
Benefits of Session Types for Software Development

A. Laura Voinea
School of Computing Science

University of Glasgow, UK
a.voinea.1@research.gla.ac.uk

Simon J. Gay
School of Computing Science

University of Glasgow, UK
Simon.Gay@glasgow.ac.uk

Abstract
Session types are a formalism used to specify and check the
correctness of communication based systems. Within their
scope, they can guarantee the absence of communication
errors such as deadlock, sending an unexpected message or
failing to handle an incoming message. Introduced over two
decades ago, they have developed into a significant theme
in programming languages. In this paper we examine the
beliefs that drive research into this area and make it popular.
We look at the claims and motivation behind session types
throughout the literature. We identify the hypotheses upon
which session types have been designed and implemented,
and attempt to clarify and formulate them in a more suitable
manner for testing.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming; D.2.2 [Software
Engineering]: Design Tools and Techniques; D.3.3 [Pro-
gramming Languages]: Language Constructs and Features

Keywords Session types, hypotheses, empirical studies

1. Introduction
Session types are specifications of communication protocols,
that describe the allowed sequences of messages together
with the types of individual messages between participating
entities. They guarantee properties such as privacy, commu-
nication safety and session fidelity. A well-typed program
cannot send or receive a message of the wrong type.

In this paper we aim to identify beliefs held by the session
type community about how session types affect software
development. We then formulate some explicit hypotheses.
This is done as a first step to test session type designs and
implementations through empirical studies. One of the aims
of the ABCD project [1], which this work is part of, is to em-

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from Permissions@acm.org.

PLATEAU ’16, November 01 2016, Amsterdam, Netherlands
c© 2016 ACM. ISBN 978-1-4503-4638-2/16/11$15.00

DOI: http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/3001878.3001883

pirically evaluate session type designs and implementations.
But first, let us take a closer look at what session types are.

Session types model structured communication between
two (binary) or more (multiparty) entities. They are defined
as a sequence of input and output operations, specifying
the types of messages to be exchanged. Multiparty session
types extend the original binary framework to model the
interactions of more than two participants. The interaction
between all entities is captured as a global type. This global
type can then be projected into local types, that describe
the interaction from the point of view of each participant.
The local type can be used to check that the implementation
conforms, either statically taking advantage of the compiler
or dynamically using runtime monitoring.

The now classic multiparty example is the Two Buyer
protocol [5], in which Buyer1 and Buyer2 want to purchase
a book from a book seller (Seller), negotiating the cost be-
tween them. Buyer1 selects an item and asks the Seller for
the price, which sends the price back. Buyer1 then quotes a
contribution to Buyer2. If Buyer2 agrees on the purchase,
the other two parties are informed. Otherwise, the proto-
col terminates. This example illustrates the basic constructs
of session types, such as input, output, internal choice (se-
lect from one of the possible options on hand) and external
choice (branch - the offering of a set of alternatives).

1 g l o b a l p r o t o c o l TwoBuyer (r o l e Buyer1 , r o l e Buyer2 ,
r o l e S e l l e r) {

2 p r i c e r e q u e s t (S t r i n g) from Buyer1 t o S e l l e r ;
3 c h o i c e a t S e l l e r {
4 p r i c e r e s p o n s e (i n t) from S e l l e r t o Buyer1 ;
5 q u o t e (i n t) from Buyer1 t o Buyer2 ;
6 c h o i c e a t Buyer2 {
7 a g r e e (S t r i n g) from Buyer2 t o Buyer1 , S e l l e r ;
8 } or {
9 q u i t (S t r i n g) from Buyer2 t o Buyer1 , S e l l e r ;

10 }
11 } or {
12 o u t O f S t o c k () from S e l l e r t o Buyer1 , Buyer2 ;
13 }
14 }

Example 1. Two Buyer protocol

This example is written in Scribble, a protocol descrip-
tion language that describes how two or more participating
entities should interact with each other [19].

One popular approach to applying session types to prac-
tice is extending existing languages to support static ses-

sion typing. Some examples would be Session J [9], or
Mungo [11], both extending Java. New languages have also
been developed based on session types, such as SILL [18].
A majority of research has been done on static session typ-
ing, with the contribution often being to develop a type sys-
tem that types more programs, or to develop a type system
that guarantees stronger properties of programs. Examples
of extending these to enable typing of more programs in-
clude introducing subtyping [4], and recent work on context-
free session types [22]. Examples of guaranteeing stronger
properties include type systems that guarantee progress or
deadlock-freedom; multiparty session types, capturing de-
pendencies between sessions. There is an underlying as-
sumption that this is a good thing to do, based on the belief
that static typechecking for data types is a good thing. How-
ever, this has at most anecdotal evidence, based on the idea
that a good static type system enforced by the compiler will
catch most bugs before the code can even be executed.

Another approach is dynamic monitoring of communi-
cation [15], based on applying session types more directly
to existing languages. While more flexible, dynamic veri-
fication loses the benefits of static type checking such as
compile-time error detection and IDE support.

The newest approach, hybrid session verification [8],
combines features of the previous two. Behaviour, i.e. send-
ing messages in the right order, is checked statically using
the native type system, while linearity, i.e. using the chan-
nels correctly, is checked at runtime. Static typing for ses-
sion types relies on an unrealistic assumption that the whole
world is statically typed. So, it is natural to statically check
a component, and add dynamic monitoring to ensure that it
does not receive any incorrect inputs.

Since their appearance [6, 20, 7], session types have be-
come a hot topic in programming languages, subject to a
wide body of research into theoretical foundations, tools and
techniques. They have proved popular, finding their way into
various programming languages and tools. As of late there
has been an emphasis on implementations, be that in exist-
ing languages: C [17], Erlang [3], Go [16], Java [11, 9], to
name just a few, or in new languages: Scribble, Links [13],
SILL. The session type community certainly believes it to
be worthwhile to add session types to as many languages as
possible.

2. Claims
Are session type justified at all? Are session type tools and
languages useful for developers? If so, which implementa-
tions are the most useful? Is the overhead added by session
types to languages worth it?

Looking through the literature, most claims regarding
session types fall into one of the following themes, those
of software safety, software efficiency or usability (as in
programmer efficiency, learnability or errors).

In terms of software safety, we find out that session types
can eliminate certain communication errors, such as com-
munication mismatch or deadlock. There is an underlying
assumption that session types are good because they sup-
port typechecking of communication, which should in turn
improve software safety. Using session types to model a pro-
tocol “enables verification to ensure that the protocol can be
implemented without resulting in unintended consequences,
such as deadlocks” [19]. Equivalent statements about veri-
fication can be found in most papers under one form or an-
other.

In terms of usability, there are various claims regarding
the efficiency of the development process, the improvement
in the number and type of errors the programmers will or will
not make, and ease of understanding and working with the
new construct. It is often claimed through the literature that
session types, whatever the flavour, help one reason about
the type and order of communication. On one hand, this can
be interpreted as proving program correctness, on the other,
as helping one to understand the protocol easier. Most likely
it is a combination of both.

Other papers make claims about the effect session types
will have on the code programmers will produce. Session
types “allow programmers to organise programs as a combi-
nation of multiple flows of (possibly unbounded) reciprocal
interactions in a simple and elegant way, subsuming the pre-
ceding communication primitives such as method invocation
and rendez-vous” [7]. Session types allow for “a concise de-
scription of the continuous interactions among partners in a
concurrent computation” [24].

On its website, our project—ABCD, an EPSRC pro-
gramme grant—boldly summarises the views regarding the
influence of session types. It claims that “Session types will
play a crucial role in all aspects of software” [1]. It draws a
parallel with the data type, claiming that session types will
be for communication that the data type is for algorithms.
It continues to explain how “architects, programmers, and
software tools will all be aided by session types to reduce
the cost of producing concurrent and distributed software,
while increasing its reliability and efficiency”.

3. Hypotheses
With these claims in mind, some hypotheses regarding ses-
sion types can now be formulated.

Hypothesis 1. Programming with session types can be
understood and used efficiently by real world programmers.
All papers extending various programming languages [17, 3,
11, 9, 13, 16] assume that this is the case. However, session
types add another layer of complexity to programming. The
user has to put in the effort of learning the new feature, and
deal with any overheads associated with its use. For instance,
linearity, a key concept in session types, is generally seen as
difficult to grasp. Such overheads may have an effect on how

fast and how well a programmer can start using session type
languages and tools with their systems.

Hypothesis 2. Programming with session types improves
software reliability. Protocols specified with session types
can be formally verified. This will result in software with less
bugs and less likely to unexpectedly fail.

This is an implicit hypothesis, found throughout the lit-
erature that forms the very basis of session type research. It
relies on the idea that well-typed programs never fail. In the
case of static type systems, errors are caught at compile time,
before the software is even run. In contrast, in dynamic sys-
tems components are monitored to ensure that they do not
receive any incorrect inputs. In either case, communication
errors should be caught before the system is deployed.

While this hypothesis may seem obvious, just as pro-
gramming with static type systems seems safer than with
dynamic systems, there is little evidence to support it.

Hypothesis 3. Session types encourage programmers to
structure their code better, thus making the code more read-
able and easier to understand.

Found in various papers starting with earlier works [7,
24], this hypothesis plays a big part in Scribble [19] and the
Mungo/StMungo [11] tool chain. Furthermore, types can be
viewed as a form of documentation, in this case giving the
programmer additional information about the communica-
tion being modelled. A developer looking at a new piece of
software for the first time, can look at the session type def-
inition and quickly establish, who the participants are, and
what sort of data is being exchanged.

The next three hypotheses are closely related; however,
since the concepts are different enough and the way one
would go about testing these is not necessarily the same, we
opted for expressing them separately.

Hypothesis 4. Session types promote modular program-
ming, through the structure given to the implementation.

Subprotocols and polymorphism may encourage devel-
opers to organise code into modules following the structure
of the session types. In the case of multiparty session types,
projection corresponds to modular decomposition, having
independent roles separated which may encourage program-
mers to have a more modular implementation. Tools such as
Scribble [19], Mungo/StMungo [11] encourage the user to
structure their code in according to protocol structure and
according to the various entities at play in the protocol. This
may affect the overall modularity of the system.

Hypothesis 5. Session types can help increase software
maintainability.

The structure imposed on code promotes separation of
concerns, having a clear distinction between the session
types implementation and the rest of the program. This
should make any changes easier to accommodate [17].
Moreover, through subtyping, components can safely be re-
placed. Subprotocols and multiparty session type projection
could also be influencing factors in software maintainability.

This ties in closely with the previous hypotheses, each of
them being influencing factors in software maintainability.

Hypothesis 6. Session typed languages provide useful
additional diagnostic information that can make debugging
faster and more precise.

The structure of the session type can be exploited both by
programmers, and by tools to identify communication errors.
In static systems such errors can be caught and reported by
the compiler, while in dynamic systems the errors would
be reported by the monitors at runtime. Error messages can
be related to the type definition, helping the programmer
quickly identify where the correction needs to be made.

Hypothesis 7. Programming with session types speeds up
the development process.

The session types discipline can help developers design
and implement their systems more efficiently. The formal-
ism can help in modelling protocols and distributed scenar-
ios. Session typed languages provide useful additional safe-
guards and diagnostic information that lead to a system with
the expected behaviour with less effort.

Session types may also be useful for testing. They could
be used as a guide in manually writing unit tests, or by a tool
to automatically generate them.

Hypothesis 8. Programming with session types can lead
to improved software efficiency.

Session types can be exploited to optimise concurrent and
distributed software, or fine tune communication in the case
of parallel systems [23, 14].

4. Next Steps and Conclusion
Starting from the above hypotheses the next steps are to con-
duct empirical studies of the effect and usefulness of session
types on software development. Some, such as Hypothesis 8,
would need more research and development into that partic-
ular area to generate artefacts to evaluate. For others, things
are more straightforward. While for the most part there is
no clear-cut way to do it, studies of the different language
designs and implementations can be carried out. It is ex-
pected that various evaluation methodologies would need to
be used, such as observations, interviews, or standardised
questionnaires. Some relevant studies have been presented
in [2], to compare the programming efficiency of a proposed
language versus a mainstream one, in [12] to measure the
effect of a new tool on programming tasks, or in [10] to gain
understanding of the usage and adoption of a tool by deploy-
ing it among professional programmers for several weeks.

There are different approaches to adding session types to
existing languages. In the case of Java, we have Session J [9],
Mungo, and Hu and Yoshida’s API generation [8]. However,
there has not been a comparison of the benefits of each ap-
proach for practical programming. Most papers on adding
session types to programming languages focus on the lan-
guage, not on the associated development environment or
methodology. Hu’s API generation approach allows a stan-

dard Java IDE such as Eclipse to inform the programmer
about protocol errors. There are additional ways in which
an IDE could help programmers, for example by showing a
transition diagram or the complete session type. These pos-
sibilities have not yet been fully investigated or compared.

While session types have been developed for some time
now with industry input, a closer look at what exactly their
effect is on software development is necessary. Otherwise
there is the risk of developing something that may not be
quite right or suitable for its purpose. An example of this
can be seen in gradual typing, another very active area of re-
search, which is now having its practicality called into ques-
tion [21]. By identifying which designs and implementations
help or hinder programmers, we can improve them to help
developers use session type effectively. Our hope is that this
will lead to session type designs, tools and implementations
that are better suited for “real-world”, industrial software de-
velopment.

Acknowledgments
This research was supported by UK EPSRC grant “From
Data Types to Session Types: A Basis for Concurrency and
Distribution” (EP/K034413/1).

References
[1] A Basis for Concurrency and Distribution. http://groups.

inf.ed.ac.uk/abcd/.

[2] F. Cuenca, J. V. d. Bergh, K. Luyten, and K. Coninx. A user
study for comparing the programming efficiency of modifying
executable multimodal interaction descriptions: A domain-
specific language versus equivalent event-callback code. In
Proceedings of the 6th Workshop on Evaluation and Usabil-
ity of Programming Languages and Tools, PLATEAU 2015,
pages 31–38. ACM, 2015.

[3] S. Fowler. An Erlang implementation of multiparty session
actors. In Proceedings 9th Interaction and Concurrency Expe-
rience, volume 223 of Electronic Proceedings in Theoretical
Computer Science, pages 1–23. Open Publishing Association,
2016.

[4] S. J. Gay and M. J. Hole. Subtyping for session types in the
pi calculus. Acta Informatica, 42(2/3):191–225, 2005.

[5] K. Honda, N. Yoshida, and M. Carbone. Multiparty asyn-
chronous session types. In POPL ’08, pages 273–284. ACM,
2008.

[6] K. Honda. Types for dyadic interaction. In Proceedings
of the 4th International Conference on Concurrency Theory
(CONCUR), volume 715 of Springer LNCS, pages 509–523,
1993.

[7] K. Honda, V. Vasconcelos, and M. Kubo. Language primi-
tives and type discipline for structured communication-based
programming. ESOP, Springer LNCS, 1381:122–138, 1998.

[8] R. Hu and N. Yoshida. Hybrid session verification through
endpoint API generation. In FASE ’16, volume 9633 of
Springer LNCS, pages 401–418, 2016.

[9] R. Hu, N. Yoshida, and K. Honda. Session-based distributed
programming in Java. In European Conference on Object-
Oriented Programming, pages 516–541. Springer, 2008.

[10] M. R. Jakobsen and K. Hornbæk. Fisheyes in the field: using
method triangulation to study the adoption and use of a source
code visualization. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 1579–1588.
ACM, 2009.

[11] D. Kouzapas, O. Dardha, R. Perera, and S. J. Gay. Typecheck-
ing protocols with Mungo and StMungo. In Proceedings of
the 18th International Symposium on Principles and Prac-
tice of Declarative Programming, PPDP ’16, pages 146–159.
ACM, 2016.

[12] P. O. Kristensson and C. L. Lam. Aiding programmers using
lightweight integrated code visualization. In Proceedings of
the 6th Workshop on Evaluation and Usability of Program-
ming Languages and Tools, pages 17–24. ACM, 2015.

[13] Links: Linking theory to practice for the web. http://

groups.inf.ed.ac.uk/links/.

[14] D. Mostrous and N. Yoshida. Two session typing systems for
higher-order mobile processes. In International Conference
on Typed Lambda Calculi and Applications, pages 321–335.
Springer, 2007.

[15] R. Neykova. Session types go dynamic or how to verify your
Python conversations. arXiv preprint arXiv:1312.2704, 2013.

[16] N. Ng and N. Yoshida. Static deadlock detection for concur-
rent go by global session graph synthesis. In Proceedings of
the 25th International Conference on Compiler Construction,
pages 174–184. ACM, 2016.

[17] N. Ng, N. Yoshida, X. Y. Niu, and K. H. Tsoi. Session types:
towards safe and fast reconfigurable programming. ACM
SIGARCH Computer Architecture News, 40(5):22–27, 2012.

[18] F. Pfenning and D. Griffith. Polarized substructural ses-
sion types. In International Conference on Foundations of
Software Science and Computation Structures, pages 3–22.
Springer, 2015.

[19] Scribble project homepage. www.scribble.org.

[20] K. Takeuchi, K. Honda, and M. Kubo. An interaction-based
language and its typing system. PARLE, Springer LNCS,
817:398–413, 1994.

[21] A. Takikawa, D. Feltey, B. Greenman, M. S. New, J. Vitek,
and M. Felleisen. Is sound gradual typing dead? In Proceed-
ings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’16, pages
456–468. ACM, 2016.

[22] P. Thiemann and V. T. Vasconcelos. Context-free session
types. In Proceedings of the 21st ACM SIGPLAN Interna-
tional Conference on Functional Programming, ICFP 2016,
pages 462–475. ACM, 2016.

[23] Exploiting Parallelism through Type Transformations for Hy-
brid Manycore Systems. http://tytra.org.uk.

[24] V. T. Vasconcelos. Fundamentals of session types. In Inter-
national School on Formal Methods for the Design of Com-
puter, Communication and Software Systems, pages 158–186.
Springer, 2009.

http://groups.inf.ed.ac.uk/abcd/
http://groups.inf.ed.ac.uk/abcd/
http://groups.inf.ed.ac.uk/links/
http://groups.inf.ed.ac.uk/links/
www.scribble.org
http://tytra.org.uk

	Introduction
	Claims
	Hypotheses
	Next Steps and Conclusion

