
Under consideration for publication in Math. Struct. in Comp. Science

Types and Typechecking for Communicating
Quantum Processes

S imon J. Gay1 and Ra j a g opa l Naga r a j an2†

1 Department of Computing Science, University of Glasgow, UK
Email: simon@dcs.gla.ac.uk
2 Department of Computer Science, University of Warwick, UK
Email: biju@dcs.warwick.ac.uk

Received 19 November 2004; revised 30 September 2005

We define a language CQP (Communicating Quantum Processes) for modelling systems

which combine quantum and classical communication and computation. CQP combines

the communication primitives of the pi-calculus with primitives for measurement and

transformation of quantum state; in particular, quantum bits (qubits) can be

transmitted from process to process along communication channels. CQP has a static

type system which classifies channels, distinguishes between quantum and classical data,

and controls the use of quantum state. We formally define the syntax, operational

semantics and type system of CQP, prove that the semantics preserves typing, and prove

that typing guarantees that each qubit is owned by a unique process within a system.

We also define a typechecking algorithm and prove that it is sound and complete with

respect to the type system. We illustrate CQP by defining models of several quantum

communication systems, and outline our plans for using CQP as the foundation for

formal analysis and verification of combined quantum and classical systems.

1. Introduction

Quantum computing and quantum communication have attracted growing interest since
their inception as research areas more than twenty years ago, and there has been a surge of
activity among computer scientists during the last few years. While quantum computing
offers the prospect of substantial improvements in algorithmic efficiency for certain prob-
lems, quantum cryptography can provide communication systems which will be secure
even in the presence of hypothetical future quantum computers. As a practical technol-
ogy, quantum communication has progressed far more rapidly than quantum computing.
Secure communication involving quantum cryptography has recently been demonstrated
in a scenario involving banking transactions in Vienna (Poppe et al. 2004); the DARPA
Quantum Network has been established in the Boston area (Elliott 2004, 2005); systems

† R. Nagarajan is supported by EPSRC grant GR/S34090 and the EU Sixth Framework Programme

(Project SecoQC: Development of a Global Network for Secure Communication based on Quantum

Cryptography).

S. J. Gay and R. Nagarajan 2

are commercially available from Id Quantique, MagiQ Technologies and NEC; and plans
have been reported to establish a nationwide quantum communication network in Singa-
pore. It seems very likely that secure quantum communication will become a fundamental
part of the technological infrastructure of society, long before quantum computers can
tackle computations of a useful size.

However, secure quantum communication is not a solved problem. Although particular
protocols have been mathematically proved correct (for example, Mayers’ (2001) analysis
of the Bennett-Brassard (1984) protocol (BB84) for quantum key distribution), this does
not guarantee the security of systems which use them. Experience of classical security
analysis has shown that even if protocols are theoretically secure, it is difficult to achieve
robust and reliable implementations of secure systems: security can be compromised by
flaws at the implementation level or at the boundaries between systems. To address
this problem, computer scientists have developed an impressive armoury of techniques
and tools for formal modelling, analysis and verification of classical security protocols
and communication systems which use them (Ryan et al. 2001). These techniques have
been remarkably successful both in establishing the security of new protocols and in
demonstrating flaws in protocols which had previously been believed to be secure. Their
strength lies in the ability to model systems as well as idealized protocols, and the
flexibility to easily re-analyze variations in design.

Our research programme is to develop techniques and tools for formal modelling, anal-
ysis and verification of quantum communication and cryptographic systems. More pre-
cisely we aim to handle systems which combine quantum and classical communication
and computation, for two reasons: the first quantum communication systems will imple-
ment communication between classical computers; and protocols such as BB84 typically
contain classical communication and computation as well as quantum cryptography. We
cannot simply make use of existing techniques for classical security analysis: for example,
treating the security of quantum cryptography axiomatically would not permit analysis
of the protocols which construct quantum cryptographic keys. Furthermore, the inher-
ently probabilistic nature of quantum systems means that not all verification consists of
checking absolute properties; we need a probabilistic modelling and analysis framework.

Any formal analysis which involves automated tools requires a modelling language with
a precisely-defined semantics. The purpose of this paper is to define a language, CQP
(Communicating Quantum Processes), which will serve as the foundation for the pro-
gramme described above. CQP combines the communication primitives of the pi-calculus
(Milner et al. 1992; Sangiorgi and Walker 2001) with primitives for transformation and
measurement of quantum state. In particular, qubits (quantum bits, the basic elements
of quantum data) can be transmitted along communication channels. In Section 3 we
introduce CQP through a series of examples which cover a wide spectrum of quantum
information processing scenarios: a quantum coin-flipping game; a quantum communi-
cation protocol known as teleportation; and a quantum bit-commitment protocol. The
latter will lead naturally to a model of the BB84 quantum key-distribution protocol in
future work. In Section 4 we formalize the syntax of CQP and define an operational se-
mantics which combines non-determinism (arising in the same way as in pi-calculus) with
the probabilistic results of quantum measurements. In Section 5 we define a static type

Types and Typechecking for Communicating Quantum Processes 3

system which classifies data and communication channels, and crucially treats qubits as
physical resources: if process P sends qubit q to process Q, then P must not access q
subsequently, and this restriction can be enforced by static typechecking. In Section 6 we
prove that the invariants of the type system are preserved by the operational semantics,
guaranteeing in particular that at every point during execution of a system, every qubit
is uniquely owned by a single parallel component. In Section 7 we present a typechecking
algorithm; this is necessary because not all of the rules of the type system have a di-
rect algorithmic interpretation. We prove that the typechecking algorithm is sound and
complete with respect to the original typing rules. In Section 8 we outline our plans for
further work, focusing on the use of both standard (non-deterministic) and probabilistic
model-checking systems.

Related Work

There has been a great deal of interest in quantum programming languages, resulting in a
number of proposals in different styles, for example (Knill 1996; Ömer 2000; Sanders and
Zuliani 2000; Selinger 2004; van Tonder 2004); Gay (2005) has published a comprehensive
survey. Such languages can express arbitrary quantum state transformations and could
be used to model quantum protocols in those terms. However, our view is that any model
lacking an explicit treatment of communication is essentially incomplete for the analysis
of protocols; certainly in the classical world, standard programming languages are not
considered adequate frameworks in which to analyze or verify protocols. Nevertheless,
Selinger’s (2004) functional language QPL in particular has influenced our choice of
computational operators for CQP.

The closest work to our own, developed simultaneously but independently, is Jorrand
and Lalire’s (2004) QPAlg, which also combines communication in process calculus style
with transformation and measurement of quantum state. At the level of processes, the
operational semantics of CQP and QPAlg are similar in the way that a configuration
(process with state) reduces to a probability distribution over configurations, which then
makes a probabilistic transition to a configuration. However, we have defined a richer
expression language for CQP, and the semantics is defined in a systematic style which
makes it easy to extend the expression language. The most distinctive features of CQP
are the static type system and the typechecking algorithm, imposing constraints on the
use of qubits which correspond to the physical reality that an arbitrary quantum state
cannot be duplicated. Lalire (2006) has defined a notion of probabilistic bisimulation for
QPAlg, as a step towards developing techniques for reasoning about distributed quantum
systems. We have not yet investigated equivalences for CQP.

Adão and Mateus (2005) also define a process algebra intended for reasoning about
quantum cryptographic systems. Their language describes the computational complexity
of systems, in order to express the idea that a cryptosystem is secure if discovering
keys is computationally intractable. They develop a theory of observational equivalence
of processes, and give an example in which the secrecy property of a quantum zero-
knowledge protocol is expressed in terms of observational equivalence. Their language

S. J. Gay and R. Nagarajan 4

is rather different from CQP, describing a system as a parallel combination of quantum
random access machines.

The work of Abramsky and Coecke (2004) is also relevant. They define a category-
theoretic semantic foundation for quantum protocols, which supports reasoning about
systems and exposes deep connections between quantum systems and programming lan-
guage semantics, but they do not define a formal syntax in which to specify models. It will
be interesting to investigate the relationship between CQP and the semantic structures
that they propose.

Acknowledgements We have benefitted from discussions with Philippe Jorrand, Marie
Lalire and Nick Papanikolaou, and from the insightful comments of several referees.

2. Preliminaries

We briefly introduce the aspects of quantum theory which are needed for the rest of
the paper. For more detailed presentations we refer the reader to the books by Gruska
(1999) and Nielsen and Chuang (2000). Rieffel and Polak (2000) give an account aimed
at computer scientists.

A quantum bit or qubit is a physical system which has two basis states, convention-
ally written |0〉 and |1〉, corresponding to one-bit classical values. These could be, for
example, spin states of a particle or polarization states of a photon, but we do not con-
sider the physical implementation of qubits. According to quantum theory, a general
state of a quantum system is a superposition or linear combination of basis states. Con-
cretely, a qubit has state α|0〉 + β|1〉, where α and β are complex coefficients such that
|α|2 + |β|2 = 1; states which differ only by a (complex) scalar factor with modulus 1 are
indistinguishable. States can be represented by column vectors:(

α

β

)
= α|0〉+ β|1〉.

Superpositions are illustrated by the quantum coin-flipping game which we discuss in
Section 3.1. Formally, a quantum state is a unit vector in a Hilbert space, i.e. a complex
vector space equipped with an inner product satisfying certain axioms. In this paper we
will restrict attention to collections of qubits.

The basis {|0〉, |1〉} is known as the standard basis. Other bases are sometimes of
interest, especially the diagonal (or dual, or Hadamard) basis consisting of the vectors
|+〉 = 1√

2
(|0〉 + |1〉) and |−〉 = 1√

2
(|0〉 − |1〉). For example, with respect to the diagonal

basis, |0〉 is in a superposition of basis states:

|0〉 =
1√
2
|+〉+

1√
2
|−〉.

Evolution of a closed quantum system can be described by a unitary transformation. If
the state of a qubit is represented by a column vector then a unitary transformation U can
be represented by a complex-valued matrix (uij) such that U−1 = U∗, where U∗ is the

Types and Typechecking for Communicating Quantum Processes 5

conjugate-transpose of U (i.e. element ij of U∗ is ūji). U acts by matrix multiplication:(
α′

β′

)
=

(
u00 u01

u10 u11

) (
α

β

)
A unitary transformation can also be defined by its effect on basis states, which is ex-
tended linearly to the whole space. For example, the Hadamard transformation is defined
by

|0〉 7→ 1√
2
|0〉+ 1√

2
|1〉

|1〉 7→ 1√
2
|0〉 − 1√

2
|1〉

which corresponds to the matrix

H =
1√
2

(
1 1
1 −1

)
.

The Hadamard transformation creates superpositions:

H|0〉 = |+〉 H|1〉 = |−〉.

We will also make use of the Pauli transformations I, σX , σY , σZ :

I σX σY σZ(
1 0
0 1

) (
0 1
1 0

) (
0 −i
i 0

) (
1 0
0 −1

)
A key feature of quantum physics is the role of measurement. If a qubit is in the state

α|0〉 + β|1〉 then measuring its value gives the result 0 with probability |α|2 (leaving it
in state |0〉) and the result 1 with probability |β|2 (leaving it in state |1〉). Protocols
sometimes specify measurement with respect to a different basis, such as the diagonal
basis; this can be expressed as a unitary change of basis followed by a measurement with
respect to the standard basis. Note that if a qubit is in state |+〉 then a measurement
with respect to the standard basis gives result 0 (and state |0〉) with probability 1

2 , and
result 1 (and state |1〉) with probability 1

2 . If a qubit is in state |0〉 then a measurement
with respect to the diagonal basis gives result† 0 (and state |+〉) with probability 1

2 , and
result 1 (and state |−〉)) with probability 1

2 , because of the representation of |0〉 in the
diagonal basis noted above. If a classical bit is represented by a qubit using either the
standard or diagonal basis, then a measurement with respect to the same basis results
in the original bit, but a measurement with respect to the other basis results in 0 or 1
with equal probability. This behaviour is used by the quantum bit-commitment protocol
which we discuss in Section 3.3.

To go beyond single-qubit systems, quantum theory considers tensor products of spaces
(in contrast to the cartesian products used in classical systems). If spaces U and V have
bases {ui} and {vj} then U ⊗ V has basis {ui ⊗ vj}. In particular, a system consisting
of n qubits has a 2n-dimensional space whose standard basis is |00 . . . 0〉 . . . |11 . . . 1〉. We

† Strictly speaking, the outcome of the measurement is just the final state; the specific association of

numerical results with final states is a matter of convention.

S. J. Gay and R. Nagarajan 6

can now consider measurements of single qubits or collective measurements of multiple
qubits. For example, a 2-qubit system has basis |00〉, |01〉, |10〉, |11〉 and a general state is
α|00〉+β|01〉+γ|10〉+δ|11〉 with |α|2+|β|2+|γ|2+|δ|2 = 1. Measuring the first qubit gives
result 0 with probability |α|2+|β|2 (leaving the system in state 1√

|α|2+|β|2
(α|00〉+β|01〉))

and result 1 with probability |γ|2 + |δ|2 (leaving the system in state 1√
|γ|2+|δ|2

(γ|10〉 +

δ|11〉)); in each case we renormalize the state by multiplying by a suitable scalar factor.
Measuring both qubits simultaneously gives result 0 with probability |α|2 (leaving the
system in state |00〉), result 1 with probability |β|2 (leaving the system in state |01〉) and
so on; note that the association of basis states |00〉, |01〉, |10〉, |11〉 with results 0, 1, 2, 3 is
just a conventional choice. The power of quantum computing, in an algorithmic sense,
results from calculating with superpositions of states; all of the complex coefficients of the
superposed states are transformed simultaneously (quantum parallelism) and the effect
increases exponentially with the number of qubits involved. The challenge in quantum
algorithm design is to exploit this parallelism in order to arrive at final states whose
complex coefficients favour the outcome of relevant results when a measurement is made
with respect to an appropriate basis; in general this is very difficult.

We will make use of the controlled not (CNot) transformation on pairs of qubits. Its
action on basis states is defined by

|00〉 7→ |00〉 |01〉 7→ |01〉 |10〉 7→ |11〉 |11〉 7→ |10〉

which can be understood as inverting the second qubit if and only if the first qubit is
set, although in general we need to consider the effect on non-basis states:

α|00〉+ β|01〉+ γ|10〉+ δ|11〉 7→ α|00〉+ β|01〉+ γ|11〉+ δ|10〉.

Systems of two or more qubits can exhibit the phenomenon of entanglement, mean-
ing that the states of the qubits are correlated. For example, consider a measurement
of the first qubit of the state 1√

2
(|00〉 + |11〉). The result is 0 (and resulting state |00〉)

with probability 1
2 , or 1 (and resulting state |11〉) with probability 1

2 . In either case a
subsequent measurement of the second qubit gives a definite (non-probabilistic) result
which is always the same as the result of the first measurement. This is true even if
the entangled qubits are physically separated. Entanglement illustrates the key differ-
ence between the use of tensor product (in quantum systems) and cartesian product (in
classical systems): an entangled state of two qubits is one which cannot be expressed as
a tensor product of single-qubit states. Entanglement is used in an essential way in the
quantum teleportation protocol which we discuss in Section 3.2. That example uses the
CNot transformation to create entanglement: CNot((H⊗ I)|00〉) = 1√

2
(|00〉+ |11〉). Here

H ⊗ I is the tensor product of H (Hadamard) and I (identity), so that H is applied to
the first qubit and I to the second one.

Types and Typechecking for Communicating Quantum Processes 7

3. Examples of Modelling in CQP

3.1. A Quantum Coin-Flipping Game

Our first example is based on a scenario used by Meyer (1999) to initiate the study of
quantum game theory. Players P and Q play the following game: P places a coin, head
upwards, in a box, and then the players take turns (Q, then P , then Q) to optionally
turn the coin over, without being able to see it. Finally the box is opened and Q wins if
the coin is head upwards.

Clearly neither player has a winning strategy, but the situation changes if the coin is
a quantum system, represented by a qubit (|0〉 for head upwards, |1〉 for tail upwards).
Turning the coin over corresponds to the transformation σX , and this is what P can do.
But suppose that Q can apply H, which corresponds to transforming from head upwards
(|0〉) to a superposition of head upwards and tail upwards (1√

2
(|0〉+ |1〉)), and does this

on both turns. Then we have two possible runs of the game, (a) and (b):

(a)

Action State

|0〉
Q: H 1√

2
(|0〉+ |1〉)

P : σX
1√
2
(|1〉+ |0〉)

Q: H |0〉

(b)

Action State

|0〉
Q: H 1√

2
(|0〉+ |1〉)

P : − 1√
2
(|0〉+ |1〉)

Q: H |0〉

and in each case the coin finishes head upwards. To verify this we calculate that the state
1√
2
(|0〉+ |1〉) is invariant under σX :(

0 1
1 0

)
1√
2

(
1
1

)
=

1√
2

(
1
1

)
and that the Hadamard transformation H is self-inverse:

1√
2

(
1 1
1 −1

)
1√
2

(
1 1
1 −1

)
=

(
1 0
0 1

)
Meyer considers game-theoretic issues relating to the expected outcome of repeated

runs, but we just model a single run in CQP (Figure 1). Most of the syntax of CQP is
based on typed pi-calculus, using fairly common notation (for example, see Pierce and
Sangiorgi’s (1996) presentation). P and Q communicate by means of the typed channel
s : ̂[Qbit] which carries qubits. It is a parameter of both P and Q. At the top level,
System creates s with (new s :̂[Qbit]) and starts P and Q in parallel.
P creates a qubit x, representing the coin, with (qbit x). In a physical implementation

we would expect this to mean that x is allocated from some store of qubits. The semantics
of CQP specifies that the initial state of x is |0〉. P then sends (s![x]) the qubit x along
the channel s; it will be received by Q.
Q receives (s?[y :Qbit]) the qubit, referring to it by the name y, then applies (y ∗= H)

the Hadamard transformation. The transformation expression, whose syntax is based on

S. J. Gay and R. Nagarajan 8

P(s :̂[Qbit]) = (qbit x)(s![x] . (s?[u :Qbit] . s![u] .0 + s?[u :Qbit] . {u ∗= σX} . s![u] .0))

Q(s :̂[Qbit]) = s?[y] . {y ∗= H} . s![y] . s?[z :Qbit] . {z ∗= H} .C (z)

System = (new s :̂[Qbit])(P(s) |Q(s))

Fig. 1. The quantum coin-flipping game in CQP

∅ ; ∅ ;System

↓ expand definition

∅ ; ∅ ; (new s :̂[Qbit])(P(s) |Q(s))

↓ create channel s

∅ ; s ;P(s) |Q(s)

↓ expand definitions

∅ ; s ;

(qbit x)(s![x] . (s?[u :Qbit] . s![u] .0 + s?[u :Qbit] . {u ∗= σX} . s![u] .0))

| s?[y :Qbit] . {y ∗= H} . s![y] . s?[z :Qbit] . {z ∗= H} .C (z)

↓ create qubit x

x = |0〉 ; s ;

s![x] . (s?[u :Qbit] . s![u] .0 + s?[u :Qbit] . {u ∗= σX} . s![u] .0)

| s?[y :Qbit] . {y ∗= H} . s![y] . s?[z :Qbit] . {z ∗= H} .C (z)

↓ communication

x = |0〉 ; s ;

s?[u :Qbit] . s![u] .0 + s?[u :Qbit] . {u ∗= σX} . s![u] .0
| {x ∗= H} . s![x] . s?[z :Qbit] . {z ∗= H} .C (z)

↓ transform x

x = 1√
2
(|0〉+ |1〉) ; s ;

s?[u :Qbit] . s![u] .0 + s?[u :Qbit] . {u ∗= σX} . s![u] .0
| s![x] . s?[z :Qbit] . {z ∗= H} .C (z)

communication ↙ ↘ communication

x = 1√
2
(|0〉+ |1〉) ; s ; x = 1√

2
(|0〉+ |1〉) ; s ;

s![x] .0 {x ∗= σX} . s![x] .0
| s?[z :Qbit] . {z ∗= H} .C (z) | s?[z :Qbit] . {z ∗= H} .C (z)

communication ↓ ↓ transform x

x = 1√
2
(|0〉+ |1〉) ; s ; x = 1√

2
(|0〉+ |1〉) ; s ;

0 | {x ∗= H} .C (x) s![x] .0 | s?[z :Qbit] . {z ∗= H} .C (z)

transform x ↓ ↓ communication

x = |0〉 ; s ;C (x) x = 1√
2
(|0〉+ |1〉) ; s ;

0 | {x ∗= H} .C (x)

↓ transform x

x = |0〉 ; s ;C (x)

Fig. 2. Execution of the coin-flipping game

Types and Typechecking for Communicating Quantum Processes 9

Alice(x :Qbit, c :̂[0..3], z :Qbit) = {z, x ∗= CNot} . {z ∗= H} . c![measure z, x] .0

Bob(y :Qbit, c :̂[0..3]) = c?[r :0..3].{y ∗= (case r of 0 ⇒ I, 1 ⇒ σX , 2 ⇒ σZ , 3 ⇒ σY)}.Use(y)

System(x :Qbit, y :Qbit, z :Qbit) = (new c : [̂0..3])(Alice(x, c, z) | Bob(y, c))

Fig. 3. Quantum teleportation in CQP

Selinger’s (2004) QPL, is converted into an action by {. . .}. Q then sends (s![y]) the qubit
back to P .
P contains two branches of behaviour, corresponding to the possibilities of applying

(second branch) or not applying (first branch) the transformation σ1. Both branches
terminate with the null process 0. The branches are combined into an input-guarded
sum, and the operational semantics means that only one branch interacts with Q; the
other disappears. After possibly transforming it, P sends the qubit to Q again, and Q

receives it with s?[z :Qbit], referring to it by the name z in the rest of the code. Finally
Q applies H again, and continues with some behaviour C(z).

Figure 2 shows the execution (combining some steps) of System according to the op-
erational semantics which we will define formally in Section 4. Reduction takes place on
configurations (σ;φ;P) where σ is a list of qubits and their collective state, φ lists the
channels which have been created, and P is a process term. Note that the state of the
qubits must be a global property in order to be physically realistic. We have taken the
simple approach of including the global state in the configurations, but we do not claim
that this is the only possibility. We also record the channels globally in order to give
the semantics a uniform style; this is different from the usual approach to pi-calculus
semantics, but (modulo garbage collection) is equivalent to expanding the scope of every
new to the top level, α-renaming if necessary.

The execution of System tracks the informal calculation which we worked through
above. Our CQP model makes the manipulation of the qubit very explicit; there are
other ways to express the behaviour (including putting everything into a single process
with no communication), but the point is that we have a framework in which to discuss
such issues.

3.2. Quantum Teleportation

The quantum teleportation protocol (Bennett et al. 1993) is a procedure for relocating
a quantum state by means of classical communication. This protocol is particularly im-
portant: it is likely to be a key enabling technology for the development of the quantum
repeaters (de Riedmatten et al. 2004) which will be necessary in large-scale quantum
communication networks, and it has fundamental applications to quantum computation
(Gottesman and Chuang 1999).

Figure 3 shows a simple model of the quantum teleportation protocol. Alice and Bob
each possess one qubit (x for Alice, y for Bob) of an entangled pair whose state is
1√
2
(|00〉+ |11〉). At this point we are assuming that appropriate qubits will be supplied to

S. J. Gay and R. Nagarajan 10

x, y, z = 1√
2
|001〉+ 1√

2
|111〉 ; ∅ ;System(x, y, z)

↓ expand definition

x, y, z = 1√
2
|001〉+ 1√

2
|111〉 ; ∅ ; (new c :̂[0..3])(Alice(x, c, z) | Bob(y, c))

↓ create channel c

x, y, z = 1√
2
|001〉+ 1√

2
|111〉 ; c ;Alice(x, c, z) | Bob(y, c)

↓ expand definitions

x, y, z = 1√
2
|001〉+ 1√

2
|111〉 ; c ;

{z, x ∗= CNot} . {z ∗= H} . c![measure z, x] .0

| c?[r :0..3] . {y ∗= (case r of 0 ⇒ I, 1 ⇒ σX , 2 ⇒ σZ , 3 ⇒ σY)} .Use(y)

↓ transform z, x

x, y, z = 1√
2
|101〉+ 1√

2
|011〉 ; c ;

{z ∗= H} . c![measure z, x] .0 | c?[r :0..3] . {y ∗= (case . . .)} .Use(y)

↓ transform z

x, y, z = 1
2
|100〉 − 1

2
|101〉+ 1

2
|010〉 − 1

2
|011〉 ; c ;

c![measure z, x] .0 | c?[r :0..3] . {y ∗= (case . . .)} .Use(y)

↓ measure z, x
1
4
• (x, y, z = |010〉; c ; c![0] .0 | c?[r :0..3] . {y ∗= (case . . .)} .Use(y))

� 1
4
• (x, y, z = |110〉; c ; c![1] .0 | c?[r :0..3] . {y ∗= (case . . .)} .Use(y))

� 1
4
• (x, y, z = |011〉; c ; c![2] .0 | c?[r :0..3] . {y ∗= (case . . .)} .Use(y))

� 1
4
• (x, y, z = |111〉; c ; c![3] .0 | c?[r :0..3] . {y ∗= (case . . .)} .Use(y))

1
4
↓ 1

4
↓ 1

4
↓ 1

4
↓

x, y, z = |010〉 ; c ; x, y, z = |100〉 ; c ; x, y, z = |011〉 ; c ; x, y, z = |101〉 ; c ;

c![0] .0 | c?[r :0..3] . c![1] .0 | c?[r :0..3] . c![2] .0 | c?[r :0..3] . c![3] .0 | c?[r :0..3] .

{y ∗= . . .} .Use(y) {y ∗= . . .} .Use(y) {y ∗= . . .} .Use(y) {y ∗= . . .} .Use(y)

↓ ↓ ↓ ↓ comm.

x, y, z = |010〉 ; c ; x, y, z = |100〉 ; c ; x, y, z = |011〉 ; c ; x, y, z = |101〉 ; c ;

{y ∗= I} .Use(y) {y ∗= σX} .Use(y) {y ∗= σZ} .Use(y) {y ∗= σY } .Use(y)

↓ ↓ ↓ ↓ trans. y

x, y, z = |010〉 ; c ; x, y, z = |110〉 ; c ; x, y, z = −|011〉 ; c ; x, y, z = i|111〉 ; c ;

Use(y) Use(y) Use(y) Use(y)

Fig. 4. Execution of the quantum teleportation protocol

Alice ′(s :̂[Qbit], c :̂[0..3], z :Qbit) = s?[x :Qbit] .Alice(x, c, z)

Bob′(t :̂[Qbit], c :̂[0..3]) = t?[y :Qbit] .Bob(y, c)

Source(s :̂[Qbit], t :̂[Qbit]) = (qbit x, y)({x ∗= H} . {x, y ∗= CNot} . s![x] . t![y] .0)

System ′(z :Qbit) = (new c :̂[0..3], s :̂[Qbit], t :̂[Qbit])(Alice ′(s, c, z) | Bob′(t, c) | Source(s, t))

Fig. 5. Quantum teleportation with an EPR source

Types and Typechecking for Communicating Quantum Processes 11

Alice and Bob as parameters of the system. Alice is also parameterized by a qubit z, whose
state is to be teleported. She applies (z, x∗=CNot) the conditional not transformation to
z and x and then applies (z ∗= H) the Hadamard transformation to z, finally measuring
z and x to yield a two-bit classical value which she sends (c![measure z, x]) to Bob on the
typed channel c :̂[0..3] and then terminates (0). Bob receives (c?[r :0..3]) this value and
uses it to select a Pauli transformation to apply (y ∗= (case . . .)) to y. The result is that
Bob’s qubit y takes on the state of z, without a physical qubit having been transmitted
from Alice to Bob. Bob may then use y in his continuation process Use(y).

This example introduces measurement, with a syntax similar to that of Selinger’s
(2004) QPL. We treat measurement as an expression, executed for its value as well as its
side-effect on the quantum state. Because the result of a measurement is probabilistic,
evaluation of a measure expression introduces a probability distribution over configura-
tions: �06i6n pi • (σi;φi;Pi). The next step is a probabilistic transition to one of the
configurations; no reduction takes place underneath a probability distribution. In gen-
eral a configuration reduces non-deterministically to one of a collection of probability
distributions over configurations (in some cases this is trivial, with only one distribution
or only one configuration within a distribution). A non-trivial probability distribution
makes a probabilistic transition to a single configuration; this step is omitted in the case
of a trivial distribution.

Figure 4 shows the complete execution of System in the particular case in which
z, the qubit being teleported, has state |1〉. The measurement produces a probabil-
ity distribution over four configurations, but in all cases the final configuration (pro-
cess Use(y)) has a state consisting of a single basis vector in which y = |1〉. To ver-
ify the protocol for an arbitrary qubit, we can repeat the calculation with initial state
x, y, z = 1√

2
(|00〉+ |11〉)⊗ (α|0〉+ β|1〉).

Alice and Bob are parameterized by their parts (x, y) of the entangled pair (and by the
channel c). We can be more explicit about the origin of the entangled pair by introducing
what is known in the physics literature as an EPR source‡ (computer scientists might
regard it as an entanglement server). This process constructs the entangled pair (by using
the Hadamard and controlled not transformations; note that our semantics (Section 4)
specifies that the qubits x and y are each initialized to |0〉) and sends its components to
Alice and Bob on the typed channels s, t :̂[Qbit]. Figure 5 shows the revised model.

We have now made use of processes parameterized by qubits (declarations such as
x : Qbit) and channels (declarations such as c :̂[Qbit]), as well as processes which cre-
ate (allocate) qubits (declarations such as (qbit y)) and channels (declarations such as
(new d)). It is worth emphasizing that process parameter declarations, whether qubits
or channels, do not create resources; they must be instantiated with existing qubits or
channels. Resources are created by qbit and new declarations.

‡ EPR stands for Einstein, Podolsky and Rosen.

S. J. Gay and R. Nagarajan 12

3.3. Bit-Commitment

The bit-commitment problem is to design a protocol such that Alice chooses a one-bit
value which Bob then attempts to guess. The key issue is that Alice must evaluate Bob’s
guess with respect to her original choice of bit, without changing her mind; she must be
committed to her choice. Similarly, Bob must not find out Alice’s choice before making his
guess. Bit-commitment turns out to be an important primitive in cryptographic protocols.
Classical bit-commitment schemes rely on assumptions on the computational complexity
of certain functions; it is natural to ask whether quantum techniques can remove these
assumptions.

We will discuss a quantum bit-commitment protocol due to Bennett and Brassard
(1984) which is closely related to the quantum key-distribution protocol proposed in the
same paper and known as BB84. The following description of the protocol is based on
Gruska’s (1999) presentation.

1 Alice randomly chooses a bit x and a sequence of bits xs. She encodes xs as a sequence
of qubits and sends them to Bob. This encoding uses the standard basis (representing
0 by |0〉 and 1 by |1〉) if x = 0, and the diagonal basis (representing 0 by |+〉 and 1
by |−〉) if x = 1.

2 Upon receiving each qubit, Bob randomly chooses to measure it with respect to either
the standard basis or the diagonal basis. For each measurement he stores the result
and his choice of basis. If the basis he chose matches Alice’s x then the result of the
measurement is the same as the corresponding bit from xs; if not, then the result is 0
or 1 with equal probability. After receiving all of the qubits, Bob tells Alice his guess
at the value of x.

3 Alice tells Bob whether or not he guessed correctly. To certify her claim she sends xs
to Bob.

4 Bob verifies Alice’s claim by looking at the measurements in which he used the basis
corresponding to x, and checking that the results are the same as the correspond-
ing bits from xs. He can also check that the results of the other measurements are
sufficiently random (i.e. not significantly correlated with the corresponding bits from
xs).

Figure 6 shows our model of this protocol in CQP. The complexity of the definitions
reflects the fact that we have elaborated much of the computation which is implicit in
the original description. The definitions use the following features which are not present
in our formalization of CQP, but can easily be added.

— The type constructor List and associated functions and constructors such as hd, tl,
length, [], @.

— Product types (∗) and functions such as fst, snd.
— if − then− else for expressions and processes.
— Recursive process definitions.

Alice is parameterized by x and xs; they could be explicitly chosen at random if desired.
In AliceSend , the encoding of xs relies on the fact that (qbit q) initializes q to |0〉. Bob
uses m to record the results of his measurements, and n (received from Alice initially) as
a recursion parameter. Bob receives random bits, for his choices of basis, from the server

Types and Typechecking for Communicating Quantum Processes 13

Alice(x :Bit, xs :Bit List, c :̂[Qbit], d :̂[Bit], e :̂[Int], f :̂[Bit List]) =

e![length(xs)] .AliceSend(x, length(xs), xs, xs, c, d, f)

AliceSend(x :Bit, n : Int, xs :Bit List, ys :Bit List, c :̂[Qbit], d :̂[Bit], f :̂[Bit List]) =

if n = 0 then AliceReceive(x, ys, d, f)

else (qbit q)({if hd(xs) = 1 then q ∗= σX else unit} .
{if x = 1 then q ∗= H else unit} . c![q] .
AliceSend(x, n− 1, tl(xs), ys, c, d, f))

AliceReceive(x :Bit, ys :Bit List, d :̂[Bit], f :̂[Bit List]) = d?[g :Bit] . d![x] . f ![ys] .0

Bob(c :̂[Qbit], d :̂[Bit], e :̂[Int], f :̂[Bit List], r :̂[Bit]) = e?[n : Int] .BobReceive([], n, c, d, f, r)

BobReceive(m : (Bit ∗ Bit) List, n : Int, c :̂[Qbit], d :̂[Bit], f :̂[Bit List], r :̂[Bit]) =

if n = 0 then r?[g :Bit] . d![g] . d?[a :Bit] . f?[vs :Bit List] .BobVerify(m, vs, a, length(m))

else c?[x :Qbit] . r?[y :Bit] . {if y = 1 then x ∗= H else unit} .
BobReceive(m@[(y,measure x)], n− 1, c, d, f, r)

BobVerify(m : (Bit ∗ Bit) List, vs :Bit List, a :Bit, n : Int) =

if n = 0 then Verified

else if fst(hd(m)) = a then

if snd(hd(m)) = hd(vs) then BobVerify(tl(m), tl(vs), a, n− 1)

else NotVerified

else BobVerify(tl(m), tl(vs), a, n− 1)

Random(r :̂[Bit]) = (qbit q)({q ∗= H} . r![measure q] .Random(r))

System(x :Bit, xs :Bit List) =

(new c :̂[Qbit], d :̂[Bit], e :̂[Int], f :̂[Bit List], r :̂[Bit])

(Alice(x, xs, c, d, e, f) | Bob(c, d, e, f, r) | Random(r))

Fig. 6. Quantum bit-commitment in CQP

Random; he also guesses x randomly. The state BobVerify carries out the first part of
step (4) above, but we have not included a check for non-correlation of the remaining bits.
The states Verified and NotVerified stand for whatever action Bob takes after discovering
whether or not Alice’s statement in step (3) is true.

All measurement in CQP is with respect to the standard basis. We express measure-
ments with respect to other bases by first applying a unitary transformation correspond-
ing to a change of basis. This can be seen in the else branch of BobReceive, where the
code {if y = 1 then x ∗= H else unit} applies a change of basis if necessary.

Communication between Alice and Bob uses four separate channels, c, . . . , f . This
proliferation of channels is a consequence of the fact that our type system associates a
unique message type with each channel. Introducing session types (Takeuchi et al. 1994)
would allow a single channel to be used for the entire protocol, although it is worth

S. J. Gay and R. Nagarajan 14

T ::= Int | Unit | Qbit | ̂[T̃] | Op(1) | Op(2) | . . .
v ::= 0 | 1 | . . . | unit | H | . . .
e ::= v | x | measure ẽ | ẽ ∗= e | e+e
P ::= 0 | (P | P) | e?[x̃ : T̃] . P | e![ẽ] . P | {e} . P | (new x :T)P | (qbit x)P

Fig. 7. Syntax of CQP

v ::= . . . | q | c
E ::= [] | measure E, ẽ | measure v,E, ẽ | . . . | measure ṽ, E | E, ẽ ∗= e | v,E, ẽ ∗= e

| . . . | ṽ ∗= E | E+e | v+E
F ::= []?[x̃ : T̃] . P | []![ẽ] . P | v![[], ẽ] . P | v![v, [], ẽ] . P | . . . | v![ṽ, []] . P | {[]} . P

Fig. 8. Internal syntax of CQP

noting that depending on the physical implementation of qubits, separation of classical
and quantum channels might be the most accurate model.

We intend to use this CQP model as the basis for various kinds of formal analy-
sis of the bit-commitment protocol; we make some specific suggestions in Section 8.
We should point out, however, that unconditionally secure quantum bit-commitment
has been proved impossible (Lo and Chau 1997; Mayers 1997): Alice can always cheat.
Specifically, in our example protocol, Alice can arrange that each qubit which she sends
to Bob is part of an entangled pair. After receiving Bob’s guess of the bit x, Alice can
measure her parts of the entangled pairs with respect to the basis corresponding to x;
she obtains a sequence of bits which she can send to Bob, as xs, and which will convince
him that his guess of x was incorrect. The real value of this quantum bit-commitment
protocol is as a stepping-stone to the BB84 quantum key-distribution protocol, which has
a very similar structure and is already being used in practical quantum communication
systems (Elliott 2004, 2005).

4. Syntax and Semantics

We now formally define the syntax and operational semantics of the core of CQP, ex-
cluding named process definitions, guarded sums, case-expressions and recursion, all of
which can easily be added.

4.1. Syntax

The syntax of CQP is defined by the grammar in Figure 7. We use the notation T̃ =
T1, . . . , Tn and ẽ = e1, . . . , en and write |ẽ| for the length of a tuple. Types T consist of
data types such as Int and Unit (others can easily be added), the type Qbit of qubits,
channel types ̂[T1, . . . , Tn] (specifying that each message is an n-tuple with component
types T1, . . . , Tn) and operator types Op(n) (the type of a unitary operator on n qubits).
The integer range type 0..3 used in the teleportation example is purely for clarification
and should be replaced by Int; we do not expect to typecheck with range types.

Types and Typechecking for Communicating Quantum Processes 15

Values v consist of literal values of data types (0, 1, . . . and unit) and unitary operators
such as the Hadamard operator H. Expressions e consist of values, variables (x, y, z etc.),
measurements measure e1, . . . , en, applications e1, . . . , en ∗= e of unitary operators, and
expressions involving data operators such as e + e′ (others can easily be added). Note
that although the syntax refers to measurements and transformation of expressions e,
the type system will require these expressions to refer to qubits. Processes P consist of
the null (terminated) process 0, parallel compositions P |Q, inputs e?[x̃ : T̃] . P (notation:
x̃ : T̃ = x1 :T1, . . . , xn :Tn, declaring the types of all the input-bound variables), outputs
e![ẽ] . P , actions {e} . P (typically e will be an application of a unitary operator), channel
declarations (new x : T)P and qubit declarations (qbit x)P . In inputs and outputs, the
expression e will be constrained by the type system to refer to a channel.

The grammar in Figure 8 defines the internal syntax of CQP, which is needed in order
to define the operational semantics. Values are extended by two new forms: qubit names
q, and channel names c. These are generated at run-time and substituted for the variables
used in qbit and new declarations. Evaluation contexts E[] (for expressions) and F [] (for
processes) are used in the definition of the operational semantics, in the style of Wright
and Felleisen (1994). The structure of E[] is used to define call-by-value evaluation of
expressions; the hole [] specifies the first part of the expression to be evaluated. The
structure of F [] is used to define reductions of processes, specifying which expressions
within a process must be evaluated. Unlike E[], F [] is not defined recursively.

Given a process P we define its free variables fv(P), free qubit names fq(P) and free
channel names fc(P) as usual; the binders (of x or x̃) are y?[x̃ : T̃], (qbit x) and (new x :T).

4.2. Operational Semantics

The operational semantics of CQP is defined by reductions (small-step evaluations of
expressions, or inter-process communications) and probabilistic transitions. The general
form of a reduction is t −→ �i pi • ti where t and the ti are configurations consisting
of expressions or processes with state information. The notation �i pi • ti denotes a
probability distribution over configurations, in which Σipi = 1; we may also write this
distribution as p1 • t1 � · · · � pn • tn. If the probability distribution contains a single
configuration (with probability 1) then we simply write t −→ t′. Probability distributions
reduce probabilistically to single configurations: �i pi • ti

pi−→ ti (with probability pi, the
distribution �i pi • ti reduces to ti).

This separation of reductions and probabilistic transitions avoids the need to consider
non-deterministic and probabilistic transitions from the same state. For example, in the
configuration

(q =
1√
2
|0〉+

1√
2
|1〉 ; c ; c![2] . P | c?[x : Int] . Q | {measure q} . R)

there is a possible communication on channel c, and a measurement of q which has
a probabilistic outcome. If we try to say that the subsequent configurations are the
following:

— non-deterministically, (q = 1√
2
|0〉+ 1√

2
|1〉 ; c ; P |Q{2/x} | {measure q} . R)

S. J. Gay and R. Nagarajan 16

— with probability 1
2 , (q = |0〉 ; c ; c![2] . P | c?[x : Int] . Q |R)

— with probability 1
2 , (q = |1〉 ; c ; c![2] . P | c?[x : Int] . Q |R)

then the meaning is very unclear. Two transitions with probability of 1
2 each should be

exhaustive, but if so then the non-deterministic transition must be eliminated. Alterna-
tively, if the probabilistic transitions are not exhaustive, what should their probabilities
be?

Instead we resolve the non-determinism first; thus, one of the non-deterministic reduc-
tions is the measurement, resulting in a probability distribution over configurations. In
the example above, the configuration reduces nondeterministically to either

(q =
1√
2
|0〉+

1√
2
|1〉 ; c ; P |Q{2/x} | {measure q} . R)

or
1
2 • (q = |0〉 ; c ; c![2] . P | c?[x : Int] . Q | {0} . R)

� 1
2 • (q = |1〉 ; c ; c![2] . P | c?[x : Int] . Q | {1} . R)

and in the second case, the next step is a probabilistic transition.
This means that our semantics is consistent with the PRISM probabilistic model-

checker (Kwiatkowska et al. 2002), which we intend to use for verification. Cazorla et al.
(2003) discuss this issue further, and survey the approaches taken by several authors.

The semantics of expressions is defined by the reduction relations −→v and −→e

(Figure 9), both on configurations of the form (σ;φ; e). If n qubits have been declared then
σ has the form q0, . . . , qn−1 = |ψ〉 where |ψ〉 = α0|ψ0〉+ · · ·+α2n−1|ψ2n−1〉 is an element
of the 2n-dimensional vector space with basis |ψ0〉 = |0 . . . 0〉, . . . , |ψ2n−1〉 = |1 . . . 1〉.
The remaining part of the configuration, φ, is a list of channel names, which plays little
part in the semantics but allows bookkeeping results to be proved (such as Lemmas 9
and 10 in Section 6). Reductions −→v are basic steps of evaluation, defined by the rules
R-Plus (and similar rules for any other data operators), R-Measure and R-Trans.
Rule R-Perm allows qubits in the state to be permuted, compensating for the way
that R-Measure and R-Trans operate on qubits listed first in the state (permutation
steps are omitted from the example execution of the teleportation protocol in Figure 4).
Measurement specifically measures the values of a collection of qubits; in the future we
should generalize to measuring observables as allowed by quantum physics.

Reductions −→e extend execution to evaluation contexts E[], as defined by rule
R-Context. Note that the probability distribution remains at the top level.

Figure 11 defines the reduction relation −→ on configurations of the form (σ;φ;P).
Rule R-Expr lifts reductions of expressions to F [] contexts, again keeping probability
distributions at the top level. Rule R-Com defines communication in the style of pi-
calculus, making use of substitution, which is defined in the usual way (we assume that
bound identifiers are renamed to avoid capture). Rule R-Act trivially removes actions;
in general the reduction of the action expression to v will have involved side-effects such
as measurement or transformation of quantum state. Rules R-New and R-Qbit create
new channels and qubits, updating the state information in the configuration; qubits are
initialized to |0〉. Note that this treatment of channel creation is different from standard
presentations of the pi-calculus; we treat both qubits and channels as elements of a global

Types and Typechecking for Communicating Quantum Processes 17

(σ;φ;u+v) −→v (σ;φ;w) if u and v are integer literals and u+ v = w (R-Plus)

(q0, . . . , qn−1 = α0|ψ0〉+ · · ·+ α2n−1|ψ2n−1〉;φ;measure q0, . . . , qr−1) −→v

�06m<2rpm • (q0, . . . , qn−1 =
αlm
pm

|ψlm〉+ · · ·+ αum
pm

|ψum〉;φ;m)

where lm = 2n−rm, um = 2n−r(m+ 1)− 1, pm = |αlm |2 + · · ·+ |αum |2
(R-Measure)

(q0, . . . , qn−1 = |ψ〉;φ; q0, . . . , qr−1 ∗= U) −→v (q0, . . . , qn−1 = (U ⊗ In−r)|ψ〉;φ; unit)

where U is a unitary operator of arity r

(R-Trans)

(q0, . . . , qn−1 = |ψ〉;φ; e) −→v (qπ(0), . . . , qπ(n−1) = Π|ψ〉;φ; e)

where π is a permutation and Π is the corresponding unitary operator
(R-Perm)

(σ;φ; e) −→v �i pi • (σi;φi; ei)

(σ;φ;E[e]) −→e �i pi • (σi;φi;E[ei])
(R-Context)

Fig. 9. Reduction rules for expression configurations

(S-Nil) P | 0 ≡ P (S-Comm) P |Q ≡ Q | P (S-Assoc) P | (Q |R) ≡ (P |Q) |R

Fig. 10. Structural congruence

store. Rule R-Par allows reduction to take place in parallel contexts, again lifting the
probability distribution to the top level, and rule R-Cong allows the use of a structural
congruence relation as in the pi-calculus. Structural congruence is the smallest congruence
relation (closed under the process constructions) containing α-equivalence (with respect
to the binders defined in Section 4.1) and closed under the rules in Figure 10.

5. Type System

The typing rules defined in Figure 12 apply to the syntax defined in Figure 7. Environ-
ments Γ are mappings from variables to types in the usual way. Typing judgements are of
two kinds. Γ ` e : T means that expression e has type T in environment Γ. Γ ` P means
that process P is well-typed in environment Γ. The rules for expressions are straightfor-
ward; note that in rules T-Msure and T-Trans, x1, . . . , xn must be distinct variables
of type Qbit.

In rule T-Par the operation + on environments (Definition 1) is the key to ensuring
that each qubit is controlled by a unique part of a system. The hypothesis that Γ1 + Γ2

must be defined means that it is not possible to type a system in which a qubit is shared
by parallel components. This control of qubits is characteristic of type systems based on
linear logic (Girard 1987) and in particular is very similar to the linear type system for
the pi-calculus, defined by Kobayashi et al. (1999).

Definition 1 (Addition of Environments).
The partial operation of adding a typed variable to an environment, Γ + x :T , is defined

S. J. Gay and R. Nagarajan 18

(σ;φ; e) −→e �i pi • (σi;φi; ei)

(σ;φ;F [e]) −→ �i pi • (σi;φi;F [ei])
(R-Expr)

(σ;φ; c![ṽ] . P | c?[x̃ : T̃] . Q) −→ (σ;φ;P |Q{ṽ/x̃}) if |ṽ| = |x̃| (R-Com)

(σ;φ; {v} . P) −→ (σ;φ;P) (R-Act)

(σ;φ; (new x :̂[T̃])P) −→ (σ;φ, c;P{c/x}) where c is fresh (R-New)

(q0, . . . , qn−1 = |ψ〉;φ; (qbit x)P) −→ (q0, . . . , qn−1, q = |ψ〉 ⊗ |0〉;φ;P{q/x}) where q is fresh

(R-Qbit)

(σ;φ;P) −→ �i pi • (σi;φi;Pi)

(σ;φ;P |Q) −→ �i pi • (σi;φi;Pi |Q)
(R-Par)

P ′ ≡ P (σ;φ;P) −→ �i pi • (σi;φi;Pi) ∀i.(Pi ≡ P ′
i)

(σ;φ;P ′) −→ �i pi • (σi;φi;P ′
i)

(R-Cong)

�i pi • (σi;φi;Pi)
pi−→ (σi;φi;Pi) (R-Prob)

Fig. 11. Reduction rules for process configurations

by

Γ + x :T = Γ, x :T if x 6∈ dom(Γ)
Γ + x :T = Γ if T 6= Qbit and x :T ∈ Γ
Γ + x :T = undefined, otherwise

This operation is extended inductively to a partial operation Γ + ∆ on environments.

Rule T-Out allows output of classical values and qubits to be combined, but the qubits
must be distinct variables and they cannot be used by the continuation of the outputting
process (note the hypothesis Γ ` P). For notational simplicity we require that the values
being output are presented as a sequence of non-qubit values followed by a sequence
of qubits; in an implementation this restriction would be removed. Also, to clarify the
presentation, the qubits being output may not occur in the other expressions being output
(this is enforced by the environment Γ in Γ ` ei : Ti). The fact that the qubits being
output (y1, . . . , yn) are used by the complete process is represented by the environment
Γ, y1 :Qbit, . . . , yn :Qbit in the conclusion. The remaining rules are straightforward.

According to the operational semantics, execution of qbit and new declarations intro-
duces qubit names and channel names. In order to be able to use the type system to
prove results about the behaviour of executing processes, we introduce the internal type
system (Figure 13). This uses judgements Γ; Σ;Φ ` e : T and Γ;Σ; Φ ` P where Σ is a
set of qubit names and Φ is a mapping from channel names to channel types. Most of
the typing rules are straightforward extensions of the corresponding rules in Figure 12.
Because references to qubits may now be either variables or explicit qubit names, the
rules represent them by general expressions e and impose conditions that e is either a
variable or a qubit name. This is seen in rules IT-Msure, IT-Trans and IT-Out. Rule

Types and Typechecking for Communicating Quantum Processes 19

Γ ` v : Int if v is an integer literal (T-IntLit)

Γ ` unit : Unit (T-Unit)

Γ ` H : Op(2) etc. (T-Op)

Γ, x :T ` x : T (T-Var)

Γ ` e : Int Γ ` e′ : Int

Γ ` e+e′ : Int
(T-Plus)

∀i.(Γ ` xi : Qbit) xi|n1 distinct

Γ ` measure x1, . . . , xn : Int
(T-Msure)

∀i.(Γ ` xi : Qbit) xi|n1 distinct Γ ` e : Op(n)

Γ ` x1, . . . , xn ∗= e : Unit
(T-Trans)

Γ ` 0 (T-Nil)

Γ1 ` P Γ2 ` Q Γ1 + Γ2 is defined

Γ1 + Γ2 ` P |Q
(T-Par)

Γ ` x : ̂[T1, . . . , Tn] Γ, y1 :T1, . . . , yn :Tn ` P

Γ ` x?[y1 :T1, . . . , yn :Tn] . P
(T-In)

Γ, x :Qbit ` P

Γ ` (qbit x)P
(T-Qbit)

Γ ` x : ̂[Ti|mi=1,Qbit|n1] ∀i.(Ti 6= Qbit) ∀i.(Γ ` ei : Ti) yi|n1 distinct Γ ` P

Γ, y1 :Qbit . . . , yn :Qbit ` x![e1, . . . , em, y1, . . . , yn] . P
(T-Out)

Γ ` e : T Γ ` P

Γ ` {e} . P
(T-Act)

Γ, x :̂[T1, . . . , Tn] ` P

Γ ` (new x :̂[T1, . . . , Tn])P
(T-New)

Fig. 12. Typing rules

IT-Par is similar to T-Par in enforcing non-sharing of qubits, and is generalized to
cover qubit names as well as variables.

As an illustration of the way in which each qubit is owned by at most one process at any
time, consider the coin-flipping example (Figure 1). In P , any non-trivial continuation
replacing 0 would not be able to use the qubit y, which has been sent on t. In Q , after
the qubit x has been sent on s, the continuation cannot use x. Of course, at run-time,
the qubit variable z in t?[z :Qbit] is instantiated by x, but that is not a problem because
P does not use x after sending it. In System, x is used as an actual parameter of Q
and therefore could not also be used as an actual parameter of P (if P had a formal
parameter of type Qbit).

S. J. Gay and R. Nagarajan 20

Γ;Σ; Φ ` v : Int if v is an integer literal (IT-IntLit)

Γ;Σ;Φ ` unit : Unit (IT-Unit)

Γ;Σ;Φ ` H : Op(2) etc. (IT-Op)

Γ, x :T ; Σ; Φ ` x : T (IT-Var)

Γ;Σ, q; Φ ` q : Qbit (IT-IdQ)

Γ;Σ;Φ, c :T ` c : T (IT-IdC)

Γ;Σ; Φ ` e : Int Γ; Σ; Φ ` e′ : Int

Γ;Σ;Φ ` e+e′ : Int
(IT-Plus)

∀i.(Γ;Σ;Φ ` ei : Qbit)

ẽ consists of distinct variables and distinct qubit names

Γ;Σ;Φ ` measure e1, . . . , en : Int

(IT-Msure)

∀i.(Γ;Σ;Φ ` ei : Qbit) Γ;Σ; Φ ` e : Op(n)

ẽ consists of distinct variables and distinct qubit names

Γ;Σ;Φ ` e1, . . . , en ∗= e : Unit

(IT-Trans)

Γ;Σ; Φ ` 0 (IT-Nil)

Γ1; Σ1; Φ ` P Γ2; Σ2; Φ ` Q Γ1 + Γ2 is defined Σ1 ∩ Σ2 = ∅

Γ1 + Γ2; Σ1 ∪ Σ2; Φ ` P |Q
(IT-Par)

Γ;Σ; Φ ` e : ̂[T1, . . . , Tn] Γ, y1 :T1, . . . , yn :Tn; Σ;Φ ` P

Γ;Σ;Φ ` e?[y1 :T1, . . . , yn :Tn] . P
(IT-In)

Γ, x :Qbit; Σ;Φ ` P

Γ;Σ;Φ ` (qbit x)P
(IT-Qbit)

Γ;Σ;Φ ` e : ̂[Ti|mi=1,Qbit|n1]

∀i.(Ti 6= Qbit) ∀i.(Γ;Σ; Φ ` ei : Ti) Γ;Σ;Φ ` P
fi|ni=1 consists of distinct variables xi|ri=1 and distinct qubit names qi|si=1

Γ, x1 :Qbit, . . . , xr :Qbit; Σ, q1, . . . , qs; Φ ` e![e1, . . . , em, f1, . . . , fn] . P

(IT-Out)

Γ;Σ;Φ ` e : T Γ;Σ; Φ ` P

Γ;Σ;Φ ` {e} . P
(IT-Act)

Γ, x :̂[T1, . . . , Tn]; Σ;Φ ` P

Γ;Σ;Φ ` (new x :̂[T1, . . . , Tn])P
(IT-New)

Fig. 13. Internal typing rules

Types and Typechecking for Communicating Quantum Processes 21

6. Soundness of the Type System

We prove a series of standard lemmas, following the approach of Wright and Felleisen
(1994), leading to a proof that typing is preserved by execution of processes (Theorem 1).
We then prove that in a typable process, each qubit is used by at most one of any parallel
collection of sub-processes (Theorem 2); because of type preservation, this property holds
at every step of the execution of a typable process. This reflects the physical reality of
the protocols which we want to model. It is similar to the unique ownership theorem
of Ennals et al. (2004). We are assuming that the notion of a single component of a
parallel collection of processes is the same as the notion of a physical part of a system
being modelled. This situation could be refined by introducing some notion of a region
of a system, potentially containing several parallel components, and modifying the type
system so that each qubit is owned by a unique region.

Finally we prove a runtime safety theorem, stating that a typable process does not
apply measurement, transformation or communication operators to collections of qubits
which contain duplicates. This theorem could easily be extended to cover correct use of
other operators, and correct communication (for example, no arity mismatches between
sender and receiver) in the usual way.

First we work towards Lemma 4, which is type preservation for the reductions defined
in Figure 9. Lemmas 1 and 2 enable the step from Lemma 3 to Lemma 4 in a way that
corresponds to rule R-Context in Figure 9.

Lemma 1 (Typability of Subterms in E).
If D is a typing derivation concluding Γ; Σ;Φ ` E[e] : T then there exists U such that D
has a subderivation D′ concluding Γ;Σ;Φ ` e : U and the position of D′ in D corresponds
to the position of the hole in E[].

Proof. By induction on the structure of E[].

Lemma 2 (Replacement in E). If

1 D is a derivation concluding Γ;Σ; Φ ` E[e] : T
2 D′ is a subderivation of D concluding Γ;Σ; Φ ` e : U
3 the position of D′ in D matches the hole in E[]
4 Γ;Σ;Φ ` e′ : U

then Γ;Σ; Φ ` E[e′] : T .

Proof. Replace D′ in D by a derivation of Γ;Σ;Φ ` e′ : U .

Lemma 3 (Type Preservation for −→v).
If Γ; Σ;Φ ` e : T and (σ;φ; e) −→v �ipi • (σi;φi; ei) and Σ ⊆ dom(σ) and φ = dom(Φ)
then ∀i.(dom(σi) = dom(σ)) and ∀i.(φi = φ) and ∀i.(Γ;Σ;Φ ` ei : T).

Proof. Examine each case in the definition of −→v .

Lemma 4 (Type Preservation for −→e).
If Γ; Σ;Φ ` e : T and (σ;φ; e) −→e �ipi • (σi;φi; ei) and Σ ⊆ dom(σ) and φ = dom(Φ)
then ∀i.(dom(σi) = dom(σ)) and ∀i.(φi = φ) and ∀i.(Γ;Σ;Φ ` ei : T).

S. J. Gay and R. Nagarajan 22

Proof. (σ;φ; e) −→e �ipi • (σi;φi; ei) is derived by the rule R-Context, so for some
E[] we have e = E[f] and ∀i.(ei = E[fi]) and (σ;φ; f) −→v �ipi • (σi;φi; fi). From
Γ;Σ;Φ ` E[f] : T , Lemma 1 gives Γ;Σ; Φ ` f : U for some U , Lemma 3 gives ∀i.(Γ;Σ; Φ `
fi : U) and ∀i.(dom(σi) = dom(σ)) and ∀i.(φi = φ), and Lemma 2 gives ∀i.(Γ;Σ; Φ `
E[fi] : T).

In a similar way we now work towards Theorem 1. This states that reduction of a con-
figuration containing a typed process yields a probability distribution over configurations
whose processes are also typable in the same environment, perhaps with the addition of
new channels and qubits created by the reduction. We need substitution lemmas (11
and 12) to deal with the reduction rules R-Com, R-New and R-Qbit (Figure 11), and
Lemma 13 to deal with R-Cong.

Lemma 5 (Typability of Subterms in F).
If D is a typing derivation concluding Γ;Σ; Φ ` F [e] then there exists T such that D has
a subderivation D′ concluding Γ; Σ; Φ ` e : T and the position of D′ in D corresponds to
the position of the hole in F [].

Proof. By case-analysis on the structure of F [].

Lemma 6 (Replacement in F). If

1 D is a derivation concluding Γ;Σ; Φ ` F [e]
2 D′ is a subderivation of D concluding Γ;Σ; Φ ` e : T
3 the position of D′ in D matches the hole in F []
4 Γ;Σ;Φ ` e′ : T

then Γ;Σ; Φ ` F [e′].

Proof. Replace D′ in D by a derivation of Γ;Σ;Φ ` e′ : T .

Lemma 7 (Weakening for Expressions).
If Γ; Σ;Φ ` e : T and Γ ⊆ Γ′ and Σ ⊆ Σ′ and Φ ⊆ Φ′ then Γ′; Σ′; Φ′ ` e : T .

Proof. A straightforward induction on the derivation of Γ;Σ;Φ ` e : T .

Lemma 8 (Weakening for Processes).
If Γ; Σ;Φ ` P and Γ ⊆ Γ′ and Σ ⊆ Σ′ and Φ ⊆ Φ′ then Γ′; Σ′; Φ′ ` P .

Proof. A straightforward induction on the derivation of Γ;Σ;Φ ` P .

Lemma 9. If Γ; Σ;Φ ` e : T then fv(e) ⊆ dom(Γ) and fq(e) ⊆ Σ and fc(e) ⊆ dom(Φ).

Proof. A straightforward induction on the derivation of Γ;Σ;Φ ` e : T .

Lemma 10. If Γ; Σ;Φ ` P then fv(P) ⊆ dom(Γ) and fq(P) ⊆ Σ and fc(P) ⊆ dom(Φ).

Proof. A straightforward induction on the derivation of Γ;Σ;Φ ` P .

Lemma 11 (Substitution in Expressions).
Assume that Γ, x̃ : T̃ ; Σ;Φ ` e : T and let ṽ be values such that, for each i:

1 if Ti 6= Qbit then Γ; ∅; Φ ` vi : Ti

Types and Typechecking for Communicating Quantum Processes 23

2 if Ti = Qbit then vi is qi, a qubit name, such that qi 6∈ Σ.

Let q̃ be the qubit names from ṽ (corresponding to condition (2)) and assume that they
are distinct. Then Γ;Σ, q̃; Φ ` e{ṽ/x̃} : T .

Proof. By induction on the derivation of Γ, x̃ : T̃ ; Σ;Φ ` e : T .

The next lemma makes use of the addition operation on environments (Definition 1)
in an essential way.

Lemma 12 (Substitution in Processes).
Assume that Γ, x̃ : T̃ ; Σ;Φ ` P and let ṽ be values such that, for each i:

1 if Ti 6= Qbit then Γ; ∅; Φ ` vi : Ti

2 if Ti = Qbit then vi is qi, a qubit name, such that qi 6∈ Σ.

Let q̃ be the qubit names from ṽ (corresponding to condition (2)) and assume that they
are distinct. Then Γ;Σ, q̃; Φ ` P{ṽ/x̃}.

Proof. By induction on the derivation of Γ, x̃ : T̃ ; Σ;Φ ` P . We show the two most
complex cases for the last rule; the others are straightforward.

IT-Par: We have
Γ1; Σ1; Φ ` P Γ2; Σ2; Φ ` Q Γ1 + Γ2 defined Σ1 ∩ Σ2 = ∅

Γ, x̃ : T̃ ; Σ;Φ ` P |Q

where Γ1 +Γ2 = Γ, x̃ : T̃ and Σ1∪Σ2 = Σ. Each variable of type Qbit in x̃ : T̃ is in exactly
one of Γ1 and Γ2. Because the free variables of P and Q are contained in Γ1 and Γ2

respectively (Lemma 9), substitution into P | Q splits into disjoint substitutions into P
and Q. The induction hypothesis gives typings for P{ṽ/x̃} and Q{ṽ/x̃}, which combine
(by IT-Par) to give Γ;Σ, q̃; Φ ` (P |Q){ṽ/x̃}.

IT-Out: The general case is that we have an instance of the rule with conclusion

Γ, x̃1 : Q̃bit, x̃2 : Q̃bit, x̃3 : T̃3, ỹ : Q̃bit; Σ, q̃3; Φ ` e![ẽ, x̃1, ỹ, q̃3] . P

and hypotheses

Γ, x̃2 : Q̃bit, x̃3 : T̃3; Σ;Φ ` e :̂[Ũ , Q̃bit] (1)

∀i.(Γ, x̃2 : Q̃bit, x̃3 : T̃3; Σ;Φ ` ei : Ui) (2)

Γ, x̃2 : Q̃bit, x̃3 : T̃3; Σ;Φ ` P (3)

where we are substituting ṽ = q̃1, q̃2, ṽ3 for x̃ : T̃ = x̃1 : Q̃bit, x̃2 : Q̃bit, x̃3 : T̃3, the types in
T̃3 are not Qbit, and q̃1, q̃2 6∈ Σ, q̃3.

Applying Lemma 11 to (1) and (2), and applying the induction hypothesis to (3), gives

Γ;Σ, q̃2; Φ ` e{ṽ/x̃} :̂[Ũ , Q̃bit] (4)

∀i.(Γ;Σ, q̃2; Φ ` ei{ṽ/x̃} : Ui) (5)

Γ;Σ, q̃2; Φ ` P{ṽ/x̃}. (6)

Using (4), (5) and (6) as the hypotheses for an application of IT-Out, we obtain

Γ, ỹ : Q̃bit; Σ, q̃1, q̃2, q̃3; Φ ` e{ṽ/x̃}![ẽ{ṽ/x̃}, q̃1, ỹ, q̃3] . P{ṽ/x̃}

S. J. Gay and R. Nagarajan 24

which, because e![ẽ, x̃1, ỹ, q̃3] . P{ṽ/x̃} = e{ṽ/x̃}![ẽ{ṽ/x̃}, q̃1, ỹ, q̃3] . P{ṽ/x̃}, is the re-
quired judgement.

Lemma 13 (Structural Congruence Preserves Typing).
If Γ; Σ;Φ ` P and P ≡ Q then Γ;Σ; Φ ` Q.

Proof. By induction on the derivation of P ≡ Q.

Theorem 1 (Type Preservation for −→).
If Γ; Σ;Φ ` P and (σ;φ;P) −→ �ipi • (σi;φi;Pi) and Σ ⊆ dom(σ) and φ = dom(Φ)
then ∀i.(dom(σ) ⊆ dom(σi)) and there exist Σ′ and Φ′ such that Σ ⊆ Σ′ and dom(Φ) ⊆
dom(Φ′) and ∀i.(Σ′ ⊆ dom(σi)) and ∀i.(φi = dom(Φ′)) and ∀i.(Σ′ − Σ = dom(σi) −
dom(σ)) and ∀i.(Γ;Σ′; Φ′ ` Pi).

Proof. By induction on the derivation of (σ;φ;P) −→ �ipi • (σi;φi;Pi), considering
the possible cases for the last rule and in each case examining the final steps in the
derivation of Γ;Σ;Φ ` P .

R-Expr: Straightforward, using Lemmas 4, 5 and 6.
R-Com: We have (σ;φ; c![ṽ] . P | c?[x̃ : T̃] . Q) −→ (σ;φ;P |Q{ṽ/x̃}) with |ṽ| = |x̃|, and

Γ1; Σ1; Φ ` c![ṽ] . P Γ2; Σ2; Φ ` c?[x̃ : T̃] . Q Γ1 + Γ2 defined Σ1 ∩ Σ2 = ∅

Γ;Σ;Φ ` c![ṽ] . P | c?[x̃ : T̃] . Q

where Γ = Γ1 + Γ2 and Σ = Σ1 ∪ Σ2.
For notational simplicity, because the behaviour of the qubits is the key to this case,

assume that ṽ = q̃. Then the derivation of Γ1; Σ1; Φ ` c![ṽ] . P ends with

Γ1; Σ3; Φ ` c :̂[Q̃bit] Γ1; Σ3; Φ ` P

Γ1; Σ3, q̃; Φ ` c![q̃] . P

and Σ3, q̃ = Σ1; we also know that the q̃ are distinct. The derivation of Γ2; Σ2; Φ `
c?[x̃ : T̃] . Q ends with

Γ2; Σ2; Φ ` c :̂[T̃] Γ2, x̃ : T̃ ; Σ2; Φ ` Q

Γ2; Σ2; Φ ` c?[x̃ : T̃] . Q

and because Γ1 + Γ2 is defined, it must be the case that T̃ = Q̃bit. By Lemma 12 we
have Γ2; Σ2, q̃; Φ ` Q{q̃/x̃}. Finally we can construct the derivation

Γ1; Σ3; Φ ` P Γ2; Σ2, q̃; Φ ` Q{q̃/x̃}

Γ;Σ;Φ ` P |Q{ṽ/x̃}

because Σ3 ∪ (Σ2, q̃) = (Σ3, q̃) ∪ Σ2 = Σ1 ∪ Σ2 = Σ. So Σ′ = Σ and Φ′ = Φ.
R-Act: Straightforward.
R-New: We have (σ;φ; (new x :̂[T1, . . . , Tn])P) −→ (σ;φ, c;P{c/x}) where c is fresh,

and
Γ, x :̂[T1, . . . , Tn]; Σ; Φ ` P

Γ;Σ;Φ ` (new x :̂[T1, . . . , Tn])P

Types and Typechecking for Communicating Quantum Processes 25

Weakening (Lemma 7) gives Γ, x :̂[T1, . . . , Tn]; Σ; Φ, c :̂[T1, . . . , Tn] ` P , and Substitu-
tion (Lemma 11) gives Γ; Σ;Φ, c :̂[T1, . . . , Tn] ` P{c/x} as required, with Σ′ = Σ and
Φ′ = Φ, c :̂[T1, . . . , Tn].

R-Qbit: We have

(q0, . . . , qn−1 = |ψ〉;φ; (qbit x)P) −→ (q0, . . . , qn−1, q = |ψ〉 ⊗ |0〉;φ;P{q/x})

where q is fresh, and
Γ, x :Qbit; Σ;Φ ` P

Γ;Σ;Φ ` (qbit x)P
Substitution (Lemma 11) gives Γ; Σ, q; Φ ` P{q/x} as required, with Σ′ = Σ, q and
Φ′ = Φ.

R-Par: We have
(σ;φ;P) −→ �i pi • (σi;φi;Pi)

(σ;φ;P |Q) −→ �i pi • (σi;φi;Pi |Q)
and

Γ1; Σ1; Φ ` P Γ2; Σ2; Φ ` Q Γ1 + Γ2 is defined Σ1 ∩ Σ2 = ∅

Γ1 + Γ2; Σ1 ∪ Σ2; Φ ` P |Q
We are given that Σ1 ∪Σ2 ⊆ dom(σ). Hence Σ1 ⊆ dom(σ). By the induction hypothesis
we have Σ′

1 and Φ′ such that Σ1 ⊆ Σ′
1 and dom(Φ) ⊆ dom(Φ′) and ∀i.(Σ′

1 ⊆ dom(σi))
and ∀i.(φi = dom(Φ′)) and ∀i.(Σ′

1−Σ1 = dom(σ′)−dom(σ)) and ∀i.(Γ;Σ′
1; Φ

′ ` Pi). By
Weakening (Lemma 8) we have Γ2; Σ2; Φ′ ` Q. Because the change from Σ1 to Σ′

1 is due
to the creation of fresh qubit names, we can assume that Σ′

1∩Σ2 = ∅. Therefore by using
IT-Par we obtain, for each i, Γ; Σ′

1 ∪ Σ2; Φ′ ` Pi |Q. We also require Σ′
1∪Σ2 ⊆ dom(σi),

which is true because Σ′
1 ∪ Σ2 = (Σ1 ∪ Σ2) ∪ (Σ′

1 − Σ1) and Σ1 ∪ Σ2 ⊆ dom(σ) and
Σ′

1−Σ1 = dom(σi)−dom(σ). Finally, we require (Σ′
1∪Σ2)−(Σ1∪Σ2) = dom(σi)−dom(σ),

which is true because the left hand side is equal to Σ′
1 − Σ.

R-Cong: Straightforward.

Theorem 2 (Unique Ownership of Qubits).
If Γ; Σ;Φ ` P |Q then fq(P) ∩ fq(Q) = ∅.

Proof. The final step in the derivation of Γ;Σ;Φ ` P |Q has the form

Γ1; Σ1; Φ ` P Γ2; Σ2; Φ ` Q Γ1 + Γ2 defined Σ1 ∩ Σ2 = ∅
Γ;Σ;Φ ` P |Q

where Γ = Γ1+Γ2 and Σ = Σ1∪Σ2. By Lemma 10, fq(P) ⊆ Σ1 and fq(Q) ⊆ Σ2. Because
Σ1 ∩ Σ2 = ∅ we have fq(P) ∩ fq(Q) = ∅.

We now prove explicitly that the correctness conditions which the type system enforces
are satisfied globally. We focus on the requirement for measurement, transformation and
output to refer to a distinct collection of qubit names. The theorem can easily be extended
to verify the desired restrictions on the use of other operators and data types.

Theorem 3 (Runtime Safety).

1 If ∅; Σ;Φ ` F [E[measure ṽ]] then v1, . . . , vn are distinct qubit names.

S. J. Gay and R. Nagarajan 26

2 If ∅; Σ;Φ ` F [E[ṽ ∗= e]] then v1, . . . , vn are distinct qubit names.
3 If ∅; Σ;Φ ` c![ṽ] . P | c?[x̃ : T̃] . Q |R then for each i such that Ti = Qbit, vi is a qubit

name, and these qubit names are distinct.

Proof.

1 By Lemma 5 there exists T such that ∅; Σ;Φ ` E[measure ṽ] : T . By Lemma 5 there
exists U such that ∅; Σ;Φ ` measure ṽ : U . The derivation of this judgement must
end with an instance of rule IT-Msure. This requires that each vi is either a variable
or a qubit name, that v1, . . . , vn are distinct, and that for each i, ∅; Σ;Φ ` vi : Qbit.
Because of the empty environment, vi cannot be a variable.

2 A similar argument to case (1).
3 The derivation of ∅; Σ;Φ ` c![ṽ] . P | c?[x̃ : T̃] . Q |R ends with two instances of rule

IT-Par, whose combined effect is

∅; Σ1; Φ ` c![ṽ] . P ∅; Σ2; Φ ` c?[x̃ : T̃] . Q ∅; Σ3; Φ ` R

∅; Σ;Φ ` c![ṽ] . P | c?[x̃ : T̃] . Q |R

where the Σi are pairwise disjoint and Σ = Σ1∪Σ2∪Σ3. The derivations of ∅; Σ1; Φ `
c![ṽ] . P and ∅; Σ2; Φ ` c?[x̃ : T̃] . Q, ending with instances of rules IT-Out and IT-In,
guarantee that the types of ṽ match T̃ and that for each i with Ti = Qbit, vi is either
a variable or a qubit name. Because of the empty environment, they must be qubit
names, and rule IT-Out guarantees that they are distinct.

All of the results up to now have been proved for the internal type system (Figure 13).
Our intention is that at the top level, a system should be typechecked in the original
(external) type system (Figure 12), so we need the following straightforward lemma to
make the connection between the two systems.

Lemma 14 (External/Internal Type System).
Γ ` e : T ⇒ Γ; ∅; ∅ ` e : T and Γ ` P ⇒ Γ; ∅; ∅ ` P .

Proof. A straightforward induction on the derivations of Γ ` e : T and Γ ` P .

7. A Typechecking Algorithm

A CQP program should be typechecked according to the typing rules in Figure 12, but
these rules do not directly determine a typechecking algorithm because rule T-Par does
not specify how to split the environment Γ1 + Γ2 into Γ1 and Γ2. We now present a
typechecking algorithm, in which typechecking an expression or process calculates the
set of qubit variables which it uses; this is the necessary information for calculating how
to split environments. This technique is standard for type systems based on linear logic,
for example Mackie’s (1994) linear functional language.

The algorithm is defined by the inference rules in Figure 14. A judgement Γ;P 7→ X

means that the typechecking function, given an environment Γ and a process P , returns

Types and Typechecking for Communicating Quantum Processes 27

Γ; v 7→ Int; ∅ if v is an integer literal (TC-IntLit)

Γ; unit 7→ Unit; ∅ (TC-Unit)

Γ; H 7→ Op(2); ∅ etc. (TC-Op)

Γ, x :T ;x 7→

{
{x} if T = Qbit

∅ otherwise
(TC-Var)

Γ; e 7→ Int;X Γ; e′ 7→ Int;Y

Γ; e+e′ 7→ Int;X ∪ Y
(TC-Plus)

∀i.(Γ;xi 7→ Qbit; {xi}) xi|n1 distinct

Γ; measure x1, . . . , xn 7→ Int; {x1, . . . , xn}
(TC-Msure)

∀i.(Γ;xi 7→ Qbit; {xi}) xi|n1 distinct Γ; e 7→ Op(n); ∅

Γ;x1, . . . , xn ∗= e 7→ Unit; {x1, . . . , xn}
(TC-Trans)

Γ;0 7→ ∅ (TC-Nil)

Γ;P 7→ X (Γ−X);Q 7→ Y

Γ;P |Q 7→ X ∪ Y
(TC-Par)

Γ;x 7→̂[T1, . . . , Tn]; ∅ (Γ, y1 :T1, . . . , yn :Tn);P 7→ X

Γ;x?[y1 :T1, . . . , yn :Tn] . P 7→ (X − {yi | Ti = Qbit})
(TC-In)

(Γ, x :Qbit);P 7→ X

Γ; (qbit x)P 7→ (X − {x})
(TC-Qbit)

∀i.(Ti 6= Qbit) yi|n1 distinct

Γ;x 7→̂[Ti|mi=1,Qbit|n1]; ∅ ∀i.(Γ; yi 7→ Qbit; {yi})
∀i.((Γ− {y1, . . . , yn}); ei 7→ Ti;Xi) (Γ− {y1, . . . , yn});P 7→ Y

Γ;x![e1, . . . , em, y1, . . . , yn] . P 7→ ((
⋃m

1 Xi) ∪ Y ∪ {y1, . . . , yn})

(TC-Out)

Γ; e 7→ T ;X Γ;P 7→ Y

Γ; {e} . P 7→ X ∪ Y
(TC-Act)

(Γ, x :̂[T1, . . . , Tn]);P 7→ X

Γ; (new x :̂[T1, . . . , Tn])P 7→ X
(TC-New)

Fig. 14. The typechecking algorithm

S. J. Gay and R. Nagarajan 28

a set X of variables; these are the Qbit variables in Γ which are used by P . A judgement
Γ; e 7→ T ;X is similar, returning also the type T of the expression e.

We now prove that the typechecking algorithm is sound and complete with respect to
the typing rules.

Lemma 15 (Soundness of Typechecking Expressions).
If Γ; e 7→ T ;X then Γ′ ` e : T , where Γ′ = {x :U ∈ Γ | U 6= Qbit} ∪ {x :Qbit | x ∈ X}.

Proof. By induction on the derivation of Γ; e 7→ T ;X, considering the possible cases
for the last rule.

TC-IntLit,TC-Unit,TC-Op: Straightforward.
TC-Var: We have Γ;x 7→ T ;X. If T = Qbit then X = {x} so x :Qbit ∈ Γ′. If T 6= Qbit

then x :T ∈ Γ′. In either case we obtain Γ′ ` x : T from T-Var.
TC-Plus: We have

Γ; e 7→ Int;X Γ; e′ 7→ Int;Y

Γ; e+e′ 7→ Int;X ∪ Y
By the induction hypothesis we have Γ1 ` e : Int and Γ2 ` e′ : Int where

Γ1 = {x :U ∈ Γ | U 6= Qbit} ∪ {x :Qbit | x ∈ X}
Γ2 = {x :U ∈ Γ | U 6= Qbit} ∪ {x :Qbit | x ∈ Y }.

In this case Γ′ = {x :U ∈ Γ | U 6= Qbit} ∪ {x : Qbit | x ∈ X ∪ Y }. Because Γ1 ⊆ Γ and
Γ2 ⊆ Γ, we can use Weakening (Lemma 7) to obtain Γ′ ` e : Int and Γ′ ` e′ : Int, and
then T-Plus gives Γ′ ` e+ e′ : Int.

TC-Msure: We have

∀i.(Γ;xi 7→ Qbit; {xi}) xi|n1 distinct

Γ;measure x1, . . . , xn 7→ Int; {x1, . . . , xn}

In this case Γ′ = {x :U ∈ Γ | U 6= Qbit} ∪ {x̃ : Q̃bit}. For each i, xi :Qbit ∈ Γ′, so we have
Γ′ ` xi : Qbit by T-Var. Therefore T-Msure gives Γ′ ` measure x1, . . . , xn : Int.

TC-Trans: Essentially the same reasoning as for TC-Msure.

Theorem 4 (Soundness of Typechecking Processes).
If Γ;P 7→ X then Γ′ ` P , where Γ′ = {x :U ∈ Γ | U 6= Qbit} ∪ {x :Qbit | x ∈ X}.

Proof. By induction on the derivation of Γ;P 7→ X, similarly to Lemma 15.

Lemma 16 (Completeness of Typechecking Expressions).
If Γ ` e : T then there exists X ⊆ {x ∈ dom(Γ) | Γ(x) = Qbit} such that Γ; e 7→ T ;X.

Proof. By induction on the derivation of Γ ` e : T , considering the possible cases for
the last rule.

T-IntLit,T-Unit,T-Op: We obtain Γ; e 7→ T ; ∅ directly from TC-IntLit, TC-Unit

or TC-Op.
T-Var: We obtain Γ, x :T ;x 7→ T ;X from TC-Var with either X = {x} or X = ∅.

Types and Typechecking for Communicating Quantum Processes 29

T-Plus: We have
Γ ` e : Int Γ ` e′ : Int

Γ ` e+e′ : Int
By the induction hypothesis, there exist X,Y ⊆ {x ∈ dom(Γ) | Γ(x) = Qbit} such
that Γ; e 7→ Int;X and Γ; e′ 7→ Int;Y . By rule TC-Plus, Γ; e+ e′ 7→ Int;X ∪ Y , and
X ∪ Y ⊆ {x ∈ dom(Γ) | Γ(x) = Qbit}.

T-Msure: We have
∀i.(Γ ` xi : Qbit) xi|n1 distinct

Γ ` measure x1, . . . , xn : Int

By rule TC-Msure we immediately have Γ; measure x1, . . . , xn 7→ Int; {x1, . . . , xn}, and
{x1, . . . , xn} ⊆ {x ∈ dom(Γ) | Γ(x) = Qbit} because for each i, Γ ` xi : Qbit.

T-Trans: Essentially the same as T-Msure.

Lemma 17. If Γ; e 7→ T ;X and Γ + Γ′ is defined then Γ + Γ′; e 7→ T ;X.

Proof. A straightforward induction on the derivation of Γ; e 7→ T ;X.

Lemma 18. If Γ;P 7→ X and Γ + Γ′ is defined then Γ + Γ′;P 7→ X.

Proof. A straightforward induction on the derivation of Γ;P 7→ X.

Theorem 5 (Completeness of Typechecking Processes). If Γ ` P then there exists
X ⊆ {x ∈ dom(Γ) | Γ(x) = Qbit} such that Γ;P 7→ X.

Proof. By induction on the derivation of Γ ` P , considering the possible cases for the
last rule.

T-Nil: We immediately have Γ;0 7→ ∅.
T-Par: We have

Γ1 ` P Γ2 ` Q Γ1 + Γ2 is defined

Γ1 + Γ2 ` P |Q
By the induction hypothesis we have X ⊆ {x ∈ dom(Γ1) | Γ1(x) = Qbit} and Y ⊆ {x ∈
dom(Γ2) | Γ2(x) = Qbit} such that Γ1;P 7→ X and Γ2;Q 7→ Y . By Lemma 18 we have
Γ1 + Γ2;P 7→ X. Because Γ1 +Γ2 is defined, X ∩{x ∈ dom(Γ2) | Γ2(x) = Qbit} = ∅, and
so (Γ1 + Γ2)−X = (Γ1 −X) + Γ2. Hence by Lemma 18 we have (Γ1 + Γ2)−X;Q 7→ Y .
Rule TC-Par gives Γ1 + Γ2;P |Q 7→ X ∪ Y , and X ∪Y satisfies the required condition.

T-In: We have
Γ ` x :̂[T1, . . . , Tn] Γ, y1 :T1, . . . , yn :Tn ` P

Γ ` x?[y1 :T1, . . . , yn :Tn] . P

By the induction hypothesis we have X ⊆ {x ∈ dom(Γ, ỹ : T̃) | Γ(x) = Qbit} such that
Γ, ỹ : T̃ ;P 7→ X with such that Γ;P 7→ X. By using rule TC-In we obtain Γ;x?[ỹ : T̃] . P 7→
(X − {yi | Ti = Qbit}), and we have (X − {yi | Ti = Qbit}) ⊆ {x ∈ dom(Γ) | Γ(x) =
Qbit}.

T-Qbit: Similar to the case for T-In.
T-Out,T-Act: These cases follow straightforwardly from the induction hypothesis

and Lemma 16.

S. J. Gay and R. Nagarajan 30

T-New: Follows directly from the induction hypothesis.

8. Conclusions and Future Work

We have defined a language, CQP, for modelling systems which combine quantum and
classical communication and computation. CQP has a formal operational semantics, and
a static type system which guarantees that transmitting a qubit on a communication
channel corresponds to a physical transfer of ownership. The syntax and semantics of
CQP are based on a combination of the pi-calculus and an expression language which
includes measurement and transformation of quantum state. The style of our definitions
makes it easy to enrich the language. We have illustrated the language by means of
examples which cover a broad range of topics in quantum information processing: a two-
player game; the teleportation protocol, which is a fundamental building-block; and a bit-
commitment protocol, which is more complex and is closely related to a key-distribution
protocol of practical interest. Our research programme is to develop techniques for for-
mal verification of systems which combine quantum and classical communication and
computation. The formal definition of CQP is an essential foundation for this work.
Specifically, we are working towards an analysis of the BB84 quantum key distribution
protocol, including both the core quantum steps and the classical authentication phase.
Initially we will use model-checking, in both standard (non-deterministic) and probabilis-
tic forms. Standard model-checking is appropriate for absolute properties (for example,
the quantum teleportation protocol (Section 3.2) claims that the final state of y is always
the same as the initial state of z). In general, however, probabilistic model-checking is
needed. For example, the bit-commitment protocol (Section 3.3) guarantees that, with
some high probability which is dependent on the number of bits used by Alice, Bob’s
verification step is successful. We have obtained preliminary results (Nagarajan and Gay
2002; Papanikolaou 2004; Gay et al. 2005; Nagarajan et al. 2005) with the CWB-NC
(Cleaveland and Sims 1996) and PRISM (Kwiatkowska et al. 2002) systems, working
directly with the modelling language of each tool. The next step is to develop automated
translations of CQP into these lower-level modelling languages; note that our operational
semantics matches the semantic model used by PRISM.

Another area for future work is to develop a theory of equivalence for CQP processes, as
a foundation for compositional techniques for reasoning about the behaviour of systems.
We can also consider extending the language. It should be straightforward to add purely
classical features such as functions and assignable variables. Extensions which combine
quantum data with enhanced classical control structures require more care. Valiron’s
(2004) recent formulation of a typed quantum lambda calculus seems very compatible
with our approach, and should fit into CQP’s expression language.

References

Abramsky, S. and Coecke, B. (2004) A categorical semantics of quantum protocols.
In Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science
(LICS). IEEE Computer Society. Also arXiv:quant-ph/0402130.

Types and Typechecking for Communicating Quantum Processes 31

Adão, P. and Mateus, P. (2005) A process algebra for reasoning about quantum secu-
rity. In Proceedings of the 3rd International Workshop on Quantum Programming
Languages, Electronic Notes in Theoretical Computer Science. Elsevier Science. To
appear.

Bennett, C. H. and Brassard, G. (1984) Quantum Cryptography: Public-key Distribution
and Coin Tossing. In Proceedings of the IEEE International Conference on Computer,
Systems and Signal Processing, Bangalore, India, pages 175–179.

Bennett, C. H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A. and Wootters, W. K.
(1993) Teleporting an unknown quantum state via dual classical and Einstein-
Podolsky-Rosen channels. Physical Review Letters 70:1895–1899.

Cazorla, D., Cuartero, F., Valero, V., Pelayo, F. L. and Pardo, J. J. (2003) Algebraic
theory of probabilistic and nondeterministic processes. Journal of Logic and Algebraic
Programming 55:57–103.

Cleaveland, R. and Sims, S. (1996) The NCSU concurrency workbench. In Computer
Aided Verification: 8th International Conference, CAV’96 , volume 1102 of Lecture
Notes in Computer Science. Springer.

de Riedmatten, H., Marcikic, I., Tittel, W., Zbinden, H., Collins, D. and Gisin, N. (2004)
Long distance quantum teleportation in a quantum relay configuration. Physical Re-
view Letters 92(4):047904.

Elliott, C. (2004) The DARPA quantum network. arXiv:quant-ph/0412029.
Elliott, C. (2005) Current status of the DARPA quantum network. arXiv:quant-

ph/0503058.
Ennals, R., Sharp, R. and Mycroft, A. (2004) Linear types for packet processing. In

ESOP 2004: Proceedings of the European Symposium on Programming , volume 2986
of Lecture Notes in Computer Science. Springer.

Gay, S. J. (2005) Quantum programming languages: survey and bibliography. Bulletin
of the European Association for Theoretical Computer Science 86:176–196. Online
bibliography at www.dcs.gla.ac.uk/∼simon/quantum.

Gay, S. J., Nagarajan, R. and Papanikolaou, N. (2005) Probabilistic model-checking of
quantum protocols. arXiv:quant-ph/0504007.

Girard, J.-Y. (1987) Linear Logic. Theoretical Computer Science 50(1):1–102.
Gottesman, D. and Chuang, I. (1999) Demonstrating the viability of universal quantum

computation using teleportation and single-qubit operations. Nature 402:390–393.
Also arXiv:quant-ph/9908010.

Gruska, J. (1999) Quantum Computing . McGraw-Hill.
Jorrand, P. and Lalire, M. (2004) A process-algebraic approach to concurrent and dis-

tributed quantum computation: operational semantics. In Selinger, P., editor, Pro-
ceedings of the 2nd International Workshop on Quantum Programming Languages,
number 33 in TUCS General Publications. Turku Centre for Computer Science. Also
arXiv:quant-ph/0407005.

Knill, E. (1996) Conventions for quantum pseudocode. Technical Report LAUR-96-2724,
Los Alamos National Laboratory.

Kobayashi, N., Pierce, B. C. and Turner, D. N. (1999) Linearity and the Pi-Calculus.
ACM Transactions on Programming Languages and Systems 21(5):914–947.

S. J. Gay and R. Nagarajan 32

Kwiatkowska, M. Z., Norman, G. and Parker, D. (2002) PRISM: Probabilistic sym-
bolic model checker. In Computer Performance Evaluation: Modelling Techniques and
Tools; 12th International Conference (TOOLS’02), volume 2324 of Lecture Notes in
Computer Science, pages 200–204. Springer.

Lalire, M. (2006) Relations among quantum processes: Bisimilarity and congruence.
Mathematical Structures in Computer Science this volume.

Lo, H.-K. and Chau, H. F. (1997) Is quantum bit commitment really possible? Physical
Review Letters 78(17):3410–3413.

Mackie, I. (1994) Lilac : A functional programming language based on linear logic. Jour-
nal of Functional Programming 4(4):1–39.

Mayers, D. (1997) Unconditionally secure quantum bit commitment is impossible. Phys-
ical Review Letters 78(17):3414–3417.

Mayers, D. (2001) Unconditional Security in Quantum Cryptography. Journal of the
ACM 48(3):351–406.

Meyer, D. A. (1999) Quantum strategies. Physical Review Letters 82(5):1052–1055.
Milner, R., Parrow, J. and Walker, D. (1992) A calculus of mobile processes, I and II.

Information and Computation 100(1):1–77.
Nagarajan, R. and Gay, S. J. (2002) Formal verification of quantum protocols.

arXiv:quant-ph/0203086.
Nagarajan, R., Papanikolaou, N., Bowen, G. and Gay, S. (2005) An automated analysis

of the security of quantum key distribution. In Proceedings of the 3rd International
Workshop on Security Issues in Concurrency , Electronic Notes in Theoretical Com-
puter Science. Elsevier Science. Also arXiv:cs.CR/0502048.

Nielsen, M. A. and Chuang, I. L. (2000) Quantum Computation and Quantum Informa-
tion. Cambridge University Press.

Ömer, B. (2000) Quantum Programming in QCL. Master’s thesis, Technical University
of Vienna.

Papanikolaou, N. K. (2004) Techniques for Design and Validation of Quantum Protocols.
Master’s thesis, University of Warwick.

Pierce, B. C. and Sangiorgi, D. (1996) Typing and subtyping for mobile processes. Math-
ematical Structures in Computer Science 6(5):409–454.

Poppe, A., Fedrizzi, A., Ursin, R., Böhm, H. R., Lorünser, T., Maurhardt, O., Peev, M.,
Suda, M., Kurtsiefer, C., Weinfurter, H., Jennewein, T. and Zeilinger, A. (2004) Prac-
tical quantum key distribution with polarization entangled photons. Optics Express
12:3865–3871.

Rieffel, E. G. and Polak, W. (2000) An introduction to quantum computing for non-
physicists. ACM Computing Surveys 32(3):300–335.

Ryan, P., Schneider, S., Goldsmith, M., Lowe, G. and Roscoe, B. (2001) Modelling and
Analysis of Security Protocols. Addison-Wesley.

Sanders, J. W. and Zuliani, P. (2000) Quantum programming. In Mathematics of Program
Construction: 5th International Conference, volume 1837 of Lecture Notes in Computer
Science. Springer.

Sangiorgi, D. and Walker, D. (2001) The π-calculus: a Theory of Mobile Processes. Cam-
bridge University Press.

Types and Typechecking for Communicating Quantum Processes 33

Selinger, P. (2004) Towards a quantum programming language. Mathematical Structures
in Computer Science 14(4):527–586.

Takeuchi, K., Honda, K. and Kubo, M. (1994) An interaction-based language and its
typing system. In PARLE ’94: Parallel Architectures and Languages Europe, volume
817 of Lecture Notes in Computer Science. Springer.

Valiron, B. (2004) Quantum typing. In Selinger, P., editor, Proceedings of the 2nd Inter-
national Workshop on Quantum Programming Languages, number 33 in TUCS General
Publications. Turku Centre for Computer Science.

van Tonder, A. (2004) A lambda calculus for quantum computation. SIAM Journal on
Computing 33(5):1109–1135.

Wright, A. K. and Felleisen, M. (1994) A syntactic approach to type soundness. Infor-
mation and Computation 115(1):38–94.

