
Modular Session Types for Distributed
Object-Oriented Programming

Simon J. Gay
Department of Computing Science

University of Glasgow, UK
simon@dcs.gla.ac.uk

Vasco T. Vasconcelos
Department of Informatics

University of Lisbon, Portugal
vv@di.fc.ul.pt

António Ravara ∗

CITI and Department of Informatics,
FCT, New University of Lisbon, Portugal

aravara@fct.unl.pt

Nils Gesbert
Department of Computing Science

University of Glasgow, UK
nils@dcs.gla.ac.uk

Alexandre Z. Caldeira
Department of Informatics

University of Lisbon, Portugal
zua@di.fc.ul.pt

Abstract
Session types allow communication protocols to be specified type-
theoretically so that protocol implementations can be verified by
static type-checking. We extend previous work on session types
for distributed object-oriented languages in three ways. (1) We at-
tach a session type to a class definition, to specify the possible se-
quences of method calls. (2) We allow a session type (protocol)
implementation to be modularized, i.e. partitioned into separately-
callable methods. (3) We treat session-typed communication chan-
nels as objects, integrating their session types with the session types
of classes. The result is an elegant unification of communication
channels and their session types, distributed object-oriented pro-
gramming, and a form of typestates supporting non-uniform ob-
jects, i.e. objects that dynamically change the set of available meth-
ods. We define syntax, operational semantics, a sound type sys-
tem, and a correct and complete type checking algorithm for a
small distributed class-based object-oriented language. Static typ-
ing guarantees that both sequences of messages on channels, and
sequences of method calls on objects, conform to type-theoretic
specifications, thus ensuring type-safety. The language includes ex-
pected features of session types, such as delegation, and expected
features of object-oriented programming, such as encapsulation of
local state. We also describe a prototype implementation as an ex-
tension of Java.

∗Work developed while the author was at SQIG, Instituto de
Telecomunicações, and Department of Mathematics, IST, Technical Uni-
versity of Lisbon.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’10, January 17–23, 2010, Madrid, Spain.
Copyright c© 2010 ACM 978-1-60558-479-9/10/01. . . $10.00

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Classes and objects; D.3.2 [Language Classifica-
tions]: Object-oriented languages; D.3.1 [Formal Definitions and
Theory]; F.3.2 [Semantics of Programming Languages]: Oper-
ational semantics; F.3.3 [Studies of Program Constructs]: Type
structure; D.1.5 [Object-oriented Programming]

General Terms Languages, Theory, Verification

Keywords Session types, object-oriented calculus, non-uniform
method availability, typestates

1. Introduction
Session types [29, 49] allow communication protocols to be speci-
fied type-theoretically so that protocol implementations can be ver-
ified by static type-checking. A session type describes a commu-
nication channel, and defines the permitted sequences and types of
messages. For example, the session type S = ! [Int] . ? [Bool] .end
specifies that an integer must be sent and then a boolean must be
received, and there is no further communication. More generally,
branching and repetition can be specified.

Session types were originally formulated for languages closely
based on process calculus. Since then, the idea has been applied
to functional languages [25, 26, 39, 44, 51], component-based
object systems [50], object-oriented languages [10, 17–19, 31, 38],
operating system services [22] and more general service-oriented
systems [11]. Session types have also been generalized from two-
party to multi-party systems [8, 30], although in the present paper
we will only consider the two-party case.

We propose a new approach to combining session-typed com-
munication channels and distributed object-oriented programming,
which extends previous work and allows increased programming
flexibility. The key idea is to allow a channel (e.g., of type S above)
to be stored in a field of an object, and for separate methods to im-
plement parts of the session. For example, method m can send the
integer and method n can receive the boolean. Because the session
type of the channel requires that the send occurs first, it follows
that m must be called before n. We need therefore to work with
non-uniform objects, in which the availability of methods depends
on the state of the object. In order to develop a static type system
for object-oriented programming with session-typed channels, we

use a form of typestates (a type safe state abstraction, according
to [14, 21]) that we have previously introduced under the name
of dynamic interfaces [52]. In this type system, the availability of
a class’s methods (i.e., the possible sequences of method calls) is
specified in a style that itself resembles a form of session type, giv-
ing a pleasing commonality of notation at both the channel and
class levels.

The result of this combination of ideas is a language that al-
lows a very natural integration of programming with session-based
channels and with non-uniform objects. In particular, the imple-
mentation of a session can be modularized by dividing it into
separate methods that can be called in turn. In contrast, previous
work on object-oriented session types, although allowing a ses-
sion to be delegated to another method, does not allow separation
into separately-callable blocks of code. Thus, our approach leads
to a more flexible programming style than the other approaches
mentioned above. Our formal language provides channels as disci-
plined streams, because session types are a high-level abstraction
for structuring communication, and integrates this communication-
based construct, without further restrictions, with the high-level
object-oriented abstractions for structuring computation.

We have formalized a core distributed class-based object-
oriented language with a static type system that combines session-
typed channels and a form of typestates. We have proved that static
typing guarantees two runtime safety properties: first, that the se-
quence of method calls on every non-uniform object follows the
specification of its class’s session type; second, as a consequence
(because channel operations are implemented as method calls) that
the sequence of messages on every channel follows the specifica-
tion of its session type. We have also formalized a typechecking
algorithm and proved its correctness, and implemented a prototype
language as an extension of Java.

There is a substantial literature of related work, which we dis-
cuss in detail in Section 8. Very briefly, the contributions of our
paper are the following.

• In contrast to other work on session types for object-oriented
languages, we do not require a channel to be created and com-
pletely used (or delegated) within a single method. Several
methods can operate on the same channel, thus allowing effec-
tive encapsulation of channels in objects, while retaining the
usual object-oriented development practice. This is made pos-
sible by our integration of channels and non-uniform objects.
This contribution was the main motivation for our work.

• In contrast to other typestate systems, we use a global specifica-
tion of method availability, inspired by session types, made part
of a class definition. While typestates are intensional, directly
related to the object’s state, we define these states with types,
making use of standard type-theoretic tools to ensure client-
conformance.

The remainder of the paper is structured as follows. In Section 2
we illustrate our system by introducing an example. In Section 3 we
formalize a core sequential language; in Section 4 we extend it to a
distributed language and in Section 5 we state the key properties of
the type system. In Section 6 we present a typechecking algorithm
and state results about its correctness. Section 7 describes our
prototype implementation. Section 8 contains a more extensive
discussion of related work; Section 9 outlines future work and
concludes.

2. Example: Buyer/Seller
To illustrate the features of the formal language and of the type
system, we incrementally present an example.

The Buyer/Seller Protocol. Our example is based on an e-
commerce protocol between a buyer and a seller. The two parties
interact on a point-to-point communication channel, each owning
one endpoint. The buyer’s protocol is specified by the session type

B = ⊕{ reqQuote : ! [Product] . ? [Price] . ? [Quote] . B,
accQuote : ! [Quote] . ! [Payment] . B,
quit : end}

The buyer has a choice between reqQuote, accQuote and quit. If
she chooses reqQuote she must send information about the desired
product, and then receive the price and a reference number for the
quote. After this, the session type is again B, and the buyer can
choose another option. When she wants to buy a product, the buyer
can select accQuote and then send a quote reference followed
by payment information. It is therefore only possible to buy an
item after a quote has been obtained, although this is not specified
explicitly as part of the type. Selecting quit at any time, instead of
accQuote or reqQuote, terminates the protocol.

The seller’s protocol is specified by the dual session type

S = &{ reqQuote : ? [Product] . ! [Price] . ! [Quote] . S,
accQuote : ? [Quote] . ? [Payment] . S,
quit : end}

in which send (!) and receive (?) are exchanged, and the choice
constructor (⊕) is replaced by the branch constructor (&). This
means that the seller must be ready to respond to all of the three
choices that the buyer can make. We express the relationship of
duality between S and B by S = B, or equivalently B = S as the
duality operation is self-inverse.

The goal of a static type system with session types is to be able
to verify, by type-checking, that the implementations of the buyer
and the seller follow the specified protocol.

An API for the Buyer. We work within a model of distributed
computing in which there are a number of sites, each executing an
independent program. Services are accessed via typed access points
n, analogous to URLs. The type 〈S〉 describes an access point for
a service whose type (protocol) is S. A point-to-point bidirectional
communication channel is created by the interaction of operations
n.request() and n.accept() executed at separate sites. If n has
type 〈S〉 then n.accept() yields one endpoint of the channel, with
type S, and n.request() yields the other endpoint, with type S.
Given a channel c, synchronous communication occurs through the
interaction of c.send and c.receive operations. An access point such
as n must be announced at the top level at every site that uses it,
and all such occurrences must share the same type. For simplicity,
we do not allow access points to be created dynamically.

It is very natural to implement an API for buyers, by defining
the class BuyerAPI in Figure 1. A program that needs to act as a
buyer — for example, driven by a GUI application — can create
an instance of class BuyerAPI and call methods on it, instead of
working directly with the primitive operations request, send and
receive. This approach has several advantages. The class abstracts
from the details of the protocol, for example the exact order of
messages. It also hides the Quote information by storing it in a data
structure indexed by Product. As we will see, it can form the basis
for an inheritance hierarchy of classes that offer more services,
although we do not formalize inheritance in the present paper.

The code in Figure 1 consists of four declarations. Lines 1 and
3 define enumerated types Option and Result. Lines 5–8 define
the session type S of the channel protocol; we have chosen the
seller’s viewpoint. Lines 10–43 define the class BuyerAPI. Because
the field c will store a channel of type S the class BuyerAPI is
non-uniform. We specify the availability of methods by the ses-
sion declaration in lines 11–17. We refer to this as a class ses-
sion type to distinguish it from channel session types such as S.

1 enum Option { reqQuote , accQuote , q u i t }
2
3 enum Re su l t {ok , e r r o r }
4
5 typede f S =
6 &{Option . reqQuote : ? [Product] . ! [P r i c e] . ! [Quote] . S
7 Option . accQuote : ? [Quote] . ? [Payment] . S ,
8 Option . q u i t : end}
9

10 c l a s s BuyerAPI {
11 s e s s i o n I n i t
12 where I n i t = { i n i t : Shop }
13 Shop = { p r i c e : Shop ,
14 buy : 〈 Re su l t . ok : Pay ,
15 Re su l t . e r r o r : Shop 〉 ,
16 s top : end }
17 Pay = { pay : Shop }
18
19 c ; qs ; // f i e l d s , i n i t i a l l y n u l l : Nu l l
20
21 vo id i n i t (〈S 〉 u) {
22 c = u . r eques t () ;
23 qs = new QuoteStore () ; qs . i n i t () ;
24 }
25 P r i c e p r i c e (Product p) {
26 c . send (Opt ion . reqQuote) ;
27 c . send (p) ;
28 P r i c e pr = c . r e c e i v e () ;
29 Quote q = c . r e c e i v e () ;
30 qs . add (p , q) ;
31 r e t u r n pr ;
32 }
33 Re su l t buy (Product p) {
34 Quote q = qs . ge t (p) ;
35 i f (q == n u l l)
36 r e t u r n Re su l t . e r r o r ;
37 e l s e {
38 c . send (Opt ion . accQuote) ;
39 c . send (q) ;
40 r e t u r n Re su l t . ok ;
41 }
42 vo id pay (Payment p) { c . send (p) ; }
43 vo id s top () { c . send (Opt ion . q u i t) ; }
44 }

Figure 1. An API for the buyer.

An object of class BuyerAPI has abstract states Init , Shop, Pay and
end. The type constructor {...} specifies the available methods and
the abstract states that result when they are called. The type of
an instance of class BuyerAPI is BuyerAPI[Init], BuyerAPI[Shop],
BuyerAPI[Pay] or BuyerAPI[end]. The state end is a standard ab-
breviation for a state without available methods. Our approach to
specifying method availability is similar to other systems of types-
tates for object-oriented languages [16, 21], except that we collect
the whole specification into the class session type instead of anno-
tating the method definitions with pre- and post-conditions. In our
system, annotations are required only for recursive methods; we
discuss this point at the end of Section 3.

Another distinctive feature of our language is that the abstract
state after a method call may depend on the return value of the
method, if it is of an enumerated type. This is illustrated on lines
14–15, where 〈. . .〉 is a variant type indexed by values of type
Result. A caller of buy must switch on the result in order to discover
the state and hence the available methods; this is enforced by the
type system. In this example, method buy returns error if a price has
not yet been obtained for the specified product. It is not possible to

1 // s e l l e rURL i s o f type 〈S 〉
2 // wi th S d e f i n e d i n F i gu r e 1
3 b = new BuyerAPI () ;
4 b . i n i t (s e l l e rURL) ;
5 // Wait u n t i l p r i c e i s r i g h t
6 wh i l e (b . p r i c e (myProduct) > 100) {} ;
7
8 sw i tch (b . buy (myProduct)) {
9 case e r r o r :

10 p r i n t (”Something went wrong”) ; break ;
11 case ok : b . pay (myPayment) ; break ;
12 }
13 b . s top () ;

Figure 2. A buyer — code fragment.

use the session type to specify that price must be called before buy,
because the product description is arbitrary data.

Method init has a parameter u whose type 〈S〉 indicates that
it represents an access point for a service of type S. The use of
the notation 〈. . .〉 for both variant types and access point types
should not cause confusion as they occur in different contexts.
When init is called, the actual parameter will be a specific access
point that has been announced as such with type 〈S〉. The method
uses u.request() to create a channel. It also creates and initializes
a QuoteStore object, which we assume allows construction of a
mapping between products and quotes, in a similar way to a Java
HashMap. Although our language does not include constructors
as a special category, the session type of BuyerAPI specifies that
init must be called first, so we can regard it as the initialization
part of a constructor. Likewise, we assume that after the call to
QuoteStore. init (), the object stored in qs is in some state Q in
which all other QuoteStore methods are available.

Methods price , buy and pay implement parts of the buyer’s
protocol. Defining these operations as separate methods is the key
innovation of our approach. This is what we mean by modularity
of sessions. Other work on object-oriented session types does not
allow this.

There is a consistency requirement between the channel session
type S, the class session type Init , and the definitions of the meth-
ods. Consistency is checked by the type system described in Sec-
tion 3 and by the type-checking algorithm described in Section 6.
If we take a sequence of method calls allowed by the class session
type, and look at the channel operations in the methods to obtain a
sequence of channel operations, then this must be allowed by the
channel session type S.

In order to support modular type-checking we require only the
session type of a class, not the types of its fields. For example, in
order to type-check classes that are clients of BuyerAPI, we do not
need to know that BuyerAPI contains a channel with a session type;
the class session type of BuyerAPI contains all of the necessary
information about the allowed sequences of method calls. It is
therefore possible to associate session types with library classes
containing native methods whose source code cannot be available.

Type safety with non-uniform objects requires tight control of
aliasing. When the type of an object changes, by calling a method
on it or by analysing an enumeration constant returned from a
method call, there must be a unique reference to it. Since we are
mainly interested in exploring the key idea of modularizing session
implementations by integrating session-typed channels and non-
uniform objects, we have adopted a simple approach to ownership
control: a linear type system. We expect to be able to ease this
restrictive system by using an off-the-shelf solution to aliasing
control, such as one of the approaches discussed in Section 8.

1 acces s 〈S 〉 s e l l e rURL ; // S d e f i n e d i n F i gu r e 1
2
3 c l a s s S e l l e r {
4 s e s s i o n { main : end }
5
6 vo id main () {
7 wh i l e (t rue)
8 spawn S e l l e rTh r e a d . run (s e l l e rURL . accept ()) ;
9 } }

10
11 c l a s s S e l l e rTh r e a d {
12 s e s s i o n { run : end }
13
14 vo id run (S x) {
15 sw i tch (x . r e c e i v e ()) {
16 case reqQuote : reqQuote (x) ;
17 case accQuote : accQuote (x) ;
18 case qu i t : break
19 } }
20 vo id reqQuote (? [Product] . ! [P r i c e] . ! [Quote] . S x)
21 { Product p = x . r e c e i v e () ;
22 x . send (. . .) ; // Ca l c u l a t e p r i c e
23 x . send (. . .) ; // Quote r e f e r e n c e
24 run (x)
25 }
26 vo id accQuote (? [Quote] . ? [Payment] . S x) {
27 Quote q = x . r e c e i v e () ;
28 P r i c e py = x . r e c e i v e () ;
29 . . . // Proce s s payment
30 run (x)
31 } }

Figure 3. A multi-threaded seller, featuring two “private” methods
and mutual recursion.

Interacting with the Buyer API. Figure 2 shows a code fragment
that creates and uses an instance of class BuyerAPI. We assume
that the typed access point sellerURL corresponds to the published
access point of a particular seller that observes protocol S. In the
remaining code, myProduct and myPayment represent, respectively,
the name of a particular product and the details of a method of
payment.

Figure 3 contains a schematic definition of a seller. The seller
should run independently at some location, so class Seller defines a
main method and the class session type specifies that main is called
once. The statement spawn SellerThread.run(sellerURL .accept())
is repeatedly executed by the body of main. The semantics of this
statement is as follows. The expression sellerURL .accept() creates
a channel by interacting with a matching sellerURL .request() at an-
other site (it blocks until there is a matching sellerURL .request()),
and evaluates to the endpoint c+ so that we have the statement
spawn SellerThread.run(c+). According to our very simple concur-
rency mechanism, this creates a new heap containing an instance
of SellerThread on which run(c+) is called, forming an indepen-
dently executing expression. As will be explained in Section 4, for
simplicity our formal language has no concept of separate threads
within a single location; we therefore have to think of spawn as cre-
ating a new location. The run method uses mutual recursion to im-
plement a loop that repeatedly receives and processes requests, un-
til quit is selected. The effect is that main accepts a connection and
immediately delegates the new channel endpoint to a new thread.
It would also be possible for main to execute part of the protocol
before delegating the channel.

Notice that the methods reqQuote and accQuote of the class
SellerThread are not in the session type. Although our language
does not include method qualifiers, the two methods can be re-
garded as private since the type system ensures that they cannot

1 enum NewResult r e s t r i c t s Re su l t {ok}
2
3 c l a s s NewBuyerAPI extends BuyerAPI {
4 @Overr ide
5 NewResult buy (Product p) {
6 i f (! qs . c o n t a i n s (p)) p r i c e (p) ;
7 c . send (Opt ion . acceptQuote) ;
8 c . send (qs . ge t (p)) ;
9 r e t u r n NewResult . ok ;

10 } }

Figure 4. An extended buyer API — features a self call to a
“public” method.

be called by any client of class SellerThread. Notice also that the
three mutually recursive methods in SellerThread each implement
a part of session type S.

We assume an external mechanism for checking that access
points are announced consistently at all sites. This could be a
trusted central repository of typed services, or Hu’s [31] system
of run-time type-checks when request and accept interact.

The code in this example differs from the formal language de-
fined in Sections 3 and 4 in two ways. First, the methods run,
reqQuote and accQuote, being mutually recursive, should be an-
notated with their effect on the types of the fields of SellerThread.
Because SellerThread has no fields, the annotations would be vac-
uous and so we have omitted them. Second, the parameter types of
reqQuote and accQuote should have the form Chan[S’], where Chan
is a special class name representing channels and S’ is a class ses-
sion type derived from the channel session type S. We have used
the channel session type in the example code in order to make it
more readable.

Inheritance and Subtyping. For simplicity, the formal language
defined in the present paper does not include inheritance; however,
it does include a subtyping relation on session types, which pro-
vides a foundation for inheritance and is also used in other ways. It
is straightforward to add inheritance, along the following lines. A
class C inherits from (extends) a class D in the usual way: C may
define additional fields and methods, and may override methods
of D. By considering the standard principle of safe substitutability,
namely that an object of class C should be safely usable wherever
an object of class D is expected, we can work out the appropriate
subtyping relationship between the session types of C and D. In a
given state, C must make at least as many methods available as D;
if a given method returns an enumeration, corresponding to a vari-
ant session type, then the set of values in C must be a subset of the
set in D. When a method of D is overridden by a method of C, we
allow contravariant changes in the parameter types and covariant
changes in the result type. Subtyping between session types is de-
fined in Section 3, but without subtyping on variant types, which is
not needed in the present paper.

To support covariant changes in the result type, we can add the
restricts declaration for enumerated types. An example is shown

in Figure 4, where class NewBuyerAPI overrides method buy in such
a way that, if the quote to the product is not in the quote store, the
method issues a price request first. Notice that method price is both
“public” (appears in the session type for the class) and the recipient
of a self-call (unlike method SellerThread .reqQuote, which is not
public). Our language distinguishes these two usages of the same
method, by advancing the session type of the class in the first case
but not in the second. Of course the self-call of price may change
the types of the fields of NewBuyerAPI, but this is included in the
effect of buy. Inheritance, in the sequential setting, is described in
more detail in [52].

Class/Enum dec D ::= class C {S; !f ; !M} | enum E {!l}
Types T ::= Null | C[S] | E link r

Method dec M ::= T m(T x) {e}
Values v ::= null | l

Paths r ::= this

Expressions e ::= v | x | r.f.m(e) | e; e

| new C() | switch (e) {l : el}l∈E

| r.f | r.f = e

Class session types S ::= {mi : Si}i∈I | 〈l : Sl〉l∈E

| X | µX.S

Figure 5. Top level syntax.

Types T ::= . . . | C[F]

Field types F ::= {Ti fi}i∈I | 〈l : Fl〉l∈E | ⊥
Values v ::= . . . | o

Paths r ::= o | r.f

Expressions e ::= . . . | return e from r

Object records R ::= C[{fi = vi}i∈I]

Heaps h ::= ε | h :: o = R

States s ::= (h; e)

Contexts E ::= [] | E ; e | r.m(E) | return E from r

| switch (E) {l : el}l∈E | r.f = E
Identifier this is an instance of object identifier o.

Figure 6. Extended syntax for the type system and semantics.

3. A Core Sequential Language
We now present a formal syntax, operational semantics, and type
system for a core sequential language. The main simplification is
that all objects are treated as non-uniform and handled linearly by
the type system. Incorporating standard (non-uniform) objects is
straightforward, but it complicates and obscures the formal defi-
nitions. Our prototype implementation (Section 7) includes them.
Also, all methods have exactly one parameter. In terms of expres-
sivity this is not significant, as multiple parameters can be passed
within an object, and a dummy parameter can be added if necessary.
Anyway, it is easy to generalize the definitions, at the expense of
slightly more complex notation. The calls request(), accept() and
receive () should be regarded as abbreviations for request(null)
etc. Finally, the examples use void methods, which are not in the
formal language but can easily be added.

Syntax. We separate the syntax into the programmer’s language
(Figure 5) and the extensions required by the type system and op-
erational semantics (Figure 6). Identifiers C, E, m, f and l are
taken from disjoint countable sets representing names of classes,
enumerations, methods, fields and labels respectively. Class, enu-
merated set and method declarations have been illustrated by the
examples. A class declaration does not declare types for fields be-
cause they can vary at run-time. When an object is created, its fields
are initialised to null.

There are some restrictions on the syntax of expressions. The
programmer can only refer to fields of the current object, this; in
other terms, all fields are private. Method call is only available on
a field specification, not an arbitrary expression. The examples in
Section 2 omit this as the prefix to all field accesses, but they can
easily be inserted by the compiler.

Types are separated into object types and non-object types. The
type of an object is C[S], where C is a class name and S is a class
session type. The type C[S] is the view of an object from outside:
the session type S shows which methods can be called, but the
fields are not visible. The type Null has the single value null. The
type E link r describes a label from the enumerated set E whose
value will be used to resolve a variant type associated with object
path r. For simplicity, the core language does not allow other uses
of labels, hence E is not by itself a type.

Session types have been discussed in relation to the example.
We refer to {mi : Si}i∈I as a branch type and to 〈l : Sl〉l∈E

as a variant type. Session type end abbreviates the empty branch
type {}. In contrast to variant types in functional languages, val-
ues are not tagged; instead the tag is stored in a value of type
E link r, where r refers to the variantly typed object. The core
language does not include named session types, or typedef or the
session and where clauses from the examples; we just work with
recursive session type expressions of the form µX.S, which are
required to be contractive, i.e. containing no subexpression of the
form µX1.· · ·µXn.X1. We adopt the equi-recursive approach [43,
Chapter 21] and regard µX.S and S{(µX.S)/X} as equivalent, us-
ing them interchangeably in any mathematical context.

It is worth noting that the type system, which we will describe
later, enforces the following restrictions: nested variants are not
permitted and in a class declaration, the initial session type is
always a branch. They reflect the fact that variant types are tied
to the result of a method call.

Figure 6 defines additional syntax needed for the formal system,
not available to the programmer. Identifier o is taken from a set of
object identifiers which includes this, the only identifier allowed in
the programmer’s language. There is an alternative form of object
type, C[F], which has a field typing instead of a session type. It
represents the view of an object from within its own class and is
used when typing method definitions. A field typing F can either
be a record type associating one type to each field of the object
or a variant field typing 〈l : Fl〉l∈E , indexed by the values of
an enumerated set E, similar to a variant session type. Type ⊥
represents the uninhabited field typing which no object can have
and can appear in variant types along with records, representing an
impossible case.

Object records, heaps and states are used to define the opera-
tional semantics. A heap h ties object identifiers o to object records
R. The identifiers are values, which may occur in expressions. The
operation h :: o = R represents adding a record for identifier o to
the heap h and we consider it to be associative and commutative,
that is, h is essentially an unordered set of bindings. Paths r, that
occur in expressions to indicate where an object is, are extended to
allow a toplevel object identifier followed by an arbitrary number
of field specifications and serve to represent a location in the heap.
In the toplevel syntax, the only known location is this, the current
object. We use the following notation with respect to records, heaps
and paths:

DEFINITION 1 (Heap locations).

• If R = C[{fi = vi}i∈I], we define R.fi = vi (for all i) and
R.class = C. For any value v and any j ∈ I , we also define
R{fj &→ v} = C[{fi = v′i}i∈I] where v′i = vi for i (= j and
v′j = v.

o fresh C.fields = !f
(R-NEW)

(h; new C()) −→ (h :: o = C[!f =
−→
null]; o)

h(r).f = v
(R-ACCESS)

(h; r.f) −→ (h{r.f &→ null}; v)

(R-ASSIGN) (h; r.f = v) −→ (h{r.f &→ v}; null)

m(x) {e} ∈ h(r.f).class

(h; r.f.m(v)) −→ (h; return e{r.f/this}{v/x} from r.f)

(R-CALL)
(R-RETURN) (h; return v from r) −→ (h; v)

l0 ∈ E(R-SWITCH)
(h; switch (l0) {l : el}l∈E) −→ (h; el0)

(R-SEQ) (h; v; e) −→ (h; e)

(h; e) −→ (h′; e′)
(R-CONTEXT)

(h; E [e]) −→ (h′; E [e′])

Figure 7. Reduction rules for states.

• If h = (h′ :: o = R), we define h(o) = R, and for any field f
of R, h{o.f &→ v} = (h′ :: o = R{f &→ v}).

• If r = r′.f and h(r′).f = o, then we also define h(r) = h(o)
and h{r.f ′ &→ v} = h{o.f ′ &→ v}.

• In any other case, these operations are not defined. Note in
particular that h(r) is not defined if r is a path that exists in
h but does not point to an object identifier.

Finally, the return expression is used to represent an ongoing
method call; a state consists of a heap and an expression; E are
evaluation contexts in the style of Wright and Felleisen [53].

Programs. A program consists of a collection of class and enum
declarations D. The semantic and typing rules we will present next
are implicitly parameterized by the set of these declarations. It is
assumed that the whole set is available at any point and that any
class, enum or label is declared only once. We consider that enum
declarations define sets of labels, and use the notation l ∈ E
accordingly. As opposed to labels, we do not require the sets of
method or field names to be disjoint from one class to another.
We will use the following notation: if class C {S; !f ; !M} is one
of the declarations, C.session means S and C.fields means !f , and
if T m(T ′ x) {e} ∈ !M then C.m is e.

Operational Semantics. Figure 7 defines an operational seman-
tics on states (h; e) consisting of a heap and an expression. All
rules have the implicit premise that the expressions appearing in
them must be defined, for example r.f only reduces if h(r) is an
object record containing a field named f . An example of reduction,
together with typing, will be presented at the end of the section in
Figure 10.

R-NEW creates a new object in the heap, with null fields. R-
ACCESS extracts the value of a field from an object in the heap.
Linear control of objects requires that the field be nullified. R-
ASSIGN updates the value of a field. The value of the assignment,
as an expression, is null; linearity means that it cannot be v as
in Java. R-CALL wraps the method body, with the full path to
the object instance substituted for this and the actual parameter
substituted for the formal one, in a return expression that is used
for type preservation. R-RETURN then unwraps the resulting value.

R-SWITCH is standard. R-SEQ discards the result of the first
part of a sequential composition. R-CONTEXT is the usual rule for
reduction in contexts.

S <: S′

C[S] <: C[S′]

∀i ∈ I Ti <: T ′
i

C[{Ti fi}i∈I] <: C[{T ′
i fi}i∈I]

(S-SESS,S-FIELD)

Figure 8. Definition of subtyping.

Subtyping. The source of subtyping in our language is the sub-
session relation, coinductively defined as follows:

DEFINITION 2 (Sub-session). <: is the largest relation on class
session types such that:

• If {mi : Si}i∈I <: S′ then S′ = {mj : S′j}j∈J with J ⊆ I
and ∀j ∈ J, Sj <: S′j .

• If 〈l : Sl〉l∈E <: S′ then S′ = 〈l : S′l〉l∈E with ∀l. Sl <: S′l .

Like the definition of subtyping for channel session types [24], the
type that allows a choice to be made (the branch type here, the
⊕ type in [24]) has contravariant subtyping in the set of choices.
Further details, including the proof that subtyping is reflexive and
transitive and an algorithm for checking subtyping, can be adapted
from [24].

Figure 8 defines subtyping between types of our language.
There is no subtyping between classes; the sub-session relation
induces subtyping between session-typed objects (S-SESS), and
for field-typed objects, subtyping on the fields propagates to the
records (S-FIELD).

Type System. The type system for the toplevel language is defined
by the rules in Figure 9 and by Definition 4 below. They use typing
environments of the form Γ = y1 : T1, . . . , yn : Tn where we
use y to stand for either object identifiers o or variables x. As for
heaps, we consider environments an unordered set of bindings; in
other words, the comma is associative and commutative. Similarly
to heaps also, we use the following notation to access arbitrary
paths in an environment:

DEFINITION 3 (Locations in environments).

• If Γ =Γ ′, y : T then we define Γ(y) = T and Γ{y &→ T ′} =
Γ′, y : T ′

• Inductively, if r = r′.fj , and if Γ(r′) = C[{Ti fi}i∈I] and
j ∈ I , then we define Γ(r) = Tj and Γ{r &→ T ′} = Γ{r′ &→
C[{T ′

i fi}i∈I]} where T ′
i = Ti for i (= j and T ′

j = T ′.
• In any other case, in particular if Γ(r′) is of the form C[S],

these operations are not defined.

We also write Γ <: Γ′ if for every y in dom(Γ′) we have y ∈
dom(Γ) and Γ(y) <: Γ′(y). We say a type is simple if it is either
a base (non-object) type or an object with a branch session type.

The typing judgement for expressions is Γ # e : T $ Γ′. Here
Γ and Γ′ are the initial and final type environments when typing
e. Γ′ may differ from Γ either because identifiers disappear (due
to linearity) or because their types change (if they are non-uniform
objects). These judgements are constructed by rules T-LINVAR to
T-SUBENV; we comment on them later but first explain how a
session type can be checked against a class. We use the following
coinductive definition to relate the views of an object from inside
(fields) and from outside (session):

DEFINITION 4. For any class C, we define the relation F , C : S
between field typings F and session types S as the largest relation
such that F , C : S implies either F = ⊥ or:

• If S = {mi : Si}i∈I , then for all i in I there is a definition
Ti mi(T

′
i xi) {ei} in the declaration of class C such that we

(T-LINVAR) Γ, x : C[S] # x : C[S] $ Γ
T (= C[]

(T-VAR)
Γ, x : T # x : T $ Γ, x : T

Γ # e : T $ Γ′ Γ′(r.f) is simple
(T-ASSIGN)

Γ # r.f = e : Null $ Γ′{r.f &→ T}
Γ # e : T ′ $ Γ′ Γ′(r) = C[{mi : Si}i∈I] j ∈ I T mj(T

′ x) { } ∈ C
(T-CALL)

Γ # r.mj(e) : T{r/this} $ Γ′{r &→ C[Sj]}
(T-NULL) Γ # null : Null $ Γ

(T-NEW) Γ # new C() : C[C.session] $ Γ
Γ(r) = C[Fl0] l0 ∈ E no Fl contains a variant

(T-INJF)
Γ # l0 : E link r $ Γ{r &→ C[〈l : Fl〉l∈E]}

Γ(r.f) = T T is simple
(T-ACCESS)

Γ # r.f : T $ Γ{r.f &→ Null}
Γ # e : T $ Γ′′ Γ′′ # e′ : T ′ $ Γ′ T (= E link r

(T-SEQ)
Γ # e; e′ : T ′ $ Γ′

Γ # e : E link r $ Γ′′ Γ′′(r) = C[〈l : Sl〉l∈E] ∀l ∈ E, Γ′′{r &→ C[Sl]} # el : T $ Γ′
(T-SWITCH)

Γ # switch (e) {l : el}l∈E : T $ Γ′

Γ # e : T $ Γ′ T <: T ′
(T-SUB)

Γ # e : T ′ $ Γ′
Γ # e : T $ Γ′ Γ′ <: Γ′′(T-SUBENV)

Γ # e : T $ Γ′′

−−→
Null !f , C : S

(T-CLASS)
, class C {S; !f ; !M}

Figure 9. Typing rules for the toplevel language

o : C[C′[{mi : Si}i∈I] f, T g] # o.g = o.f.mj(); switch (o.g) {l : el}l∈E → (R-CALL)
o : C[C′[F] f, T g] # o.g = return e{o.f/this} from o.f ; switch (o.g) {l : el}l∈E →∗

o : C[C′[Fl0] f, T g] # o.g = return l0 from o.f ; switch (o.g) {l : el}l∈E → (R-RETURN)
o : C[C′[Sl0] f, T g] # o.g = l0; switch (o.g) {l : el}l∈E → (R-ASSIGN, R-SEQ)

o : C[C′[〈l : Sl〉l∈E] f, (E link o.f) g] # switch (o.g) {l : el}l∈E → (R-ACCESS)
o : C[C′[Sl0] f, Null g] # switch (l0) {l : el}l∈E → (R-SWITCH)
o : C[C′[Sl0] f, Null g] # el0

Figure 10. Example of the interplay between method call, switch and link types (heaps and rightmost typing environment omitted).

have xi : T ′
i , this : C[F] # ei : Ti $ this : C[Fi] with Fi such

that Fi , C : Si and if Fi = 〈l : 〉l∈E then Ti = E link this.
• If S = 〈l : Sl〉l∈E , then F = 〈l : Fl〉l∈E and for any l in E we

have Fl , C : Sl.

The relation F , C : S represents the fact that an object with
internal type C[F] can be safely viewed from outside as having
type C[S]. First note that ⊥ can only be used as a component
of a variant field typing and represents a case that never occurs,
hence its particular status in the definition: any session type at all is
compatible with it, because it is internally known that the label will
never have the corresponding value. The second point accounts for
correspondence between variant types. The main point is the first:
if the object has internal type C[F] and its session type allows a
certain method to be called, then it means that the method body is
typable with an initial type of C[F] for this and the declared type
for the parameter. Furthermore, the type of the expression must
match the declared return type and the final type of this must be
compatible with the subsequent session type. In the particular case
where the final type is a variant, the returned value must be the tag
of that variant, hence have the corresponding link type.

We now comment on the rules of Figure 9. The last rule
T-CLASS requires consistency between the declared session type
of a class and the initial null field typing. The others are for ex-
pressions. T-VAR and T-LINVAR are used to access a method’s
parameter, removing it from the environment if it has an object
type (linear). For simplicity, this is the only way to use a param-
eter, in particular we do not allow calling methods directly on
them: to call a method on a parameter, it must first be assigned to
a field. T-ACCESS types field access, nullifying the field because
its value has moved into the expression part of the judgement. T-
ASSIGN types field update; the type of the field changes, and the
type of the expression is Null, again because of linearity. In both
rules, the restriction to simple types (either a base, non-object, type

or an object with a branch session type) is to avoid invalidating
link types. T-NEW types a new object, giving it the initial session
type from the class declaration. T-SEQ accounts for the effects
of the first expression on the environment and checks that a label
is not discarded, which would leave the associated variant unus-
able.

T-CALL requires an environment in which method r.mj is
available. The type of the parameter is checked as usual, and the
final environment Γ′ is updated to contain the new session type of
the object sitting at location r. The substitution occurring in the
type of the call expression is only relevant when the return type
of the method is of the form E link this, meaning that the type of
the object after the call is a variant session whose tag is the value
returned. In that case, the type becomes E link r to indicate that the
result really describes the state of the object at r.

T-INJF constructs a variant type. More precisely, it is used to
give a variant field typing to an object from within; the literal label
which constitutes the expression is the tag of the variant type, thus
the variant case corresponding to that particular label is the actual
type of the object and the others are arbitrary. Note that when typing
method bodies, r is always this, as there cannot be anything else in
the environment which has a type of the form C[F]. It is also the
only rule for typing labels, as they are only used in association with
variants.

T-SWITCH types a switch expression; the type of the argument
must be a link to a location with a variant session type. All branches
must have the same final environment Γ′, so that it is a consistent
final environment for the switch expression. An interesting partic-
ular case is if T is of the form E′ link this: then the different ex-
pressions may return different labels and modify the fields’ types
in different ways, and T-INJF allows those cases to be unified into
a single variant type.

T-SUB is a standard subsumption rule, and T-SUBENV allows
subsumption in the final environment. The main use of the latter

rule is to enable the branches of a switch to be given the same final
environments.
Example of reduction and typing. Figure 10 illustrates the opera-
tional semantics and the way in which the environment used to type
an expression changes as the expression reduces (see Theorem 1,
Section 5).

The initial expression is

o.g = o.f.mj(); switch (o.g) {case l : el}l∈E

where for simplicity we have ignored the parameter of mj . The
initial typing environment is

o : C[C′[{mi : Si}i∈I] f, T g]

where Sj = 〈l : Sl〉l∈E . The body of method mj is e with the
typing

this : C′[F] # e : E link this $ this : C′[〈l : Fl〉l∈E]

and we suppose that mj returns l0 ∈ E. According to Definition 4
and the typing of the declaration of class C′ we have Fl0 , C′ :
Sl0 and F , C′ : {mi : Si}i∈I .

The figure shows the environment in which each expression is
typed; the environment changes as reduction proceeds, for several
reasons explained below. The typing of an expression is Γ # e : T $
Γ′ but we only show Γ because Γ′ does not change and T is not the
interesting part of this example. We also omit the heap, showing the
typing of expressions instead of states. Calling o.f.mj() changes
the type of field f to C′[F] because we are now inside the object.
As e reduces to l0 the type of f may change, finally becoming
C′[Fl0] so that it has the component of the variant field typing
〈l : Fl〉l∈E corresponding to l0. The reduction by R-RETURN
changes the type of f to C′[Sl0] because we are now outside the
object again, but the type is still the component of a variant typing
corresponding to l0. The assignment changes the type of f again,
to C′[〈l : Sl〉l∈E], which is C′[Sj], the type we were expecting
after the method call. At this point the information about which
component of the variant typing we have is stored in o.g. The
type of the expression o.f.mj() is E link o.f , which appears as
the type of o.g after the assignment is executed. Extracting the
value of o.g, in order to switch on it, nullifies o.g and so the type
E link o.f disappears from the environment and becomes the type
of the subexpression o.g, at the same time resolving the variant type
of f according to the particular enumerated value l0.
Extension: self-calls and recursive methods. The rules in Fig-
ure 11 extend the language to include method calls on this and re-
cursive methods. Recursive calls are also self-calls. To simplify the
formal system, self-calls have their own syntax, which is not nec-
essary in the implementation. Self-calls do not check or advance
the session type. A method that is only self-called does not appear
in the session type. A method that is self-called and called from
outside appears in the session type, and calls from outside do check
and advance the session type. The reason why it is safe to not check
the session type for self-calls is that the effect of the self-call on the
field typing is included in the effect of the method that calls it. All
of the necessary checking of session types is done because of the
original outside call that eventually leads to the self-call.

Because they are not in the session type, self-called methods
must be explicitly annotated with their initial (req) and final (ens)
field typings. The annotations are used to type self-calls and method
definitions.

If a method is in the session type then its body is checked by
the first hypothesis of T-CLASS, but the annotations (if present) are
ignored except when they are needed to check recursive calls. If a
method has an annotation then its body is checked by the second
hypothesis of T-CLASS. If both conditions apply then the body is
checked twice. The implementation can optimize this.

Syntax (top-level) :

M ::= . . . | req F ens F for T m(T x) {e}
e ::= . . . | r#m(e)

Reduction rule :
m(x) {e} ∈ h(r).class

(R-SELFCALL)
(h; r#m(v)) −→ (h; e{r/this}{v/x})

Typing rule (expressions) :

Γ # e : T ′ $ Γ′ Γ′(r) = C[F]

req F ens F ′ for T m(T ′ x) {e} ∈ C
(T-SELFCALL)

Γ # r#m(e) : T $ Γ′{r &→ C[F ′]}
Typing rule (annotated method definitions) : T-ANNOTMETH :

x : T ′, this : C[F] # e : T $ this : C[F ′] F ′ (= 〈 〉
,C req F ens F ′ for T m(T ′ x) {e}

Replacement for T-CLASS :
−−→
Null !f , C : S ∀m ∈ !M. (m has req/ens ⇒ ,C m)

, class C {S; !f ; !M}

Figure 11. Rules for recursive methods and other self-calls

Declarations D ::= . . . | access 〈Σ〉 n

Values v ::= . . . | c+ | c− | n

Expressions e ::= . . . | spawn C.m(e)

Contexts E ::= . . . | spawn C.m(E)

Types T ::= . . . | 〈Σ〉
Message types B ::= Null | 〈Σ〉 | Chan[S]

Channel session types Σ ::= ? [B] . Σ | & {l : Σl}l∈E

| ! [B] . Σ | ⊕ {l : Σl}l∈E

| X | µX.Σ

States s ::= . . . | s ‖ s | (νc) s

Figure 12. Additional syntax for channels and states

An annotated method cannot produce a variant field typing or
have a link type, because T-SWITCH can only analyze a variant
session type.

Extension: while loops. The language can easily be extended to
include while loops. The reduction rule defines while recursively
in terms of switch, and the typing rule is derived straightforwardly
from T-SWITCH.

4. A Core Distributed Language
We now define a distributed language based on the idea of a config-
uration, which is a parallel collection of threads (heap-expression
pairs) representing separate locations. States, which represented a
single thread in Figure 6, are extended in Figure 12 to represent
such a parallel configuration. The expressions in different loca-
tions can communicate via synchronous messages on point-to-point
channels. The new syntax and reduction rules are defined in Fig-
ures 12 and 13; they have already been illustrated by the examples
in Section 2. The primitive operations send and receive are treated

Structural congruence: E-COMM, E-ASSOC, E-SCOPE

s1 ‖ s2 ≡ s2 ‖ s1 s1 ‖ (s2 ‖ s3) ≡ (s1 ‖ s2) ‖ s3 s1 ‖ (νc)s2 ≡ (νc)(s1 ‖ s2) if c+, c− not free in s1

Additional reduction rules and typing rules for expressions:

h(r).f = n h′(r′).f ′ = n c fresh
(R-INIT)

(h; E [r.f.accept()]) ‖ (h′; E ′[r′.f ′.request()]) −→ (νc)
`
(h; E [c+]) ‖ (h′; E ′[c−])

´ s −→ s′(R-PAR)
s ‖ s′′ −→ s′ ‖ s′′

h(r).f = cp h′(r′).f ′ = cp

(R-COM)
(h; E [r.f .send(v)]) ‖ (h′; E ′[r′.f ′.receive()]) −→ (h; E [null]) ‖ (h′; E ′[v])

s ≡ s′ s′ −→ s′′ s′′ ≡ s′′′(R-STR)
s −→ s′′′

o fresh C.fields = !f m(x) {e} ∈ C
(R-SPAWN)

(h; E [spawn C.m(v)]) −→ (h; E [null]) ‖ (o = C[!f = !null]; e{o/this}{v/x})
s −→ s′(R-NEWCHAN)

(νc) s −→ (νc) s′

Γ # e : B $ Γ′ C.session = {mi : }i∈I j ∈ I mj(B x) { } ∈ C
(T-SPAWN)

Γ # spawn C.mj(e) : Null $ Γ′
n.protocol = Σ

(T-NAME)
Γ # n : 〈Σ〉 $ Γ

Γ(r.f) = 〈Σ〉
(T-ACCEPT)

Γ # r.f .accept() : Chan[!Σ"] $ Γ

Γ(r.f) = 〈Σ〉
(T-REQUEST)

Γ # r.f .request() : Chan[
#
Σ

$
] $ Γ

Figure 13. Reduction and typing rules for concurrency and channels

Given a channel session type Σ, define a class session type !Σ":

!X" = X

!µX.Σ" = µX. !Σ"
!? [T] . Σ" = {receiveT : !Σ"}
!! [T] . Σ" = {sendT : !Σ"}

#
& {l : Σl}l∈E

$
= {receiveE : 〈l : !Σl"〉l∈E}

#
⊕ {l : Σl}l∈E

$
= {sendl : !Σl"}l∈E

and method signatures:

T receiveT () Null sendT (T x)

(E link this) receiveE() Null sendl()

Figure 14. Translation of a channel session type into a class ses-
sion type.

as method names m. A channel has two endpoints, c+ and c−, on
which send and receive can be called; each endpoint has a session
type Σ.

We write Σ for the dual of Σ, obtained by exchanging &/⊕
and ?/!. The two endpoints of a channel have dual types, just as
in previous work [24]. In (νc)s, νc binds c+ and c−. We write cp

for an unspecified endpoint and cp for its partner. The other new
value is n, which ranges over access points (service names) that
can be used to initialize channels by interaction between request()
and accept(). These access points are announced in a way similar
to class and enum declarations, and we use the notation n.protocol
to mean the protocol (session type) Σ associated to access point n,
similarly to C.session. Access points must be announced with the
same type in all locations; we assume some mechanism to enforce
or check this restriction. The type of an access point is 〈Σ〉, and the
new channel endpoints will have types Σ and Σ. The definitions
at the level of configurations are similar to previous work on ses-
sion types for functional languages [25, 51]. As well as R-INIT, the
crucial rule is R-COM for synchronous communication. In the def-
inition of channel session types, messages have non-object types.
In the core language this means that messages can only be channel
endpoints, access points or null, but we could easily add non-object
base types. The reason for not allowing objects as messages is to

avoid the complication of defining the transfer of an object and all
of its subobjects from one heap to another. It is not a fundamental
restriction.

As explained in Section 2, spawn C.m(e) creates a new com-
ponent of the configuration, with a new local heap containing an
instance of class C on which m(e) is called.

Figure 14 defines a class session type for each channel session
type Σ. A channel with type Σ is treated as an object with type
Chan[!Σ"] where Chan is a distinguished class name. Environ-
ments Γ are extended to allow channel endpoints cp in addition to
object identifiers and variables. The operations send and receive are
typed as method calls, and the channel remains available for further
communication. Figure 14 defines different sendT and receiveT

methods for each type T , but the implementation omits the T and
uses the session type and/or the parameter type to disambiguate.
Rule R-COM ignores the subscript. Also, R-COM treats sendl as
send(l); the message must be a literal label.

Access points do not behave like objects; new typing rules are
needed for them (Figure 13, bottom line). T-NAME types an access
point as a literal value, and T-ACCEPT and T-REQUEST are used to
type channel creation.

5. Properties of the Type System
In order to state a type preservation theorem, we first need to
extend the type system to states. This is done in Figure 15. First
of all there are a few more rules for expressions: T-REF allows
typing an object identifier and T-CHAN a literal channel endpoint.
T-INJS complements T-INJF by allowing a literal label to be the
tag of a variant session type as well as of a variant field typing
(at top level, variant session types can only come from method
calls). T-RETURN serves to type a return expression, representing
an ongoing method call in the object at r. The expression e is typed
in an environment where this object’s fields are accessible, but the
return has the effect of ‘closing’ the object by reverting its type to
the outside view of a session. The technical substitution in Γ′(r)
only applies to the link types which may be contained in F ; it is
due to the fact that F , C : S (Definition 4) uses judgements in an
environment where the object is this.

The next four rules define a relation Θ;Γ , h between a channel
environment Θ, a typing environment Γ and a heap h. Θ is similar
to a regular typing environment but only contains types for channel
endpoints; thus in the purely sequential setting it is always empty.

T is simple
(T-REF)

Γ, o : T # o : T $ Γ
(T-CHAN) Γ, cp : T # cp : T $ Γ

Γ(r) = C[Sl0] l0 ∈ E All Sl are branches
(T-INJS)

Γ # l0 : E link r $ Γ{r &→ C[〈l : Sl〉l∈E]}
Γ # e : T $ Γ′ If T = E link r′ then r′ = r Γ′(r) = C[F{r/this}] F , C : S

(T-RETURN)
Γ # return e from r : T $ Γ′{r &→ C[S]}

(T-HEMPTY) Θ;Θ , ε

Θ;Γ0 , h ∀i ∈ {1 . . . n},
(

Γi−1 # vi : Ti $ Γi if Ti is simple, or
Γi−1 = Γi, vi : Ti if it is not

C.fields = (fi)1!i!n

(T-HADD)
Θ; (Γn, o : C[{Ti fi}1!i!n]){ link o.fi.!ϕ/ link vi.!ϕ} , h :: o = C[{fi = vi}1!i!n]

Θ;Γ, o : C[F] , h F{this/o} , C : S
(T-HIDE)

Θ;Γ, o : C[S] , h

Θ;Γ , h Γ # e : T $ Γ′
(T-STATE)

Θ;Γ # (h; e) : T $ Γ′

Θ;Γ # (h; e) : T $ Γ′
(T-THREAD)

Θ , (h; e)

Θ , s Θ′ , s′(T-PAR)
Θ + Θ′ , s ‖ s′

Θ, c+ : Chan[!Σ"], c− : Chan[
#
Σ

$
] , s

(T-NEWCHAN)
Θ , (νc) s

Figure 15. Additional typing rules for the proofs

The rules are technical, but essentially they enforce restrictions
on the contents of Γ: a channel endpoint can only appear in it if
it is also in Θ with the same type (T-HEMPTY). An object can
only appear in it if it is in the heap and either has a field typing
consistent with its field values (T-HADD) or has a session type
consistent with this field typing (T-HIDE). T-HADD also takes care
of removing from the top level environment whatever goes into the
fields of the objects; this includes channel endpoints, thus Γ can
end up containing fewer channel endpoints than Θ even though
the starting point of the derivation is always T-HEMPTY. Finally,
T-STATE defines that a typing judgement holds for a given single-
threaded program state if it holds for the corresponding expression
and the initial typing environment is compatible with the heap and
the channel environment. The remaining rules are for distributed
configurations and we comment on them later.

By standard techniques [53] adapted to typing judgements with
initial and final environments [26] we can prove the expected re-
sults about an individual thread. Assume that we are working rela-
tive to a set of well-typed declarations.

THEOREM 1 (Type Preservation). If Θ;Γ # (h; e) : T $ Γ′ and
(h; e) −→ (h′; e′) then there exists Γ′′ such that Θ;Γ′′#(h′; e′) :
T $ Γ′.

THEOREM 2 (No Stuck States). If ∅; Γ#(h; e) : T $Γ′ then either
e is a value or there exists h′ and e′ such that (h; e) −→ (h′; e′).

Notice that in Theorem 2 the channel environment must be empty.
Otherwise, the thread might be waiting for a communication and
thus unable to reduce by itself.

We also have conformance of sequences of method calls to
session types.

DEFINITION 5 (Call Traces). A call trace on an object o is a se-
quence m1α1m2α2 . . . where each mi is a method name and each
αi is either an enumeration label or nothing.

Following the operational semantics, it is possible to define
a call trace for every object, excluding self-calls. A session type
defines a set of call traces, which is simply the set of paths through
the session type regarded as a labelled directed graph. We state the
result informally to avoid presenting a sequence of very technical
definitions.

THEOREM 3 (Conformance). When executing a typed program,
the call trace of every object is one of the traces of the initial session
type of its class.

PROOF (Sketch): Similar to the proof of Theorem 1, with a stronger
invariant. Rule T-CALL shows that every method call conforms to
the current session type of the target object. The most interesting
case is a reduction by R-RETURN when the value is a label l:
the call trace is extended by l and the session type of the object
advances to the corresponding option which will eventually be
selected by a switch on l. !
Distributed setting. The three last rules of Figure 15 describe
how distributed configurations are typed. T-THREAD extracts the
channel environment from the typing of a single thread. T-PAR
merges two environments (+ represents disjoint union; it is not
defined if the domains overlap). T-NEWCHAN checks for duality.
We use , s as an abbreviation for ∅ , s; this represents well-
typedness of a closed configuration. We have the following result:

THEOREM 4. If , s and s −→ s′ then , s′.

PROOF (Sketch): In order to do an inductive proof we need to state
a similar result for configurations with free channels. It relies on the
concept of a balanced channel environment, similarly to previous
work on session types in π-calculus [24], which is roughly defined
as follows: Θ is balanced if whenever Θ(c+) = Chan[!Σ"] and
Θ(c−) = Chan[!Σ′"] then Σ′ = Σ.

We argue that if s is typed in a balanced environment and
communication takes place on channel c, then the endpoints have
dual session types and the communication advances both of them,
so they remain dual and the resulting environment, which types s′,
is also balanced. Reduction internal to a thread does not affect Θ
as stated in Theorem 1, R-SPAWN does not affect channels either,
and R-INIT introduces a bound channel whose endpoints’ types are
dual because access points have the same type in all locations. !

In the distributed language, call traces can also be defined for
channel endpoints. Because of the translation from channel session
types to class session types, these call traces correspond to the se-
quence and type of messages. We therefore have, stated informally:

COROLLARY 1 (to Theorem 3). When executing a typed configu-
ration, the sequence of communication operations on every channel
endpoint conforms to its session type.

Furthermore, we have the following safety result:

THEOREM 5 (No Communication Errors). Suppose that we have
s ≡ (ν!c)(s′ ‖ (h; E [r.f.m(v)]) ‖ (h′; E [r′.f ′.m′(v′)])) with
h(r).f = c+ and h′(r′).f ′ = c−.

If , s, then there exists s′′ such that s −→ s′′.

Note that by setting s′ to something which cannot reduce (e.g.
(ε; null)) we obtain more precisely that the particular reduction

which consists of R-COM applied to the two rightmost components
is always possible. This means in particular that if m is send
then m′ is receive and conversely. This theorem complements
Theorem 2 in the case of communication: if the reducible part of
the expression in a thread is a method call on a channel endpoint,
which was not allowed in Theorem 2, then it is still able to reduce
provided another thread calls a method on the other endpoint.

6. Typechecking Algorithm
Figure 16 defines a typechecking algorithm for the language. Al-
gorithm A is used to check the relation F , C : S; it uses inter-
nally, for recursive calls, a set ∆ of assumptions which is needed
because of the coinductive definition of this relation. If typing suc-
ceeds, then this set is returned, else nothing is returned. The actual
contents of the set returned are not relevant at the top level.

The algorithm for checking subtyping is not described here but
is similar to the one defined for channel session types in [24]. We
write sup(S, S′) for the least upper bound of S and S′ with respect
to subtyping, and extend it to sup(C[S], C[S′]), requiring the same
C in both types. It is defined by taking the intersection of sets of
methods and the least upper bound of their continuations. Details of
a similar definition (greatest lower bound of channel session types)
can be found in [36].

A program is typechecked by checking, for every class C,
that AC(C.session, !Null C.fields, ∅) returns something. This cor-
responds to checking T-CLASS. Algorithm A uses algorithm B to
check method definitions. The definition of B follows the typing
rules (Figure 9) except for one point: T-INJF means that the rules
are not syntax-directed. To compensate, clause l produces a par-
tial variant field typing with an incomplete set of labels, and clause
switch uses the 1 operator to combine partial variants and check
for consistency. Then the operation comp(F) used in algorithm
A transforms a partial variant into a true variant by adding ⊥ in
the missing cases. The various “where” and “if” clauses should be
interpreted as conditions for the functions to be defined; cases in
which the functions are undefined should be interpreted as typing
errors.

The typechecking algorithm is modular in the sense that to
check class C we only need to know the session types of other
classes, not their method definitions.

THEOREM 6. Algorithm A always terminates, either with an error
(and then the function A is undefined) or with a result.

PROOF: Similar to proofs about algorithms for coinductively-
defined subtyping relations [43]. !

THEOREM 7. AC(S, F, ∅) is defined if and only if F , C : S.

PROOF (Sketch): ‘If’ direction: we prove by induction on the num-
ber of recursive calls the more general result that if ∆0 is such that
(F, S) ∈ ∆0 implies F , C : S and if F0 , C : S0 holds, then
AC(S0, F0, ∆0) is defined.

‘Only if’ direction: if AC(S0, F0, ∅) is defined, we look at its
evaluation and define the following relation: F R S iff AC gets
called with parameters F and S at some point. We then prove that
R satisfies the hypotheses of Definition 4, hence is included in
the largest such relation, and conclude by noticing that we have
F0 R S0. !

7. Implementation
We have used the Polyglot [41] system to implement the ideas of
this paper as a prototype extension to Java 1.4, which we call Bica.
This includes type-checking method calls against the class session

AC(S, ⊥, ∆) = ∆

AC(S, F, ∆) = ∆ if (F, S) ∈ ∆

AC(µX.S, F, ∆) = AC(S{µX.S/X}, F, ∆ ∪ {(F, µX.S)})
AC({mi : Si}1!i!n, F, ∆0) = ∆n

where for i = 1 to n, ∆i = AC(Si, comp(Fi), ∆i−1)
where

Ti mi(Ui xi) {ei} ∈ C and
(T ′

i , Fi,) = BC(ei, F, xi : Ui) and
T ′

i <: Ti and
if comp(Fi) = 〈l : ...〉l∈E then Ui = E link this

AC(〈l : Sl〉l∈E , 〈l : Fl〉l∈E , ∆0) = ∆n

where E.labels = {l1 . . . ln} and
for i = 1 to n, ∆i = AC(Sli , Fli , ∆i−1)

BC(null, F, Γ) = (Null, F, Γ)

BC(n, F, Γ) = (〈n.protocol〉, F, Γ)

BC(x, F, x : T) = (T, F, Γ)
where Γ = ∅ if T is linear or x : T otherwise

BC(this.f , F, Γ) = (T, F{f &→ Null}, Γ)
where T = F (f) and T is simple

BC(l, F, Γ) = (E link this, 〈l : F 〉, Γ)
where l ∈ E

BC(new C′(), F, Γ) = (C′[C′.session], F, Γ)

BC(this.f = e, F, Γ) = (Null, F ′{f &→ T}, Γ′)
where (T, F ′, Γ′) = BC(e, F, Γ) and F (f) is simple

BC(this.f .mj(e), F, Γ) = (T{f/this}, F ′{f &→ C′[Sj]}, Γ′)
where (U ′, F ′, Γ′) = BC(e, F, Γ) and

F ′(f) = C′[{mi : Si}i∈I] and j ∈ I and
T mj(U x) { } ∈ C′ and U ′ <: U

BC(switch (e) {l : el}l∈E , F, Γ) = (T,
U

l∈E F ′
l , Γ′′)

where (E link f, F ′, Γ′) = BC(e, F, Γ) and
F ′(f) = C′[〈l : Sl〉l∈E] and
∀l ∈ E, (T, F ′

l , Γl) = BC(el, F ′{r &→ C′[Sl]}, Γ′) and
Γ′′ =

T
l∈E Γl

BC(e; e′, F, Γ) = BC(e′, F ′, Γ′)
where (, F ′, Γ′) = BC(e, F, Γ)

BC(this.f .accept(), F, Γ) = (Chan[!Σ"], F, Γ)
where F (f) = 〈Σ〉

BC(this.f .request(), F, Γ) = (Chan[
#
Σ

$
], F, Γ)

where F (f) = 〈Σ〉
BC(spawn C′.mj(e), F, Γ) = (Null, F ′, Γ′)

where (B′, F ′, Γ′) = BC(e, F, Γ) and
C′.session = {mi : Si}i∈I and j ∈ I and
T mj(B x) { } ∈ C′ and B′ <: B

Combining partial variants

{Ti fi}i∈I 1 {T ′
i fi}i∈I = {sup(Ti, T

′
i) fi}i∈I

〈l : Fl〉l∈I 1 〈l : F ′
l 〉l∈J = 〈l : F ′′

l 〉l∈I∪J

where F ′′
l = Fl 1 F ′

l if l ∈ I ∩ J , Fl if l (∈ J , F ′
l if l (∈ I

comp(F) = F if F is not a partial variant

comp(〈l : Fl〉l∈I) = 〈l : Fl〉l∈E if I ⊆ E, where Fl = ⊥ for l (∈ I

Figure 16. Typechecking algorithm.

types of non-uniform objects, and inheritance as outlined in Sec-
tion 2, but not yet generating class session types from channel ses-
sion types. Bica supports shared as well as linear objects, standard
as well as session-related conditionals, switch, while-loops, and re-
turn values. Bica is implemented on top of the JL5 Polyglot exten-
sion in order to cater to enumerated types as well as to allow Java 5
features to be added later. The semantics of Bica is standard Java.
It is available from http://gloss.di.fc.ul.pt/bica/.

We have begun to experiment with defining session types for
iterators and collections from the Java 1.4.2 java.util package.
For iterators this is a straightforward process. Other cases are not
so easy; API documentation is not always explicit about the proto-
col for sequences of calls. It will be necessary to experiment with
naturally-occurring client code in order to determine the most suit-
able session types. Further results about Bica and annotation of
APIs will be reported in future publications.

8. Related Work
Previous work on session types for object-oriented languages.
Several recent papers by Dezani-Ciancaglini, Yoshida et al. [10,
17–19, 31, 38] have combined session types, as specifications of
protocols on communication channels, with the object-oriented
paradigm. A characteristic of all of these works is that a channel is
always created and used within a single method call. It is possible
for a method to delegate a channel by passing it to another method,
but it is not possible to modularize session implementations as
we do, by storing a channel in a field of an object and allowing
several methods to use it. We are also able to interleave sessions on
different channels. The most recent work in this line [10] unifies
sessions and methods, and continues the idea that a session is a
complete entity. Mostrous and Yoshida [38] add sessions to Abadi
and Cardelli’s object calculus.

Non-uniform concurrent objects / active objects. Another re-
lated line of research was started by Nierstrasz [40], aimed at de-
scribing the behaviour of non-uniform active objects in concurrent
systems, whose behaviour (including the set of available methods)
may change dynamically. He defined subtyping for active objects,
but did not formally define a language semantics or a type sys-
tem. The topic has been continued, in the context of process cal-
culi, by several authors [9, 45–47]. Caires [9] is the most relevant
work; it uses an approach based on spatial logic to give very fine-
grained control of resources, and Militão [37] has implemented a
Java prototype based on this idea. Damiani et al. [14] define a con-
current Java-like language incorporating inheritance and subtyping
and equipped with a type-and-effect system, in which method avail-
ability is made dependent on the state of objects.

The distinctive feature of our approach to non-uniform objects,
in comparison with all of the above work, is that we allow an
object’s abstract state to depend on the result of a method call. This
gives a very nice integration with the branching structure of channel
session types, and with subtyping.

Typestates. Based on the fact that method availability depends
on an object’s internal state (the situation identified by Nierstrasz,
as mentioned above), Strom and Yemini propose typestates [48].
The concept consists of identifying the possible states of an object
and defining pre- and post-conditions that specify in which state an
object should be so that a given method would be available, and in
which state the method execution would leave the object.

Vault [15, 20] follows the typestates approach. It uses linear
types to control aliasing, and uses the adoption and focus mech-
anism [20] to re-introduce aliasing in limited situations. Fugue
[16, 21] extends similar ideas to an object-oriented language, and
uses explicit pre- and post-conditions.

Bierhoff and Aldrich [5] also work on a typestates approach in
an object-oriented language, defining a sound modular automated
static protocol checking setting. They define a state and method
refinement relation achieving a behavioural subtyping relation. The
work is extended with access permissions, that combines typestate
with aliasing information about objects [4], and with concurrency,
via the atomic bloc synchronization primitive used in transactional
memory systems [3]. Like us, they allow the typestate to depend
on the result of a method call. Plural is a prototype tool that
embodies their approach, providing automated static analysis in a
concurrent object-oriented language [6]. To evaluate their approach
they annotated and verified several standard Java APIs [7].

Finally, Sing# [22] is an extension of C# which has been used
to implement Singularity, an operating system based on message-
passing. It incorporates session types to specify protocols for com-
munication channels, and introduces typestate-like contracts The
published paper [22] does not discuss the relationship between
channel contracts and non-uniform objects or typestates, and does
not define a formal language. A technical point is that Sing# uses
a single construct switch receive to combine receiving an enumer-
ation value and doing a case-analysis, whereas our system allows
a switch on an enumeration value to be separated from the method
call that produces it.

Session types and typestates are related approaches, but there
are stylistic and technical differences. With respect to the former,
session types are like labelled transition systems or finite-state au-
tomata, capturing the behaviour of an object. When developing an
application, one may start from session types and then implement
the classes. Typestates take each transition of a session type and
attach it to a method as pre- and post-conditions. With respect to
technical differences, the main ones are: (a) session types unify
types and typestates in a single class type as a global behavioural
specification; (b) our subtyping relation is structural, while the
typestates refinement relation is nominal; (c) Plural uses a soft-
ware transactional model as concurrency control mechanism (thus,
shared memory), which is lighter and easier than locks, but one has
to mark atomic blocks in the code, whereas our communication-
centric model (using channels) is simpler and allows us to use the
same type abstraction (session types) instead of a new program-
ming construct; moreover, channel-based communication also al-
lows us to specify the client-server communication protocol as the
channel session type, and to implement it modularly, in several
methods which may even be in different classes; (d) typestates ap-
proaches allow flexible aliasing control, whereas our approach uses
only linear objects (to add better alias/access control is simple and
an orthogonal issue).

Static verification of protocols. Cyclone [27] and CQual [23]
are systems based on the C programming language that allow
protocols to be statically enforced by a compiler. Cyclone adds
many benefits to C, but its support for protocols is limited to
enforcing locking of resources. Between acquiring and releasing a
lock, there are no restrictions on how a thread may use a resource.
In contrast, our system uses types both to enforce locking of objects
(via linearity) and to enforce the correct sequence of method calls.
CQual expects users to annotate programs with type qualifiers; its
type system, simpler and less expressive than the above, provides
for type inference.

Unique ownership of objects. In order to demonstrate the key idea
of modularizing session implementations by integrating session-
typed channels and non-uniform objects, we have taken the sim-
plest possible approach to ownership control: strict linearity of
non-uniform objects. This idea goes back at least to the work of
Baker [2] and has been applied many times. However, linearity
causes problems of its own: linear objects cannot be stored in

shared data structures, and this tends to restrict expressivity. There
is a large literature on less extreme techniques for static control of
aliasing: Hogg’s Islands [28], Almeida’s balloon types [1], Clarke
et al.’s ownership types [13], Fähndrich and DeLine’s adoption and
focus [20], Östlund et al.’s Joe3 [42] among others. In future work
we intend to use an off-the-shelf technique for more sophisticated
alias analysis. The property we need is that when changing the type
of an object (by calling a method on it or by performing a switch
or a while on an enumeration constant returned from a method call)
there must be a unique reference to it.

Resource usage analysis. Igarashi and Kobayashi [32] define
a general resource usage analysis problem for an extended λ-
calculus, including a type inference system, that statically checks
the order of resource usage. Although quite expressive, their system
only analyzes the sequence of method calls and does not consider
branching on method results as we do.

Analysis of concurrent systems using pi-calculus. Some work
on static analysis of concurrent systems expressed in pi-calculus
is also relevant, in the sense that it addresses the question (among
others) of whether attempted uses of a resource are consistent with
its state. Kobayashi et al. have developed a generic framework [33]
including a verification tool [34] in which to define type systems
for analyzing various behavioural properties including sequences
of resource uses [35]. In some of this work, types are themselves
abstract processes, and therefore in some situations resemble our
session types. Chaki et al. [12] use CCS to describe properties of pi-
calculus programs, and verify the validity of temporal formulae via
a combination of type-checking and model-checking techniques,
thereby going beyond static analysis.

All of this pi-calculus-based work follows the approach of mod-
elling systems in a relatively low-level language which is then ana-
lyzed. In contrast, we work directly with the high-level abstractions
of session types and objects.

9. Conclusions
We have extended existing work on session types for object-
oriented languages by allowing the implementation of a session
to be divided between several methods which can be called in-
dependently. This supports a modular approach which is absent
from previous work. Technically, it is achieved by integrating ses-
sion types for communication channels and a static type system
for non-uniform objects. A session-typed channel is one kind of
non-uniform object, but objects whose fields are non-uniform are
also, in general, non-uniform. Typing guarantees that the sequence
of messages on every channel, and the sequence of method calls
on every non-uniform object, satisfy specifications expressed as
session types.

We have formalized the syntax, operational semantics and static
type system of a core distributed class-based object-oriented lan-
guage incorporating these ideas. Soundness of the type system is
expressed by type preservation, conformance and correct commu-
nication theorems. The type system includes a form of typestates
and uses simple linear type theory to guarantee unique ownership
of non-uniform objects. Somewhat unusually, it allows the state of
an object after a method call to depend on the result of the call, if
this is of an enumerated type.

We have illustrated our ideas with an example based on e-
commerce, and described a prototype implementation. By incorpo-
rating further standard ideas from the related literature, it should be
straightforward to extend the implementation to a larger and more
practical language.

In the future we intend to work on the following topics. (1)
More flexible control of aliasing. The mechanism for controlling
aliasing should be orthogonal to the theory of how operations affect

uniquely-referenced objects. We intend to adapt existing work to
relax our strictly linear control and obtain a more flexible language.
(2) Java-style interfaces. If class C implements interface I then we
should have session(C) <: session(I), interpreting the interface as
a specification of minimum method availability. (3) Specifications
involving several objects. Multi-party session types [8, 30] specify
protocols with more than two participants. It would be interesting
to adapt that theory into a type system for more complex patterns
of object usage.

Acknowledgments
Gay was partially supported by the UK EPSRC (EP/E065708/1
“Engineering Foundations of Web Services” and EP/F037368/1).
He thanks the University of Glasgow for the sabbatical leave during
which part of this research was done. Gay and Ravara were partially
supported by the Security and Quantum Information Group at In-
stituto de Telecomunicações, Portugal. Caldeira, Ravara, and Vas-
concelos were partially supported by the EU IST proactive initia-
tive FET-Global Computing (project Sensoria, IST–2005–16004).
Vasconcelos was partially supported by the Large-Scale Infor-
matics Systems Laboratory, Portugal. Ravara was partially sup-
ported the Portuguese Fundação para a Ciência e a Tecnologia FCT
(SFRH/BSAB/757/2007), and by the UK EPSRC (EP/F037368/1
“Behavioural Types for Object-Oriented Languages”). Gesbert was
supported by the UK EPSRC (EP/E065708/1). We thank Jonathan
Aldrich and Luı́s Caires for helpful discussions.

References
[1] P. S. Almeida. Balloon types: Controlling sharing of state in data

types. ECOOP, Springer LNCS, 1241:32–59, 1997.
[2] H. G. Baker. ‘Use-once’ variables and linear objects — storage

management, reflection and multi-threading. ACM SIGPLAN Notices,
30(1):45–52, 1995.

[3] N. E. Beckman, K. Bierhoff, and J. Aldrich. Verifying correct usage of
atomic blocks and typestate. In OOPSLA ’08, pages 227–244. ACM
Press, 2008. ISBN 978-1-60558-215-3. doi: http://doi.acm.org/10.
1145/1449764.1449783.

[4] K. Bierhoff and J. Aldrich. Modular typestate checking of aliased ob-
jects. In OOPSLA ’07, pages 301–320. ACM Press, 2007. ISBN 978-
1-59593-786-5. doi: http://doi.acm.org/10.1145/1297027.1297050.

[5] K. Bierhoff and J. Aldrich. Lightweight object specification with
typestates. In 13th ACM SIGSOFT Symposium on Foundations of
Software Engineering (FSE ’05), pages 217–226. ACM Press, 2005.

[6] K. Bierhoff and J. Aldrich. PLURAL: checking protocol compliance
under aliasing. In ICSE Companion ’08, pages 971–972. ACM Press,
2008. ISBN 978-1-60558-079-1. doi: http://doi.acm.org/10.1145/
1370175.1370213.

[7] K. Bierhoff, N. E. Beckman, and J. Aldrich. Practical API protocol
checking with access permissions. In ECOOP ’09, pages 195–219,
2009.

[8] E. Bonelli and A. Compagnoni. Multipoint session types for a dis-
tributed calculus. TGC, Springer LNCS, 4912:240–256, 2007.

[9] L. Caires. Spatial-behavioral types for concurrency and resource
control in distributed systems. Theoret. Comp. Sci., 402(2–3):120–
141, 2008.

[10] S. Capecchi, M. Coppo, M. Dezani-Ciancaglini, S. Drossopoulou, and
E. Giachino. Amalgamating sessions and methods in object-oriented
languages with generics. Theoret. Comp. Sci., 410:142–167, 2009.

[11] M. Carbone, K. Honda, and N. Yoshida. Structured global program-
ming for communication behaviour. ESOP, Springer LNCS, 4421:2–
17, 2007.

[12] S. Chaki, S. K. Rajamani, and J. Rehof. Types as models: model
checking message-passing programs. POPL, ACM SIGPLAN Notices,
37(1):45–57, 2002.

[13] D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible
alias protection. OOPSLA, ACM SIGPLAN Not., 33(10):48–64, 1998.

[14] F. Damiani, E. Giachino, P. Giannini, and S. Drossopoulou. A type
safe state abstraction for coordination in Java-like languages. Acta
Informatica, 45(7–8):479–536, 2008. ISSN 0001-5903. URL http:
//pubs.doc.ic.ac.uk/stateAbstrCoordJava/.

[15] R. DeLine and M. Fähndrich. Enforcing high-level protocols in low-
level software. PLDI, ACM SIGPLAN Notices, 36(5):59–69, 2001.

[16] R. DeLine and M. Fähndrich. The Fugue protocol checker: is your
software Baroque? Technical Report MSR-TR-2004-07, Microsoft
Research, 2004.

[17] M. Dezani-Ciancaglini, N. Yoshida, A. Ahern, and S. Drossopolou.
A distributed object-oriented language with session types. TGC,
Springer LNCS, 3705:299–318, 2005.

[18] M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, and S. Drossopolou.
Session types for object-oriented languages. ECOOP, Springer LNCS,
4067:328–352, 2006.

[19] M. Dezani-Ciancaglini, S. Drossopoulou, E. Giachino, and
N. Yoshida. Bounded session types for object-oriented languages.
FMCO, Springer LNCS, 4709:207–245, 2007.

[20] M. Fähndrich and R. DeLine. Adoption and focus: practical linear
types for imperative programming. PLDI, ACM SIGPLAN Notices, 37
(5):13–24, 2002.

[21] M. Fähndrich and R. DeLine. Typestates for objects. ESOP, Springer
LNCS, 3086:465–490, 2004.

[22] M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. Hunt, J. R.
Larus, and S. Levi. Language support for fast and reliable message-
based communication in Singularity OS. In EuroSys. ACM, 2006.

[23] J. S. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type qualifiers.
PLDI, ACM SIGPLAN Notices, 37(5):1–12, 2002.

[24] S. J. Gay and M. J. Hole. Subtyping for session types in the pi calculus.
Acta Informatica, 42(2/3):191–225, 2005.

[25] S. J. Gay and V. T. Vasconcelos. Linear type theory
for asynchronous session types. Journal of Functional Pro-
gramming, 2009. URL http://www.dcs.gla.ac.uk/~simon/
publications/Lin-Async.pdf. To appear.

[26] S. J. Gay, A. Ravara, and V. T. Vasconcelos. Session types for inter-
process communication. Technical Report TR-2003-133, Comp. Sci.,
Univ. Glasgow, 2003.

[27] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Ch-
eney. Region-based memory management in Cyclone. PLDI, ACM
SIGPLAN Notices, 37(5):282–293, 2002.

[28] J. Hogg. Islands: aliasing protection in object-oriented languages.
OOPSLA, ACM SIGPLAN Notices, 26(11):271–285, 1991.

[29] K. Honda, V. Vasconcelos, and M. Kubo. Language primitives and
type discipline for structured communication-based programming.
ESOP, Springer LNCS, 1381:122–138, 1998.

[30] K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous
session types. POPL, ACM SIGPLAN Notices, 43(1):273–284, 2008.

[31] R. Hu, N. Yoshida, and K. Honda. Session-based distributed program-
ming in Java. ECOOP, Springer LNCS, 5142:516–541, 2008.

[32] A. Igarashi and N. Kobayashi. Resource usage analysis. ACM Trans.
on Programming Languages and Systems, 27(2):264–313, 2005.

[33] A. Igarashi and N. Kobayashi. A generic type system for the pi-
calculus. Theoretical Computer Science, 311(1-3):121–163, 2004.

[34] N. Kobayashi. Type-based information flow analysis for the pi-
calculus. Acta Informatica, 42(4–5):291–347, 2005.

[35] N. Kobayashi, K. Suenaga, and L. Wischik. Resource usage analysis
for the π-calculus. Logical Methods in Comp. Sci., 2(3:4):1–42, 2006.

[36] L. G. Mezzina. Typing Services. PhD thesis, IMT Institute for
Advanced Studies, Lucca, Italy, 2009.

[37] F. Militão. Design and implementation of a behaviorally typed pro-
gramming system for web services. Master’s thesis, New University
of Lisbon, 2008.

[38] D. Mostrous and N. Yoshida. A session object calculus for structured
communication-based programming. Submitted, 2008.

[39] M. Neubauer and P. Thiemann. An implementation of session types.
PADL, Springer LNCS, 3057:56–70, 2004.

[40] O. Nierstrasz. Regular types for active objects. In Object-Oriented
Software Composition, pages 99–121. Prentice Hall, 1995.

[41] N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: an extensible
compiler framework for Java. Compiler Construction, Springer LNCS,
2622:138–152, 2003.

[42] J. Östlund, T. Wrigstad, D. Clarke, and B. Åkerblom. Ownership,
uniqueness and immutability. In IWACO (ECOOP workshop), 2007.

[43] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.
[44] R. Pucella and J. A. Tov. Haskell session types with (almost) no class.

In Proceedings, 1st ACM SIGPLAN symposium on Haskell, pages 25–
36. ACM, 2008.

[45] F. Puntigam. State inference for dynamically changing interfaces.
Computer Languages, 27:163–202, 2002.

[46] F. Puntigam and C. Peter. Types for active objects with static deadlock
prevention. Fundamenta Informaticæ, 49:1–27, 2001.

[47] A. Ravara and V. T. Vasconcelos. Typing non-uniform concurrent
objects. CONCUR, Springer LNCS, 1877:474–488, 2000.

[48] R. E. Strom and S. Yemini. Typestate: A programming language
concept for enhancing software reliability. IEEE Trans. Softw. Eng.,
12(1):157–171, 1986. ISSN 0098-5589.

[49] K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language
and its typing system. PARLE, Springer LNCS, 817:398–413, 1994.

[50] A. Vallecillo, V. T. Vasconcelos, and A. Ravara. Typing the behavior of
software components using session types. Fundamenta Informaticæ,
73(4):583–598, 2006.

[51] V. T. Vasconcelos, S. J. Gay, and A. Ravara. Typecheck-
ing a multithreaded functional language with session types.
Theoret. Comp. Sci., 368(1–2):64–87, 2006. URL http:
//www.di.fc.ul.pt/~vv/papers/vasconcelos.gay.ravara:
tychecking-session-types.pdf.

[52] V. T. Vasconcelos, S. J. Gay, A. Ravara, N. Gesbert, and A. Z. Caldeira.
Dynamic interfaces. FOOL, 2009.

[53] A. K. Wright and M. Felleisen. A syntactic approach to type sound-
ness. Information and Computation, 115(1):38–94, 1994.

