making use of substitution,
which is defined in the usual way (we assume that bound
identifiers are renamed to avoid capture). Rule R-Act triv-
ially removes actions; in general the reduction of the action
expression to v will have involved side-effects such as mea-
surement or transformation of quantum state. Rules R-New
and R-Qbit create new channels and qubits, updating the
state information in the configuration; qubits are initialized
to |0〉. Note that this treatment of channel creation is dif-
ferent from standard presentations of the pi-calculus; we
treat both qubits and channels as elements of a global store.
Rule R-Par allows reduction to take place in parallel con-
texts, again lifting the probability distribution to the top
level, and rule R-Cong allows the use of a structural con-
gruence relation as in the pi-calculus. Structural congruence
is the smallest congruence relation (closed under the process
constructions) containing α-equivalence (with respect to the
binders defined in Section 4.1) and closed under the rules in
Figure 9.

5. TYPE SYSTEM
The typing rules defined in Figure 12 apply to the syn-

tax defined in Figure 7. Environments Γ are mappings from
variables to types in the usual way. Typing judgements are
of two kinds. Γ ` e : T means that expression e has type T
in environment Γ. Γ ` P means that process P is well-typed
in environment Γ. The rules for expressions are straightfor-
ward; note that in rule T-Trans, x1, . . . , xn must be distinct
variables of type Qbit.
In rule T-Par the operation + on environments (Defini-

tion 1) is the key to ensuring that each qubit is controlled
by a unique part of a system. The hypothesis that Γ1 + Γ2

must be defined means that it is not possible to type a sys-
tem in which a qubit is shared by parallel components. This
is very similar to the linear type system for the pi-calculus,
defined by Kobayashi et al. [11].

Definition 1 (Addition of Environments).
The partial operation of adding a typed variable to an envi-
ronment, Γ + x :T , is defined by

Γ + x :T = Γ, x :T if x 6∈ dom(Γ)
Γ + x :T = Γ if T 6= Qbit and x :T ∈ Γ
Γ + x :T = undefined, otherwise

This operation is extended inductively to a partial operation
Γ +∆ on environments.

Rule T-Out allows output of classical values and qubits to
be combined, but the qubits must be distinct variables and
they cannot be used by the continuation of the outputting
process (note the hypothesis Γ ` P). The remaining rules
are straightforward.
According to the operational semantics, execution of qbit

and new declarations introduces qubit names and channel
names. In order to be able to use the type system to prove
results about the behaviour of executing processes, we in-
troduce the internal type system (Figure 13). This uses
judgements Γ;Σ;Φ ` e : T and Γ;Σ;Φ ` P where Σ is a set
of qubit names and Φ is a mapping from channel names to
channel types. Most of the typing rules are straightforward
extensions of the corresponding rules in Figure 12. Because
references to qubits may now be either variables or explicit
qubit names, the rules represent them by general expres-
sions e and impose conditions that e is either a variable or
a qubit name. This is seen in rules IT-Trans and IT-Out.
Rule IT-Par is similar to T-Par in enforcing non-sharing
of qubits, and is generalized to cover qubit names as well as
variables.
By standard techniques for linear type systems, the typ-

ing rules in Figure 12 can be converted into a typechecking
algorithm for CQP models.
As an illustration of the linear control of qubits, consider

the coin-flipping example (Figure 1). In P , any non-trivial
continuation replacing 0 would not be able to use the qubit
y, which has been sent on t. In Q , after the qubit x has
been sent on s, the continuation cannot use x. Of course, at
run-time, the qubit variable z in t?[z :Qbit] is instantiated by
x, but that is not a problem because P does not use x after
sending it. In System, x is used as an actual parameter of Q
and therefore could not also be used as an actual parameter
of P (if P had a formal parameter of type Qbit).

6. SOUNDNESS OF THE TYPE SYSTEM
We prove a series of standard lemmas, following the ap-

proach of Wright and Felleisen [30], leading to a proof that
typing is preserved by execution of processes (Theorem 1).
We then prove that in a typable process, each qubit is used
by at most one of any parallel collection of sub-processes
(Theorem 2); because of type preservation, this property
holds at every step of the execution of a typable process.
This reflects the physical reality of the protocols which we
want to model. It is similar to the unique ownership theorem
of Ennals et al. [7].
We can also prove a standard runtime safety theorem,

stating that a typable process generates no communication
errors or incorrectly-applied operators, but we have not in-
cluded it in the present paper.
First we work towards Lemma 4, which is type preser-

vation for the reductions defined in Figure 10. Lemmas 1
and 2 enable the step from Lemma 3 to Lemma 4 in a way
that corresponds to rule R-Context in Figure 10.

Lemma 1 (Typability of Subterms in E).
If D is a typing derivation concluding Γ;Σ;Φ ` E[e] : T then

(σ;φ;u+v) −→v (σ;φ;w) if u and v are integer literals and u+ v = w (R-Plus)

(q0, . . . , qn−1 = α0|ψ0〉+ · · ·+ α2n−1|ψ2n−1〉;φ;measure q0, . . . , qr−1) −→v

¢06m<2rpm • (q0, . . . , qn−1 =
αlm

pm
|ψlm〉+ · · ·+ αum

pm
|ψum

〉;φ;m)

where lm = 2n−rm, um = 2n−r(m+ 1)− 1, pm = |αlm |2 + · · ·+ |αum
|2

(R-Measure)

(q0, . . . , qn−1 = |ψ〉;φ; q0, . . . , qr−1 ∗= U) −→v (q0, . . . , qn−1 = (U ⊗ In−r)|ψ〉;φ; unit)
where U is a unitary operator of arity r

(R-Trans)

(q0, . . . , qn−1 = |ψ〉;φ; e) −→v (qπ(0), . . . , qπ(n−1) = Π|ψ〉;φ; e)
where π is a permutation and Π is the corresponding unitary operator

(R-Perm)

(σ;φ; e) −→v ¢i pi • (σi;φi; ei)
(σ;φ;E[e]) −→e ¢i pi • (σi;φi;E[ei])

(R-Context)

Figure 10: Reduction rules for expression configurations

(σ;φ; e) −→e ¢i pi • (σi;φi; ei)
(σ;φ;F [e]) −→ ¢i pi • (σi;φi;F [ei])

(R-Expr)

(σ;φ; c![ṽ] . P | c?[x̃ : T̃] . Q) −→ (σ;φ;P |Q{ṽ/x̃}) if |ṽ| = |x̃| (R-Com)

(σ;φ; {v} . P) −→ (σ;φ;P) (R-Act)

(σ;φ; (new x :T)P) −→ (σ;φ, c;P{c/x}) where c is fresh (R-New)

(q0, . . . , qn = |ψ〉;φ; (qbit x)P) −→ (q0, . . . , qn, q = |ψ〉 ⊗ |0〉;φ;P{q/x}) where q is fresh (R-Qbit)

(σ;φ;P) −→ ¢i pi • (σi;φi;Pi)
(σ;φ;P |Q) −→ ¢i pi • (σi;φi;Pi |Q)

(R-Par)

P ′ ≡ P (σ;φ;P) −→ ¢i pi • (σi;φi;Pi) ∀i.(Pi ≡ P ′
i)

(σ;φ;P ′) −→ ¢i pi • (σi;φi;P ′
i)

(R-Cong)

¢i pi • (σi;φi;Pi) pi−→ (σi;φi;Pi) (R-Prob)

Figure 11: Reduction rules for process configurations

there exists U such that D has a subderivation D′ concluding
Γ;Σ;Φ ` e : U and the position of D′ in D corresponds to
the position of the hole in E[].

Proof. By induction on the structure of E[].

Lemma 2 (Replacement in E). If

1. D is a derivation concluding Γ;Σ;Φ ` E[e] : T

2. D′ is a subderivation of D concluding Γ;Σ;Φ ` e : U

3. the position of D′ in D matches the hole in E[]

4. Γ;Σ;Φ ` e′ : U

then Γ;Σ;Φ ` E[e′] : T .

Proof. ReplaceD′ by a derivation of Γ;Σ;Φ ` e′ : U .

Lemma 3 (Type Preservation for −→v).
If Γ;Σ;Φ ` e : T and (σ;φ; e) −→v ¢ipi • (σi;φi; ei) and
Σ = dom(σ) and φ = dom(Φ) then ∀i.(σi = σ) and ∀i.(φi =
φ) and ∀i.(Γ;Σ;Φ ` ei : T).

Proof. Examine each case in the definition of −→v .

Lemma 4 (Type Preservation for −→e).
If Γ;Σ;Φ ` e : T and (σ;φ; e) −→e ¢ipi • (σi;φi; ei) and
Σ = dom(σ) and φ = dom(Φ) then ∀i.(σi = σ) and ∀i.(φi =
φ) and ∀i.(Γ; Σ;Φ ` ei : T).

Proof. (σ;φ; e) −→e ¢ipi • (σi;φi; ei) is derived by the
rule R-Context, so for some E[] we have e = E[f] and
∀i.(ei = E[fi]) and (σ;φ; f) −→v ¢ipi • (σi;φi; fi). From
Γ;Σ;Φ ` E[f] : T , Lemma 1 gives Γ;Σ;Φ ` f : U for some
U , Lemma 3 gives ∀i.(Γ; Σ;Φ ` fi : U) and ∀i.(σi = σ) and
∀i.(φi = φ), and Lemma 2 gives ∀i.(Γ; Σ;Φ ` E[fi] : T).

In a similar way we now work towards Theorem 1. We
need substitution lemmas (10 and 11) to deal with the re-
duction rules R-Com, R-New and R-Qbit (Figure 11), and
Lemma 12 to deal with R-Cong.

Lemma 5 (Typability of Subterms in F).
If D is a typing derivation concluding Γ;Σ;Φ ` F [e] then
there exists T such that D has a subderivation D′ concluding
Γ;Σ;Φ ` e : T and the position of D′ in D corresponds to
the position of the hole in F [].

Proof. By case-analysis on the structure of F [].

Γ ` v : Int if v is an integer literal Γ ` unit : Unit (T-IntLit/T-Unit)

Γ ` H : Op(2) etc. Γ, x :T ` x : T (T-Op/T-Var)

Γ ` e : Int Γ ` e′ : Int

Γ ` e+e′ : Int

∀i.(Γ ` xi : Qbit) x1 . . . xn distinct

Γ ` measure x1, . . . , xn : Int
(T-Plus/T-Msure)

∀i.(Γ ` xi : Qbit) x1 . . . xn distinct Γ ` U : Op(n)

Γ ` x1, . . . , xn ∗= U : Unit
(T-Trans)

Γ ` 0
Γ1 ` P Γ2 ` Q Γ1 + Γ2 is defined

Γ1 + Γ2 ` P |Q
(T-Nil/T-Par)

Γ ` x : ̂[T1, . . . , Tn] Γ, y1 :T1, . . . , yn :Tn ` P
Γ ` x?[y1 :T1, . . . , yn :Tn] . P

Γ, x :Qbit ` P
Γ ` (qbit x)P

(T-In/T-Qbit)

Γ ` x : ̂[T1, . . . , Tm,Qbit, . . . ,Qbit] ∀i.(Ti 6= Qbit) ∀i.(Γ ` ei : Ti) yi distinct Γ ` P
Γ, y1 :Qbit . . . , yn :Qbit ` x![e1, . . . , em, y1, . . . , yn] . P

(T-Out)

Γ ` e : T Γ ` P
Γ ` {e} . P

Γ, x :̂[T1, . . . , Tn] ` P
Γ ` (new x :̂[T1, . . . , Tn])P

(T-Act/T-New)

Figure 12: Typing rules

Γ;Σ;Φ ` v : Int if v is an integer literal Γ;Σ;Φ ` unit : Unit (IT-IntLit/IT-Unit)

Γ;Σ;Φ ` H : Op(2) etc. Γ, x :T ; Σ;Φ ` x : T (IT-Op/IT-Var)

Γ;Σ, q; Φ ` q : Qbit Γ;Σ;Φ, c :T ` c : T (IT-IdQ/IT-IdC)

Γ;Σ;Φ ` e : Int Γ;Σ;Φ ` e′ : Int

Γ;Σ;Φ ` e+e′ : Int
(IT-Plus)

∀i.(Γ; Σ;Φ ` ei : Qbit) each ei is either xi or qi, all distinct

Γ;Σ;Φ ` measure e1, . . . , en : Int
(IT-Msure)

∀i.(Γ; Σ;Φ ` ei : Qbit) Γ;Σ;Φ ` U : Op(n) each ei is either xi or qi, all distinct

Γ;Σ;Φ ` e1, . . . , en ∗= U : Unit
(IT-Trans)

Γ;Σ;Φ ` 0 (IT-Nil)

Γ1; Σ1; Φ ` P Γ2; Σ2; Φ ` Q Γ1 + Γ2 is defined Σ1 ∩ Σ2 = ∅
Γ1 + Γ2; Σ1 ∪ Σ2; Φ ` P |Q

(IT-Par)

Γ;Σ;Φ ` e : ̂[T1, . . . , Tn] Γ, y1 :T1, . . . , yn :Tn; Σ;Φ ` P
Γ;Σ;Φ ` e?[y1 :T1, . . . , yn :Tn] . P

Γ, x :Qbit; Σ; Φ ` P
Γ;Σ;Φ ` (qbit x)P

(IT-In/IT-Qbit)

Γ;Σ;Φ ` e : ̂[T̃ , Q̃bit] ∀i.(Ti 6= Qbit) ∀i.(Γ; Σ;Φ ` ei : Ti)
∀i.(Γ;Σ;Φ ` fi : Qbit) Γ;Σ;Φ ` P
f̃ consists of distinct variables f̃x and distinct qubit names f̃q

Γ, f̃x : Q̃bit; Σ, f̃q : Q̃bit; Φ ` e![e1, . . . , em, f1, . . . , fn] . P

(IT-Out)

Γ;Σ;Φ ` e : T Γ;Σ;Φ ` P
Γ;Σ;Φ ` {e} . P

Γ, x :̂[T1, . . . , Tn]; Σ;Φ ` P
Γ;Σ;Φ ` (new x :̂[T1, . . . , Tn])P

(IT-Act/IT-New)

Figure 13: Internal typing rules

Lemma 6 (Replacement in F). If

1. D is a derivation concluding Γ;Σ;Φ ` F [e]

2. D′ is a subderivation of D concluding Γ;Σ;Φ ` e : T

3. the position of D′ in D matches the hole in F []

4. Γ;Σ;Φ ` e′ : T

then Γ;Σ;Φ ` F [e′].
Proof. ReplaceD′ by a derivation of Γ;Σ;Φ ` e′ : T .

Lemma 7 (Weakening for Expressions).
If Γ;Σ;Φ ` e : T and Γ ⊆ Γ′ and Σ ⊆ Σ′ and Φ ⊆ Φ′ then
Γ′; Σ′; Φ′ ` e : T .

Proof. Induction on the derivation of Γ;Σ;Φ ` e : T .

Lemma 8. If Γ;Σ;Φ ` e : T then fv(e) ⊆ dom(Γ) and
fq(e) ⊆ Σ and fc(e) ⊆ dom(Φ).

Proof. Induction on the derivation of Γ;Σ;Φ ` e : T .

Lemma 9. If Γ;Σ;Φ ` P then fv(P) ⊆ dom(Γ) and
fq(P) ⊆ Σ and fc(P) ⊆ dom(Φ).

Proof. Induction on the derivation of Γ;Σ;Φ ` P .

Lemma 10 (Substitution in Expressions).

Assume that Γ, x̃ : T̃ ; Σ; Φ ` e : T and let ṽ be values such
that, for each i:

1. if Ti = Qbit then vi is a variable or a qubit name

2. if Ti = Qbit and vi = yi (a var) then yi 6∈ dom(Γ, x̃ : T̃)

3. if Ti = Qbit and vi = qi (a qubit name) then qi 6∈ Σ

4. if Ti 6= Qbit then Γ;Σ;Φ ` vi : Ti.

Let ỹ be the variables of type Qbit from ṽ (corresponding
to condition (2)) and assume that they are distinct; let q̃
be the qubit names from ṽ (corresponding to condition (3))

and assume that they are distinct. Then Γ, ỹ : Q̃bit; Σ, q̃; Φ `
e{ṽ/x̃} : T .

Proof. Induction on the derivation of Γ, x̃ : T̃ ; Σ; Φ ` e :
T .

The next lemma makes use of the addition operation on
environments (Definition 1) in an essential way.

Lemma 11 (Substitution in Processes).

Assume that Γ, x̃ : T̃ ; Σ; Φ ` P and let ṽ be values such that,
for each i:

1. if Ti = Qbit then vi is a variable or a qubit name

2. if Ti = Qbit and vi = yi (a var) then yi 6∈ dom(Γ, x̃ : T̃)

3. if Ti = Qbit and vi = qi (a qubit name) then qi 6∈ Σ

4. if Ti 6= Qbit then Γ;Σ;Φ ` vi : Ti.

Let ỹ be the variables of type Qbit from ṽ (corresponding
to condition (2)) and assume that they are distinct; let q̃
be the qubit names from ṽ (corresponding to condition (3))

and assume that they are distinct. Then Γ, ỹ : Q̃bit; Σ, q̃; Φ `
P{ṽ/x̃}.

Proof. By induction on the derivation of Γ, x̃ : T̃ ; Σ; Φ `
P . The key cases are IT-Par and IT-Out.
For IT-Par the final step in the typing derivation has the

form

Γ1; Σ1; Φ ` P Γ2; Σ2; Φ ` Q Γ1 + Γ2 def. Σ1 ∩ Σ2 = ∅
Γ, x̃ : T̃ ; Σ; Φ ` P |Q

where Γ1 + Γ2 = Γ, x̃ : T̃ and Σ1 ∪ Σ2 = Σ. Each vari-

able of type Qbit in Γ, x̃ : T̃ is in exactly one of Γ1 and Γ2.
Because the free variables of P and Q are contained in Γ1

and Γ2 respectively, substitution into P | Q splits into dis-
joint substitutions into P and Q. The induction hypothesis
gives typings for P{ṽ/x̃} and Q{ṽ/x̃}, which combine (by

IT-Par) to give Γ, ỹ : Q̃bit; Σ, q̃; Φ ` P |Q{ṽ/x̃}.

Lemma 12 (Struct. Cong. Preserves Typing).
If Γ;Σ;Φ ` P and P ≡ Q then Γ;Σ;Φ ` Q.

Proof. Induction on the derivation of P ≡ Q.

Theorem 1 (Type Preservation for −→).
If Γ;Σ;Φ ` P and (σ;φ;P) −→ ¢ipi • (σi;φi;Pi) and Σ =
dom(σ) and φ = dom(Φ) then ∀i.(σi = σ) and ∀i.(φi = φ)
and ∀i.(Γ; Σ;Φ ` Pi).

Proof. By induction on the derivation of (σ;φ;P) −→
¢ipi • (σi;φi;Pi), in each case examining the final steps in
the derivation of Γ;Σ;Φ ` P .

Theorem 2 (Unique Ownership of Qubits).
If Γ;Σ;Φ ` P |Q then fq(P) ∩ fq(Q) = ∅.

Proof. The final step in the derivation of Γ;Σ;Φ ` P |Q
has the form

Γ1; Σ1; Φ ` P Γ2; Σ2; Φ ` Q Γ1 + Γ2 def. Σ1 ∩ Σ2 = ∅
Γ;Σ;Φ ` P |Q

where Γ = Γ1 +Γ2 and Σ = Σ1 ∪Σ2. By Lemma 9, fq(P) ⊆
Σ1 and fq(Q) ⊆ Σ2. Because Σ1 ∩ Σ2 = ∅ we have fq(P) ∩
fq(Q) = ∅.

All of the results up to now have been proved for the
internal type system (Figure 13). Our intention is that at
the top level, a system should be typechecked in the original
(external) type system (Figure 12), so we need the following
straightforward lemma to make the connection between the
two systems.

Lemma 13 (External/Internal Type System).
Γ ` e : T ⇒ Γ; ∅; ∅ ` e : T and Γ ` P ⇒ Γ; ∅; ∅ ` P .

Proof. Induction on the derivations.

7. FUTURE WORK
Our aim is to develop techniques for formal verification

of systems modelled in CQP. In particular we are working
towards an analysis of the BB84 quantum key distribution
protocol, including both the core quantum steps and the
classical authentication phase. Initially we will use model-
checking, in both standard (non-deterministic) and proba-
bilistic forms. Standard model-checking is appropriate for
absolute properties (for example, the quantum teleportation
protocol (Section 3.2) claims that the final state of y is al-
ways the same as the initial state of z). In general, however,
probabilistic model-checking is needed. For example, the

bit-commitment protocol (Section 3.3) guarantees that, with
some high probability which is dependent on the number of
bits used by Alice, Bob’s verification step is successful. We
have obtained preliminary results [16, 19] with the CWB-
NC [1] and PRISM [12] systems, working directly with the
modelling language of each tool. The next step is to de-
velop automated translations of CQP into these lower-level
modelling languages; note that our operational semantics
matches the semantic model used by PRISM.
Another area for future work is to develop a theory of

equivalence for CQP processes, as a foundation for com-
positional techniques for reasoning about the behaviour of
systems. We can also consider extending the language. It
should be straightforward to add purely classical features
such as functions and assignable variables. Extensions which
combine quantum data with enhanced classical control struc-
tures require more care. Valiron’s [28] recent formulation of
a typed quantum lambda calculus seems very compatible
with our approach, and should fit into CQP’s expression
language.

8. CONCLUSIONS
We have defined a language, CQP, for modelling systems

which combine quantum and classical communication and
computation. CQP has a formal operational semantics, and
a static type system which guarantees that transmitting a
qubit on a communication channel corresponds to a physical
transfer of ownership. The syntax and semantics of CQP are
based on a combination of the pi-calculus and an expression
language which includes measurement and transformation
of quantum state. The style of our definitions makes it easy
to enrich the language. Our research programme is to use
CQP as the basis for analysis and verification of quantum
protocols, and we have outlined some possibilities for the
use of both standard and probabilistic model-checking.

9. REFERENCES
[1] CWB-NC: www.cs.sunysb.edu/~cwb.

[2] S. Abramsky and B. Coecke. A categorical semantics of
quantum protocols. In Proceedings, Nineteenth Annual IEEE
Symposium on Logic in Computer Science. IEEE Computer
Society Press, 2004.

[3] C. H. Bennett and G. Brassard. Quantum Cryptography:
Public-key Distribution and Coin Tossing. In Proceedings of
the IEEE International Conference on Computer, Systems
and Signal Processing, Bangalore, India, pages 175–179, 1984.

[4] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres,
and W. K. Wootters. Teleporting an unknown quantum state
via dual classical and Einstein-Podolsky-Rosen channels. Phys.
Rev. Lett., 70:1895–1899, 1993.

[5] D. Cazorla, F. Cuartero, V. Valero, F. L. Pelayo, and J. J.
Pardo. Algebraic theory of probabilistic and nondeterministic
processes. Journal of Logic and Algebraic Programming,
55:57–103, 2003.

[6] H. de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden,
D. Collins, and N. Gisin. Long distance quantum teleportation
in a quantum relay configuration. Phys. Rev. Lett., 92(4),
2004.

[7] R. Ennals, R. Sharp, and A. Mycroft. Linear types for packet
processing. In D. Schmidt, editor, ESOP 2004: Proceedings of
the European Symposium on Programming, volume 2986 of
Lecture Notes in Computer Science. Springer-Verlag, 2004.

[8] J. Gruska. Quantum Computing. McGraw-Hill, 1999.

[9] P. Jorrand and M. Lalire. A process-algebraic approach to
concurrent and distributed quantum computation: operational
semantics. In P. Selinger, editor, Proceedings of the 2nd
International Workshop on Quantum Programming
Languages, 2004. Also in Quantum Physics Archive:
arXiv:quant-ph/0407005.

[10] E. Knill. Conventions for quantum pseudocode. Technical
Report LAUR-96-2724, Los Alamos National Laboratory, 1996.

[11] N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and
the Pi-Calculus. ACM Transactions on Programming
Languages and Systems, 21(5):914–947, September 1999.

[12] M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM:
Probabilistic symbolic model checker. In T. Field, P. Harrison,
J. Bradley, and U. Harder, editors, Computer Performance
Evaluation (TOOLS’02), pages 200–204. Springer-Verlag,
2002.

[13] D. Mayers. Unconditional Security in Quantum Cryptography.
Journal of the ACM, 48(3):351–406, May 2001.

[14] D. A. Meyer. Quantum strategies. Phys. Rev. Lett., 82(5),
1999.

[15] R. Milner, J. Parrow, and D. Walker. A calculus of mobile
processes, I and II. Information and Computation,
100(1):1–77, September 1992.

[16] R. Nagarajan and S. J. Gay. Formal verification of quantum
protocols. Quantum Physics Archive: arXiv:quant-ph/0203086,
March 2002.

[17] M. A. Nielsen and I. L. Chuang. Quantum Computation and
Quantum Information. Cambridge University Press, 2000.

[18] B. Ömer. Quantum programming in QCL. Master’s thesis,
Technical University of Vienna, 2000.

[19] N. Papanikolaou. Techniques for design and validation of
quantum protocols. Master’s thesis, University of Warwick,
2004.

[20] B. C. Pierce and D. Sangiorgi. Typing and subtyping for
mobile processes. Mathematical Structures in Computer
Science, 6(5), 1996.

[21] A. Poppe, A. Fedrizzi, T. Lorünser, O. Maurhardt, R. Ursin,
H. R. Böhm, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter,
T. Jennewein, and A. Zeilinger. Practical quantum key
distribution with polarization entangled photons. Quantum
Physics Archive: arXiv:quant-ph/0404115, 2004.

[22] E. G. Rieffel and W. Polak. An introduction to quantum
computing for non-physicists. ACM Computing Surveys,
32(3):300–335, 2000.

[23] P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and B. Roscoe.
Modelling and Analysis of Security Protocols.
Addison-Wesley, 2001.

[24] J. W. Sanders and P. Zuliani. Quantum programming. In
Mathematics of Program Construction, volume 1837 of
Springer LNCS, 2000.

[25] D. Sangiorgi and D. Walker. The π-calculus: a Theory of
Mobile Processes. Cambridge University Press, 2001.

[26] P. Selinger. Towards a quantum programming language.
Mathematical Structures in Computer Science,
14(4):527–586, 2004.

[27] K. Takeuchi, K. Honda, and M. Kubo. An interaction-based
language and its typing system. In C. Halatsis, D. G. Maritsas,
G. Philokyprou, and S. Theodoridis, editors, PARLE ’94:
Parallel Architectures and Languages Europe, 6th
International PARLE Conference, Proceedings, volume 817 of
Lecture Notes in Computer Science. Springer-Verlag, 1994.

[28] B. Valiron. Quantum typing. In P. Selinger, editor,
Proceedings of the Second International Workshop on
Quantum Programming Languages, 2004.

[29] A. van Tonder. A lambda calculus for quantum computation.
SIAM Journal on Computing, 33(5):1109–1135, 2004.

[30] A. K. Wright and M. Felleisen. A syntactic approach to type
soundness. Information and Computation, 115(1):38–94, 1994.

