
Session Types for Inter-Process

Communication

Simon Gay, Vasco Vasconcelos and António Ravara

Department of Computing Science TR-2003-133
University of Glasgow March 2003
Glasgow G12 8QQ
Scotland

1

Session Types for Inter-Process Communication

Simon Gay1, Vasco Vasconcelos2 and António Ravara3

1 Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK.
Email: <simon@dcs.gla.ac.uk>

2 Departamento de Informática, Faculdade de Ciências da Universidade de Lisboa,
1749-016 Lisboa, Portugal. Email: <vv@di.fc.ul.pt>

3 Departamento de Matemática, Instituto Superior Técnico, 1049-001 Lisboa, Portugal.
Email: <amar@math.ist.utl.pt>

March 26, 2003

Abstract

We define a language whose type system, incorporating session types, allows com-
plex protocols to be specified by types and verified by static typechecking. A session
type, associated with a communication channel, specifies not only the data types of
individual messages, but also the state transitions of a protocol and hence the allowable
sequences of messages. Although session types are well understood in the context of the
π-calculus, our formulation is based on λ-calculus with side-effecting input/output op-
erations and is different in significant ways. Our typing judgements statically describe
dynamic changes in the types of channels, our channel types statically track aliasing,
and our function types not only specify argument and result types but also describe
changes in channel types. After formalising the syntax, semantics and typing rules of
our language, and proving a subject reduction theorem, we outline some possibilities
for extending this work to a concurrent object-oriented language.
Keywords: Session types, static typechecking, semantics, distributed programming,
specification of communication protocols.

1 Introduction

Communication in distributed systems is typically structured by protocols, which specify
the sequence and form of messages passing over communication channels between agents. In
order for correct communication to occur, it is essential that protocols are obeyed.

The theory of session types [6, 7, 16] allows the specification of a protocol to be expressed
as a type; when a communication channel is created, a session type is associated with it.
A session type specifies not only the data types of individual messages, but also the state
transitions of the protocol and hence the allowable sequences of messages. By extending the
standard methodology of static typechecking, it becomes possible to verify, at compile-time,
that an agent using the channel does so in accordance with the protocol.

The theory of session types has been developed in the context of the π-calculus [9, 15], an
idealised concurrent programming language which focuses on inter-process communication.
Session types have not yet been incorporated into a mainstream programmming language,
or even studied theoretically in the context of a standard language paradigm: functional,
imperative or object-oriented. Vallecillo et al. [17] use session types to add behavioural
information to the interfaces of CORBA objects, and use Gay and Hole’s [3] theory of
subtyping to formalise compatibility and substitutability of components, but they have not
attempted to design a complete language.

In the absence of session types, current languages do little to assist the programmer in
checking that a protocol has been implemented correctly. Although recent developments
in programming languages have increasingly emphasised the benefits of static typecheck-
ing, programming with communication channels or streams remains largely untyped. In
some respects the situation has deteriorated: Pascal provided static typechecking of file in-
put/output, but the modern use of the stream abstraction for both files and network sockets
has resulted in the loss of even this level of support.

The aim of this paper is to study session types in a language based on λ-calculus with
side-effecting input/output operations, and to establish that compile-time typechecking of
session types could feasibly be added to a mainly-functional language such as an ML dialect.
Although our language is somewhat idealised, we have attempted to organise it around
realistic principles, and in particular to address the key differences between a conventional
programming style and the programming notation of the π-calculus. This work is a first step
towards incorporating channels and session types into a concurrent object-oriented language.

The structure of the paper is as follows. In Section 2 we explain session types in connec-
tion with a progressively more sophisticated server for mathematical operations. Section 3
presents a more substantial example, the POP3 protocol. Sections 4, 5 and 6 define the syn-
tax, operational semantics and type system of our language. In Section 7 we outline the proof
of soundness of our type system. In Section 8 we discuss related work. Section 9 concludes,
and indicates some possibilities for extending the language with objects and concurrency.
The appendices contain more details of the soundness proofs.

2 Session Types and the Maths Server

2.1 Input, Output and Sequencing Types

First consider a server which provides a single operation: addition of integers. A suitable
protocol can be defined as follows.

1

The client sends two integers. The server sends an integer which is their sum,
then closes the connection.

The corresponding session type, from the server’s point of view, is

S =?Int.?Int.!Int.End

in which ? means receive, ! means send, dot (.) is sequencing, and End indicates the end
of the session. The type does not correspond precisely to the specification, because it does
not state that the server calculates the sum. However, the type captures the parts of the
specification which we can reasonably expect to verify statically.

The server communicates with a client on a channel called c; we think of the client
engaging in a session with the server, using the channel c for communication. We can view
c as a TCP/IP socket connection, which can be used for bidirectional communication; in
practice it would typically be necessary to extract separate input and output streams from
c. For the moment we will ignore the mechanism of establishing the connection.

In our language, which uses ML-style let-bindings (as syntactic sugar for applications of
λ-abstractions), the server looks like this:

let x = receive c
y = receive c

in send x + y on c

or more concisely:
send ((receive c) + (receive c)) on c

Interchanging ? and ! yields the type describing the client side of the protocol1:

S =!Int.!Int.?Int.End

and a client implementation uses the server to add two particular integers; the code may use
x but cannot use the channel c except to close it.

send 2 on c
send 3 on c
let x = receive c
in code

An alternative possibility is to interpret the specification “the client sends two integers” as
a type in which the client sends a single message consisting of a pair of integers (Honda et
al. [7] call this “piggybacking”). In this case, the type of the server side would be

?(Int× Int).!Int.End

and the type of the client side would again be obtained by exchanging ? and !.

1The duality operator · : S 7→ S [3, 6, 7, 16, 17] is an important part of the theory of session types, but
we do not need to discuss it in this paper because we only consider clients or servers in isolation.

2

2.2 Branching Types

Now let us modify the protocol and add a negation operation to the server.

The client selects one of two commands: add or neg. In the case of add the client
then sends two integers and the server replies with an integer which is their sum.
In the case of neg the client then sends an integer and the server replies with an
integer which is its negation. In either case, the server then closes the connection.

The corresponding session type, for the server side, uses the constructor & (branch) to
indicate that a choice is offered.

S = &〈add : ?Int.?Int.!Int.End, neg : ?Int.!Int.End〉

Both services must be implemented. We introduce a case construct:

case c of {
add ⇒ send ((receive c) + (receive c)) on c
neg ⇒ send (−receive c) on c }

The type of the client side uses the dual constructor ⊕ (choice) to indicate that a choice is
made.

S = ⊕〈add : !Int.!Int.?Int.End, neg : !Int.?Int.End〉
A particular client implementation makes a particular choice, for example:

addclient negclient

select add on c select neg on c
send 2 on c send 4 on c
send 3 on c let x = receive c in code
let x = receive c in code

Note that the type of the subsequent interaction depends on the label which is chosen. In
order for typechecking to be decidable, it is essential that the label add or neg appears as a
literal name in the program; labels cannot result from computations.

If we add a square root operation, sqrt, then as well as specifying that the argument
and result have type Real, we must allow for the possibility of an error (resulting in the end
of the session) if the client asks for the square root of a negative number. This is done by
using the ⊕ constructor on the server side, with options ok and error. The complete English
description of the protocol is starting to become lengthy, so we will omit it and simply show
the type of the server side.

S = &〈add : ?Int.?Int.!Int.End,
neg : ?Int.!Int.End,
sqrt : ?Real .⊕〈ok : !Real.End, error : End〉〉

In the type of the client side, the occurrence of & indicates that the client must be prepared
for both ok and error responses from the server.

S = ⊕〈add : !Int.!Int.?Int.End,
neg : !Int.?Int.End,
sqrt : !Real . &〈ok : ?Real.End, error : End〉〉

3

More realistically we might like the operations of the server to allow both integer and real
arguments and return results of the appropriate type. This is supported by the theory
of subtyping for session types [3, 5] but we have not yet incorporated it into our present
language.

2.3 Establishing a Connection

We have not yet considered the question of how the client and the server reach a state
in which they both know about the channel c. In the π-calculus, it is natural to define a
complete system consisting of a client and a server running in parallel. Previous studies
of session types in the π-calculus have suggested two mechanisms for creating a connection.
Takeuchi, Kubo and Honda [16] propose a pair of constructs: request c in P for use by clients,
and accept c in Q for use by servers. In use, request and accept occur in separate parallel
processes, and interact with each other to create a new channel; this channel is bound to the
name c in both P and Q. Gay and Hole [3] use the standard π-calculus new construct; the
client creates a new channel and sends one end of it to the server along a public channel.

In both cases, the creation and naming of a connection are combined into a single oper-
ation. If we want to use session types in a more conventional programming language, it is
more realistic for the connection to be a value which is returned by an operator and which
can then be bound to a name. Furthermore, we have not yet added concurrency to our
language, and at this stage we are just considering clients or servers as isolated programs.
We therefore use new S to create a channel with type S, and view this operation as an ab-
straction of both requesting and accepting network connections. A complete client or server
will have the form let x = new S in . . . ; close x

2.4 Function Types

Our maths server is bound to a particular channel, c. In order to define recursive behaviour
via fix (Sections 2.5 and 6.3) we must abstract the channel c, transforming the maths server
into a function.

fun serve c = case c of {. . . }

The type of our server now reflects, not only the fact that it accepts a channel and returns
nothing (that is, the constant unit), but also information on how the function uses the
channel:

c : &〈add : . . ., neg : . . ., sqrt . . . : 〉; Chan c → Unit; c : End

This function type is specific to the channel c. In order to achieve true abstraction over
channels we would have to modify the type system to allow generalization of the channel
identifier. However, this restricted form of function type is sufficient for the definition of
recursive functions in Section 2.5. We return to this point in Section 6. It can also be useful
to send functions on channels. For example we could add

eval : ?(Int → Bool).?Int.!Bool.End

to the type S, with corresponding server code

eval ⇒ send (receive c)(receive c) on c

4

and a client which requires a primality test service (perhaps the server has fast hardware):

select eval on c
send isPrime on c
send bignumber on c
let x = receive c in code

2.5 Recursive Types

A more realistic server would allow a session to consist of a sequence of commands and
responses. The corresponding type must be defined recursively, and it is useful to include a
quit command. Here is the type of the server side:

S = &〈add : ?Int.?Int.!Int.S,

neg : ?Int.!Int.S,

sqrt : ?Real.⊕〈ok : !Real.S, error : S〉,
eval : ?(Int → Bool).?Int.!Bool.S,

quit : End〉

The server is now implemented by a recursive function, in which the positions of the
recursive calls correspond to the recursive occurrences of S in the type definition. Our type
system supports the use of recursive functions with any recursive type and any combination
of terminating and recursive branches, and is flexible enough to allow some branches to work
through the body of the recursive type more than once if desired.

fun serve c =
case c of {

add ⇒ send ((receive c) + (receive c)) on c
serve c

neg ⇒ send (−(receive c)) on c
serve c

sqrt ⇒ let x = receive c
in if x < 0 then select error on c

else select ok on c
send

√
x on c

serve c
eval ⇒ send (receive c)(receive c) on c

serve c
quit ⇒ close c

}

2.6 Input and Output of Channels

The eval method proposed above may compromise the throughput of the server, for it may
now become unavailable for long periods (while computing hard predicates), or may even
fail (from the point of view of the client), when asked to evaluate a partial function.

5

A better approach involves delegating predicate evaluation to a different thread, thus
releasing the server at an earlier stage. The eval method now creates a predicate-evaluation
channel that it sends back to the client.

eval : !(!(Int → Bool).!Int.?Bool.End).S

eval ⇒ send new !(Int → Bool).!Int.?Bool.End on c

In order to establish connection with method eval, we assume that the server comprises
a pool of threads capable of evaluating the predicate.

loop
let d = new ?(Int → Bool).?Int.!Bool.End
in send (receive c)(receive c) on d

close d

Our client now requests from the server a channel, d, on which to perform predicate
evaluation, and goes on with the code for primality test, as in the previous section, only that
this time, the session is conducted on the received channel, d.

select eval on c
let d = receive c
in send isPrime on d

send bignumber on d
let x = receive d
in close d

code

After sending a channel, no further interaction on the channel is possible. Returning to
the server, one might be tempted to write the code for the eval method as:

eval ⇒ let d = new ?(Int → Bool).?Int.!Bool.End
in send d on c

close d

but then, channel d would be closed twice: in the server and in one of the threads in the
pool. Our type system guarantees that there is no further interaction on a sent channel.

2.7 Aliasing of Channels

As soon as we separate creation and naming of channels, aliasing becomes an issue. In
the program below, x and y are aliases for a single underlying channel, and the two send
operations reduce the type of this channel to End.

let x = new !Int.!Int.End
y = x

in send 1 on x
send 2 on y

Clearly our type system must track aliases in order to be able to correctly typecheck programs
such as this. Our approach is to introduce indirection into type environments. In this
example, new creates a channel with some identity, say c, and the types of both x and y
are Chan c. The state of c, initially !Int.!Int.End, is recorded separately. Section 6.4 contains
more details, explaining how a function of two arguments may be typed in the presence or
absence of aliasing.

6

3 The POP3 Protocol as a Session Type

POP3 [10] is one of the standard Internet protocols, and specifies the way in which email
messages may be manipulated on a remote mail server. A typical client would be an email
application running on a personal computer; a typical server would be an organisation’s
mail gateway. Figure 1 shows the states of the protocol, the possible messages, and the state
transitions caused by messages. The main states of the protocol are START, from which the
server simply sends a welcoming message; AUTHORIZATION, from which the client must
authenticate itself by means of a user name (command USER) and password (command
PASS); and TRANSACTION, from which the client may issue a range of commands. Only
the STAT (status), RETR (retrieve) and QUIT commands are shown in the diagram. The
other commands are similar.

The protocol specifies that all messages are strings, based on the underlying assumption
that communication channels transmit sequences of characters. However, higher level type
information can be extracted from the specified format of these strings. For example, the
response to a STAT command contains a pair of integers (representing the number of mes-
sages and the total size of the mailbox). Every response from the server is prefixed by either
+OK or -ERR, and these strings can be viewed as labels in a branch type. In most cases the
server also sends a string containing additional information. Similarly the protocol specifies
the set of commands available to the client, which can be incorporated into another branch
type. Some client commands are structured, for example USER and PASS which carry
strings and RETR which carries an integer. In some cases there are alternative possibilities
for imposing type structure on the messages. The server’s OK responses to the STAT and
RETR commands illustrate two views of the transmission of two pieces of information: as a
pair, or as a sequence.

Figure 2 shows the definitions of session types corresponding to the specification of the
POP3 protocol. The named types S, A and T correspond to the START, AUTHORIZATION
and TRANSACTION states; the definitions of these types are mutually recursive. The types
describe the protocol from the server’s point of view. Notice the nested alternation of & and
⊕, corresponding to the alternation of choices made by the client and the server, and the
occurrences of ⊕ with only one option, specifying the server’s response to commands which
always succeed.

4 Syntax

Most of the syntax of our language has been illustrated in the previous sections; here we
define it formally by the grammar in Figure 3.

We define data types D, session types S, channel environments Σ, term types T , val-
ues v and terms e. We use channel variables c, . . ., term variables x, . . ., labels l, . . ., and
type variables X, Evaluation contexts E are used in the definition of the operational
semantics; an evaluation context contains a single hole [] and we write E[e] for substitution
of term e into the hole. Free and bound variables are defined as usual and we work up
to α-equivalence; the binding occurrences are x in λx.e, and X in µX · S. Substitution is
defined as expected.

The type Chan c represents the type of the channel with identity c; the actual session type
associated with c is recorded in a typing environment Γ, as will become clear in Section 6.

7

+OK string
AUTHORIZATION

AUTHORIZATION
USER string +OK string PASS string

−ERR string QUIT

END

+OK string

−ERR string

TRANSACTION
STAT

+OK int x int

QUIT

END

+OK string

QUIT

END

+OK string

RETR int

−ERR string

+OK string string

START

server message

client message

TRANSACTION

+OK string

Figure 1: States and transitions of the POP3 protocol

S = ⊕〈ok : !String . A〉
A = &〈quit : ⊕〈ok : !String . End〉,

user : ?String .⊕〈error : !String . A,
ok : !String . &〈quit : ⊕〈ok : !String . End〉,

pass : ?String .⊕〈error : !String . A, ok : !String . T〉〉〉〉
T = &〈stat : ⊕〈ok : !(Int× Int) . T〉,

retr : ?Int .⊕〈ok : !String . !String . T, error : !String . T〉,
quit : ⊕〈ok : !String . End〉〉

Figure 2: Types for the POP3 protocol

8

D ::= Int | Bool | Unit | Σ; T → T ; Σ

S ::= ?D.S | !D.S | ?S.S | !S.S | &〈 li : Si 〉i∈I | ⊕ 〈 li : Si 〉i∈I | End |
X | µX · S

Σ ::= ∅ | Σ + c : S (c : S ′ not in Σ)

T ::= D | Chan c

v ::= x | λx.e | c | unit | fix | unfold | receive | receive v | send | close |
true | false | 0 | 1 | −1 | . . .

e ::= v | ee | if e then e else e | case e of {li ⇒ ei}i∈I | select l on e | new S

E ::= [] | Ee | vE | if E then e else e | case E of {li ⇒ ei}i∈I | select l on E

Figure 3: Syntax of types, terms, and contexts

Channel identifiers c are not available in the top-level syntax of terms; they arise only during
reduction of terms. We often write T → U as an abbreviation for ∅; T → U ; ∅.

In Section 2 we use several derived constructors. A term let x = e in e′ stands for (λx.e′)e,
and e; e′ (implied in our examples by the indentation) is an abbreviation for (λy.e′)e, provided
y does not occur free in e′. Finally, a term loop e stands for fix (λf.(e; f)) unit, provided f
does not occur free in e.

5 Operational Semantics

We define a small step operational semantics, making use of evaluation contexts to simplify
the definitions. In order to be able to prove a Subject Reduction theorem, we include channel
environments Σ in reductions. This is simply to track the changing types of channels; there
are no runtime type checks on typable programs.

We refer to a pair composed of a channel environment Σ and a term e as a configuration.
The use of configurations gives our semantics an imperative flavour: the channel environment
is analogous to state information. The reduction relation Σ, e −→v Σ′, e′ is defined on con-
figurations, by the axiom schemas in Figure 4, where channel environments Σ are considered
up to reordering of their components c : S. We abbreviate an axiom schema Σ, e −→v Σ, e′

by e −→v e′. We then define the relation Σ, e −→ Σ′, e′ by the rule R-Context.
Some comments on the reduction rules:

• R-Fix introduces an abstraction around (fix v) as v must applied to a value [19].

• R-New creates a new channel with an arbitrary identity. This models both requesting
and accepting a connection.

• Similarly R-ReceiveD allows receive c to evaluate to any value permitted by the type
of c.

• R-SendS ensures that no further interaction is possible at a transmited channel, by
removing it from the channel environment.

9

if true then e else e′ −→v e (R-IfT)

if false then e else e′ −→v e′ (R-IfF)

(λx.e)v −→v e{v/x} (R-Beta)

fix v −→v v(λx.fix v x) for some x not free in v (R-Fix)

Σ, new S −→v Σ + c : S, c (R-New)

Σ + c : !D.S, send v on c −→v Σ + c : S, unit (R-SendD)

Σ + c : !S ′.S + d : S ′, send d on c −→v Σ + c : S, unit (R-SendS)

Σ + c : ?D.S, receive c −→v Σ + c : S, v for some closed v of type D (R-ReceiveD)

Σ + c : ?S ′.S, receive c −→v Σ + c : S + d : S ′, d (R-ReceiveS)

Σ + c : End, close c −→v Σ, unit (R-Close)

Σ + c : &〈 li : Si 〉i∈I , case c of {li ⇒ ei}i∈I −→v Σ + c : Sj, ej for some j ∈ I (R-Case)

Σ + c : ⊕〈 li : Si 〉i∈I , select lj on c −→v Σ + c : Sj, unit if j ∈ I (R-Select)

Σ + c : µX · S, unfold c −→v Σ + c : S{(µX · S)/X}, unit (R-Unfold)

Σ, e −→v Σ′, e′

Σ, E[e] −→ Σ′, E[e′]
(R-Context)

Figure 4: Reduction rules

• R-Case allows any permitted label to be chosen. This use of Σ in order to define
reductions is only necessary because we are working with programs which only use
one end of a channel. In effect, our Subject Reduction theorem (Section 7) is proved
relative to the assumption that the program at the other end of the channel does not
introduce any type violations.

6 Typing

6.1 The Type System

Typing judgements are of the form

Γ ` Σ . e : T / Σ′

where Γ is a map from variables to types and Σ, Σ′ are channel environments as in Section 4.
The difference between Σ and Σ′ reflects the effect of a term on the types of channels, for
example

x : Chan c ` c : !Int.End . send 2 on x : Unit / c : End

The assignment of types to constants is shown in Figure 5. The values send, receive, close,
unfold and fix have multiple types: for example, the type of receive is a type schema
representing the set of all types of the form c : ?D.S; Chan c → D; c : S or of the form
c : ?S ′.S; Chan c → Chan d; c : S + d : S ′ where D is an arbitrary data type, S, S ′ are arbi-
trary session types, and c, d are arbitrary channel identifiers. We write typeof (v) for the set
of types assigned to constant v. The type of fix allows recursive functions to create new

10

true, false : Bool

0, 1,−1, . . . : Int

unit : Unit

close : c : End; Chan c → Unit; ∅
receive : c : ?D.S; Chan c → D; c : S

receive : c : ?S ′.S; Chan c → Chan d; c : S + d : S ′

send : D → (c : !D.S; Chan c → Unit; c : S)

send : Chan d → (c : !S ′.S + d : S ′; Chan c → Unit; c : S)

fix : (T → T) → T where T = Σ1; T1 → T2; Σ2

unfold : c : µX · S; Chan c → Unit; c : S{(µX · S)/X}

Figure 5: Types for constants

channels, or to use channels supplied as arguments, but not to use global channels. To sim-
plify the theory we explicitly unfold recursive types; an implementation would insert unfold
automatically where necessary.

The typing rules are shown in Figure 6. Some comments:

• The type of a channel c is Chan c. The state (or current type) of c, if needed, may be
added to the channel environment via the T-Weak rule.

• In T-New, a new channel is created with an arbitrary identity.

• In T-Abs, the initial and final channel environments of the function body go directly
into the function type. The function itself, being a value, cannot affect channels, hence
the empty environments both on the left and on the right.

• In T-App, the final channel environment Σ′′ of function e must match the initial
environment of the argument e′. The final environment of the argument is split into
two: Σ1, that satisfies the channel requirements in the function type; and Σ′ that must
go (together with the final environment in the function type) into the final environment
of the application.

Also, T and Σ1 in the function type and the argument typing must match exactly, in-
cluding equality of channel identifiers. Although we are able to construct the functions
necessary to express recursive behaviour—the main concern of the present paper—a
realistic programming language would require a more general form of function type
in which channel identifiers are generalized. We expect that this would be similar to
standard formulations of polymorphism in typed λ-calculus, with rules for abstraction
and instantiation of channel identifiers.

• In T-Case, all branches must produce the same final channel environment. This
enables us to know the environment for any code following the case, independently
of which branch is chosen at runtime. The same applies to the two branches of the
conditional in T-If.

11

T ∈ typeof (v)

Γ ` ∅ . v : T / ∅
(T-Const)

Γ + x : T ` ∅ . x : T / ∅ (T-Var)

Γ ` ∅ . c : Chan c / ∅ (T-Chan)

Γ ` ∅ . new S : Chan c / c : S (T-New)

Γ ` Σ . e : Bool / Σ′ Γ ` Σ′ . e′ : T / Σ′′ Γ ` Σ′ . e′′ : T / Σ′′

Γ ` Σ . if e then e′ else e′′ : T / Σ′′ (T-If)

Γ + x : T ` Σ . e : U / Σ′

Γ ` ∅ . λx.e : (Σ; T → U ; Σ′) / ∅
(T-Abs)

Γ ` Σ . e : (Σ1; T → U ; Σ2) / Σ′′ Γ ` Σ′′ . e′ : T / Σ1 + Σ′

Γ ` Σ . ee′ : U / Σ2 + Σ′ (T-App)

Γ ` Σ . e : Chan c / Σ′ + c : &〈 li : Si 〉i∈I ∀i.(Γ ` Σ′ + c : Si . ei : T / Σ′′)

Γ ` Σ . case e of {li ⇒ ei}i∈I : T / Σ′′ (T-Case)

Γ ` Σ . e : Chan c / Σ′ + c : ⊕〈 li : Si 〉i∈I

Γ ` Σ . select li on e : T / Σ′ + c : Si

(T-Select)

Γ ` Σ . e : T / Σ′

Γ ` Σ + c : S . e : T / Σ′ + c : S
(T-Weak)

Figure 6: Typing rules

A complete program e is well-typed if there exist T and Σ such that

∅ ` ∅ . e : T / Σ

Any entry in Σ denotes an unclosed channel.

6.2 Derived rules

We have used a number of useful term abbreviations in Section 2. Figure 7 gathers the
typing rules for these abbreviations.

Recall from Section 4 that term e; e′ is an abbreviation for (λy.e′)e, provided y does
not occur free in e′. The corresponding rule, T-Seq, can be derived as follows, where rule
T-Weak is applied as many times as there are entries in Σ.

Γ ` Σ′ . e′ : U / Σ′′

Lemma 4
Γ + y : T ` Σ′ . e′ : U / Σ′′

T-Abs
Γ ` ∅ . λy.e′ : (Σ′; T → U ; Σ′′) / ∅

T-Weak∗

Γ ` Σ . λy.e′ : (Σ′; T → U ; Σ′′) / Σ Γ ` Σ . e : T / Σ′

T-App
Γ ` Σ . (λy.e′)e : U / Σ′′

12

Γ ` Σ . e : T / Σ′ Γ ` Σ′ . e′ : U / Σ′′

Γ ` Σ . e; e′ : U / Σ′′ (T-Seq)

Γ ` Σ . e : T / Σ′ Γ′ + x : T ` Σ′′ . e′ : U / Σ′

Γ ` Σ . let x = e in e′ : U / Γ′′ (T-Let)

Γ ` ∅ . e : T / ∅
Γ ` Σ . loop e : Unit / Σ′ (T-Loop)

Γ ` Σ . e : Chan c / Σ′ + c : ?D.S

Γ ` Σ . receive e : D / Σ′ + c : S
(T-ReceiveD)

Γ ` Σ . e : D / Σ′ Γ ` Σ′ . e′ : Chan c / Σ′′ + c : !D.S

Γ ` Σ . send e on e′ : Unit / Σ′′ + c : S
(T-SendD)

Γ ` Σ . e : Chan c / Σ′ + c : ?S ′.S

Γ ` Σ . receive e : Chan d / Σ′ + c : S + d : S ′ (T-ReceiveS)

Γ ` Σ . e : Chan d / Σ′ Γ ` Σ′ . e′ : Chan c / Σ′′ + c : !S ′.S + d : S

Γ ` Σ . send e on e′ : Unit / Σ′′ + c : S
(T-SendS)

Γ ` Σ . e : Chan c / Σ′ + c : End

Γ ` Σ . close e : Unit / Σ′ (T-Close)

Figure 7: Derived typing rules

A similar derivation yields rule T-Let for term let x = e in e′, which, recall, stands for
(λx.e′)e. Rule T-SendS is also easy to derive. Let T = c : !S ′.S + d : S ′; Chan c → Unit; c : S;
then the type of send is Chan d → T .

T-Const,T-Weak∗

Γ ` Σ . send : Chan d → T / Σ Γ ` Σ . e : Chan d / Σ′

T-App
Γ ` Σ . send e : T / Σ′

(1)

(1) Γ ` Σ′ . e′ : Chan c / Σ′′ + c : !S ′.S + d : S ′

T-App
Γ ` Σ . send e on e′ : Unit / Σ′′ + c : S

Rule T-Loop delivers a term that asks for any channel environment Σ and delivers a
possibly unrelated channel environment Σ′. Intuitively, this is justified by the fact that loop
does not terminate. The derivation below illustrates this point. For the type of fix we take
(F → F) → F , with F of the form Σ; Unit → Unit; Σ′; this is where we choose the desired
initial and final channel environments.

Γ ` ∅ . e : T / ∅
Lemma 4

Γ + f : F ` ∅ . e : T / ∅
T-Var

Γ + f : F ` ∅ . f : F / ∅
T-Seq

Γ + f : F ` ∅ . e; f : F / ∅
T-Abs

Γ ` ∅ . λf.e; f : F → F / ∅

(2)

13

Γ ` ∅ . fix : (F → F) → F / ∅ (2)
T-App,T-Weak∗

Γ ` Σ . fix(λf.e; f) : F / Σ Γ ` Σ . unit : Unit / Σ
T-App

Γ ` Σ . loop e : Unit / Σ′

The first part of the derivation also shows why the initial and final channel environments of
the loop body must be empty: because the type of fix requires it. For a loop of type Int, one
would pick for F the type Σ; Int → Int; Σ′ and apply fix(λf.e; f) to some integer constant.

6.3 Typing the Maths Server

We simplify the maths server from Section 2.5, so that its channel type is

S = µX ·&〈neg : ?Int.!Int.X, quit : End〉

and the program, removing some syntactic sugar, is

(fix (λf.λx.
unfold x
case x of {

neg ⇒ send (−(receive x)) on x
f x

quit ⇒ close x })) (new S)

Writing F = c : S; Chan c → Unit; ∅, and setting Γ = f : F, x : Chan c, we start with the
derived T-Close rule (Figure 7).

Γ ` c : End . x : Chan c / c : End
T-Close

Γ ` c : End . close x : Unit / ∅
(3)

Similarly, the rules T-ReceiveD, T-App (with constant − of type Int → Int → Int), and
T-SendD give:

Γ ` c : ?Int.!Int.S . send (−(receive x)) on x : Unit / c : S (4)

We use T-App to type the recursive call; note that the type F was chosen to make (3) and
(5) have the same final channel environment:

Γ ` c : S . f x : Unit / ∅ (5)

We then apply rule T-Seq to (4) and (5) to obtain:

Γ ` c : ?Int.!Int.S . send (−(receive x)) on x ; f x : Unit / ∅ (6)

and now (6) and (3) are the branches of the case, so we have

Γ ` c : &〈neg : ?Int.!Int.S, quit : End〉 . case x of {. . .} : Unit / ∅ (7)

14

The typing derivation for fix is completed as follows:

Γ ` c : S . unfold x : Unit / c : &〈neg : ?Int.!Int.S, quit : End〉 (7)
T-Seq

Γ ` c : S . unfold x ; case x of . . . : Unit / ∅
T-Abs (twice)

` ∅ . λf.λx.. . . : F → F / ∅
T-App, fix

` ∅ . fix . . . : F / ∅

T-New gives ` ∅ . new S : Chan c / c : S and using T-App again we have

` ∅ . (fix . . .) (new S) : Unit / ∅

as the typing of the complete program, showing that a channel is created and eventually
closed.

6.4 Typing Channel Aliasing

The expansion of the let-term in Section 2.7 is (λx.Ax)(new S) where S is !Int.!Int.End and
A is λy.send 1 on x; send 2 on y. A suitable derivation for A ends as follows, where we have
chosen x and y to share the same channel c.

· · · · · ·
T-Seq

x : Chan c + y : Chan c ` c : S . send 1 on x; send 2 on y : Unit / c : End
T-Abs

x : Chan c ` ∅ . A : (c : S; Chan c → Unit; c : End) / ∅
(8)

We then apply A to x, thus aliasing x and y, extracting the (initial and final) state of channel
c, from A’s function type, into the sequent.

(8)
T-Var

x : Chan c ` ∅ . x : Chan c / ∅
T-App

x : Chan c ` c : S . Ax : Unit / c : End

Notice that A is typed in such a way that it can only be applied to a term of type Chan c,
where c is linked both to both variables x and y.

If the aliasing of x and y in A is not sought, then we must type A as follows, where S ′ is
now !Int.End.

· · · · · ·
T-Seq

x : Chan c + y : Chan d ` c : S + d : S . send · · · : Unit / c : S ′ + d : S ′

T-Abs
x : Chan c ` ∅ . A : (c : S + d : S; Chan d → Unit; c : S ′ + d : S ′) / ∅

Function A must now be applied to an expression of type Chan d, different from x’s type
Chan c.

7 Type Safety

We state the key lemmas leading to the Subject Reduction theorem, and sketch their proofs.

Lemma 1 (Values do not use channels) If v is a value and Γ ` Σ . v : T / Σ′ then
Σ′ = Σ.

15

Proof: A derivation of Γ ` Σ . v : T / Σ′ involves an application of T-Const, T-Abs,
T-Var or T-New, possibly followed by applications of T-Weak which preserve equality of
the left and right environments. �

Lemmas 2 and 3 are similar to lemmas used by Wright and Felleisen [19].

Lemma 2 (Typability of Subterms in E) If D is a typing derivation concluding Γ `
Σ . E[e] : T / Σ′ then there exist Σ′′ and U such that D has a subderivation D′ concluding
Γ ` Σ . e : U / Σ′′.

Proof: By induction on the structure of E[]. The possible positions of the hole mean that
in a subderivation of D which types e, the leftmost environment is equal to Σ. For example,
consider the case E[e] = v(F [e]). The derivation D has the form

...
Γ ` Σ1 . v : (Σ3; V → T ; Σ3) / Σ′′ D1

{
...

Γ ` Σ′′ . F [e] : V / Σ2 + Σ3
T-App

Γ ` Σ1 . v(F [e]) : T / Σ2 + Σ4
T-Weak∗

Γ ` Σ . v(F [e]) : T / Σ′

By Lemma 1, Σ′′ = Σ1. By the induction hypothesis applied to D1, there exist Σ5 and
U such that D1 has a subderivation D′ concluding Γ ` Σ1 . e : U / Σ5. D′ is the desired
subderivation of D. �

Lemma 3 (Replacement in E) If

1. D is a typing derivation concluding Γ ` Σ . E[e] : T / Σ′

2. D′ is a subderivation of D concluding Γ ` Σ . e : T / Σ2

3. D′ occurs in D in the position corresponding to the hole in E

4. Γ ` Σ1 . e′ : T / Σ2

then Γ ` Σ1 . E[e′] : T / Σ′.

Proof: Replace D′ in D by a derivation of Γ ` Σ1 . e′ : T / Σ2. The structure of E means
that the typings of e′ and E[e′] have the same leftmost environment Σ′. �

Lemma 4 (Γ-Weakening) If Γ ` Σ . e : T / Σ′, then Γ + x : T ` Σ . e : T / Σ′.

Proof: By induction on the derivation of Γ ` Σ . e : T / Σ′. �

Lemma 5 (Narrowing for values) If Γ ` Σ . v : T / Σ′, then Γ ` ∅ . v : T / ∅.

Proof: The structure of a derivation of Γ ` Σ . v : T / Σ′ is as described in the proof of
Lemma 1. Removing the applications of T-Weak yields a derivation of Γ ` ∅ . v : T / ∅. �

Lemma 6 (Substitution) If Γ + x : T ` Σ . e : U / Σ′ and Γ ` ∅ . v : T / ∅ then Γ `
Σ . e{v/x} : U / Σ′.

Proof: By induction on the derivation of Γ + x : T ` Σ . e : U / Σ′. Details of the proof
can be found in Appendix A. �

Our Subject Reduction theorem describes the evolution of the channel environment as a
program is executed. The invariance of Σ′ during reduction steps reflects the fact that Σ′ is
the final channel environment of a program.

16

Theorem 7 (Subject Reduction) If Γ ` Σ.e : T /Σ′ and Σ, e −→ Σ′′, e′ then Γ ` Σ′′.e′ :
T / Σ′.

Proof: By induction on the derivation of Σ, e −→ Σ′′, e′ (which means induction on the
structure of evaluation contexts E[]), first considering Σ, e −→v Σ′′, e′ by a simple case
analysis. Details of the proof can be found in Appendix B. �

Definition 1 A configuration (Σ, e) is faulty when e is not a value and Σ, e 6→. We can
also give an extensional definition of faulty environments, by looking at the reduction rules
in Figure 4. Below are some examples of faulty environments; the remaining involve unfold,
send, close, and case.

(, if v then e else e′) v 6= true, false

(, receive v) v not a channel

(Σ, receive c) c : S not in Σ

(Σ + c : S, receive c) S 6=?D.S ′, ?S ′′.S ′

(, select lj on v) v not a channel

(Σ, select lj on c) c : S not in Σ

(Σ + c : S, select lj on c) S 6= ⊕〈 li : Si 〉i∈I

(Σ + c : ⊕〈 li : Si 〉i∈I , select lj on c) j not in I

Well typed closed environments are not faulty.

Theorem 8 If ` Σ . e : / then (Σ, e) is not faulty.

Proof: By a case analysis on the extensional definition of faulty programs.
Case (, if v then e else e′). We inspect all possible derivations of

` Σ + Σ′ . if v then e else e′ : / .

They are of the form:

...

Γ ` Σ . v : Bool / Σ . . .
T-If,T-Weak∗

Γ ` Σ + Σ′ . if v · · · : / Σ′′ + Σ′

There are four kinds of values: variables (ruled out, since configurations under consideration
are closed); abstractions and channels (ruled out, since the type in the conclusion of rule
T-Abs, respectively T-Chan, cannot be Bool); and constants. Of all the constants in the
language, only true and false have type Bool; hence v must be one of these.

Case (, receive v). All the derivation trees of ` Σ + Σ′ . receive v : / are of the
form below, where T-Receive stands for T-ReceiveD or T-ReceiveS (Figure 7), and S
is ?D.S ′ or ?S ′′.S ′, respectively.

...

Γ ` Σ + c : S . v : Chan c /
T-Receive,T-Weak∗

Γ ` Σ + Σ′ + c : S . receive v : /

17

Reasoning as above, we conclude that the only values of type Chan c are channels. We can
easily see that c : S ′ is in the conclusion; and that S ′ is S ′ =?D.S or S ′ =?S ′′.S.

The remaining cases (unfold, send, close, case, and select) are similar. �
Our final result states that well-typed programs do not reduce to faulty configurations.

This eliminates the need for runtime checks.

Corollary 9 If ` Σ . e : / and Σ, e →∗ Σ′, e′, then (Σ′, e′) is not faulty.

Proof: By induction on the length of the derivation of Σ, e →∗ Σ′, e′. If the length is zero
then use Lemma 2, otherwise use Theorem 7 followed by induction. �

8 Related Work

In the Vault system [2] annotations are added to C programs, in order to describe protocols
that a compiler can statically enforce. Similarly to our approach, individual runtime objects
are tracked by associating keys (channels, in our terminology) with resources, and function
types describe the effect of the function on the keys. Although incorporating a form of
selection (⊕), the type system describes protocols in less detail than we can achieve with
session types.

A somewhat related line of research uses flow-sensitive type qualifiers to prove that pro-
grams access resources in a disciplined manner. Walker, Crary, and Morrisett [18] present a
language to describe region-based memory management together with a provably safe type
system. Igarashi and Kobayashi [8] present a general framework comprising a language with
primitives for creating and accessing resources, and a type inference algorithm that checks
whether programs are resource-safe. Although it might be possible to formulate operations
on channels as resource use in these frameworks, our work focuses on a more specific prob-
lem: we transfer the concept of session types into a language which is closer to programming
practice, and we do it purely with a straightforward type system.

Type and effect systems can be used to prove properties of protocols. Gordon and Jef-
frey [4] use one such system to prove progress properties of communication protocols written
in π-calculus. Rajamani et al.’s Behave [1, 13] uses CCS to describe properties of π-calculus
programs, verified via a combination of type and model checking. In contrast, our system,
while embodying more sophisticated protocols (using branch and select, for example), does
not attempt to prove correctness of the contents of messages; only correctness of the types
and sequence of messages.

9 Conclusions and Future Work

We have transferred the concept of session types from the π-calculus to a language based
on λ-calculus with side-effecting input/output operations. This is a first step towards the
application of session types to the specification and verification of protocols implemented
in mainstream programming languages. The main differences between the π-calculus with
session types, and our language, are as follows.

• The operations on channels are now independent terms, rather than prefixes of pro-
cesses, so we have introduced a new form of typing judgement which describes the
effect of a term on the channel environment.

18

• We have separated creation and naming of channels, and because this introduces the
possibility of aliasing, we represent the types of channels by indirection from the main
type environment to the channel environment.

• We express recursion (essential for the implementation of protocols whose session types
are recursive) by means of functions and a fixed point combinator, rather than through
explicitly recursive process definitions or the replication operator of the π-calculus.

We have defined a static type system which guarantees that channels are not misused, even
in the presence of aliasing, and we have proved this property with respect to a formal
operational semantics of the language. We have therefore established a sound basis for the
design of a more complete language with session types.

Finally, we outline some of the issues involved in extending our language to include a
wider range of standard features.

• We have already mentioned (Section 2.4) that to take full advantage of functions,
we need to add some form of polymorphism which allows generalization of channel
identifiers in function types.

• The next major step is to incorporate channels and session types into a core object-
oriented language. The relationship between session types, subtyping and inheritance
will introduce complexity, but the object-oriented paradigm will allow us to achieve a
technical simplification by restricting attention to first-order functions. We anticipate
a programming style in which an object contains a private channel, and its public
methods use this channel. The session type of the channel will constrain the use of
those methods, perhaps imposing a particular sequence of method calls. This opens up
the possibility of a connection with type systems for non-uniform objects [11, 12, 14]:
perhaps a non-uniform object type could be generated by the session type of a private
channel.

• The purpose of our language is to support typed programming with inter-process com-
munication channels, but we have only considered individual processes in isolation;
we do not have concurrency. We could add a parallel composition operator along the
lines of the π-calculus, in order to be able to define systems of communicating pro-
cesses. However, in line with our aim of working within a conventional programming
paradigm, we would prefer to allow certain functions to execute as separate threads;
we would then be able to define a multi-threaded server, for example.

• We could consider adding ML-style references and assignment. This would introduce
further issues of aliasing. We do not yet know whether our present infrastructure for
typechecking in the presence of aliasing would be sufficient for this extension.

Acknowledgements. The research reported in this paper was supported by a Treaty of
Windsor grant from the British Council in Portugal and the Portuguese Council of University
Rectors. The work was also partially supported by the EU FEDER, the EU projects of the
proactive initiative FET-Global Computing (Mikado and Profundis), and the Portuguese
Fundação para a Ciência e Tecnologia, via project MIMO (POSI/CHS/39789/2001).

The authors would like to thank M. Hennessy, L. Caires and A. Sernadas for important
feedback and suggestions.

19

References

[1] S. Chaki, S. K. Rajamani, and J. Rehof. Types as models: model checking message-
passing programs. In Proceedings, 29th ACM Symposium on Principles of Programming
Languages, pages 45–57. ACM Press, 2002.

[2] R. DeLine and M. Fähndrich. Enforcing high-level protocols in low-level software. In
Proceedings of the 2001 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI) (SIGPLAN Notices 36(5)), pages 59–69. ACM Press, 2001.

[3] S. J. Gay and M. J. Hole. Types and subtypes for client-server interactions. In S. D.
Swierstra, editor, ESOP’99: Proceedings of the European Symposium on Programming
Languages and Systems, volume 1576 of Lecture Notes in Computer Science, pages 74–
90. Springer-Verlag, 1999.

[4] A. Gordon and A. Jeffrey. Typing correspondence assertions for communication pro-
tocols. In S. Brooks and M. Mislove, editors, MFPS 2001: 17th Conference on the
Mathematical Foundations of Programming Semantics, volume 45 of Electronic Notes
in Theoretical Computer Science. Elsevier, 2001.

[5] M. J. Hole and S. J. Gay. Bounded polymorphism in session types. Technical Report
TR-2003-132, Department of Computing Science, University of Glasgow, March 2003.

[6] K. Honda. Types for dyadic interaction. In CONCUR’93: Proceedings of the Interna-
tional Conference on Concurrency Theory, volume 715 of Lecture Notes in Computer
Science, pages 509–523. Springer-Verlag, 1993.

[7] K. Honda, V. Vasconcelos, and M. Kubo. Language primitives and type discipline
for structured communication-based programming. In C. Hankin, editor, ESOP’98:
Proceedings of the European Symposium on Programming, volume 1381 of Lecture Notes
in Computer Science, pages 122–138. Springer-Verlag, 1998.

[8] A. Igarashi and N. Kobayashi. Resource usage analysis. In Proceedings, 29th ACM
Symposium on Principles of Programming Languages, pages 331–342. ACM Press, 2002.

[9] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I and II. Infor-
mation and Computation, 100(1):1–77, September 1992.

[10] J. Myers and M. Rose. Post office protocol version 3, May 1996. Internet Standards
RFC1939.

[11] O. Nierstrasz. Regular types for active objects. ACM Sigplan Notices, 28(10):1–15,
October 1993.

[12] F. Puntigam. Coordination requirements expressed in types for active objects. In
M. Aksit and S. Matsuoka, editors, Proceedings of the European Conference on Object-
Oriented Programming (ECOOP’97), volume 1241 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, 1997.

[13] S. K. Rajamani and J. Rehof. A behavioral module system for the pi-calculus. In
P. Cousot, editor, Static Analysis: 8th International Symposium, SAS 2001, volume
2126 of Lecture Notes in Computer Science, pages 375–394. Springer-Verlag, 2001.

20

[14] A. Ravara and V. T. Vasconcelos. Typing non-uniform concurrent objects. In CON-
CUR’00: Proceedings of the International Conference on Concurrency Theory, volume
1877 of Lecture Notes in Computer Science, pages 474–488. Springer-Verlag, 2000.

[15] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. Cambridge
University Press, 2001.

[16] K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language and its typing
system. In C. Halatsis, D. G. Maritsas, G. Philokyprou, and S. Theodoridis, editors,
PARLE ’94: Parallel Architectures and Languages Europe, 6th International PARLE
Conference, Proceedings, volume 817 of Lecture Notes in Computer Science. Springer-
Verlag, 1994.

[17] A. Vallecillo, V. T. Vasconcelos, and A. Ravara. Typing the behavior of objects and
components using session types. In 1st International Workshop on Foundations of
Coordination Languages and Software Architectures (FOCLASA 2002), volume 68 of
Electronic Notes in Theoretical Computer Science. Elsevier, August 2002.

[18] D. Walker, K. Crary, and G. Morrisett. Typed memory management via static capa-
bilities. ACM Transactions on Programming Languages and Systems, 22(4):701–771,
2000.

[19] A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Information
and Computation, 115(1):38–94, 1994.

21

A Proof of Lemma 6 (Substitution)

Lemma 6 (Substitution) If Γ + x : T ` Σ . e : U / Σ′ and Γ ` ∅ . v : T / ∅ then Γ `
Σ . e{v/x} : U / Σ′.

Proof: By induction on the derivation of Γ + x : T ` Σ . e : U / Σ′, with a case-analysis on
the last rule. We describe each case in the following format.

Given The last step of a derivation of Γ + x : T ` Σ . e : U / Σ′, perhaps with more specific
values of Γ, Σ and Σ′ deduced from the last typing rule.

Substitution The calculation of e{v/x}.

Conclusion A derivation of Γ ` Σ . e{v/x} : U / Σ′, which can be constructed from the
given information and the use of the induction hypothesis.

Case T-Const

Given
U ∈ typeof (u)

T-Const
Γ + x : T ` ∅ . u : U / ∅

Substitution
u{v/x} = u

Conclusion
U ∈ typeof (u)

T-Const
Γ + x : T ` ∅ . u : U / ∅

Case T-Var, same variable

Given
T-Var

Γ + x : T ` ∅ . x : T / ∅
Substitution

x{v/x} = v

Conclusion
T-Var

Γ ` ∅ . v : T / ∅

Case T-Var, different variable

Given
T-Var

Γ + x : T + y : U ` ∅ . y : U / ∅

22

Substitution
y{v/x} = y

Conclusion
T-Var

Γ + y : U ` ∅ . y : U / ∅

Case T-Chan

Given
T-Chan

Γ + x : T ` ∅ . c : Chan c / ∅
Substitution

c{v/x} = c

Conclusion
T-Chan

Γ ` ∅ . c : Chan c / ∅

Case T-New

Given
T-New

Γ + x : T ` ∅ . new S : Chan c / c : S

Substitution
(new S){v/x} = new S

Conclusion
T-New

Γ ` ∅ . new S : Chan c / c : S

Case T-If

Given

Γ + x : T ` Σ′ . e′ : U / Σ2

Γ + x : T ` Σ1 . e : Bool / Σ′ Γ + x : T ` Σ′ . e′′ : U / Σ2
T-If

Γ + x : T ` Σ1 . if e then e′ else e′′ : U / Σ2

Substitution

(if e then e′ else e′′){v/x} = if e{v/x} then e′{v/x} else e′′{v/x}

23

Conclusion

Γ ` Σ′ . e′{v/x} : U / Σ2

Γ ` Σ1 . e{v/x} : Bool / Σ′ Γ ` Σ′ . e′′{v/x} : U / Σ2
T-If

Γ ` Σ1 . if e{v/x} then e′{v/x} else e′′{v/x} : U / Σ2

Case T-Abs

Given
Γ + x : T + y : V ` Σ . e : U / Σ′

T-Abs
Γ + x : T ` ∅ . λy.e : Σ; V → U ; Σ′ / ∅

Substitution
(λy.e){v/x} = λy.e{v/x}

Conclusion
Γ + y : V ` Σ . e{v/x} : U / Σ′

T-Abs
Γ ` ∅ . λy.e{v/x} : Σ; V → U ; Σ′ / ∅

Case T-App

Given

Γ + x : T ` Σ . e : (Σ1; V → U ; Σ2) / Σ′′ Γ + x : T ` Σ′′ . e′ : V / Σ1 + Σ′

T-App
Γ + x : T ` Σ . ee′ : U / Σ2 + Σ′

Substitution
(ee′){v/x} = e{v/x}e′{v/x}

Conclusion

Γ ` Σ . e{v/x} : (Σ1; V → U ; Σ2) / Σ′′ Γ ` Σ′′ . e′{v/x} : V / Σ1 + Σ′

T-App
Γ ` Σ . e{v/x}e′{v/x} : U / Σ2 + Σ′

Case T-Case

Given
Γ + x : T ` Σ . e : Chan c / Σ′′ + c : &〈 li : Si 〉i∈I

∀i.(Γ + x : T ` Σ′′ + c : Si . ei : U / Σ′)
T-Case

Γ + x : T ` Σ . case e of {li ⇒ ei}i∈I : U / Σ′

24

Substitution

(case e of {li ⇒ ei}i∈I){v/x} = case e{v/x} of {li ⇒ ei{v/x}}i∈I

Conclusion

Γ ` Σ . e{v/x} : Chan c / Σ′′ + c : &〈 li : Si 〉i∈I

∀i.(Γ ` Σ′′ + c : Si . ei{v/x} : U / Σ′)
T-Case

Γ ` Σ . case e{v/x} of {li ⇒ ei{v/x}}i∈I : U / Σ′

Case T-Select

Given
Γ + x : T ` Σ . e : Chan c / Σ′′ + c : ⊕〈 li : Si 〉i∈I

T-Select
Γ + x : T ` Σ . select li on e : U / Σ′ + c : Si

Substitution
(select li on e){v/x} = select li on e{v/x}

Conclusion

Γ ` Σ . e{v/x} : Chan c / Σ′′ + c : ⊕〈 li : Si 〉i∈I
T-Select

Γ ` Σ . select li on e{v/x} : U / Σ′ + c : Si

Case T-Weak

Given
Γ + x : T ` Σ . e : U / Σ′

T-Weak
Γ + x : T ` Σ + c : S . e : U / Σ′ + c : S

Substitution
e{v/x}

Conclusion
Γ ` Σ . e{v/x} : U / Σ′

T-Weak
Γ ` Σ + c : S . e{v/x} : U / Σ′ + c : S

�

25

B Proof of Theorem 7 (Subject Reduction)

Lemma 7 (Subject Reduction for −→v) If Γ ` Σ . e : T / Σ′ and Σ, e −→v Σ′′, e′ then
Γ ` Σ′′ . e′ : T / Σ′.

Proof: By case-analysis on the rule used to derive Σ, e −→v Σ′′, e′. In each case we show
part of the derivation of Γ ` Σ . e : T / Σ′, the reduction Σ, e −→v Σ′′, e′, and the derivation
of the desired conclusion Γ ` Σ′′ . e′ : T / Σ′ from the components of the given derivation.

Case R-IfT, R-IfF

Given

Γ ` Σ . true : Bool / Σ Γ ` Σ . e1 : T / Σ′ Γ ` Σ . e2 : T / Σ′

T-If
Γ ` Σ . if true then e1 else e2 : T / Σ′

T-Weak∗

Γ ` Σ + Σ1 . if true then e1 else e2 : T / Σ′ + Σ1

Reduction
Σ + Σ1, if true then e1 else e2 −→v Σ + Σ1, e1

Conclusion
Γ ` Σ . e1 : T / Σ′

T-Weak∗

Γ ` Σ + Σ1 . e1 : T / Σ′ + Σ1

The case of R-IfF is similar.

Case R-Beta

Given

Γ + x : T ` Σ1 . e : U / Σ2
T-Abs

Γ ` ∅ . λx.e : (Σ1; T → U ; Σ2) / ∅
T-Weak∗

Γ ` Σ . λx.e : (Σ1; T → U ; Σ2) / Σ

Γ ` ∅ . v : T / ∅
T-Weak∗

Γ ` Σ . v : T / Σ = Σ1 + Σ′

T-App
Γ ` Σ . (λx.e)v : U / Σ2 + Σ′

T-Weak∗

Γ ` Σ + Σ3 . (λx.e)v : U / Σ2 + Σ′ + Σ3

Reduction
Σ + Σ3, (λx.e)v −→v Σ + Σ3, e{v/x}

Conclusion

Γ + x : T ` Σ1 . e : U / Σ2 Γ ` ∅ . v : T / ∅
Lemma 6 (Substitution)

Γ ` Σ1 . e{v/x} : U / Σ2
T-Weak∗

Γ ` Σ + Σ3 = Σ1 + Σ′ + Σ3 . e{v/x} : U / Σ2 + Σ′ + Σ3

26

Case R-Fix

Given

Γ ` Σ . fix : (∅; (∅; T → T ; ∅) → T ; ∅) / Σ Γ ` Σ . v : (∅; T → T ; ∅) / Σ
T-App

Γ ` Σ . fix v : T / Σ
T-Weak∗

Γ ` Σ + Σ3 . fix v : T / Σ + Σ3

where T = Σ1; T1 → T2; Σ2.

Reduction
Σ + Σ3, fix v −→v Σ + Σ3, v(λx.fix v x)

Conclusion

Γ ` Σ . v : (∅; T → T ; ∅) / Σ

Γ ` Σ . v : (∅; T → T ; ∅) / Σ
Lemma 5

Γ ` ∅ . v : (∅; T → T ; ∅) / ∅
T-Weak∗

Γ ` Σ1 . v : (∅; T → T ; ∅) / Σ1
T-App

Γ + x : T1 ` Σ1 . fix v : T / Σ1

T-Var
Γ + x : T1 ` Σ1 . x : T1 / Σ1

T-Abs
Γ + x : T1 ` Σ1 . fix v x : T2 / Σ2

T-Abs
Γ ` ∅ . λx.fix v x : T / ∅

T-Weak∗

Γ ` Σ . λx.fix v x : T / Σ
T-App

Γ ` Σ . v(λx.fix v x) : T / Σ
T-Weak∗

Γ ` Σ + Σ3 . v(λx.fix v x) : T / Σ + Σ3

Case R-New

Given
Γ ` ∅ . new S : Chan c / c : S

T-Weak∗

Γ ` Σ . new S : Chan c / Σ + c : S

Reduction
Σ, new S −→v Σ + c : S, c

where we assume that the identifier c of the channel created by the reduction is
the same as the channel identifier used in the typing derivation.

Conclusion
T-Chan

Γ ` ∅ . c : Chan c / ∅
T-Weak∗

Γ ` Σ + c : S . c : Chan c / Σ + c : S

27

Case R-SendD

Given
send : D → (c : !D.S; Chan c → Unit; c : S)

...
T-App

Γ ` Σ + c : !D.S . send v on c : Unit / Σ + c : S

Reduction
Σ + c : !D.S, send v on c −→v Σ + c : S, unit

Conclusion
T-Const

Γ ` Σ + c : S . unit : Unit / Σ + c : S

Case R-SendS

Given
send : Chan d → (c : !S ′.S + d : S ′; Chan c → Unit; c : S)

...
T-App

Γ ` Σ + c : !S ′.S + d : S ′ . send d on c : Unit / Σ + c : S

Reduction
Σ + c : !S ′.S + d : S ′, send d on c −→v Σ + c : S, unit

Conclusion
T-Const

Γ ` Σ + c : S . unit : Unit / Σ + c : S

Case R-ReceiveD

Given
receive : c : ?D.S; Chan c → D; c : S

...
T-App

Γ ` Σ + c : ?D.S . receive c : D / Σ + c : S

Reduction
Σ + c : ?D.S, receive c −→v Σ + c : S, v

where v is a closed value of type D, i.e. ∅ ` ∅ . v : D / ∅.
Conclusion

∅ ` ∅ . v : D / ∅
Lemma 4

Γ ` ∅ . v : D / ∅
T-Weak∗

Γ ` Σ + c : S . v : D / Σ + c : S

28

Case R-ReceiveS

Given
receive : c : ?S ′.S; Chan c → Chan d; c : S + d : S ′

...
T-App

Γ ` Σ + c : ?S ′.S . receive c : Chan d / Σ + c : S + d : S ′

Reduction
Σ + c : ?S ′.S, receive c −→v Σ + c : S + d : S ′, d

where we assume that the identifier d of the received channel is the same as the
channel identifier used in the typing derivation.

Conclusion

T-Chan
Γ ` Σ + c : S + d : S ′ . d : Chan d / Σ + c : S + d : S ′

Case R-Close

Given
close : c : End; Chan c → Unit; ∅

...
T-App

Γ ` Σ + c : End . close c : Unit / Σ

Reduction
Σ + c : End, close c −→v Σ, unit

Conclusion
T-Const

Γ ` Σ . unit : Unit / Σ

Case R-Case

Given

Γ ` Σ + c : &〈 li : Si 〉i∈I . c : Chan c / Σ + c : &〈 li : Si 〉i∈I

∀i.(Γ ` Σ + c : Si . ei : T / Σ′)
T-Case

Γ ` Σ + c : &〈 li : Si 〉i∈I . case c of {li ⇒ ei}i∈I : T / Σ′

29

Reduction

Σ + c : &〈 li : Si 〉i∈I , case c of {li ⇒ ei}i∈I −→v Σ + c : Sj, ej

for some j ∈ I.

Conclusion
Γ ` Σ + c : Sj . ej : T / Σ′

Case R-Select

Given

Γ ` Σ + c : ⊕〈 li : Si 〉i∈I . c : Chan c / Σ + c : &〈 li : Si 〉i∈I
T-Select

Γ ` Σ + c : ⊕〈 li : Si 〉i∈I . select lj on c : Unit / Σ + c : Sj

Reduction
Σ + c : ⊕〈 li : Si 〉i∈I , select lj on c −→v Σ + c : Sj, unit

where j ∈ I.

Conclusion
T-Const

Γ ` Σ + c : Sj . unit : Unit / Σ + c : Sj

Case R-Unfold

Given

unfold : c : µX · S; Chan c → Unit; c : S{(µX · S)/X}
...

T-App
Γ ` Σ + c : µX · S . unfold c : Unit / Σ + c : S{(µX · S)/X}

Reduction

Σ + c : µX · S, unfold c −→v Σ + c : S{(µX · S)/X}, unit

Conclusion

T-Const
Γ ` Σ + c : S{(µX · S)/X} . unit : Unit / Σ + c : S{(µX · S)/X}

�

Theorem 1 (Subject Reduction) If Γ ` Σ.e : T /Σ′ and Σ, e −→ Σ′′, e′ then Γ ` Σ′′.e′ :
T / Σ′.

Proof: The reduction Σ, e −→ Σ′′, e′ has the form Σ, E[e1] −→ Σ′′, E[e′1] where E[] is an
evaluation context, e = E[e1], e′ = E[e′1] and Σ, e1 −→v Σ′′, e′1.

By Lemma 2, there exist Σ1 and U such that Γ ` Σ . e1 : U / Σ1. By Lemma 7 we have
Γ ` Σ′′ . e′1 : U / Σ1. By Lemma 3 we have Γ ` Σ′′ . E[e′1] : T / Σ′ as required. �

30

