
ZU064-05-FPR main 27 October 2008 9:56

Linear Type Theory for Asynchronous Session
Types

Simon J. Gay
Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK.

(e-mail: simon@dcs.gla.ac.uk)

Vasco T. Vasconcelos
Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, 1749–016 Lisboa, Portugal.

(e-mail: vv@di.fc.ul.pt)

Abstract

Session types support a type-theoretic formulation of structured patterns of communication, so that
the communication behaviour of agents in a distributed system can be verified by static type checking.
Applications include network protocols, business processes, and operating system services. In this
paper we define a multithreaded functional language with session types, which unifies, simplifies
and extends previous work. There are four main contributions. First: an operational semantics with
buffered channels, instead of the synchronous communication of previous work. Second: we prove
that the session type of a channel gives an upper bound on the necessary size of the buffer. Third:
session types are manipulated by means of the standard structures of a linear type theory, rather
than by means of new forms of typing judgement. Fourth: a notion of subtyping, including the
standard subtyping relation for session types (imported into the functional setting), and a novel form
of subtyping between standard and linear function types which allows the typechecker to handle
linear types conveniently. Our new approach significantly simplifies session types in the functional
setting, clarifies their essential features, and provides a secure foundation for language developments
such as polymorphism and object-orientation.

1 Introduction

The concept of service-oriented computing has transformed the design and implementation
of large-scale distributed systems, including online consumer services such as e-commerce
sites. It is now common practice to build a system by gluing together the online services
of several providers: for example, online travel agents, centralised hotel reservation sys-
tems, and online shops. Such systems are characterised by detailed and complex proto-
cols, separate development of components and re-use of existing components, and strict
requirements for availability and correctness. In this setting, formal development methods
and static analysis are vitally important: for example, the implementor of an online travel
agent cannot expect to test against the live booking systems of the airlines.

This paper concerns one approach to static analysis of the communication behaviour of
agents in a distributed system: session types Honda (1993); Takeuchi et al. (1994); Honda
et al. (1998); Yoshida & Vasconcelos (2007). In this approach, communication protocols
are expressed as types, so that static typechecking can be used to verify that agents ob-

1

ZU064-05-FPR main 27 October 2008 9:56

serve the correct protocols. For example, the type S = &〈service: ?Int .! Int .S, quit :End〉
describes the server’s view of a protocol in which the server offers the options service and
quit. If the client selects service then the server receives an integer, sends an integer in
response, and the protocol repeats. If the client selects quit then the only remaining action
is to close the connection. It is possible to statically typecheck a server implementation
against the type S, to verify that the specified options are provided and are implemented
correctly. Similarly, a client implementation can be typechecked against the dual type S, in
which input and output are interchanged.

Early work on session types used network protocols as a source of examples, but more
recently the application domain has been extended to business protocols arising in web
services (W3C, 2005) and operating system services (Fähndrich et al., 2006). By incor-
porating correspondence assertions, the behavioural guarantees offered by session types
have been strengthened and applied to security analysis (Bonelli et al., 2005). A theory
of subtyping for session types has been developed (Gay & Hole, 2005) and adapted for
specifying distributed software components (Vallecillo et al., 2006). Session types are an
established concept with a wide range of applications.

The basic idea of session types is separate from the question of which programming
language they should be embedded in. Much of the research has defined systems of session
types for pi calculus and related process calculi, but recently there has been considerable
interest in session types for more standard language paradigms. Our own previous work
(Gay et al., 2003; Vasconcelos et al., 2004, 2006) was the first proposal for a functional
language with session types. Neubauer & Thiemann (2004a) took a different approach,
embedding session types within the type system of Haskell. Session types are also of
interest in object-oriented languages; this situation has been studied formally by Dezani-
Ciancaglini et al. (2005, 2006); Coppo et al. (2007); Capecchi et al. (2008) and is included
in the work of Fähndrich et al. (2006).

In the present paper we define a multithreaded functional language with session types,
unifying and simplifying several strands of previous work and extending the preliminary
version (Gay & Vasconcelos, 2007), and clarifying the relationship between session types
and standard functional type theory. The contributions of the paper are as follows.

1. Building on our previous work (Gay & Vasconcelos, 2007), we formalize an op-
erational semantics in which communication is buffered, instead of assuming syn-
chronization between send and receive, as in previous work (Vasconcelos et al.,
2006, 2004). This is more realistic, and means that send and select never block.
The semantics is similar to, but simpler than, unpublished work by Neubauer &
Thiemann (2004c). Fähndrich et al. (2006) also use buffered communication but
have not published a formal semantics.

2. We give a formal proof that the session type of a channel can provide a static upper
bound on the size of its buffer, as observed informally by Fähndrich et al. (2006).
We additionally show that static type information can be used to decrease the runtime
buffer size and ultimately deallocate the buffer.

3. We work within the standard framework of a functional language with linear as well
as unlimited types, treating session types as linear in order to guarantee that each
channel endpoint is owned by a unique thread. For example, receive : ?T.S→ T ⊗S

2

ZU064-05-FPR main 27 October 2008 9:56

so that the channel, with its new type, is returned with the received value. This gives
a huge simplification of our previous work (Vasconcelos et al., 2006, 2004) which
instead used a complex system of alias types.

4. We include two forms of subtyping: the standard subtyping relation for session
types (Gay & Hole, 2005) and a novel form of subtyping between standard and
linear function types. (Gay, 2006). The former supports modular development by
permitting compatible changes in agents’ views of a protocol. The latter reduces the
burden of linear typing on the programmer, by allowing standard function types to
be inferred by default and converted to linear types if necessary.

The resulting system provides a clear and secure foundation for further developments such
as polymorphism and object-orientation.

The outline of the rest of paper is as follows. Section 2 uses an example of a business
process to present the language. Section 3 formally defines the syntax and the operational
semantics. Section 5 defines the typing system and gives the main results of the paper.
Section 7 discusses related and future work.

2 Example: Business Protocol

We present a small example containing typical features of many web service business
protocols (Dezani-Ciancaglini et al., 2006; W3C, 2005). A mother and her young son
are using an online book shop. The shop implements a simple protocol described by the
session type

Shop = &〈 add : ? Book . Shop , checkout : ? Card . ? Address . end 〉

The branching type constructor & indicates that the shop offers two options: add and
checkout. After add, the shop receives (?) data of type Book, and then returns to the initial
state. After checkout, the shop receives credit card details and an address for delivery, and
that is the end of the interaction. Of course, a realistic shop would offer many more options.

Shops only exist because there are shoppers. Shoppers also implement a protocol, where
they choose zero or more books followed by checking out, upon which they provide the
shop with the credit card details a delivery address. We write all this as:

Shopper = ⊕〈 add : ! Book . Shopper , checkout : ! Card . ! Address . end 〉

Notice that protocols for shops and shoppers are compatible, in the sense an interaction
between the two will not terminate prematurely due to a mismatch in the expectations of
one of the partners. In fact, A shopper starts by choosing (selecting in the terminology
of session types) one of two options—add or checkout—and these are exactly the options
provided by shops. If the shopper selects option add, she then sends a Book; after accepting
option add, a shop expects a Book. For the other option, checkout, shops expect a Card and
an Address, in this order, and that is exactly what shoppers provide. After checking out, the
run of protocol is terminated for both parties, as indicated in the terminal end in each type.

Types Shop and Shopper are also dual; the latter can be obtained from the former, by
exchanging ! and ?, and ⊕ and &; we have that duality that ensures compatibility.

To make the services of the shop available, the global environment should contain a
name whose type is an access point for sessions of type Shop or type Shopper, depending

3

ZU064-05-FPR main 27 October 2008 9:56

on the intended usage. A name such as this is analogous to a URL or an IP address.
The access point is used both by the shop and its clients. In order to publish a service,
the shop only needs the server capability of the access point, which we have (arbitrarily)
chose to be the accept capability. We express this by saying that the shop uses an access
point of type 〈Shop〉a, where tag a reminds us of the accept capability. The shopper, on
the other hand, will exercise the request capability, and so uses the same access point,
but with type 〈Shopper〉r. In the possession of the accept capability, the shop contains
an expression accept shopAccess; whereas the shopper exercises its request capability by
executing an expression request shopAccess. At runtime these expressions interact to create
a new private channel, known only to the two threads (shop and shopper).

The shop is implemented as a function parameterised on its access point, using an
auxiliary recursive function to handle the repetitive protocol. We do not show how the
order is delivered, and assume the constructors emptyOrder and addBook.

shop : : 〈 Shop〉a → end
shop shopAccess = shopLoop (accept shopAccess) emptyOrder

shopLoop : : Shop → Order → end
shopLoop s o r d e r =

case s of {
add ⇒ λ s . l e t (book , s) = r e ce i v e s i n

shopLoop s (addBook book o r d e r)
checkout ⇒ λ s . l e t (card , s) = r e ce i v e s i n

l e t (add re s s , s) = r e ce i v e s i n s
}

The case expression combines receiving an option and case-analysis of the option; the code
includes a branch for each possibility.

The mother intends to choose a book for herself, then allow her son to choose a book. She
does not want to give him free access to the channel which accesses the shop, so instead she
gives him a function which allows him to choose exactly one book (of an appropriate kind)
and then completes the transaction. This function, of type Book (Book, plays the role of
a gift voucher. Communication between mother and the gift recipient is also described by
a session type

Re c i p i e n t = ! (Book (Book) . ? Book . end

where mother sends the voucher and expects back the book chosen by her son. The son, on
the other hand, conducts a dual protocol, expecting the voucher and replying with a book.

Son = ?(Book (Book) . ! Book . end

As in the case of shopAccess, mother chooses one capability (request in the code below)
and son the other capability (accept) from a common access point.

mother : : Card → Address → 〈 Shopper〉r → 〈 Re c i p i e n t〉r → Book → end
mother ca rd add r e s s shopAccess sonAcces s book =

l e t c = request shopAccess i n
l e t c = s e l e c t add c i n
l e t c = send book c i n
l e t s = request sonAcces s i n
l e t s = send (vouche r ca rd add r e s s c) s i n

4

ZU064-05-FPR main 27 October 2008 9:56

l e t (sonBook , s) = r e ce i v e s i n s

vouche r : : Card → Address → Shop → Book (Book
voucher ca rd add r e s s c book =

l e t c = i f (i s Ch i l d r e n sBook book)
then l e t c = s e l e c t add c i n

send book c
e l s e c i n

l e t c = s e l e c t checkout c i n
l e t c = send ca rd c i n
l e t c = send add r e s s c i n book

son : : 〈 Son〉a → Book → end
son sonAcces s book =

l e t s = accept sonAcces s i n
l e t (f , s) = r e ce i v e s i n
l e t s = send (f book) s i n s

The complete system is a configuration of expressions in parallel, running as separate
threads, and typed in a suitable environment. The two usages of name shopAccess (that of
the shop with type 〈Shop〉a, and that of mother with type 〈Shopper〉r) are reconciled by
giving shopAccess the type 〈Shop,Shopper〉, which turns out to be a super type of its two
views. We proceed similarly for sonAccess, noting that the type environment below should
also include the types of all of the functions used above, as well as mCard etc.

shopAccess : 〈Shop , Shopper 〉 , sonAcces s : 〈Son , R e c i p i e n t 〉 `
〈 shop shopAccess 〉 ‖ 〈 son sonAcces s sBook 〉 ‖
〈mother mCard mAddress shopAccess sonAcces s mBook 〉

The example illustrates the following general points about our language, its semantics
and its type system; the details are presented in Sections 3 to 5.

• Channels, such as c in mother, are linear values; session types are linear types.
The linear function type constructor (appears in the type of voucher because
applying voucher to a channel of type Shop yields a function closure which contains
a channel—hence this function closure must itself be treated as a linear value and
given a linear type. Because of linearity, Son cannot duplicate the voucher and order
more than one book.
• Operations on channels, such as send and select , return the channel after communi-

cating on it. Our programming style is to repeatedly re-bind the channel name using
let ; each c is of course a fresh bound variable. The receive operation returns the
value received and the channel, as a (linear) pair which is split by a let construct.
In the static type system, the channel type returned by, for example, send, is not the
same as the channel type given to it; this reflects the fact that part of the session types
is consumed by a communication operation.
• The type system supports programming with higher-order functions on channels in

a very natural way, as illustrated by the function voucher in the example.

Observe that the type Shop allows an unbounded sequence of messages in the same di-
rection, alternating between add labels and book details. The shop would therefore require

5

ZU064-05-FPR main 27 October 2008 9:56

a potentially unbounded buffer for incoming messages. However, Fähndrich et al. (2006)
have pointed out that if the session type does not allow unbounded sequences of messages
in the same direction then it is possible to obtain a static upper bound on the size of the
buffer. This is also true in our system, and we give a formal proof in Section 6. For example,
the type S in Section 1 yields a bound of 2 because after sending service and an Int, the
client must wait to receive an Int. A more realistic version of the shop example would
require an acknowledgement when a book is added, and this would also lead to a bound
on the buffer size. Furthermore, some branches of the protocol may have smaller bounds,
and information obtained during typechecking would enable a compiler to generate code
to deallocate buffer space; the extreme case is that the compiler can also work out when to
completely deallocate the buffer. We should point out, however, that the bound applies to
the number of items in the buffer, and unless we can statically bound the size of each item,
it does not give a bound on the memory required by the buffer.

A few variations of the example illustrating subtyping and (explicit) channel sending
complete this section.

Subtyping function types: Changing the function voucher. The mother decides that
voucher should not order the book; she will complete the order herself. She defines

voucher book = book

which can have either of the types Book→ Book and Book (Book. We suggest that a
type inference system should produce the type Book→ Book. Because we have Book→
Book <: Book (Book (Section 4), the expression send (f book) in the code of son is still
typable; there is no need to change the type or the code of son.

The code for mother, however, becomes untypable, for the channel s returned by son

is not of type end anymore. Since the new version of the voucher does not “proceed” to
checkout, the type of channel s returned by the son is still Shopper. Mother has to complete
the protocol, by checking out after adding zero or more books (possibly including the son’s
book).

mother ca rd add r e s s shopAccess sonAcces s book =
. . .
l e t s = send (vouche r ca rd add r e s s c) s i n
l e t (sonBook , s) = r e ce i v e s i n
. . .
l e t s = s e l e c t checkout s i n
l e t s = send ca rd s i n
l e t s = send add r e s s s i n s

Subtyping session types: Adding options to the session type Shop. The shop adds an
option to remove a book from the order, changing the session type to

NewShop = &〈 add : ?Book . NewShop ,
remove : ?Book . NewShop ,
checkout : ?Card . ? Address . end 〉

We have NewShop is still compatible with the old Shooper; in fact, code following each
type can still operate without violating the other side’s expectations. Where newShop offers

6

ZU064-05-FPR main 27 October 2008 9:56

three options, the old Shopper only takes advantage of two; compatibility rests assured.
For this exact reason, we say that the old Shop is a subtype of newShop. In fact, Shop <:
NewShop because the dual of Shop (Shopper above) is compatible with newShop, as we have
just shown.

Subtyping session types: Removing options from the session type Shopper. Stingy
mother changed her mind. After starting a session with shop, she decides her budget has
no room for more books. In order to comply to the protocol, she still has to proceed to
checkout, providing her card and address details. The type of shopAccess, as seen from her
side, is now:

St ingyShoppe r = ⊕〈 checkout : ! Card . ! Address . end 〉

and her code as below.

mother : : Card → Address → 〈 St ingyShoppe r〉r → end
s t i ngyMothe r ca rd add r e s s shopAccess =

l e t c = request shopAccess i n
l e t c = s e l e c t checkout c i n
l e t c = send ca rd c i n
l e t c = send add r e s s c i n c

Stingy mother is still compatible with the old shop, only that she does not take advantage
of the add option. We have that Shopper <: StingyShopper, since the dual of Shooper (Shop

above) is compatible with StingyShopper as we have just shown.
Can StingyShopper safely interact with NewShop? Reasoning as for the case of StingyMother

and Shop, we can easily conclude so. Alternatively, we notice that the subtyping direction
is inverted by duality. Then, the dual of NewShop is a subtype of the dual of Shop (that
is Shopper), and by the transitivity of subtyping we obtain that the dual of NewShop is
a subtype of StingyShopper, hence NewShop and StingyShopper are compatible. Section 4
discusses the relationship between subtyping, duality and compatibility.

Subtyping access points. The original shop/mother configuration classified name shopAccess

with type 〈Shop,Shopper〉. We now have that the new shop uses the access point with type
〈NewShop〉a, and stingy mother with 〈StingyShopper〉r, making the access point proper of
type 〈NewShop,StingyShopper〉. By putting 〈NewShop,StingyShopper〉 <: 〈Shop,Shopper〉,
we can safely replace shop by the new shop and mother by the stingy mother, thus obtaining
the following configuration, where son will never get its accept challenge matched.

shopAccess : 〈NewShop , S t i ngyShoppe r 〉 , sonAcces s : 〈Son , R e c i p i e n t 〉 `
〈 newShop shopAccess 〉 ‖ 〈 son sonAcces s sBook 〉 ‖
〈 s t i ngyMothe r mCard mAddress shopAccess 〉

Subtyping session types: Receiving values of a more general nature. The online busi-
ness blossoms, and the shop now provides a wide range of products, including books
as before, but also audio-visuals, and electronic gadgets. The new protocol for the shop
reflects the change,

ProductShop = &〈 add : ? Product . NewShop ,
remove : ? Product . NewShop ,

7

ZU064-05-FPR main 27 October 2008 9:56

α ::= c | x
k ::= fix | request n | accept n | send | receive
v ::= α | k | λx.e | (v,v)
e ::= v | ee | (e,e) | let x,x = e in e | fork e e | select l e | case e of {li : ei}i∈I

b ::= v | l

C ::= 〈e〉 | c 7→ (c,n,~b) |C ‖C | (νcc)C

E ::= [] | Ee | vE | (E,e) | (v,E) | let x,x = E in e | select l E |
case E of {li : ei}i∈I

Fig. 1. Syntax.

checkout : ?Card . ? Address . end 〉

where the shop as made sure that old Book is a subtype of new Product. Once again, the
new shop is still compatible with the old shopper, that shops for books alone, thus not
taking advantage of the new kinds of items on sale.

Subtyping session types: Sending values of a more specific nature. The shop accepts
any card as payment; mother now uses a particular kind of card, the Lunchers card; her type
becoming

Luncher sShopper = ⊕〈 checkout : ! Luncher s . ! Address . end 〉

She can still interact safely with any shop, for her card is a particular kind of that accepted
by the shop, hence compatibility rests assured. Notice that for output one can replace a type
by its subtype, whereas in input one must replace a type by a supertype (as for ProductShop

above).

Sending channels on channels: Using a third-party shipper. Like previous systems of
session types, our type system allows channels to be sent on channels. Implicit channel
sending occurs when mother sends son a voucher, as explained above. For a more explicit
example, suppose that the shop uses a separate service, shipper, to arrange delivery of the
order. When shop has received the customer’s credit card details, it just passes the channel
to shipper. When the customer sends her address, it goes directly to shipper. The session
type used for communication between shop and shipper is as follows; note the occurrence
of the session type ?Address.end as the type of the message.

Sh ippe r = ?(? Address . end) . end

The type Shop is not changed, and therefore mother is unaware of any change.

3 Syntax and Operational Semantics

Most of the syntax of our language was described in the previous section. We rely on a
countable set of term variables x, and on a disjoint countable set of (runtime) channel
endpoints c, and use α to range over both kinds of identifiers. We also rely on a set of
labels l, let n range over N∞ = N∪{∞}. Identifiers α , constants k, values v, expressions e
and configurations C are defined as in Figure 1.

8

ZU064-05-FPR main 27 October 2008 9:56

C1 ‖C2 ≡ C2 ‖C1 C1 ‖ (C2 ‖C3) ≡ (C1 ‖C2) ‖C3 (E-COMM,E-ASSOC)

C1 ‖ (νcd)C2 ≡ (νcd)(C1 ‖C2) if c,d 6∈ fc(C1) (E-SCOPE)

Fig. 2. Structural congruence.

(λx.e)v−→v e{v/x} fix (λx.e)−→v e{(fix (λx.e))/x} (R-APP, R-FIX)

let x,y = (v,u) in e−→v e{v/x}{u/y} (R-SPLIT)

Fig. 3. Reduction of expressions.

Variable bindings are introduced by λ and by let; channel bindings are introduced by ν .
The definition of bound and free identifiers is standard. We work up to alpha-conversion
and follow Barendregt’s variable convention. We write fc(C) for the free channels of a con-
figuration C. Structural equivalence, the smallest relation satisfying the rules in Figure 2,
allows changing the syntactic order of the components in a configuration.

The operational semantics of the language is defined via the reduction relation in Fig-
ures 3 and 4. Figure 3 defines reduction of expressions by means of standard rules. To
simplify the presentation of inter-thread reduction, we use evaluation contexts (Figure 1)
Wright & Felleisen (1994) and structural equivalence on configurations (Figure 2). An
evaluation context is an expression with a hole, denoted [], where computation happens
next. Syntax E[e] denotes the result of filling the hole of context E with expression e.

Figure 4 presents the rules for inter-thread, or configuration, reduction. Rule R-THREAD

allows reduction within the hole of a thread; rule R-FORK spawns a new thread. Rules
R-PAR, R-NEW, and R-STRUCT isolate threads that will engage in inter-thread communi-
cation via the remaining rules.

As well as threads, a configuration contains buffers. The buffer for endpoint c is repre-
sented by c 7→ (d,n,~b). Here d is another channel, called the peer endpoint of c; n is the
size of the buffer; and~b is the data in the buffer, called the channel queue. Items in~b are
values v (written and read by send and receive expressions) and labels l (written and read
by select and case expressions).

Rule R-INIT synchronizes two threads trying to start a new connection on a common
name x, which must be free in each thread because of the variable convention that we
assume. Two new endpoints are created, c and d, one for each thread. Also, two new buffers
are created, each mentioning its peer endpoint and containing the buffer size declared by
request or accept. Symbol ε denotes an empty queue. (The example of Section 2 omitted
the buffer sizes because they can be inferred; see Section 5).

Rules R-SEND and R-SELECT write on the peer endpoint of c: a value v in the case
of R-SEND, and a label l in the case of R-SELECT. The result is c, which can be used
for further interaction. Notice that these two rules require an indirection step in order to
obtain the peer’s endpoint channel d from the thread’s endpoint c. Further, notice that the
semantics explicitly tests for space in the buffer; our type system makes this test redundant
(see Section 6).

Rules R-RECEIVE and R-BRANCH read from the head of the channel queue: value v for
R-RECEIVE and label l j for R-CASE. The result of receive c is a pair composed of v and
the channel c itself. The result of case c of {li : ei}i∈I is the application of the function e j,

9

ZU064-05-FPR main 27 October 2008 9:56

e−→v e′

〈E[e]〉 −→ 〈E[e′]〉
〈E[fork e e′]〉 −→ 〈e〉 ‖ 〈E[e′]〉 (R-THREAD,R-FORK)

C −→C′

C ‖C′′ −→C′ ‖C′′
C −→C′

(νcd)C −→ (νcd)C′
C ≡C′ C′ −→C′′ C′′ ≡C′′′

C −→C′′′

(R-PAR,R-NEW,R-STRUCT)

〈E[request n x]〉 ‖ 〈E ′[accept n′ x]〉 −→
(νcd)(c 7→ (d,n,ε) ‖ d 7→ (c,n′,ε)} ‖ 〈E[c]〉 ‖ 〈E ′[d]〉)

(R-INIT)

c 7→ (d,n′,~b′) ‖ d 7→ (c,n,~b) ‖ 〈E[send v c]〉 −→

c 7→ (d,n′,~b′) ‖ d 7→ (c,n,~bv) ‖ 〈E[c]〉 if |~b|< n
(R-SEND)

c 7→ (d,n,~b′) ‖ d 7→ (c,n,~b) ‖ 〈E[select l c]〉 −→

c 7→ (d,n′,~b′) ‖ d 7→ (c,n,~bl) ‖ 〈E[c]〉 if |~b|< n
(R-SELECT)

c 7→ (d,n,v~b) ‖ 〈E[receive c]〉 −→ c 7→ (d,n,~b) ‖ 〈E[(v,c)]〉 (R-RECEIVE)

c 7→ (d,n, l j~b′) ‖ 〈E[case c of {li : ei}i∈I]〉 −→ c 7→ (d,n,~b) ‖ 〈E[e jc]〉 if j ∈ I (R-BRANCH)

Fig. 4. Reduction of configurations.

T ::= S | T ⊗T | T → T | T (T | 〈S〉r | 〈S〉a | 〈S,S′〉
S ::= end | ?T.S | !T.S | &〈li : Si〉i∈I | ⊕ 〈li : Si〉i∈I | X | µX .S

Fig. 5. Syntax of types and session types.

the body of the branch labelled by l j, to channel c. In either case, again, c can be used for
further interaction.

4 Types, Subtyping and Bounds

This section introduces types, the subtyping relation, and the notion of the bound of a
session type.

The syntax of types is defined in Figure 5. Session types S are associated with channels.
end is the type of a channel which cannot be used for further communication. ?T.S is
the type of a channel from which a message of type T can be received; subsequently the
channel is described by type S. Dually, !T.S is the type of a channel on which a message
of type T can be sent; subsequently the type of the channel is S. &〈li : Si〉i∈I is the type
of a channel from which a message can be received, which will be one of the labels
li. The subsequent behaviour of the channel is described by the corresponding type Si.
Dually, ⊕〈li : Si〉i∈I is the type of a channel on which one of the labels li can be sent, with
subsequent behaviour described by Si.

We include recursive session types µX .S, which are required to be contractive, i.e.
containing no subexpression of the form µX1.· · ·µXn.X1. The µ operator is a binder, giving
rise, in the standard way, to notions of bound and free variables and alpha-equivalence. A
type is closed if it includes no free variables. We denote by T{U/X} the capture-avoiding
substitution of U by X in T .

General types are denoted by T , including session types S as one case. Type T ⊗U
denotes the type of a pair composed of an element of type T and an element of type U .

10

ZU064-05-FPR main 27 October 2008 9:56

Type T →U denotes a conventional function from values of type T into values of type U .
Type T (U describes a linear function, i.e. a function that is itself a linear value. Whether
or not the parameter must be used exactly once depends on whether or not T is a linear
type.

As for session types, 〈S〉r describes an access point that can only be used to request the
establishment of a session. Similarly, 〈S〉a describes and access point which can only be
used to accept a connection. An access point which can be used to request a connection of
type S and to accept a connection of type S′ is denoted by 〈S,S′〉. The two types, S and S′,
are supposed to be compatible, a notion introduced below. If a typed access point a : 〈S,S′〉
occurs in the global environment then a matching request n a and accept n′ a create a
channel. On one side, accept yields a channel endpoint of type S, while on the other side,
request yields the peer endpoint whose type is S′. Data types such as Int and Bool, or
compound data types such as non-linear pairs, or general recursive types, can easily be
added.

We let S denote the set of contractive, closed session types, and T the set of types in
which all session types are contractive and closed.

The type system includes a subtyping relation. This combines the standard definition of
subtyping for session types Gay & Hole (2005), the standard subtyping rules for function
types and pairs Pierce (2002), and the novel relationship T → U <: T (U between
standard and linear function types Gay (2006). The key features of subtyping for session
types are that ?T.S is covariant in T ; !T.S is contravariant in T ; &〈li : Si〉i∈I is covariant in
I; ⊕〈li : Si〉i∈I is contravariant in I, while they are all covariant in S and in each Si.

Definition 1 (Subtyping)

Define the operator F ∈P(T ×T)→P(T ×T) as follows.

F(R) = {(end,end)}
∪ {(?T.S,?T ′.S′) | (T,T ′),(S,S′) ∈ R}
∪ {(!T.S, !T ′.S′) | (T ′,T),(S,S′) ∈ R}
∪ {(&〈li : Si〉i∈I ,&〈l j : S′j〉 j∈J) | I ⊆ J,(Si,S′i) ∈ R,∀i ∈ I}

∪ {(⊕〈li : Si〉i∈I ,⊕〈l j : S′j〉 j∈J) | J ⊆ I,(Si,S′i) ∈ R,∀i ∈ J}

∪ {(〈S,S′〉,〈S〉a),(〈S′,S〉,〈S〉r) | (S,S′) ∈S }
∪ {(〈S〉a,〈S′〉a) | (S,S′) ∈ R}
∪ {(〈S〉r,〈S′〉r) | (S,S′) ∈ R}
∪ {(〈S1,S′1〉,〈S2,S′2〉) | (S1,S2),(S1,S′2) ∈ R}
∪ {(T1→ T ′1 ,T1 (T ′1) | (T1,T ′1) ∈T }
∪ {(T1→ T ′1 ,T2→ T ′2) | (T2,T1),(T1,T ′2) ∈ R}
∪ {(T1 (T ′1 ,T2 (T ′2) | (T2,T1),(T1,T ′2) ∈ R}
∪ {(µX .S,S′) | (S{µX .S/X},S′) ∈ R}
∪ {(S,µX .S′) | (S,S′{µX .S′/X}) ∈ R}

11

ZU064-05-FPR main 27 October 2008 9:56

?T.S = !T.S ⊕〈li : Si〉i∈I = &〈li : Si〉i∈I end = end

!T.S = ?T.S &〈li : Si〉i∈I = ⊕〈li : Si〉i∈I µX .S = µX .S X = X

Fig. 6. The dual function on session types.

Contractivity ensures that F is monotone. By the Knaster-Tarski Theorem, F has least and
greatest fixed points; we take the greatest fixed point to be the subtyping relation, writing
T <: U if the pair (T,U) is in the relation.

We define equivalence of types T and U as T <: U and U <: T . Henceforth types are
understood up to type equivalence, so that, for example, in any mathematical context, types
µX .ST and T{(µX .T)/X} can be used interchangeably, effectively adopting the equi-
recursive approach (Pierce, 2002, Chapter 21).

When restricted to session types, the subtyping relation we use is essentially that of (Gay
& Hole, 2005) (defined via a type simulation), and that of (Vallecillo et al., 2006) (defined
algorithmically). Yoshida & Vasconcelos (2007) present a co-inductive definition of type
equivalence, similarly to what we do above for sub-typing.

Proposition 2
Subtyping is a pre-order.

Proof
We prove reflexivity and transitivity by standard coinductive arguments, as an instance of
the general approach in Theorems 21.3.6–7 of (Pierce, 2002). Reflexivity and transitivity
of subtyping on session types are proved explicitly in (Gay & Hole, 2005), and transitivity
of a similar (equivalence) relation on session types is proved explicitly in (Yoshida &
Vasconcelos, 2007).

Duality is a central concept in the theory of session types. The function S, defined in
Figure 6, yields the canonical dual of a session type S. Previous work by Gay & Hole
(2005); Vallecillo et al. (2006) defined a duality relation coinductively. Here we just write
S = S′ on the understanding that we are always working up to type equivalence, so that,
e.g., µX .&〈l : X〉=⊕〈l : µY.⊕〈l : Y 〉〉.

Equipped with the notions of subtyping and duality, we say that session types S and
S′ are compatible, written S � S′, when S <: S′. Henceforth we assume that, in a type
〈S,S′〉, session types S and S′ are always compatible. The following results on the triangle
subtyping-duality-compatibility, are from Vallecillo et al. (2006).1

Proposition 3
1. Duality is self-inverse.
2. Duality is symmetric, not reflexive, not transitive.
3. S1 <: S2 if and only if S2 <: S1.
4. Compatibility is symmetric, not reflexive, not transitive.
5. If S1 � S2 and S2 <: S3, then S1 � S3.

1 For technical reasons the definition of compatibility appears reversed with respect to Vallecillo
et al. (2006).

12

ZU064-05-FPR main 27 October 2008 9:56

?T.S 7→ S !T.S 7→ S &〈. . . , l : S, . . .〉 7→ S ⊕〈. . . , l : S, . . .〉 7→ S

µX .S 7→ S′ if S{µX .S/X} 7→ S′

Fig. 7. The relation 7→ on session types.

Describing protocols, session types “advance” during computation. The reduction rela-
tion on session types, Figure 7, makes this notion precise. The bound of a session type S
describes the minimum size of the buffer required to hold the values received on a channel
of type S. Notice that S and S will have in general different bounds.

Definition 4 (Bound of a session type)
The set of maps S → N∞ is a complete lattice if we define f v g to mean f (S) 6 g(S),
∀S ∈S , and take meets and joins pointwise. The bottom function maps everything to 0
and the top function maps everything to ∞. We also define ∞+1 = ∞ and max(n,∞) = ∞,
for every n ∈ N∞.

Define the operator F ∈ (S → N∞)→S → N∞ as follows.

F(f)(!T.S) = 0 F(f)(?T.S) = 1+ f (S)

F(f)(⊕〈li : Si〉i∈I) = 0 F(f)(&〈li : Si〉i∈I) = 1+max{ f (Si)}i∈I

F(f)(end) = 0 F(f)(µX .S) = f (S{µS.X/S})

Contractivity ensures that F is monotone. The Knaster-Tarski Theorem gives least and
greatest fixed points of F .2 Define bound(S) = max{µ(S′)|S 7→∗ S′}, where µ is the least
fixed point of F .

The definition yields an algorithm for calculating bound(S). Construct a directed graph
with {S′|S 7→∗ S′} as the vertices and 7→ as the edge relation. Label every end, !T.S and
⊕〈li : Si〉i∈I node with 0. Iterate the following steps until a fixed point is reached: label
node ?T.S with n + 1 if S is labelled with n, and label node &〈li : Si〉i∈I with max{ni}i∈I

if every Si is labelled with ni. Finally label any unlabelled nodes with ∞. bound(S) is the
largest label.

The main property of the bound of a type is that it does not grow with reduction, a fact
exploited by Type Preservation (Theorem 23).

Lemma 5
For all session types S and S′, if S 7→ S′ then bound(S′) 6 bound(S).

Proof
Let f be the function defined in Definition 4. bound(S) = max{ f (T)|S 7→∗ T}. bound(S′) =
max{ f (T)|S′ 7→∗ T}. Because S 7→ S′, { f (T)|S′ 7→∗ T} ⊆ { f (T)|S 7→∗ T}. The result
follows.

5 Typing

This section introduces a static type system for our language.

2 Which turn out to coincide, but we do not need this fact.

13

ZU064-05-FPR main 27 October 2008 9:56

lin(S 6= end) lin(T ⊗T) lin(T (T)

un(end) un(T → T) un(〈S,S〉) un(〈S〉a) un(〈S〉r)

Fig. 8. Type classification as linear (lin) or unlimited (un).

fix : (T → T)→ T receive : ?T.S→ T ⊗S

send : T → !T.S (S request n : 〈S〉r→ S if bound(S) 6 n

send : T → !T.S→ S if un(T) accept n : 〈S〉a→ S if bound(S) 6 n

Fig. 9. Type schemas for constants k.

Because channels must be controlled linearly, so that each endpoint is owned by a unique
thread within the system, the type system includes constructors for linear pairs T ⊗U and
linear functions T (U as well as standard functions T →U . Each type is classified as
either linear or unlimited, as defined in Figure 8. Type end is unlimited because we do not
explicitly close channels.

Type environments are finite maps from variables or channels (collectively written α)
into types. Write dom(Γ) for the set of variables and channels in Γ and cdom(Γ) for the
set of channels in Γ, and say that un(Γ) is true of an environment in which all types are
unlimited. In the usual way for a type system with linear types (Walker, 2005), we define
a partial operation of addition on environments.

Γ+α : T =

Γ,α : T if α 6∈ dom(Γ)
Γ if α : T ∈ Γ and un(T)
undefined otherwise

Addition is extended inductively to a partial binary operation on environments. Typing
rules in which environments are added contain an implicit condition that the addition must
be defined.

Typing of expressions is defined in Figures 9 and 10. The typings in Figure 9 are schemas
which can be instantiated for any appropriate types. The schemas for send and receive

capture the essence of the way in which we use linear type constructors to control the
use of channels. We treat send as a curried function which is given a value and a channel
and returns the same channel with the type that remains after sending the specified value.
There are two versions of this schema, because the partial application send v contains v in
its closure and therefore we must use a linear function type if v has a linear type. Channel
passing constitutes a particular case of the latter. The receive function is given a channel
of appropriate type and returns, together with the received value, the same channel, again
with its remaining type. The return type of receive is a linear pair because S, being a session
type, is linear. The functions request n and accept n return each a new endpoint of the
corresponding type, if the size of the buffer necessary to hold all the values produced does
not exceed n.

Most of the rules in Figure 10 are standard. Note that by using rule T-SUB after T-ABS,
a standard function can be given a linear function type if desired. This means that although
T-APP requires a linear function type, it can also be used to apply standard functions.
T-FORK describes spawning a new thread, whose type is required to be unlimited in order

14

ZU064-05-FPR main 27 October 2008 9:56

un(Γ) k : T
Γ ` k : T

un(Γ)
Γ,α : T ` α : T

Γ ` e : T T <: U
Γ ` e : U

(T-CONST,T-ID,T-SUB)

Γ1 ` e1 : T Γ2 ` e2 : U
Γ1 +Γ2 ` (e1,e2) : T ⊗U

Γ1 ` e1 : T ⊗U Γ2,x : T,y : U ` e2 : V
Γ1 +Γ2 ` let x,y = e1 in e2 : V

(T-PAIR,T-SPLIT)

Γ,x : T ` e : U un(Γ)
Γ ` λx.e : T →U

Γ,x : T ` e : U
Γ ` λx.e : T (U

(T-ABS,T-ABSL)

Γ1 ` e1 : T (U Γ2 ` e2 : T
Γ1 +Γ2 ` e1e2 : U

Γ1 ` e1 : T Γ2 ` e2 : U un(T)
Γ1 +Γ2 ` fork e1 e2 : U

(T-APP,T-FORK)

Γ ` e : ⊕〈li : Ti〉i∈I j ∈ I
Γ ` select l j e : Tj

Γ1 ` e : &〈li : Ti〉i∈I ∀i∈I(Γ2 ` ei : Ti (T)
Γ1 +Γ2 ` case e of {li : ei}i∈I : T

(T-SELECT,T-CASE)

Fig. 10. Typing rules for expressions.

un(Γ)
Γ ` ε matchesS

Γ1 ` v : T Γ2 `~bmatchesS

Γ1 +Γ2 ` v~bmatches?T.S

Γ `~bmatchesS

Γ ` l~bmatches&〈..l : S..〉

S/ε = S
?T.S/v~b = S/~b

&〈. . . , l : S, . . .〉/l~b = S/~b

S

S/~b

~b

If Γ `~bmatchesS is defined (by the rules at the top) then we define S/~b by the rules at the bottom.
The diagram illustrates S/~b.

Fig. 11. The matches relation.

to ensure that the thread completely consumes any channels that it uses. T-SELECT is like
the typing schema for send, but expressed as a rule because the result type depends on the
label. T-CASE requires the case-expression e to be of a branch type; the expressions ei in
each branch must be functions accepting the appropriate channel (of type Ti).

Figure 11 defines two notions. Γ `~bmatchesS means that the sequence of values ~b
(which are typed by Γ) is suitable to be received by an initial sequence of inputs and
branches in S. In that case, S/~b is the remaining session type. These notions are used
to characterise the relationship between the types of endpoints and the contents of their
buffers.

Figure 12 defines typing of configurations. Sequents are of the form Γ ` C . ∆, where
∆ is contains the buffer entries in C. More precisely, ∆ is a map from channels into buffer
contents (d,n,~b,S), endowed with a partial operation + of disjoint union.

T-THREAD begins with a single thread (containing an expression), which must have
an unlimited type, since we expect all sessions to be taken to the end. T-BUFFER types a
single buffer, by checking that the buffer contents~b matches a given session type S, and
by copying the buffer (together with S) to ∆. T-PAR combines configurations in parallel,
by combining the environments and the buffers in each configuration. Finally, rule T-NEW

checks that the buffer allocated for each channel ci is large enough to accommodate the
values to be received by the channel, and that the session types associated to each channel,
after the buffers have been emptied, are dual.

15

ZU064-05-FPR main 27 October 2008 9:56

Γ ` e : T un(T)
Γ ` 〈e〉. /0

Γ `~bmatchesS

Γ ` c 7→ (d,n,~b). c : (d,n,~b,S)

Γ1 `C1 .∆1 Γ2 `C2 .∆2

Γ1 +Γ2 `C1 ‖C2 .∆1 +∆2

(T-THREAD,T-BUFFER,T-PAR)

bound(Si) 6 ni S1/~b1 � S2/~b2
Γ+ c1 : S1 + c2 : S2 `C .∆+ c1 : (c2,n1,~b1,S1)+ c2 : (c1,n2,~b2,S2)

Γ ` (νc1c2)C .∆
(T-NEW)

Fig. 12. Typing rules for configurations.

6 Type Safety

In this section we prove that our type system guarantees safe execution of programs. The
safety property is a version of the usual statement that well-typed programs do not get
stuck. We formulate “getting stuck” in terms of blocked threads.

Definition 6 (Buffers in configurations)
If C≡ (νc1c′1) . . .(νcnc′n)(c 7→ (c′,k,~b) ‖C′) then we write c 7→ (c′,k,~b) ∈C or just c ∈C.

Definition 7 (Blocked thread)
Let C be a configuration, and C′ one of its threads. C′ is blocked if @c1 7→ (c2,n1,~b1),c2 7→
(c1,n2,~b2) ∈C such that C′ ‖ c1 7→ (c2,n1,~b1) ‖ c2 7→ (c1,n2,~b2)−→.

By analyzing the reduction rules, we see that a thread can be blocked in several ways:
trying to read from a channel when there is no data in the buffer; trying to send on a channel
when the buffer is full; trying to communicate when the required channel does not exist;
reading an inappropriate value from a channel; trying to evaluate an expression for which
there is no reduction rule; or simply when it terminates execution.

The runtime safety theorem states that the type system guarantees that a thread can only
become blocked by terminating or by trying to read from an empty buffer.

Typability of the expressions in threads is not sufficient to guarantee runtime safety. For
example, 〈send x c〉 is typable, but cannot progress due to the absence of buffers for c and d
(cf. rule R-SEND in Figure 4). Similarly 〈let x,d = receive c in d〉 ‖ c 7→ (, , l) is typable
but cannot progress because labels are not values (cf. rule R-RECEIVE in Figure 4). As a
last example consider the typable configuration C of the form 〈send x c〉 ‖ c 7→ (d, ,) ‖
d 7→ (,n,~b), with |~b| = n. C cannot progress due to lack of buffer space. Notice however
that (νcd)C is not typable, for the T-NEW rule (Figure 12) makes sure there is enough
space in buffers. We are only interested in configurations that are well-buffered.

Definition 8 (Well-buffered configuration)
A typable configuration Γ `C . ∆ is well-buffered if whenever c1 7→ (c2,n1, ~b1) and c2 7→
(c1,n2, ~b2) are free in C, then c1 : S1,c2 : S2 ∈Γ, c1 : (c2,n1, ~b1,S1)∈∆, c2 : (c1,n2, ~b2,S2)∈
∆, bound(Si)≤ ni for i = 1,2, and S1/~b1 � S2/~b2,

This enables the runtime safety theorem to be stated as follows.

Theorem (Runtime safety)
Let Γ `C .∆ be well-buffered, and C −→∗ C′. If C′′ is a blocked thread in C′, then one of
the following applies.

1. C′′ is 〈v〉 or 〈send v〉;

16

ZU064-05-FPR main 27 October 2008 9:56

2. C′′ is 〈E[receive c]〉 and c 7→ (, ,ε) ∈C′;
3. C′′ is 〈E[case c of {li : ei}i∈I]〉 and c 7→ (, ,ε) ∈C′.

As usual, we make use of a type preservation theorem; the interesting part of the theorem
is stated below, although we will see later that a stronger statement is needed in order to
complete an inductive proof.

Theorem (Type Preservation)
If Γ `C . ∆ is well-buffered and C −→C′ then there exist Γ′ and ∆′ such that Γ′ `C′ . ∆′

is well-buffered.

We will now work towards the proofs of type preservation and runtime safety. The
structure of the proof of type preservation follows the approach of Wright & Felleisen
(1994). We omit the proofs of most lemmas, which are either easy structural inductions or
follow directly from definitions.

Lemma 9
If Γ `C .∆ and C ≡C′ then Γ `C′ .∆.

Lemma 10 (Weakening)
If Γ1 ` e : T and un(Γ2) and Γ1 +Γ2 is defined then Γ1 +Γ2 ` e : T .

Lemma 11
If Γ ` v : T and un(T) then un(Γ).

Lemma 12 (Typability of Subterms)
If D is a derivation of Γ ` E[e] : T or Γ ` 〈E[e]〉.∆ then there exist Γ1, Γ2 and U such that
Γ = Γ1 +Γ2, D has a subderivation D ′ concluding Γ1 ` e : U and the position of D ′ in D

corresponds to the position of the hole in E[].

Lemma 13 (Replacement)
If

1. D is a derivation of Γ1 +∆1 +∆2 ` E[e] : T or Γ1 +∆1 +∆2 ` 〈E[e]〉.∆

2. D ′ is a subderivation of D concluding ∆1 +∆2 ` e : U
3. the position of D ′ in D corresponds to the position of the hole in E[]
4. ∆1 +∆3 ` e′ : U
5. Γ1 +∆1 +∆3 is defined

then Γ1 +∆1 +∆3 ` E[e′] : T or Γ1 +∆1 +∆3 ` 〈E[e′]〉.∆ as appropriate.

Lemma 14 (Substitution)
If Γ1,x : T ` e : U and Γ2 ` e′ : V and V <: T and (un(T) =⇒ un(Γ2)) and Γ1 + Γ2 is
defined then Γ1 +Γ2 ` e{e′/x} : U .

Lemma 15
If Γ ` λx.e : T →U then there is a derivation in which the last rule is T-ABS.

Lemma 16
If Γ ` λx.e : T (U then there is a derivation in which the last rule is T-ABSL.

Lemma 17

17

ZU064-05-FPR main 27 October 2008 9:56

For all Γ,~b and S, if Γ `~bmatchesS then |~b|6 bound(S).

Proof
By induction on the derivation of Γ `~bmatchesS with a case-analysis on the last rule
(equivalently, on the form of~b). Let f and F be as defined in Definition 4.

• ~b = ε . This case is trivial, as |ε|= 0.
• ~b = v~b′. From the derivation, S =?U.S′ and there exists Γ′ such that Γ′ `~b′matchesS′.

Because f = F(f), f (S) = 1 + f (S′). By the induction hypothesis, |~b′| 6 f (S′).
Therefore |~b|6 f (S). This reasoning is valid even if f (S′) = ∞.
• ~b = l~b′. From the derivation, S = &〈li : Si〉i∈I with l = l j for some j ∈ I, and there

exists Γ′ such that Γ′ ` ~b′matchesS j. Because f = F(f), f (S) = 1+maxi∈I{ f (Si)}.
By the induction hypothesis, |~b′| 6 f (S j) 6 maxi∈I{ f (Si)}. Therefore |~b| 6 f (S).
Again, this reasoning is valid even if some of the f (Si) are ∞.

Lemma 18
If Γ ` e : T and e−→v e′, then Γ ` e′ : T .

Lemma 19
If C ≡C′ then C and C′ have exactly the same buffers, in the sense of Definition 6.

Lemma 20
If Γ `C .∆ is well-buffered and C ≡C′ then Γ `C′ .∆ is well-buffered.

Lemma 21
1. If Γ `~bmatchesS and Γ′ ` v : T and S/~b =?T.S′ then Γ+Γ′ `~bvmatchesS.
2. If Γ `~bmatchesS and S/~b = &{. . . , l : S, . . .} then Γ `~bl matchesS.

Definition 22
If C −→ C′ then let R be the rule from Figure 4 that appears earliest in the derivation
sequence. We say that R is the original rule of the reduction, or that the reduction originates
from rule R. If the original rule is R-SEND, R-SELECT, R-RECEIVE or R-BRANCH,
then the rule identifies a unique buffer c 7→ (d,n,~b) whose contents are changed by the
reduction.

Theorem 23 (Type Preservation)
If Γ ` C . ∆ is well-buffered and C −→ C′ then there exist Γ′ and ∆′ such that Γ′ ` C′ .
∆′ is well-buffered and dom(Γ′) = dom(Γ) and dom(∆′) = dom(∆). Furthermore, if the
reduction originates from R-RECEIVE or R-BRANCH, then for every c : (d,n,~b,S) ∈ ∆

and corresponding c : (d,n,~b′,S′) ∈ ∆′, S/~b = S′/~b′. Finally, for every c, if the reduction
does not change the contents of buffer c, then Γ′(c) = Γ(c) and ∆′(c) = ∆(c).

Proof
By induction on the derivation of C −→C′, with a case-analysis on the last rule.

First note that in each case, if c : S ∈ Γ and c : S′ ∈ Γ′, either S′ = S or S 7→ S′. So
Lemma 5 guarantees that the conditions bound(Si)≤ ni in the definition of well-buffering
are satisfied. We will not discuss these condition in the analysis of each case below.

18

ZU064-05-FPR main 27 October 2008 9:56

• R-THREAD. We have 〈E[e]〉 −→ 〈E[e′]〉 because e −→v e′, and Γ ` 〈E[e]〉 . /0. By
Lemmas 12, 13 and 18 we obtain Γ ` 〈E[e′]〉 . /0. The remaining conditions are
trivially satisfied because the configuration contains no buffers.

• R-FORK. We have 〈E[fork e e′]〉 −→ 〈e〉 ‖ 〈E[e′]〉 and Γ ` 〈E[fork e e′]〉 . /0. Let D

be the derivation of this typing. By Lemma 12 there exist Γ1, Γ2 and T such that
Γ = Γ1 +Γ2 and there is a subderivation D ′ of D concluding Γ1 ` fork e e′ : T . The
end of D ′ has the form

Γ3 ` e : U Γ4 ` e′ : T un(U)

Γ1 ` fork e e′ : T

where Γ3 + Γ4 = Γ1. By Lemma 13 we have Γ2 +Γ4 ` 〈E[e′]〉 . /0 and so we can
construct the derivation

Γ3 ` 〈e〉. /0 Γ2 +Γ4 ` 〈E[e′]〉. /0

Γ ` 〈e〉 ‖ 〈E[e′]〉. /0

The remaining conditions are trivially satisfied because the configuration contains
no buffers.

• R-PAR. We have C ‖C′′ −→C′ ‖C′′ because C−→C′. We have Γ `C ‖C′′ .∆. The
typing derivation has the form

Γ1 `C .∆1 Γ2 `C′′ .∆2
T-PAR

Γ1 +Γ2 `C ‖C′′ .∆1 +∆2

where Γ1 +Γ2 = Γ and ∆1 +∆2 = ∆.
Because Γ `C ‖C′′ .∆ is well-buffered, Γ1 `C .∆1 is well-buffered. By induction,
Γ′1 ` C′ . ∆′1 is well-buffered with dom(Γ′1) = dom(Γ1) and dom(∆′1) = dom(∆1).
Hence Γ′1 + Γ2 and ∆′1 + ∆2 are defined and we can derive Γ′1 +Γ2 ` C′ ‖C′′ .
∆′1 +∆2, with dom(Γ′1 +Γ2) = dom(Γ) and dom(∆′1 +∆2) = dom(∆1 +∆2).
We now show that Γ′1 +Γ2 ` C′ ‖C′′ . ∆′1 +∆2 is well-buffered. Consider c1 7→
(c2,n1, ~b1) and c2 7→ (c1,n2, ~b2) in C ‖ C′′. If c1 and c2 are both in C then preser-
vation of well-buffering is sufficient. Otherwise suppose that only c1 is in C. If the
reduction changes c1 then the original rule must be R-RECEIVE or R-BRANCH, and
so preservation of S/~b guarantees well-buffering. If the reduction does not change c1

then by induction its type is also unchanged and hence the part of the well-buffering
condition concerning c1 is satisfied.
The remaining conditions follow directly by induction.
• R-STRUCT. Follows from the induction hypothesis and Lemmas 9 and 20.
• R-NEW. We have (νc1c2)C−→ (νc1c2)C′ because C−→C′. We have Γ` (νc1c2)C.

∆ with the derivation

bound(Si) 6 ni S1/~b1 � S2/~b2

Γ+ c1 : S1 + c2 : S2 `C .∆+ c1 : (c2,n1, ~b1,S1)+ c2 : (c1,n2, ~b2,S2)

Γ ` (νc1c2)C .∆

By induction we have Γ′+ c : S′1 +d : S′2 `C′.∆′+ c : (d,n1, ~b′1,S
′
1)+d : (c,n2, ~b′2,S

′
2)

well-buffered with dom(Γ′) = dom(Γ) and dom(∆′) = dom(∆). The definition of

19

ZU064-05-FPR main 27 October 2008 9:56

well-buffering gives the hypotheses of the derivation

bound(S′i) 6 ni S′1/
~b′1 � S′2/

~b′2
Γ′+ c1 : S′1 + c2 : S′2 `C .∆+ c1 : (c2,n1, ~b′1)+ c2 : (c1,n2, ~b′2)

Γ
′ ` (νc1c2)C′ .∆

′

and Γ′ ` (νc1c2)C′ . ∆′ is also well-buffered. The remaining conditions follow di-
rectly by induction.
• R-INIT. We have

〈E[request n x]〉 ‖ 〈E ′[accept n′ x]〉−→ (νcd)(c 7→ (d,n,ε) ‖ d 7→ (c,n′,ε)} ‖ 〈E[c]〉 ‖ 〈E ′[d]〉).

We have Γ ` 〈E[request n x]〉 ‖ 〈E ′[accept n′ x]〉 . ∆ well-buffered with the deriva-
tion

Γ1 ` E[request n x] : T1

Γ1 ` 〈E[request n x]〉.∆1

Γ2 ` E ′[accept n′ x] : T2

Γ2 ` 〈E ′[accept n′ x]〉.∆2

Γ1 +Γ2 ` 〈E[request n x]〉 ‖ 〈E ′[accept n′ x]〉.∆1 +∆2

where Γ1 +Γ2 = Γ. By Lemma 12 and the typing rule for request, there exist Γ3 and
Γ4 such that Γ1 = Γ3 +Γ4 and Γ3 ` request n x : S, with Γ3 ` x : 〈S〉r and bound(S) 6
n. Similarly there exist Γ5 and Γ6 such that Γ2 = Γ5 + Γ6 and Γ5 ` accept n′ x : S,
with Γ5 ` x : 〈S〉a and bound(S) 6 n′.
Taking c and d to be fresh channels, Lemma 13 gives Γ1 + c : S ` 〈E[c]〉 . ∆1 and
Γ2 +d : S` 〈E[d]〉.∆2. We also have ` c 7→ (d,n,ε).c : (d,n,ε,end) and ` d 7→ (c,n′,ε).
d : (c,n′,ε,end) from which we use T-PAR and T-NEW to derive

Γ1 +Γ2 ` (νcd)(c 7→ (d,n,ε) ‖ d 7→ (c,n′,ε)} ‖ 〈E[c]〉 ‖ 〈E ′[d]〉).∆1 +∆2

which is well-buffered by the original assumption. T-NEW requires bound(S) 6 n
and bound(S) 6 n′, which are among the data above. The remaining conditions are
trivially satisfied because there are no buffers in the initial configuration and the rule
is not R-RECEIVE or R-BRANCH.
• R-SEND. We have

c 7→ (d,n′,~b′) ‖ d 7→ (c,n,~b) ‖ 〈E[send v c]〉−→ c 7→ (d,n′,~b′) ‖ d 7→ (c,n,~bv) ‖ 〈E[c]〉

and |~b|< n. We have Γ` c 7→ (d,n′,~b′) ‖ d 7→ (c,n,~b) ‖ 〈E[send v c]〉.∆ well-buffered
with the derivation

Γ1 ` ~b′matchesS1

Γ1 ` c 7→ (d,n′,~b′). c : (d,n′,~b′,S1)

Γ2 `~bmatchesS2

Γ2 ` d 7→ (c,n,~b).d : (c,n,~b,S2) Γ
′ ` 〈E[send v c]〉.∆

′

Γ
′+Γ1 +Γ2 ` c 7→ (d,n′,~b′) ‖ d 7→ (c,n,~b) ‖ 〈E[send v c]〉.∆

′+ c : (d,n′,~b′,S1)+d : (c,n,~b,S2)

where Γ′+Γ1 +Γ2 = Γ and ∆′+ c : (d,n′,~b′,S1)+d : (c,n,~b,S2) = ∆.
By Lemma 12 there exist Γ3 and Γ4 such that we have the subderivation

Γ5 ` v : T Γ6 + c : !T.S ` c : !T.S

Γ3 ` send v c : S

with Γ′ = Γ3 + Γ4 and Γ3 = Γ5 + Γ6 + c : !T.S. Lemma 13 gives Γ4 +Γ6 + c : S `
〈E[c]〉.∆.

20

ZU064-05-FPR main 27 October 2008 9:56

Because the original typing judgement is well-buffered, we have S1 =!T.S and !T.S/~b′�
S2/~b. Because Γ1 ` ~b′matches!T.S we have ~b′ = ε and hence !T.S/~b′ =!T.S. There-
fore ?T.S <: S2/~b, so S2/~b =?T ′.S′ with S <: S′ and T <: T ′. Lemma 21 gives
Γ2 +Γ5 `~bvmatchesS2 and we can build the derivation

Γ1 ` ~b′matchesS

Γ1 ` c 7→ (d,n′,~b′). c : (d,n′,~b′,S)

Γ2 +Γ5 `~bvmatchesS2

Γ2 +Γ5 ` d 7→ (c,n,~bv).d : (c,n,~bv,S2) Γ4 +Γ6 + c : S ` 〈E[c]〉.∆
′

Γ1 +Γ2 +Γ4 +Γ5 +Γ6 + c : S ` c 7→ (d,n′,~b′) ‖ d 7→ (c,n,~bv) ‖ 〈E[c]〉.∆
′+ c : (d,n′,~b′,S)+d : (c,n,~bv,S2)

It remains to show that the conclusion is well-buffered. This requires S/~b′ � S2/~bv.
We have S/~b′ = S/ε = S and S2/~bv = S′. Finally, by definition, S� S′ because S <:
S′.
The condition on unchanged buffers is satisfied, as it can be seen from the derivation
above that their types do not change.
• R-SELECT. Similar to the previous case.
• R-RECEIVE. We have

c 7→ (d,n,v~b) ‖ 〈E[receive c]〉 −→ c 7→ (d,n,~b) ‖ 〈E[(v,c)]〉

and Γ ` c 7→ (d,n,v~b) ‖ 〈E[receive c]〉.∆ well-buffered with the derivation

Γ1 ` v : T Γ2 `~bmatchesS

Γ1 +Γ2 ` v~bmatches?T.S

Γ1 +Γ2 ` c 7→ (d,n,v~b). c : (d,n,v~b,?T.S) Γ
′ ` 〈E[receive c]〉.∆

′

Γ ` c 7→ (d,n,v~b) ‖ 〈E[receive c]〉.∆

where Γ′+Γ1 +Γ2 = Γ and ∆′+ c : (d,n,v~b,?T.S) = ∆.
By Lemma 12 there exist Γ3 and Γ4 such that we have the subderivation

Γ3 + c : ?T.S ` c : ?T.S

Γ3 + c : ?T.S ` receive c : T ⊗S

with Γ′ = Γ3 +Γ4. Lemma 13 gives Γ1 +Γ3 +Γ4 + c : S ` 〈E[(v,c)]〉.∆′ and we can
build the derivation

Γ2 `~bmatchesS

Γ2 ` c 7→ (d,n,~b). c : (d,n,~b,S) Γ1 +Γ3 +Γ4 ` 〈E[(v,c)]〉.∆
′

Γ1 +Γ2 +Γ3 +Γ4 + c : S ` c 7→ (d,n,~b) ‖ 〈E[(v,c)]〉.∆
′+ c : (d,n,~b,S)

Well-buffering is trivial because there is only one buffer. The remaining condition
we need is that S/~b = ?T.S/v~b, which follows from the definitions.
• R-BRANCH. Similar to the previous case.

Theorem 24 (Runtime Safety)
Let Γ `C .∆ be well-buffered, and C −→∗ C′. If C′′ is a blocked thread in C′, then one of
the following applies.

1. C′′ is 〈v〉 or 〈send v〉 or 〈request n x〉 or 〈accept n x〉;

21

ZU064-05-FPR main 27 October 2008 9:56

2. C′′ is 〈E[receive c]〉 and c 7→ (, ,ε) ∈C′;
3. C′′ is 〈E[case c of {li : ei}i∈I]〉 and c 7→ (, ,ε) ∈C′.

Proof
By Type Preservation, Theorem 23, we know that Γ′ ` C′ . ∆′ is well-buffered. Suppose
that C′′ is a blocked thread of none of the above forms. Analysing the reduction rules in
Figures 3 and 4, we find six cases to consider.

1. C′′ is 〈E[receive c]〉 and c 7→ (, , l~b) ∈C′;
2. C′′ is 〈E[case c of {li : ei}i∈I]〉 and c 7→ (, ,v~b) ∈C′;
3. C′′ is 〈E[send v c]〉, and c 7→ (d, ,),d 7→ (,n,~b) ∈C′, and |~b| ≥ n;
4. C′′ is 〈E[select l c]〉, and c 7→ (d, ,),d 7→ (,n,~b) ∈C′, and |~b| ≥ n;
5. C′′ is 〈E[let x,y = v in e]〉 and v is not of the form (v1,v2).
6. C′′ is 〈E[fix v]〉 and v is not of the form λx.e.

We outline the argument for each case.

1. Build the typing derivation for Γ′ `C′ .∆′. We know that the typing environment that
types C′′ contains an entry c : ?T.S. If c is bound in C′, then the derivation includes
an application of rule T-NEW to a sub-configuration Γ′′ ` (νcd)C′′′ . ∆′′, at which
point we know that Γ′′′ ` l~bmatchesΓ′′(c), from which we conclude that Γ′′(c) is of
the form &〈..l : S..〉, hence contradiction. If c is free in C′, then we reach the same
contradiction based on the fact that Γ′ `C′ .∆′ is well-buffered.

2. Similar to the previous case.
3. The main point is to show that the assumption |~b| ≥ n leads to a contradiction.

Consider the information in case R-SEND of the proof of Type Preservation. From
Γ2 +Γ5 `~bvmatchesS2 and Lemma 17 we have bound(S2) > |~bv| = |~b|+ 1. By
well-buffering we have bound(S2) 6 n, hence |~b|< n.

4. Similar to the previous case.
5. The typing derivation shows that the type of v must be of the form T1⊗T2, and hence

v must be of the form (v1,v2).
6. Similar to the previous case.

Finally, we observe that the expression “accept n a” can safely be replaced by
“accept bound(S) a” where a : 〈S〉a in the current environment, and similarly for request.
In other words, the compiler can infer the necessary buffer sizes. Also, when a channel
of type S is used, e.g. by send, its subsequent type is S′ with S 7→ S′; Lemmas 5 and 17,
and rule T-BUFFER, imply that information available during typechecking can be used to
generate code to reduce the size of a buffer and ultimately to deallocate the buffer of a
channel of type end.

7 Related and Future Work

Apart from our own previous work (Vasconcelos et al., 2006, 2004), the main formal
studies of session types in mainstream language paradigms are by Dezani-Ciancaglini et al.
(2005, 2006); Coppo et al. (2007); Capecchi et al. (2008) and our own (Gay et al., 2008)

22

ZU064-05-FPR main 27 October 2008 9:56

for object-oriented languages. The languages in (Dezani-Ciancaglini et al., 2006; Coppo
et al., 2007) have an interesting progress property, whereby well-typed programs do not
starve at communication points, once a session is established; however, a single thread
cannot interleave communications on different channels.

As mentioned in the introduction, work on session types for functional languages started
with our own work (Gay et al., 2003; Vasconcelos et al., 2004, 2006). Neubauer & Thie-
mann (2004a) show how to implement session types on top of the Haskell programming
language; Neubauer & Thiemann (2004b) model software components as concurrent func-
tional processes, and use session types to extract the smallest protocol required by each
process; Neubauer & Thiemann (2005) address the problem of program transformation,
from sequential to multi-tier, guided by session types.

Asynchronous semantics for session types can be traced back to the unpublished work of
Neubauer & Thiemann (2004c). Fähndrich et al. (2006) choose an asynchronous semantics
for Sing#, but without formal semantics. The present formulation is based on our previous
work (Gay & Vasconcelos, 2007). A few recent works use asynchronous semantics, in-
cluding (Coppo et al., 2007; Capecchi et al., 2008) in the context of OO languages, and
(Honda et al., 2008) in the context of a π-calculus like language with multiparty session
types.

Yoshida & Vasconcelos (2007) show that to model “true” channel passing, where one
thread may acquire both ends of a communication channel, the two endpoints of the
channel must be treated separately. Like Gay & Hole (2005), they refer to the endpoints
of channel c as c+ and c−. The present paper achieves true channel passing by storing the
peer endpoint c′ of c in c’s buffer, and using the double binder (νcc′) to link an endpoint
with its peer. Recent work by Honda et al. (2008), although using asynchronous semantics
and generalizing session types to multi-party protocols, does not allow a thread to acquire
both endpoints of a channel.

Cyclone (Grossman, 2003; Grossman et al., 2002), Vault (DeLine & Fähndrich, 2001),
and adoption and focus (Fähndrich & DeLine, 2002) are systems based on the C program-
ming language that allow protocols to be statically enforced by a compiler. They share our
goal, but vary greatly in the techniques used. Cyclone (Grossman et al., 2002) adds many
benefits to C, but its support for protocols is limited to enforcing locking of resources.
Between acquiring and releasing a lock, there are no restrictions on how a thread may
use a resource. In contrast, our system uses types both to enforce locking of channels (via
linearity) and to enforce protocols on channels. In the Vault system (DeLine & Fähndrich,
2001) and its extension “Adoption and Focus” (Fähndrich & DeLine, 2002) annotations
are added to C programs, in order to describe protocols that a compiler can statically
enforce. Objects on which protocols may be specified are not limited to communication
channels. However, in the case of communication channels, session types allow more
detailed specification of protocols. Also, being based on C, these systems do not support
higher-order functional programming.

In terms of session types in functional languages, the main area of future work is to
study type inference and polymorphism, either in a simple ML-style or along the lines
of Gay (2008). We should also investigate the relationship with other forms of static
analysis, including type and effect systems (Amtoft et al., 1999). In the longer term we
intend to formalize a more general theory of object-oriented session types than exists at

23

ZU064-05-FPR main 27 October 2008 9:56

present, including inheritance and subtyping and integrating with more general notions
of non-uniform objects. A thorough understanding of the functional case provides a good
foundation for the object-oriented case.

We would like to investigate whether communication on session-typed channels can
be formulated in terms of monads (Peyton Jones & Wadler, 1993), along the lines of
input/output effects in Haskell. Ideally, for example, the son from Section 2:

son sonAcces s book =
l e t s = accept sonAcces s i n
l e t (f , s) = r e ce i v e s i n
l e t s = send (f book) s i n s

would be written in a form of do-notation:

son sonAcces s book =
do s ← accept sonAcces s

f ← r e ce i v e s
re tu rn (send (f book) s)

in order to hide the re-binding of s. Such a translation could be defined easily enough
as syntactic sugar, but it is not an instance of the standard translation of do-notation.
Indeed, the standard translation does not respect linearity of the resource that is threaded
through the sequence of calls. Neubauer and Thiemann (2004a) use a monad in their
Haskell implementation of session types. Because their setting is somewhat different, with
a continuation-passing style and restriction to a single channel, we have not yet understood
whether it can be adapted to our language.

Acknowledgements

Vasco T. Vasconcelos was partially supported by FEDER, the EU IST proactive initiative
FET-Global Computing (project Sensoria, IST–2005–16004), Fundação para a Ciência
e a Tecnologia (via CITI, and project Space–Time–Types, POSC/EIA/55582/2004). Si-
mon Gay was partially supported by Instituto de Telecomunicações, Portugal, and by the
EPSRC grant “Engineering Foundations of Web Services: Theories and Tool Support”
(EP/E065708/1).

References

Amtoft, T., Nielson, F., & Nielson, H. R. (1999). Type and Effect Systems: Behaviours for
Concurrency. Imperial College Press.
Bonelli, E., Compagnoni, A., & Gunter, E. (2005). Correspondence assertions for process
synchronization in concurrent communication. Journal of Functional Programming, 15(2),
219–247.
Capecchi, S., Coppo, M., Dezani-Ciancaglini, M., Drossopoulou, S., & Giachino, E. (2008).
Amalgamating Sessions and Methods in Object Oriented Languages with Generics. Theo-
retical Computer Science. to appear.
Coppo, M., Dezani-Ciancaglini, M., & Yoshida, N. (2007). Asynchronous Session Types
and Progress for Object-Oriented Languages. Pages 1–31 of: Bonsangue, M., & Johnsen,
E. B. (eds), FMOODS’07. LNCS, vol. 4468. Springer.

24

ZU064-05-FPR main 27 October 2008 9:56

DeLine, R., & Fähndrich, M. (2001). Enforcing high-level protocols in low-level software.
Pages 59–69 of: PLDI. SIGPLAN Notices, vol. 36(5). ACM Press.
Dezani-Ciancaglini, M., Yoshida, N., Ahern, A., & Drossopolou, S. (2005). A distributed
object-oriented language with session types. Pages 299–318 of: TGC. LNCS, vol. 3705.
Springer.
Dezani-Ciancaglini, M., Mostrous, D., Yoshida, N., & Drossopoulou, S. (2006). Session
types for object-oriented languages. Pages 328–352 of: ECOOP. LNCS, vol. 4067.
Springer.
Fähndrich, M., & DeLine, R. (2002). Adoption and focus: practical linear types for
imperative programming. Pages 13–24 of: PLDI. SIGPLAN Notices, vol. 37(5). ACM
Press.
Fähndrich, M., Aiken, M., Hawblitzel, C., Hodson, O., Hunt, G., Larus, J. R., & Levi, S.
(2006). Language support for fast and reliable message-based communication in singular-
ity OS. SIGOPS Oper. Syst. Rev., 40(4), 177–190.
Gay, S., Vasconcelos, V. T., & Ravara, A. 2003 (Mar.). Session types for inter-process
communication. TR 2003–133. Department of Computing, University of Glasgow.
Gay, S. J. (2006). Subtyping between standard and linear function types.
http://www.dcs.gla.ac.uk/~simon/publications/subslf.pdf.
Gay, S. J. (2008). Bounded polymorphism in session types. Mathematical Structures in
Computer Science. To appear.
Gay, S. J., & Hole, M. J. (2005). Subtyping for session types in the pi calculus. Acta
Informatica, 42(2/3), 191–225.
Gay, S. J., & Vasconcelos, V. T. (2007). Asynchronous functional session types. Tech. rept.
TR-2007-251. Department of Computing Science, University of Glasgow.
Gay, S. J., Vasconcelos, V. T., & Ravara, A. (2008). Dynamic interfaces. Submitted.
Grossman, D. (2003). Type-safe multithreading in Cyclone. Pages 13–25 of: TLDI.
SIGPLAN Notices, vol. 38(3). ACM Press.
Grossman, D., Morrisett, G., Jim, T., Hicks, M., Wang, Y., & Cheney, J. (2002). Region-
based memory management in Cyclone. Pages 282–293 of: PLDI. SIGPLAN Notices,
vol. 37(5). ACM Press.
Honda, K. (1993). Types for dyadic interaction. Pages 509–523 of: CONCUR. LNCS, vol.
715. Springer.
Honda, K., Vasconcelos, V. T., & Kubo, M. (1998). Language primitives and type disci-
pline for structured communication-based programming. Pages 122–138 of: ESOP. LNCS,
vol. 1381. Springer.
Honda, K., Yoshida, N., & Carbone, M. (2008). Multiparty asynchronous session types.
Pages 273–284 of: POPL. SIGPLAN Notices, vol. 43(1). ACM Press.
Neubauer, M., & Thiemann, P. (2004a). An implementation of session types. Pages 56–70
of: PADL. LNCS, vol. 3057. Springer.
Neubauer, M., & Thiemann, P. (2004b). Protocol specialization. Pages 246–261 of: Chin,
W.-N. (ed), Aplas. Lecture Notes in Computer Science, vol. 3302. Springer.
Neubauer, M., & Thiemann, P. (2004c). Session types for asynchronous communication.
Unpublished.
Neubauer, M., & Thiemann, P. (2005). From sequential programs to multi-tier applications
by program transformation. Pages 221–232 of: Palsberg, J., & Abadi, M. (eds), Popl. ACM.

25

ZU064-05-FPR main 27 October 2008 9:56

Peyton Jones, S., & Wadler, P. (1993). Imperative functional programming. Popl. ACM.
Pierce, B. C. (2002). Types and Programming Languages. MIT Press.
Takeuchi, K., Honda, K., & Kubo, M. (1994). An interaction-based language and its typing
system. Pages 398–413 of: PARLE. LNCS, vol. 817. Springer.
Vallecillo, A., Vasconcelos, V. T., & Ravara, A. (2006). Typing the behavior of software
components using session types. Fundamenta Informaticae, 73(4), 583–598.
Vasconcelos, V. T., Ravara, A., & Gay, S. J. (2004). Session types for functional multi-
threading. Pages 497–511 of: CONCUR. LNCS, vol. 3170. Springer.
Vasconcelos, V. T., Gay, S. J., & Ravara, A. (2006). Typechecking a multithreaded func-
tional language with session types. Theoretical Computer Science, 368(1–2), 64–87.
W3C. (2005). Web Services Choreography Description Language Version 1.0.
http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/.
Walker, D. (2005). Substructural type systems. Pages 3–43 of: Pierce, B. C. (ed), Advanced
Topics in Types and Programming Languages. MIT Press.
Wright, A. K., & Felleisen, M. (1994). A syntactic approach to type soundness. Informa-
tion and Computation, 115(1), 38–94.
Yoshida, N., & Vasconcelos, V. T. (2007). Language primitives and type discipline for
structured communication-based programming revisited: Two systems for higher-order
session communication. ENTCS, 171(4), 73–93.

26

