
Dynamic Interfaces

Simon J. Gay
Department of Computing Science

University of Glasgow, UK
simon@dcs.gla.ac.uk

António Ravara
SQIG at Instituto de Telecomunicações

Department of Mathematics, IST,
Technical University of Lisbon, Portugal

amar@math.ist.utl.pt

Vasco T. Vasconcelos
Departamento de Informática

Faculdade de Ciências da
Universidade de Lisboa, Portugal

vv@di.fc.ul.pt

Abstract
We define a small class-based object-oriented language in which
the availability of methods depends on an object’s abstract state:
objects’ interfaces are dynamic. Each class has a session type which
provides a global specification of the availability of methods in
each state. A key feature is that the abstract state of an object
may depend on the result of a method whose return type is an
enumeration. Static typing guarantees that methods are only called
when they are available. We present both a type system, in which
the typing of a method specifies pre- and post-conditions for its
object’s state, and a typechecking algorithm, which infers the pre-
and post-conditions from the session type, and prove type safety
results. Inheritance is included; a subtyping relation on session
types, related to that found in previous literature, characterizes the
relationship between method availability in a subclass and in its
superclass. We illustrate the language and its type system with
example based on a Java-style iterator and a hierarchy of classes
for accessing files, and conclude by outlining several ways in which
our theory can be extended towards more practical languages.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Classes and objects; D.3.2 [Language Classifica-
tions]: Object-oriented languages; D.3.1 [Formal Definitions and
Theory]; F.3.2 [Semantics of Programming Languages]: Oper-
ational semantics; F.3.3 [Studies of Program Constructs]: Type
structure; D.1.5 [Object-oriented Programming]

General Terms Languages, Theory, Verification

Keywords Session types, object-oriented calculus, non-uniform
method availability

1. Introduction
Standard class-based object-oriented languages present the pro-
grammer with the following view: an object is declared to belong to
a certain type, and the type defines various methods; it is therefore
possible at any time to call any of the methods described in the type.
However, there are often semantic reasons why it is not appropriate
to call a particular method when the object is in a particular inter-
nal state. For example: with a stack, one should not attempt to pop
if the stack is empty; with a finite buffer, one should not attempt

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
FOOL 2009 24 January, 2009, Savannah, Georgia, USA.
Copyright c© 2009 ACM [to be supplied]. . . $5.00

to write if the buffer is full; with a file, one should not attempt to
read data until the file has been opened. We will refer to the set of
available methods as the interface of an object, and use the term
dynamic interfaces in connection with objects for which method
availability depends on state. Objects with dynamic interfaces are
also referred to in the literature as non-uniform objects, although
usually in a concurrent setting.

Consider the java . util . Iterator interface.

i n t e r f a c e I t e r a t o r {
boolean hasNext ()
Object nex t ()
vo id remove ()

}

One correct pattern for using an iterator it is as follows:

wh i l e (i t . hasNext ())
{ . . . i t . nex t () . . . }

while common programming errors, familiar to any teacher, in-
clude failing to call hasNext():

f o r (i n t i = 0 ; i < 5 ; i++) {
. . . i t . nex t () . . . }

calling next() too often:

wh i l e (i t . hasNext ())
i f (i t . nex t () . e qu a l s (x))

y . add (i t . nex t ()) ;

and omitting an initial call of hasNext():

b . append (i t . nex t ()) ;
wh i l e (i t . hasNext ())

b . append (” , ”) . append (i t . nex t ()) ;

There are two problems with the above interface: a) it provides
no clue on how the interface should be used; in fact it is not obvious
from the English text that accompanies java . util . Iterator when
one is supposed to call method remove; b) all of the code snippets
above compile, errors being caught only at runtime, if ever.

We propose to discipline the order of method calls by annotating
the above interface with a session type, inspired by work on type-
theoretic specifications of communication protocols (40; 25), as
follows.

s e s s i o n I n i t
where I n i t = &{hasNext : R e s u l t }

Re su l t = ⊕{ t rue : Next ,
f a l s e : end}

Next = &{next : &{hasNext : Resu l t ,
remove : I n i t } ,

hasNext : R e s u l t }

The session type defines certain abstract states of iterator objects
and specifies which methods are available in each state. For ex-
ample, in state Init only the method hasNext() is available, and
after calling it the abstract state becomes Result. The form of this
state indicates that the method hasNext() returns a result of type
boolean and that the subsequent state depends on the result. In gen-
eral, & indicates available methods and ⊕ indicates possible results.
In state Next, the method next() is available, and after calling it, the
method remove() is also available. The keyword end is an abbre-
viation for an empty &, indicating that no methods are available,
hence that the object cannot be used further and may be subject to
garbage collection. The session type captures the specification of
an iterator: hasNext() must be called in order to find out whether or
not next() can be called, and remove() can be called at most once
for each call of next(). Our type system makes sure that, not only
methods are called by the specified order, but also that client code
actually tests methods’ results and proceeds accordingly, rendering
the above programming errors untypable.

In the present paper we propose, in the sequential setting, a type
system to support static checking of correctness of method calls in
the presence of objects with dynamic interfaces. The key features
of our approach are as follows.

• Each class declares a session type which provides an abstract
view of the allowed sequences of method calls. In the simplest
case, a session type defines a directed graph of abstract state
transitions labelled by method names.

• A session type can also specify that the abstract state after
a method call depends on the result of the call, where this
result comes from an enumerated type. In this case the caller
must perform a case-analysis on the result before calling further
methods.

• We allow inheritance between classes, characterizing the condi-
tions for inheritance by means of a subtyping relation on session
types.

• We formalize the operational semantics and typing rules of
a core language with these features, enabling us to prove a
type safety result. Objects with dynamic interfaces are handled
linearly in order to avoid aliasing problems.

• We define a typechecking algorithm, whose success guarantees
not only type safety but also consistency between method def-
initions and session types, so that every sequence of methods
calls in the session type is realizable in a typable program.

There is a substantial literature of related work, which we dis-
cuss in more detail in Section 6. Type systems for non-uniform
concurrent objects have been proposed by several authors including
Nierstrasz (31), Ravara et al. (38; 39) and Puntigam and Peter (35;
36). The type systems of the imperative languages Cyclone (21;
22), Vault (9; 16) and Fugue (17; 10) address similar issues in se-
quential programming. The related topic of type-theoretic specifi-
cations of protocols on communication channels has been studied
for concurrent object-oriented languages by Dezani-Ciancaglini et
al. (11; 12; 13; 14) and implemented in the Sing# language (15).

Contributions
Our work makes the following new contributions. In contrast with
Cyclone and Vault, we define an object-oriented language with in-
heritance. In contrast with Sing# and other work on session types
for object-oriented languages, we consider objects with dynamic
interfaces in a setting more general than communication channels.
In contrast with Fugue, we use a session type as a global specifica-
tion of method availability, instead of pre- and post-conditions on
methods. In contrast with work on non-uniform concurrent objects,
we work with a Java-like language, not a mobile process calculus;

1enum Res {OK, NOT FOUND, DENIED ;}
2
3enum Bool {FALSE , TRUE;}
4
5i n t e r f a c e Fi leReadToEnd {
6s e s s i o n I n i t
7where I n i t = &{open : ⊕{Res .OK: Open ,
8Res .NOT FOUND: end ,
9Res .DENIED : end}}
10Open = &{eo f : ⊕{Bool .TRUE: Close ,
11Bool . FALSE : Read}}
12Read = &{ r ead : Open}
13C lo s e = &{ c l o s e : end}
14
15Res open ()
16
17Bool eo f ()
18
19S t r i n g read ()
20
21Nul l c l o s e ()
22}

Figure 1. The interface of a file that must be read to the end-of-file.

and we force the caller to perform a case-analysis when necessary,
meaning that our session types are richer than simply sequences of
available methods.

The remainder of the paper is structured as follows. In Section 2
we illustrate our system by means of a more extensive example,
extending it in Section 3 to include inheritance. In Section 4 we
formalize a core language and prove a type safety result. The core
language requires, in addition to the session type, explicit pre- and
post-conditions for each method. In Section 5 we present a type-
checking algorithm which infers the pre- and post-conditions from
the session types. Section 6 contains a more extensive discussion
of related work, Section 7 outlines future work and Section 8 con-
cludes.

2. Programming with Dynamic Interfaces
This section and the next section contain more extensive examples
of programming with dynamic interfaces. From now on, we do
not use the term interface in the technical Java sense; for us,
an interface is simply a class definition without the code of the
methods. Of course it includes a session type, making it dynamic.

Our next example involves the class FileReadToEnd, represent-
ing part of an API for using a file system. A file has a dynamic
interface: it must first be opened, then can be read repeatedly, and
must finally be closed. Before reading, a test for end of file must
be carried out, in a way similar to the iterator. A key feature of
FileReadToEnd is that the file cannot be closed until all of the data
has been read. We will relax this restriction later. The example also
contains a class FileReader, representing application code which
uses FileReadToEnd to access a file and read its data into a string.

Figures 1 and 2 contain the code for the example. Figure 1
consists of three declarations. Lines 1 and 3 define enumerated
types Res and Bool. Lines 5–22 define the interface FileReadToEnd.
For technical reasons we use an enumerated type Bool rather than
the primitive type boolean, and type Null rather than void . The
session type is represented diagrammatically in Figure 7(a).

Our language does not include constructor methods as a special
category, but the method open must be called first and can therefore
be regarded as a constructor.

Figure 2 defines the class FileReader, which uses an object
of class FileReadToEnd. The class diagram for the example is in
Figure 8. This class has a session type of its own, defined on lines 2

1c l a s s F i l eR e ad e r {
2s e s s i o n I n i t &{ i n i t : &{ r ead : F i n a l }}
3where I n i t = &{ i n i t : Read}
4Read = &{ r ead : F i n a l }
5F i n a l = &{ t o S t r i n g : F i n a l }
6
7Nul l f ;
8Res g ;
9Bool b ;
10S t r i n g s ;
11
12Nul l i n i t () {
13f = new Fi leReadToEnd () ;
14s = ”” ; }
15
16Nul l r ead () {
17g = f . open () ;
18sw i t ch (g) {
19case Res .NOT FOUND:
20case Res .DENIED :
21break ;
22case Res .OK:
23b = f . e o f () ;
24wh i l e (! b) {
25s = s + f . r ead () ;
26b = f . e o f () ;
27} ;
28f . c l o s e () ;
29break ; } }
30
31S t r i n g t o S t r i n g () { r e t u r n s ; }
32}

Figure 2. A client that reads from a FileReadToEnd.

and 3. It specifies that methods must be called in the sequence init ,
read, toString , toString , . . .

Lines 5–8 define the fields of FileReader. The core language
does not require a type declaration for f, since this is a linear field,
and linear fields always start with type Null.

Lines 15–30 define the method read. Lines 16–17 illustrate
the point that switch must be applied to a field, not an arbitrary
expression, because of the details of the semantics and type system,
which will be explained in Section 4. Unlike Sing# (15), we allow
arbitrary code between the method call and the switch.

The while loop (lines 22–29) is similar. Our language forces
separating the method call from the loop test, thus requiring an
extra method call at the end of the loop; however, forgetting to call
the method inside the loop will be detected by the type system. The
result of f . eof() must be a constant from enumeration Bool. Line
32 defines the method toString which simply accesses a field.

Clearly, correctness of this code requires that the sequence of
method calls on field f within class FileReader matches the &s in
the session type of class FileReadToEnd, and that the appropriate
switch or while loops are performed when prescribed by the ⊕s
in the session type. Our static type system, defined in Section 4,
enables this consistency to be checked at compile-time. In order
to check statically that an object with a dynamic interface such as
FileReader . f is used correctly, our type system treats the reference
linearly so that aliases to it cannot be created.

In order to support separate compilation we require only the
interface of a class. For example, in order to typecheck classes
that are clients of FileReader, we rely on its interface, as defined in
Figure 3. Similarly, to typecheck class FileReader, which is a client
of FileReadToEnd, it suffices to use the interface in Figure 1, thus
effectively supporting typing clients of classes containing native
methods.

1i n t e r f a c e F i l eR e ad e r {
2s e s s i o n &{ i n i t : &{ r ead : F i n a l }}
3where F i n a l = &{ t o S t r i n g : F i n a l }
4
5Nul l i n i t ()
6
7Nul l r ead ()
8
9S t r i n g t o S t r i n g ()
10}

Figure 3. Interface for FileReader.

1i n t e r f a c e F i l eRead extends Fi leReadToEnd {
2s e s s i o n I n i t
3where I n i t = . . . // As i n F ig . 1
4Open = &{eo f : ⊕{Bool .TRUE: Close ,
5Bool . FALSE : Read } ,
6c l o s e : end}
7Read = &{ r ead : Open , c l o s e : end}
8C lo s e = &{ c l o s e : end}
9}

Figure 4. A file that can be closed before the end-of-file.

3. Subclassing Dynamic Interfaces
We now extend our example to illustrate inheritance and subtyping
in the presence of session types. We allow a class C to inherit from
(extend) a class D in the usual way: C may define additional fields
and methods, and may override methods of D. By considering the
standard principle of safe substitutability, namely that an object of
class C should be safely usable wherever an object of class D is
expected, we can work out the allowed relationship between the
session types of C and D. In a given state, C must make at least
as many methods available as D; if a given method returns an
enumeration, corresponding to a ⊕ session type, then the set of
values in C must be a subset of the set in D. When a method of D
is overridden by a method of C, we allow covariant changes in the
result type.

FileRead (Figure 4) extends FileReadToEnd (Figure 1). The ex-
tension is that method close is now also available from states Open
and Read. A new client FileBoundedReader (Figure 5) takes advan-
tage of this possibility to read the first string in the file. Because
method FileReader . init (the constructor) creates a object of class
FileReadToEnd, the new client also overrides method init to create
an object of the correct type. The class diagram is in Figure 8.

The original FileReader can safely use an object of class
FileRead instead of the expected FileReadToEnd; it does not take
advantage of the additional availability of close . The diagram in
Figure 7(b) highlights the key idea: the session type of a sub-
class can add extra branches to a & type. Similarly, clients of class
FileReader can use the subclass FileBoundedReader; they do not use
the new method readFirst .

Classes can also be subtyped by restricting the range of the pos-
sible results of method calls. For example, class KindFileRead (Fig-
ure 6) extends class FileRead (Figure 5). The method open is over-
ridden and the new version never returns NOT FOUND or DENIED.
The diagram in Figure 7(c) illustrates the idea of removing two
branches from a ⊕ type in this way. The return type of open is now
an enumeration containing only the value OK. To observe the usual
requirement of covariant changes to the return type of a method,
we define a new enumeration KindRes which is a subtype of Res.
The syntax enum KindRes restricts Res {OK;} is analogous to the

1c l a s s Fi l eBoundedReader extends F i l eR e ad e r {
2s e s s i o n &{ i n i t : &{ r ead : F i na l ,
3readNext : F i n a l }}
4where . . . // see F ig . 3
5@Over r ide
6Nul l i n i t () {
7f = new F i l eRead () ; s = ”” ; }
8
9Nul l r e a d F i r s t () {
10g = f . open () ;
11sw i t ch (g) {
12case Res .NOT FOUND:
13case Res .DENIED : break ;
14case Res .OK:
15b = f . e o f () ;
16sw i t ch (b) {
17case Bool .TRUE: break ;
18case Bool . FALSE :
19f . r ead () ;
20f . c l o s e () ;
21break ;
22}
23break ; } }
24}

Figure 5. A client that reads strings from a FileReadToEnd.

1enum KindRes r e s t r i c t s Res {OK;}
2
3i n t e r f a c e KindF i l eRead extends F i l eRead {
4s e s s i o n I n i t
5where I n i t = &{open : ⊕{KindRes .OK: Open}
6. . . // see F ig . 5
7@Over r ide
8KindRes open ()
9}

Figure 6. A file that can always be opened for reading.

extends form for classes, but instead of specifying additional mem-
bers it specifies the remaining values.

The original FileReader can safely use a KindFileRead; the
NOT FOUND and DENIED branches of the switch statment will
never be called. In the new KindFileBoundedReader class (not
shown), the switch statement has just one branch, for OK. Had
we defined KindFileRead and KindBoundedReader in isolation there
would be no need to use an enumeration at all, but it is necessary
for compatibility with the rest of the class hierarchy.

4. A Core Language for Dynamic Interfaces
We now present a formal syntax, operational semantics and type
system for a core language containing the essential features of
the examples in Sections 1–3, and prove a type safety result. The
main simplification is that methods must return enumerated types,
which means that all session types alternate between & and ⊕
constructors. All objects have dynamic interfaces, meaning that all
objects are handled linearly by the type system, whereas a practical
language would also contain standard (non-dynamic) objects. We
also omit method parameters, which complicate the system but
don’t require new conceptual techniques. The formal language
only includes classes; the interfaces in Sections 2 and 3 should be
interpreted as classes without method bodies.

In order to simplify the presentation of the type system and the
proof of type safety, the formal language requires every method
definition to be annotated with pre- and post-conditions, expressed

&

+

&

+

&

end

close

TRUE

&

FALSE

eof

OK

end

NOT FOUND

open

read

(a) FileReadToEnd

&

+

&

+

&

end

close

TRUE

&

end

close

FALSE

eof
end

close

OK

end

NOT FOUND

open

read

(b) FileRead

&

+

&

+

&

end

close

TRUE

&

end

close

FALSE

eof
end

close

OK

end

NOT FOUND

open

read

(c) KindFileRead

Figure 7. The diagrammatic representation of the session types for
the classes in Figures 1, 5 and 6 (branch DENIED omitted).

FileReader

FileBoundedReader

KindFileBoundedReader

FileReadToEnd

FileRead

KindFileRead

Figure 8. Class diagram for the classes in the example.

Class dec D ::= class C {S; ~f ; ~M} | enum E L |

class C extends C {S; ~f ; ~M} |
enum E restricts E L

Constant sets L ::= {li}i∈I

Method dec M ::= T m() {e}
Values v ::= null | E.l | o

Expressions e ::= v | new C() | o.f | o.f = e |
o.f.m() | e; e | while (o.f) {e} |
switch (o.f) {case li : ei}i∈I

Types T ::= Null | E

Session types S ::= &{mi : Si}i∈I | ⊕ {E.li : Si}i∈I |
µX.S | X

The only object reference o available to the programmer is this.

Figure 9. Programmer’s syntax

as a requirement (req) and a guarantee (ens, for “ensures”) on the
type of the object on which it is called. These annotations are in the
style of the Fugue system (10) but stated in terms of session types.
The typechecking algorithm presented in Section 5 infers the pre-
and post-conditions.

4.1 Syntax
We separate the syntax into the programmer’s language (Figure 9)
and the extensions required by the type system and operational se-
mantics (Figure 10). Class, enum and method declarations, includ-
ing the forms for inheritance, have been illustrated by the examples.

Method dec M ::= req T ens T for T m() {e}
Values v ::= . . . | v then f = o

Expressions e ::= . . . | e then f = o

Field types F ::= ~T ~f | 〈E.li : Fi〉i∈I

Types T ::= . . . | C[S] | C[S; F] | T then T f

Heaps h ::= ε | h :: o = C[S; V]

Field values V ::= ~f = ~v

States s ::= h; e

Contexts E ::= [] | o.f = E | E; e | E then f = o

Figure 10. Runtime (and type system) syntax

We write session(C), fields(C), methods(C) to access the com-
ponents of a class, and constants(E) for the set of values in an
enum. A class declaration does not declare types for fields because
they can vary at run-time. When an object is created, its fields are
initialised to null. We assume that class and enum identifiers in a
sequence of declarations ~D are all distinct, and that method names,
field names and labels in ~M , ~f and {li}i∈I are distinct.

In the syntax of expressions, field access, assignment and
method call are only available on an object reference, not an ar-
bitrary expression; moreover, the only object reference available
to the programmer is this. All fields are private: this.f.g and
this.f.g.m() are not syntactically correct. The examples in Sec-
tion 2 omit this as the prefix to all field accesses, but they could
be easily be inserted by the compiler. A more unusual point is that
we only switch on a field, not an arbitrary expression; similarly
the condition of a while loop tests a field. Section 2 illustrates the
corresponding programming style, which we will discuss further
during the rest of this section.

In the internal syntax (Figure 10), the expression e then f = o
and the corresponding type T then U f are essential to allow the
enum result of a method to be stored and tested later.

Field values, heaps and states are used to define the operational
semantics. An entry in the heap maps an object reference to an ob-
ject: o = C[S; ~f = ~v], where C is the class, S is the session type
and the fields ~f have values ~v. The session type is used as an ab-
straction of the state, to indicate which methods are available. It is
only needed in order to state type safety, namely that only available
methods may be called. An implementation would not need that
information: once typechecked, a program can be executed using a
simplified version of heaps, without session types.

Session types have been discussed in relation to the example.
Session type end abbreviates &{}. In ⊕{C.li : Si}i∈I , C is an
enum with values {li}i∈I . In the session type of a class declaration
the top-level constructor, apart from recursion, must be &.

The core language does not include named session types or the
session and where clauses from the examples; we just work with
recursive session type expressions of the form µX.S, which are
required to be contractive, i.e. containing no subexpression of the
form µX1.· · ·µXn.X1. We adopt the equi-recursive approach (34,
Chapter 21) and regard µX.S and S{(µX.S)/X} as equivalent,
using them interchangeably in any mathematical context.

A typing of the fields of an object is either a list ~T ~f of
typed fields or a variant type over typed fields. In the variant type
〈C.li : ~Ti

~f〉i∈I , the labels li come from an enum C. The type of
an object, C[S; F], consists of a class, a session type, and a typing
of the fields. The type Null has the single value null.

Finally, the type system uses type environments Γ, which are
functions assigning types to object references o; the operational
semantics uses reduction contexts E[] in the style of Wright and
Felleisen (41).

4.2 Operational Semantics
Figure 11 defines an operational semantics on configurations h; e
consisting of a heap and an expression. The rules are implicitly pa-
rameterized by ~D, the list of declarations constituting the program.
We regard a heap h as a function from object references o to ob-
jects C[S; ~f = ~v]. If h(o) = C[S; ~f = ~v] then h(o).class means
C, h(o).session means S, and h(o).fi means vi. If h(o) is defined
(this is an implicit hypothesis) then the notation h+o.f = v means
the heap obtained by changing the value of field f in object o to v.
Similarly h + o.session = S.

The rules central to our proposal—method call and switch—and
their interplay with the novel then expression are better described
via an example. The reduction of the expression

o.g = o.f.mj(); switch (o.g) {case lk : ek}
is illustrated in Figure 12. Calling o.f.mj() nullifies o.f and in-
troduces the delayed assignment then f = o′. Once the then ex-
pression reduces to a value, the method returns, and the then value
is stored in field g. The subsequent switch deconstructs the then-
value, selects the appropriate case and exercises the delayed assign-
ment, storing o′ back in field f .

R-NEW creates a new object in the heap, with an initial session
type taken from the class declaration and with its fields set to null.
R-FIELD extracts the value of a field from an object in the heap.
Linear control of objects requires that the field be nullified. R-
ASSIGN updates the value of a field. The value of the assignment,
as an expression, is null; linearity means that it cannot be v as in
Java.

R-WHILEF/R-WHILET define the behaviour of a while expres-
sion to be equivalent to a switch with two branches, one which ter-
minates immediately and one which executes e and then loops. R-
SEQ discards the result of the first part of a sequential composition.
R-CONTEXT is the usual rule for reduction in contexts.

To complete the definition of the semantics we need to define
the initial state. For a given class C and main method m, one would
expect an initial state of the form ∅; new C().m(). Given that we
can call methods on fields only, we set up a dummy class C′, with
a completed session type (end), a single field f , and no methods.
The initial state is then

o = C′[end; f = null]; (o.f = new C(); o.f.m())

4.3 Subtyping
The foundation for the theory of inheritance and subtyping is the
definition of subtyping between session types. Let S be the set of
session types. Define unfold(µX.S) = unfold({S/(µX.S)}X),
and unfold(S) = S for non-recursive session types S; contractiv-
ity guarantees that this definition terminates.

DEFINITION 1. A relation R ⊆ S ×S is a session type simulation
if (S, S′) ∈ R implies the following conditions.

1. If unfold(S) = &{mi : Si}i∈I then
unfold(S′) = &{mj : S′

j}j∈J , J ⊆ I and
∀j ∈ J.(Sj , S

′
j) ∈ R.

2. If unfold(S) = ⊕{E.li : Si}i∈I then
unfold(S′) = ⊕{E′.lj : S′

j}j∈J ,
constants(E) ⊆ constants(E′) and ∀i ∈ I.(Si, S

′
i) ∈ R.

The subtyping relation on session types is defined by S <: S′ if
there exists a session type simulation R such that (S, S′) ∈ R.

h; new C() −→ h :: o = C[session(C);fields(C) = ~null]; o (R-NEW)

h(o).f = v

h; o.f −→ h + o.f = null; v
h; o.f = v −→ h + o.f = v; null (R-FIELD,R-ASSIGN)

h(o).f = o′ h(o′).session = &{m : S, . . .} m() {e} ∈ methods(h(o′).class)

h; o.f.m() −→ h + o.f = null + o′.session = S; e{o′/this} then f = o′
(R-CALL)

h(o).f = (E.lj then g = o′) h(o′).session = ⊕{E.lj : Sj , . . .} j ∈ I

h; switch (o.f) {case li : ei}i∈I −→ h + o.f = null + o.g = o′ + o′.session = Sj ; ej
(R-SWITCH)

h(o).f = (Bool.F then g = o′) h(o′).session = ⊕{Bool.F : S, . . . }
h; while (o.f) {e} −→ h + o.f = null + o.g = o′ + o′.session = S; null

(R-WHILEF)

h(o).f = (Bool.T then g = o′) h(o′).session = ⊕{Bool.T : S, . . . }
h; while (o.f) {e} −→ h + o.f = null + o.g = o′ + o′.session = S; (e; while (o.f) {e}) (R-WHILET)

h; v; e −→ h; e
h; e −→ h′; e′

h; E[e] −→ h′; E[e′]
(R-SEQ,R-CONTEXT)

Figure 11. Reduction rules

o.g = o.f.mj(); switch (o.g) {. . .}
o

class C
sess S

f o′

g v

o′

class C′

sess &{mi : Si}i∈I

h · · ·
Sj = ⊕{E.lk : S′

k}k∈K

R-CALL−−−−→

o.g = (e{o′/this} then f = o′); . . .
o

class C
sess S

f null
g v

o′

class C′

sess Sj

h · · ·
−→∗

o.g = E.lp then f = o′; . . .
o

class C
sess S

f null
g v

o′

class C′

sess Sj

h · · ·

R-ASSIGN,R-SEQ−−−−−−−−−→

switch (o.g) {case lk : ek}k∈K

o
class C
sess S

f null
g E.lp then f = o′

o′

class C′

sess Sj

h · · ·
R-SWITCH−−−−−→

ep

o
class C
sess S

f o′

g null

o′

class C′

sess S′
p

h · · ·

Figure 12. Example of the interplay between method call, switch and the then expression

The direction of subtyping is opposite to that defined in (19),
because we make a choice by selecting a method from a session
of & type instead of by sending a label on a channel of ⊕ type.
However, the point is that in both cases, the type allowing a choice
to be made has contravariant subtyping in the set of choices. This
reversal of the subtyping relation for session types also occurs in
(5). Further details, including the proof that subtyping is reflexive
and transitive and an algorithm for checking subtyping, can easily
be adapted from (19).

Figure 13 defines subtyping between types of our language. The
relation is as expected for object types viewed as records of fields,
with the addition of subtyping between the session types.

It turns out that both the requires and ensures types behave
covariantly. For ensures this is because the type is really part of the
result type of the method, describing the implicitly returned this .
For requires it is because the type is the true type of the object on
which the method is called.

4.4 Type System
The type system is defined by the rules in Figures 14, 15, and 16.
The typing judgement for expressions is ` Γ.e:T /Γ′. Here Γ and
Γ′ are the initial and final type environments when typing e; Γ′ may
differ from Γ either because identifiers disappear (due to linearity)

or because their types change (due to their dynamic interfaces). We
regard an environment Γ as a function from object references o to
object types C[S; ~T ~f]. If h(o) = C[S; ~T ~f] then h(o).fi means
Ti. Γ+o :T means disjoint union. If Γ(o) is defined and has field f
(this is an implicit hypothesis) then the notation Γ + o.f : T means
the environment obtained by changing the type of field f in object
o to T .

First consider Figure 14, which defines typing of expressions.
T-NEW types a new object, giving it the initial session type from
the class declaration and giving all the fields type Null. T-FIELD
types field access, nullifying the field because its value has moved
into the expression part of the judgement. T-ASSIGN types field
update; the type of the field changes, and the type of the expression
is Null, again because of linearity.

T-CALL requires an environment in which method o.f.m is
available. In the signature of m, the req type must match the type
of o.f , the ens type gives the final type of o.f , and the result type
gives the type of the expression as usual.

T-SWITCH types a switch on o.f , whose type must have a ⊕
session type and a variant field typing indexed by the same enum
E. In the typing of branch ei, the index i selects from both the
session type and the variant type. All branches must have the same

` Γ . null : Null / Γ ` Γ + o : T . o : T / Γ (T-NULL,T-REF)

l ∈ constants(E)

` Γ . E.l : E / Γ

` Γ . e : E / Γ + o : C[⊕{E.li : Si}i∈I ; Fj] j ∈ I

` Γ . e : E / Γ + o : C[⊕{E.li : Si}i∈I ; 〈E.li : Fi〉i∈I]
(T-CONST,T-INJ)

` Γ . e : T / Γ′ + o : U

` Γ . e then f = o : T then U f / Γ′ ` Γ . new C() : C[session(C); ~Nullfields(C)] / Γ (T-THEN,T-NEW)

` Γ . o : T / Γ′

` Γ . o.f : T.f / Γ′ + o.f : Null

` Γ . e : T / Γ′

` Γ . o.f = e : Null / Γ′ + o.f : T
(T-FIELD,T-ASSIGN)

Γ(o).f = T1 M ∈ methods(T1.class) req T1 ens T2 for T m() {e} <: M

` Γ . o.f.m() : (T then T2 f) / Γ + o.f : Null
(T-CALL)

Γ(o).f <: E then C[⊕{E.li : Si}i∈I ; 〈E.li : Fi〉i∈I] g

∀i.li ∈ constants(E) ` Γ + o.f : Null + o.g : C[Si; Fi] . ei : T / Γ′ (∀i ∈ I)

` Γ . switch (o.f) {case li : ei}i∈I : T / Γ′ (T-SWITCH)

Γ(o).f <: Bool then C[⊕{Bool.F : Sf , Bool.T : St}; 〈Bool.F : Ff , Bool.T : Ft〉] g ` Γ + o.f : Null + o.g : C[St; Ft] . e : / Γ

` Γ . while (o.f) {e} : Null / Γ + o.f : Null + o.g : C[Sf ; Ff]
(T-WHILE)

` Γ . e : / Γ′′ ` Γ′′ . e′ : T / Γ′

` Γ . e; e′ : T / Γ′
` Γ . e : T / Γ′ T <: U

` Γ . e : U / Γ′ (T-SEQ,T-SUB)

Figure 14. Typing rules for expressions

` this : C[Sj ; F] . e : E / this : C[Sj ; 〈E.li : Fi〉i∈I] j ∈ I

` req C[&{mi : Si}i∈I ; F] ens C[Sj ; 〈E.li : Fi〉i∈I] for E mj() {e}
` Mi (∀i)

` class { ; ; ~M}
(T-METH,T-CLASS)

∀i. ` Mi S <: session(C) M <: M ′ (∀M ′ ∈ methods(C′), M ∈ ~M.name(M) = name(M ′))

` class C extends C′ {S; ~f ; ~M}
(T-EXTENDS)

` enum E L
E <: E′

` enum E restricts E′
` Di (∀i)

` ~D
(T-ENUM,T-RESTRICTS,T-PROG)

Figure 15. Typing rules for programs

T <: T
T <: T ′′ T ′′ <: T ′

T <: T ′ (S-ID,S-TRANS)

enum E restricts E′ L ∈ ~D L ⊆ constants(E′)

E <: E′ (S-ENUM)

T <: T ′ U <: U ′

T then U f <: T ′ then U ′ f
(S-THEN)

class C extends C′ { ; ; } ∈ ~D S <: S′ F <: F ′

C[S; F] <: C′[S′; F ′]
(S-CLASS)

Ti <: T ′
i (∀i)

F, ~T ~f <: ~T ′ ~f

I ⊆ J E <: E′ Fi <: F ′
i (∀i ∈ I)

〈E.li : Fi〉i∈I <: 〈E′.lj : F ′
i 〉j∈J

(S-FIELDS,S-VARIANT)

T <: T ′ U <: U ′ V <: V ′

req T ens U for V m() { } <: req T ′ ens U ′ for V ′ m() { }
(S-METHOD)

Figure 13. Subtyping rules for types and method signatures

final environment Γ′, so that it is a consistent final environment for
the switch expression.

` ∅ . ∅ ` h . Γ + o : T

` h . Γ
(T-HEMPTY,T-HWEAK)

` h . Γ ` Γ . ~v : ~T / Γ′ fields(C) = ~f

` h :: o = C[S′; ~f = ~v] . Γ′ + o : C[S′; ~T ~f]
(T-HADD)

` ~D ` h . Γ ` Γ . e : T / Γ′

` Γ . h; e : T / Γ′ (T-STATE)

Figure 16. Typing rules for heaps and states

T-WHILE is based on the idea that a while loop is a switch
with two branches. The terminating branch is effectively null and
does not appear as a hypothesis. The looping branch, which is the
expression e, must be typable and must preserve the environment,
so that the loop makes sense. T-SEQ and T-SUB are standard.

Now consider Figure 15. The most interesting rule is T-METH,
which checks that a method body has the effect specified by the req
and ens declarations.

Figure 16 defines rules for typing heaps and states (runtime
configurations). The typing of a heap, ` h . Γ, means that Γ
gives types to the usable objects in h. Because of linearity, Γ only
contains types for top-level objects, i.e. those that are not stored in
fields of other objects. Weakening of the heap typing (T-HWEAK)

is needed in order to prove type preservation, because assignment
can discard an object.

4.5 Results
By standard techniques (41) adapted to typing judgements with
initial and final environments (20) we can prove the usual results:
Type Preservation and Type Safety.

THEOREM 1 (Type Preservation). If ` Γ . h; e : T / Γ′ and
h; e −→ h′; e′ then there exists Γ′′ such that ` Γ′′ .h′; e′ :T /Γ′.

DEFINITION 2 (Stuck States). If e is neither a value nor a variable
and ¬∃h′, e′.(h; e −→ h′; e′) then the state h; e is stuck.

A state is stuck if either the left-hand side of the reduction rule
for its syntactic category is undefined, or if some premise does not
hold. To prove that the language is type safe, we prove the following
by induction on the structure of e.

THEOREM 2 (Type Safety). If ` Γ . h; e : T / Γ′ then h; e is not
stuck.

5. Typechecking Algorithm
Figure 17 defines a typechecking algorithm. It is used in two steps.
First, for each class C with declared session type S, P(C, S, ∅) is
called. This returns annotations for the methods of C, in the form
req C[&{mi : Si}i∈I] ens C[∆(Si)] for T mi{e}. AlgorithmP is
very simple, and just translates the session type of a class into ex-
plicit pre- and post-conditions for its methods. A particular method
can receive several different annotations, giving a form of overload-
ing which is useful in the example of Figure 4, allowing close to be
called in three different states. In this case, the req type should be
used to disambiguate methods calls.

The second step is to call A(C, F, S, ∅) for each class C,
where S is the declared session type of C and F is the ini-
tial field typing (with all fields having type Null) of C. Algo-
rithm A has two purposes. (1) It calls algorithm B to type-
check the method bodies of C, in the order corresponding to S.
While typechecking, the annotations calculated by algorithm P
are used to check the effect of method calls. (2) It calculates
another set of annotations for the methods of C, in the form
req C[&{mi : Si}i∈I ; F] ens C[Sj ; Fj] for T mj() {e}. These
are used in the proof of type safety, to show that a typable program
in the top-level language yields a typable program in the runtime
language.

The definition of B follows the typing rules (Figure 14) except
for one point: T-INJ means that the rules are not syntax-directed.
To compensate, clause E.l of B produces a partial variant field
typing with an incomplete set of labels, and clause switch uses the
] operator to combine partial variants and check for consistency.

The various “where” and “if” clauses should be interpreted
as conditions for the functions to be defined; cases in which the
functions are undefined should be interpreted as typing errors.

For example, applying algorithm P to class FileReadToEnd in
Figure 1 produces the following annotated methods.

req Fi leReadToEnd [I n i t]
ens Fi leReadToEnd [⊕{Res .OK: Open , . . . }]
Res open ()

req Fi leReadToEnd [Open]
ens Fi leReadToEnd [⊕{Bool . True : C lose , . . . }]
Bool e o f ()

req Fi leReadToEnd [Read]
ens Fi leReadToEnd [Open]

Algorithm P
P(C, &{mi : Si}i∈I , ∆) =
{req C[&{mi : Si}i∈I] ens C[∆(Si)] for T mi{e}
| T mi(){e} ∈ methods(C)} ∪

S
j∈I P(C, Sj , ∆)

P(C,⊕{E.li : Si}i∈I , ∆) =
S

i∈I P(C, Si, ∆)

P(C, µX.S, ∆) = P(C, S, ∆ ∪ {X 7→ µX.S})
Algorithm A
A(C, F, &{mi : Si}i∈I , ∆) =S

j∈I{{req C[&{mi : Si}i∈I ; F] ens C[Sj ; Fj] for T mj() {e}}
∪A(C, Fj , Sj , ∆) | T mj() {e} ∈ methods(C),

(Fj , T) = B(F, e)}
A(C, F,⊕{E.li : Si}i∈I , ∆) =

S
j∈I A(C, F, Sj , ∆)

A(C, F, µX.S, ∆) = A(C, F, S, ∆ ∪ {X 7→ F})
A(C, F, X, ∆) = if ∆(X) = F then ∅
Algorithm B
B(F, null) = (F, Null)
B(F, E.l) = (〈E.l : F 〉, E)
B(F, new C()) = (F, C[session(C)])
B(F, this.f) = (F + f : Null, F (f))

B(F, this.f = e) = (F ′ + this.f : T, Null)
where (F ′, T) = B(F, e)

B(F, this.f .m()) = (F + f : Null, T then C[S′] f)
where F (f) = C[S] and
req C[S] ens C[S′] for T mj() {e} ∈ methods(P(C))

B(F, switch (this.f) {case li : ei}i∈I) = (
U

i∈I F ′
i , T)

where F (f) = (T then C[⊕{E.li : Si}i∈I] g) and
∀i ∈ I.((F ′

i , T) = B(F + f : Null + g : C[Si], ei))
B(F, while (this.f) {e}) = (Ff + f : Null + g : C[Sf], Null)

where F (f) = (Bool then C[⊕{Bool.F : Sf , Bool.T : St}])
and (F, T) = B(Ft, e)

B(F, e; e′) = B(~m, F ′, e′) where (F ′,) = B(~C, F, e)

Combining partial variants

F] F = F if F is not a variant typing
〈E.li : Fi〉i∈I] 〈E.mj : Gj〉j∈J = 〈E.lk : Hk〉k∈I∪J

where ∀i ∈ I.(Hi = Fi), ∀j ∈ J.(Hj = Gj),
and whenever li = lj we have Fi = Gj

Figure 17. Algorithm

S t r i n g read ()

req Fi leReadToEnd [C l o s e]
ens Fi leReadToEnd [end]
Nul l c l o s e ()

These annotations are used when algorithmA is applied to class
FileReader in Figure 2 producing the following annotated methods.
These annotations include information about the field typing within
FileReader, but no information about fields within FileReadToEnd,
for which we do not have the source code.

req F i l eR e ad e r [I n i t ; Nul l f]
ens F i l eR e ad e r [Read ; Fi leReadToEnd [I n i t] f]
Nul l i n i t () { . . . }

req F i l eR e ad e r [Read ; Fi leReadToEnd [I n i t] f]
ens F i l eR e ad e r [F i n a l ; Fi leReadToEnd [end] f]
Nul l r ead () { . . . }

req F i l eR e ad e r [F i n a l ; Fi leReadToEnd [end] f]
ens F i l eR e ad e r [F i n a l ; Fi leReadToEnd [end] f]

S t r i n g t o S t r i n g () { . . . }

THEOREM 3. Let ~D be a program, i.e. a sequence of declarations.

1. For every class C {S; ~f ; ~M} or class C extends C′ {S; ~f ; ~M}
in ~D, P(C, S, ∅) and A(C, ~Null~f, S, ∅) terminate.

2. For every class C {S; ~f ; ~M} or class C extends C′ {S; ~f ; ~M}
in ~D, replace ~M byA(C, ~Null~f, S, ∅), and let ~D′ be the result-
ing declarations. Then ` ~D′.

The session type of a class has two interpretations. The first is as
a limit on the allowed sequences of method calls, a kind of safety
property, and this is always guaranteed by our type safety result.
The second interpretation is that every sequence of method calls in
the session type should be realizable in a typable program. Given a
class definition C in the internal syntax, with explicit req and ens
annotations, construct an expression eC as follows:

1. View the session type of C as a (possibly infinite) tree, with
branching at & and + nodes.

2. Make it into a finite tree by replacing some & nodes by end.

3. For each & node, remove all except one of the branches; call
the resulting tree T .

4. eC constructs an object of class C and contains a sequence
of method calls and switch statements corresponding to the
structure of T .

Typability of C in the internal system does not guarantee that eC

is typable, because it is possible for the req and ens clauses to
contain spurious constraints such that the ens of one method does
not match the req of the next method in the session type. But the
typechecking algorithm, applied to a program in the programmer’s
syntax, produces definitions such that every eC is typable.

6. Related Work
Cyclone, Vault, CQual, Fugue, Sing#. Cyclone (21; 22), Vault (9;
16), and CQual (18) are systems based on the C programming lan-
guage that allow protocols to be statically enforced by a compiler.
Cyclone adds many benefits to C, but its support for protocols is
limited to enforcing locking of resources. Between acquiring and
releasing a lock, there are no restrictions on how a thread may use
a resource. In contrast, our system uses types both to enforce lock-
ing of objects (via linearity) and to enforce the correct sequence of
method calls.

Vault is much closer to our system, allowing abstract states to
be defined for resources, with pre- and post-conditions for each
operation, and checking statically that operations occur in the cor-
rect sequence. It uses linear types to control aliasing, and uses the
adoption and focus mechanism (16) to re-introduce aliasing in lim-
ited situations. Fugue (17; 10) extends similar ideas to an object-
oriented language, and uses explicit pre- and post-conditions that
are somewhat similar to our req/ens annotations. CQual expects
users to annotate programs with type qualifiers; its type system,
simpler and less expressive than the above, provides for type infer-
ence. The main novelty of our work is the use of the session type
of a class as a global specification, to introduce a dependency be-
tween the result of a method and the subsequent abstract state of
the object, and to characterize the subtyping relation.

Sing# (15) is an extension of C# which has been used to imple-
ment Singularity, an operating system based on message-passing.
It incorporates session types to specify protocols for communi-
cation channels, and introduces contracts which are analogous to
our req and ens clauses. Like our system, Sing# is object-oriented,
but it uses dynamic interfaces only in relation to communication

channels, and not with classes in general. Although inheritance of
contracts is mentioned very briefly in (15), details do not seem to
have been published; in our system the use of the session type as
a global specification is significant in describing inheritance and
subtyping. A technical point is that Sing# uses a single construct
switch receive to combine receiving an enumeration value and do-
ing a case-analysis, whereas our system allows a switch on an enu-
meration value to be separated from the method call that produces
it.
Resource Usage Analysis. Igarashi and Kobayashi (28) define
a general resource usage analysis problem for an extended λ-
calculus, including a type inference system, that statically checks
the order of resource usage. Albeit quite expressive, their system
does not seem to allow expressing branching on method results.
Non-Uniform Concurrent Objects / Active Objects. Another re-
lated line of research was started by Nierstrasz (31), aimed at de-
scribing the behaviour of non-uniform active objects in concurrent
systems, whose behaviour (including the set of available methods)
may change dynamically. He defined subtyping for active objects,
but did not formally define a language semantics or a type system.
The topic has been continued by several authors including Ravara et
al. (38; 39), Puntigam and Peter (35; 36), and Caires (4). Damiani,
Giachino, et.al. (8), propose a Java-like concurrent language incor-
porating inheritance and subtyping and equipped with a type-and-
effect system, where method availability is made dependent on the
state of objects. Our language is sequential, but we go beyond all
existing work on non-uniform objects referred above by describing
client branching on method results. Caires’ work has finer-grained
control of resources.
Unique Ownership of Objects. Our system treats objects with dy-
namic interfaces linearly in a straightforward way to prevent the
creation of aliases and thus avoid the problem of maintaining con-
sistency between different views of an object. This idea goes back
at least as far as (2) and has been applied many times. However, lin-
earity causes problems of its own: linear objects cannot be stored in
shared data structures, and this tends to restrict expressivity. There
is a large literature on less extreme techniques for static control
of aliasing: Hogg’s Islands (23), Almeida’s balloon types (1), No-
ble et al.’s flexible alias protection (32), Clarke et al.’s ownership
types (7), Fähndrich and DeLine’s adoption and focus (16), Östlund
et al.’s Joe3 (33) among others.

We have developed our type system for dynamic interfaces, and
the theory of inheritance, using the simplest possible approach to
alias control. We hope that it will be possible to integrate a more
sophisticated alias analysis, such as those mentioned above, into
our system. The key property we need is that when changing the
type of an object (by calling a method on it or by performing
a switch or a while on an enumeration constant returned from a
method call) there must be a unique reference to it.
Session Types for Object-Oriented Languages. Several recent
papers by Dezani-Ciancaglini, Yoshida et al. (11; 12; 13; 14; 26)
have combined session types, as specifications of protocols on com-
munication channels, with the object-oriented paradigm. This work
focuses on communication channels and does not address the more
general question of dynamic interfaces. Their approach is also dif-
ferent from that of Sing#. Instead of defining a contract for a chan-
nel, with methods for sending and receiving, a channel is created
and used entirely within a single method. Bounded polymorphism,
which includes subtyping, is studied in (14) but it seems orthogonal
to the question of inheritance and subclasses.
Analysis of Concurrent Systems using Pi-Calculus. Some work
on static analysis of concurrent systems expressed in pi-calculus
is also relevant, in the sense that it addresses the question (among
others) of whether attempted uses of a resource are consistent with
its state. Kobayashi et al. have developed a generic framework (27)

including a verification tool (29) in which to define type systems
for analyzing various behavioural properties including sequences
of resource uses (30). In some of this work, types are themselves
abstract processes, and therefore in some situations resemble our
session types. Rajamani et al.’s Behave (6; 37) uses CCS to de-
scribe properties of π-calculus programs, and verify the validity of
temporal formulae via a combination of type-checking and model-
checking techniques, thereby going beyond static analysis. How-
ever, all of this work is based on π-calculus; it is not obvious how
to use these results to directly tackle the problem of analysis of
object-oriented programs.

7. Future Work
There are several topics for future work.
Shared classes. In the present system, all classes are linear. It is
straightforward to add shared classes, whose objects do not have to
be uniquely referenced. The behaviour of shared objects is largely
orthogonal to that of linear objects, except for the condition that a
shared object’s fields cannot contain linear objects.
More general methods. It should not be difficult to allow methods
to return arbitrary values, not just enumerated values, meaning
that session types would not have to alternate between & and ⊕.
Supporting method parameters is very straightforward.
More flexible control of aliasing. The mechanism for controlling
aliasing should be orthogonal to the theory of how operations affect
uniquely-referenced objects. We intend to adapt existing work to
relax our strictly linear control and obtain a more flexible language.
Self calls. For technical reasons, the present version of our work
does not allow self calls (this.m(..)). One solution could be to dis-
tinguish between private and public session types, related by hiding
some methods; self calls would be allowed for private methods.
Complete use of sessions. Some systems based on session types
guarantee that sessions are completely used, finishing in state end.
Our system does not have this property, but to achieve it we only
need to change the rules for assignment so that an incompletely-
used object cannot be discarded. In a practical language this condi-
tion could be specified independently for each object.
Java-style interfaces. If class C implements interface I then we
should have session(C) <: session(I), interpreting the interface
as a specification of minimum method availability.
Concurrency. We believe that by extending our system to a con-
current language with channel-based communication, we can unify
dynamic interfaces, the Sing# (15) version of session types, and
other work on object-oriented session types (12; 13; 14; 26). It will
also be interesting to look at RMI for dynamic interfaces.
Specifications involving several objects. Multi-party session
types (3; 24) allow to describe specifications that involve more
than two objects. The introduction of such types would allow dis-
ciplining the usage of more sophisticated patterns of object usage.

8. Conclusions
We have defined a core class-based object-oriented language with
a static type system which is able to check correctness of method
calls in a setting in which method availability depends on an ob-
ject’s state. We have proved the correctness of the type system with
respect to a formal operational semantics. Key features of the lan-
guage are: firstly, allowing a dependency between the result of a
method and the subsequent abstract state of its object, thereby forc-
ing the client of such a method to branch accordingly; secondly, the
use of a session type as a global representation of the abstract states
of an object, enabling us to define rules for inheritance in terms of
a subtyping relation on session types.

Acknowledgments
Simon Gay was partially supported by the Security and Quan-
tum Information Group, Instituto de Telecomunicações, Portugal,
and by the UK EPSRC grants “Engineering Foundations of Web
Services: Theories and Tool Support” (EP/E065708/1) and “Be-
havioural Types for Object-Oriented Languages” (EP/F037368/1).
He thanks the University of Glasgow for the sabbatical leave during
which part of this research was done.

António Ravara and Vasco T. Vasconcelos were partially sup-
ported by FEDER, the EU IST proactive initiative FET-Global
Computing (project Sensoria, IST–2005–16004), and by the Por-
tuguese FCT (via SFRH/BSAB/757/2007, and project Space–
Time–Types, POSC/EIA/55582/2004).

António Ravara was also partially supported by the UK EP-
SRC grant “Behavioural Types for Object-Oriented Languages”
(EP/F037368/1).

References
[1] P. S. Almeida. Balloon types: Controlling sharing of state in data

types. ECOOP, Springer LNCS, 1241:32–59, 1997.

[2] H. G. Baker. ’use-once’ variables and linear objects — storage man-
agement, reflection and multi-threading. ACM SIGPLAN Notices,
30(1), 1995.

[3] E. Bonelli and A. Compagnoni. Multipoint Session Types for a Dis-
tributed Calculus. In G. Barthe and C. Fournet, editors, Proceedings of
the Third International Symposium on Trustworthy Global Computing,
volume 4912 of Lecture Notes in Computer Science, pages 240–256.
Springer-Verlag, 2007.

[4] L. Caires. Spatial-behavioral types, distributed services, and re-
sources. TGC, Springer LNCS, 4661:98–115, 2006.

[5] M. Carbone, K. Honda, and N. Yoshida. Structured global program-
ming for communication behaviour. ESOP, Springer LNCS, 4421:2–
17, 2007.

[6] S. Chaki, S. K. Rajamani, and J. Rehof. Types as models: model
checking message-passing programs. In POPL, pages 45–57. ACM
Press, 2002.

[7] D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible
alias protection. In OOPSLA, volume 33(10) of SIGPLAN Notices.
ACM Press, 1998.

[8] F. Damiani, E. Giachino, P. Giannini, and S. Drossopoulou. A type
safe state abstraction for coordination in Java -like languages. Acta
Informatica, October 2008.

[9] R. DeLine and M. Fähndrich. Enforcing high-level protocols in low-
level software. In PLDI, volume 36(5) of SIGPLAN Notices, pages
59–69. ACM Press, 2001.

[10] R. DeLine and M. Fähndrich. The Fugue protocol checker: is your
software Baroque? Technical Report MSR-TR-2004-07, Microsoft
Research, 2004.

[11] M. Dezani-Ciancaglini, S. Drossopoulou, E. Giachino, and
N. Yoshida. Bounded session types for object-oriented languages.
FMCO, Springer LNCS, 4709:207–245, 2007.

[12] M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, and S. Drossopolou.
Session types for object-oriented languages. ECOOP, Springer LNCS,
4067:328–352, 2006.

[13] M. Dezani-Ciancaglini, N. Yoshida, A. Ahern, and S. Drossopolou.
A distributed object-oriented language with session types. TGC,
Springer LNCS, 3705:299–318, 2005.

[14] S. Drossopoulou, M. Dezani-Ciancaglini, and M. Coppo. Amalgamat-
ing the session types and the object oriented programming paradigms.
Manuscript, 2007.

[15] M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. Hunt, J. R.
Larus, and S. Levi. Language support for fast and reliable message-
based communication in Singularity OS. In EuroSys. ACM Press,
2006.

[16] M. Fähndrich and R. DeLine. Adoption and focus: practical linear
types for imperative programming. In PLDI, volume 37(5) of SIG-
PLAN Notices, pages 13–24. ACM Press, 2002.

[17] M. Fähndrich and R. DeLine. Typestates for objects. ESOP, Springer
LNCS, 3086:465–490, 2004.

[18] J. S. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type qualifiers.
In PLDI ’02: Proceedings of the ACM SIGPLAN 2002 Conference on
Programming language design and implementation, pages 1–12, New
York, NY, USA, 2002. ACM.

[19] S. J. Gay and M. J. Hole. Subtyping for session types in the pi calculus.
Acta Informatica, 42(2/3):191–225, 2005.

[20] S. J. Gay, A. Ravara, and V. T. Vasconcelos. Session types for inter-
process communication. Technical Report TR-2003-133, Department
of Computing Science, University of Glasgow, March 2003.

[21] D. Grossman. Type-safe multithreading in Cyclone. In TLDI, volume
38(3) of SIGPLAN Notices, pages 13–25. ACM Press, 2003.

[22] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney.
Region-based memory management in Cyclone. In PLDI, volume
37(5) of SIGPLAN Notices, pages 282–293. ACM Press, 2002.

[23] J. Hogg. Islands: aliasing protection in object-oriented languages. In
OOPSLA, volume 26(11) of SIGPLAN Notices, pages 271–285. ACM
Press, 1991.

[24] K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous
Session Types. In G. C. Necula and P. Wadler, editors, Proceedings
of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2008, pages 273–284. ACM, 2008.

[25] K. Honda, V. Vasconcelos, and M. Kubo. Language primitives and
type discipline for structured communication-based programming.
ESOP, Springer LNCS, 1381:122–138, 1998.

[26] R. Hu, N. Yoshida, and K. Honda. Session-based distributed program-
ming in Java. ECOOP, Springer LNCS, 5142:516–541, 2008.

[27] A. Igarashi and N. Kobayashi. A generic type system for the pi-
calculus. Theoretical Computer Science, 311(1-3):121–163, 2004.

[28] A. Igarashi and N. Kobayashi. Resource usage analysis. ACM Trans.
on Programming Languages and Systems, 27(2):264–313, 2005.

[29] N. Kobayashi. Type-based information flow analysis for the pi-
calculus. Acta Informatica, 42(4–5):291–347, 2005.

[30] N. Kobayashi, K. Suenaga, and L. Wischik. Resource usage analysis
for the π-calculus. Logical Methods in Computer Science, 2(3:4):1–
42, 2006.

[31] O. Nierstrasz. Regular types for active objects. In Object-Oriented
Software Composition, pages 99–121. Prentice Hall, 1995.

[32] J. Noble, J. Vitek, and J. Potter. Flexible alias protection. ECOOP,
Springer LNCS, 1445:158–185, 1998.

[33] J. Östlund, T. Wrigstad, D. Clarke, and B. Åkerblom. Ownership,
uniqueness and immutability. In International Workshop on Alias-
ing, Confinement and Ownership in object-oriented programming
(IWACO), 2007.

[34] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.
[35] F. Puntigam. State inference for dynamically changing interfaces.

Computer Languages, 27:163–202, 2002.
[36] F. Puntigam and C. Peter. Types for active objects with static deadlock

prevention. Fundamenta Informaticae, 49:1–27, 2001.
[37] S. K. Rajamani and J. Rehof. A behavioral module system for the

pi-calculus. SAS, Springer LNCS, 2126:375–394, 2001.
[38] A. Ravara and L. Lopes. Programming and implementation issues

in non-unifom TyCO. Technical report, Department of Computer
Science, Faculty of Sciences, University of Porto, Portugal, 1999.

[39] A. Ravara and V. T. Vasconcelos. Typing non-uniform concurrent
objects. CONCUR, Springer LNCS, 1877:474–488, 2000.

[40] K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language
and its typing system. PARLE, Springer LNCS, 817, 1994.

[41] A. K. Wright and M. Felleisen. A syntactic approach to type sound-
ness. Information and Computation, 115(1):38–94, 1994.

