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Abstract. Extending the pi calculus with the session types proposed
by Honda et al. allows high-level specifications of structured patterns
of communication, such as client-server protocols, to be expressed as
types and verified by static typechecking. We define a notion of sub-
typing for session types, which allows protocol specifications to be
extended in order to describe richer behaviour; for example, an im-
plemented server can be refined without invalidating type-correctness
of an overall system. We formalize the syntax, operational semantics
and typing rules of an extended pi calculus, prove that typability
guarantees absence of run-time communication errors, and show that
the typing rules can be transformed into a practical typechecking
algorithm.

1 Introduction

The pi calculus [21,30] has been used as a vehicle for much research
on static type systems for concurrent programming languages, for
example [6,16–18,20,25,27,28,32,34], in addition to its widespread
use for modelling and reasoning about concurrent systems. In such
systems, successfully typechecking a program guarantees that certain
kinds of error do not occur at run-time. The eliminated errors range
from disagreements between sender and receiver about the expected
type of a message [20] to deadlocks [17].

? Malcolm Hole died on 28th February 2004, a few weeks after the original
submission of this paper.
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Because the pi calculus is based on point-to-point communication
on named channels, a central idea of many of these type systems is
that each channel has a type which specifies, uniformly, the type of
message which it can carry: for example, every message on a channel
of type [̂int] consists of an integer value.

In distributed systems it is common for communication between
two processes to consist of a structured dialogue described by a pro-
tocol, which specifies the format and direction of each message in
a sequence. This view of structured communication does not map
well onto a type system which requires each channel to carry mes-
sages of just one type. To address this problem, Honda et al. [14,
15,31] introduced session types, which allow non-uniform but struc-
tured sequences of messages to be specified. For example, the type
?[int].![bool].end describes a channel which can be used to receive an
integer, then send a boolean, and then must not be used again. The
main contribution of the present paper is to define a notion of subtyp-
ing for session types. This increases the flexibility of the type system
by allowing the participants in a dialogue to follow different protocols
which are nevertheless compatible in a sense defined by the subtyping
relation. The definition of subtyping for session types first appeared
in our earlier paper [7]; the present paper is substantially revised, ex-
tended and corrected. We also show that the theoretical presentation
of the type system can be converted into a practical typechecking
algorithm; this is a new result of the present paper.

In Section 2 we describe session types informally, explain why
subtyping is useful, and discuss related work. In Section 3 we for-
mally define the syntax, operational semantics, and type system of
our version of the pi calculus, and prove that every process which is
typable in the simply-typed pi calculus is also typable in our system.
In Section 4 we prove that typability in our system is preserved by
the reductions of the operational semantics, which implies that ty-
pable processes have desirable run-time behaviour in a sense which we
make precise. Up to this point, the paper is a revised and expanded
version of our earlier conference paper [7] and technical report [8].
In Section 5 we present substantial new results by showing that the
typing rules of our system, presented declaratively in Section 3 for
the sake of formal convenience, can be transformed into a practical
typechecking algorithm; we prove that this algorithm is sound with
respect to the original typing rules. Finally, Section 6 concludes.
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2 Session Types and Subtyping

2.1 A Client-Server System and its Session Types

Consider a server for mathematical operations which provides two
services: addition of integers, yielding an integer result, and testing
of integers for equality, yielding a boolean result. In use, the server is
executed in parallel with a client, and they communicate on a channel
x. The client chooses a service by sending either plus or eq on x, then
sends the arguments of the chosen operation, and finally receives the
result. This protocol is specified formally by the session type S, which
describes the type of x from the server’s viewpoint.

S = &〈 plus :?[int].?[int].![int].end,
eq :?[int].?[int].![bool].end 〉

The &〈 . . . 〉 constructor specifies that a choice is offered between, in
this case, two options, labelled plus and eq. Each label leads to a
type describing the subsequent pattern of communication, different
in each case. The constructors ?[. . .] and ![. . .] indicate receiving and
sending, respectively. Sequencing is indicated by . and end marks the
end of the interaction.

The server (parameterized on the channel x, for later use) can be
implemented by

serverbody(x) = x.{ plus :x?[u:int].x?[v:int].x![u + v].0,
eq :x?[u:int].x?[v:int].x![u = v].0 }.

Here x.{. . .} is the branching construct, corresponding to the type
constructor &〈 . . . 〉; it receives a label and executes the appropriate
code. The rest of the syntax is pi calculus extended with arithmetic
operations: x?[u:int].P receives an integer value on channel x, binds
it to the name u, and then executes P ; x![u + v].Q sends the value
of the expression u + v on channel x and then executes Q; 0 is the
terminated process.

Our type system, defined formally in Section 3, consists of infer-
ence rules for judgements of the form Γ ` P , where Γ is an environ-
ment of typed channel names and P is a process. We can formally
derive

x:S ` serverbody(x)

and in this case it is also easy to see, informally, that the structure
of the communications in server exactly matches the structure of S.

A client must be typechecked against the dual type

S = ⊕〈 plus : ![int].![int].?[int].end, eq : ![int].![int].?[bool].end 〉
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in which the ⊕〈 . . . 〉 constructor specifies the range of options from
which a choice must be made. Each label is followed by a type which
describes the subsequent interaction, and the pattern of sending and
receiving is the opposite of the pattern which appears in the type
of the server. We imagine the type S being published as part of the
specification of the server, so that client implementors can typecheck
their code.

A possible client, also parameterized on the channel x, is

clientbody(x) = x/plus.x![2].x![3].x?[u:int].0

where x/ plus sends the label which indicates the desired service.
More realistically, 0 would be replaced by some process which used
the received value u. Our type system allows us to derive

x:S ` clientbody(x).

Explicitly representing the server’s end of the channel by x+ and the
client’s end by x−, the operational semantics presented in Section 3
defines the behaviour of the parallel combination

clientbody(x−) | serverbody(x+)

as a sequence of reduction steps, each step corresponding to a com-
munication.

In a complete system, there must be a way for the client and server
to establish their connection along channel x. Honda et al. treat ses-
sion channels separately from standard pi calculus channels, creating
them with matching request and accept constructs in the client and
server respectively; initially [31] they did not allow session channels
to be transmitted between processes, and later [15] they introduced
throw and catch constructs for sending and receiving session channels.
We prefer to control session channels through the type system rather
than with special syntax, so we allow them to be created using the
standard pi calculus ν construct and transmitted just like standard
channels.

We structure a complete client-server system as follows. The client
creates a session channel x of type S and sends one end of it to the
server along a standard channel a of type [̂S]. The system is defined
and typechecked as follows.

server = a?[y:S].serverbody(y)
client = (νx : S)(a![x+].clientbody(x−))

a:̂ [S] ` client | server
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The system reduces to

(νx : S)(clientbody(x−) | serverbody(x+))

by communication on a and standard pi calculus scope extrusion,
resulting in a private connection between client and server. Using
standard pi calculus programming techniques, it is straightforward
to modify this implementation to produce a multi-threaded server
which can be accessed via the channel a by any number of clients,
each obtaining a private session with a separate thread.

Each end (x+ or x−) of a session channel x must be owned by just
one process at any time, because otherwise typechecking individual
processes would not guarantee safety of the complete system. For
example, allowing the typing

x+:?[int].?[bool].end, x−:![int].![bool].end `
x−![2].x−![true].0 | x−![3].x−![false].0 | x+?[u:int].x+?[v:bool].0

is not safe because the process can reduce to

x−![true].0 | x−![3].x−![false].0 | x+?[v:bool].0

and now an incorrect communication is possible, substituting the
integer 3 for the boolean variable v.

The type system must maintain unique ownership in the presence
of channel mobility: for example, after sending x+ to server, client
must not use x+ for communication. This restriction is related to
linear [9] control of values and our type system treats session channels
in a similar way to the linear and linearized channels studied by
Kobayashi, Pierce and Turner [18]. The difference is that each end
of a session channel may be used many times by the process which
owns it.

2.2 Upgrading the Server and the Need for Subtypes

Suppose that the server is extended in two ways: by adding a nega-
tion service neg, and by extending the equality test service to real
numbers. The corresponding session type is

T = &〈 plus :?[int].?[int].![int].end,
eq :?[real].?[real].![bool].end,
neg :?[int].![int].end 〉.

With a suitable server implementation we now have

a:̂ [T ] ` newserver
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and the original typing of the client

a:̂ [S] ` client

means that the system is no longer typable, because typing client |
server requires a to have the same type throughout the system. How-
ever, if we assume that int is a subtype of real (int 6 real) in the
underlying data language, it is clear that the system still executes
without communication errors.

By introducing a suitable notion of subtyping for session types we
can account for this situation. The principle underlying the definition
is that if S1 6 S2 then a session channel of type S1 can safely be used
anywhere that a session channel of type S2 is expected. Technically,
if x:S2 ` P and S1 6 S2 then x:S1 ` P . The definition of subtyp-
ing is presented in Section 3. In summary, it is possible to move up
the subtype relation by changing message types covariantly in input
positions or contravariantly in output positions; changing the label-
sets covariantly in branch types or contravariantly in choice types; or
changing the continuation types covariantly in input, output, branch
and choice types. The variance of input and output, and analogously
of the label-sets in branch and choice, are the same as in Pierce and
Sangiorgi’s [25] system of input/output subtyping; the uniform co-
variance of the continuation types is slightly counterintuitive.

For the mathematical server, this means that S 6 T . It is safe
for the new server to communicate on a channel of type S: this just
means that the neg service is never used and the eq service is only
used with integer values.

When sending, the type of the actual message is allowed to be a
subtype of the message type specified by the channel type, because
it is safe for the receiver to be given a value whose type is a subtype
of the expected type. This means that from

a:̂ [T ], x−:S ` clientbody(x−)

we can derive

a:̂ [T ], x+:S, x−:S ` a![x+].clientbody(x−)

and hence
a:̂ [T ] ` client

which is compatible with the new server’s publication of a:̂ [T ] as
its access channel. A complete typing derivation for this client-server
system appears in Section 3.5.

We have presented a larger example, based on the POP3 protocol
[22], elsewhere [7,8].
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2.3 Related Work

Session types were originally formulated by Honda [14] and developed
further by Takeuchi, Honda and Kubo [31] and Honda, Vasconcelos
and Kubo [15]. The key difference between our formulation of the core
language (without subtyping) and theirs is that whereas they use spe-
cial syntax for creation (request, accept) and transmission (throw,
catch) of sessions, we just use the standard pi calculus primitives
for channel creation and transmission, and handle all of the special
behaviour of session channels through the type system. Bonelli, Com-
pagnoni and Gunter [1,2] have extended session types with a system
for checking correspondence assertions, in the style of Gordon and
Jeffrey [10], in order to specify more detailed properties of protocols.

Subtyping for session types was first defined by the present au-
thors [7,8] and the present paper is intended to be the definitive
account of our type system. Several authors have used our definition
of subtyping as the basis for further developments and applications
of session types. Vallecillo, Vasconcelos and Ravara [33] have used
session types to specify component interfaces in CORBA. They use
a notion of compatibility between types, which is derived from our
notion of subtyping: a client type T and a server type U are com-
patible, T ./ U , if and only if T 6 U . Neubauer and Thiemann [24]
use a type system based on session types with subtyping and sin-
gleton types to describe specialization of protocols by elimination of
unnecessary behaviour.

Igarashi and Kobayashi [16] have developed a generic framework
in which a range of type systems can be defined for the pi calculus.
Although able to express sequencing of input and output types in
a similar way to session types, it appears not to be able to express
branching types because they require a dependency between the label
and the type describing the subseqent behaviour.

Rajamani et al.’s Behave [3,29] uses CCS to describe properties of
pi calculus programs, verified via a combination of typechecking and
model checking. Although Behave addresses a wider range of proper-
ties, we expect session types to be easier to implement, because only
typechecking is involved, and well suited to a programming environ-
ment, because of the use of familiar concepts of typing and subtyping.

Some recent work has begun to transfer session types from lan-
guages based on pi calculus to standard programming paradigms.
Vasconcelos, the first author and Ravara [35] have defined a sys-
tem of session types for a functional language with side-effecting
input/output operations. Dezani-Ciancaglini et al. [5] have defined
a distributed object-oriented language with session types. Neubauer
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and Thiemann [23] have encoded a version of session types in Haskell,
and proved that the embedding preserves typings.

Some type-theoretic approaches to verification of resource-access
protocols have more general aims than session types. However, in the
particular case of communication channels, session types give more
detailed specifications of correct behaviour. Cyclone [12] is a C-like
type-safe polymorphic imperative language. It features region-based
memory management, and more recently threads and locks [11], via
a sophisticated type system. The type system guarantees that locks
are acquired and released in a correct sequence, but does not specify
a protocol for using an object once the lock has been acquired. In
the Vault system [4] annotations are added to C programs, in order
to describe protocols that a compiler can statically enforce; these
protocols specify the permitted state transition sequences of tracked
run-time objects. We can regard a session type as a specification of
state transitions for a channel, which is similar to a specification in
Vault, but in addition, session types specify the types of individual
messages.

3 The Language: Syntax, Semantics, Type System

Our language is based on the polyadic pi calculus of Milner et al.
[20,21,30]. We add the constructs proposed by Honda et al. [14,15,
31] which allow external choice, between a collection of labelled pro-
cesses, to be resolved by transmission of a label on a channel. We omit
internal choice and matching of names: these features have little in-
teraction with the type system and can easily be added if desired.
The type system is based on our formulation [7] of the session types
of Honda et al. [14,15,31]. It incorporates our notion of subtyping for
session types [7,8].

To simplify the presentation we have restricted the language to
a pure calculus of names and channel types. It is straightforward to
add data types and data expressions, as required by the examples in
Section 2; for example, we have incorporated a boolean type in an
earlier presentation [8].

3.1 Syntax

The syntax of types is defined by the grammar in Figure 1, assuming
an infinite collection X, Y . . . of type variables and an infinite collec-
tion l1, l2, . . . of labels. We often write T̃ for a sequence T1, . . . , Tn of
types, and l̃ : T̃ for a sequence l1 : T1, . . . , ln : Tn of labelled types.
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Session types S ::= X type variable
| end terminated session
| ?[T1, . . . , Tn].S input
| ![T1, . . . , Tn].S output
| &〈 l1 :S1, . . . , ln :Sn 〉 branch
| ⊕〈 l1 :S1, . . . , ln :Sn 〉 choice
| µX.S recursive session type

Types T ::= X type variable
| S session type
| [̂T1, . . . , Tn] standard channel type
| µX.T recursive channel type

Fig. 1 Syntax of types

Recursive types are required to be contractive, containing no subex-
pressions of the form µX.µX1 . . . µXn.X. Each session type S has a
dual type S, defined recursively by the equations in Figure 2.

The syntax of processes is defined by the grammar in Figure 3.
We assume an infinite collection of names x, y, z, . . ., which is disjoint
from the set of labels. Names may be polarized, occurring as x+ or
x− or simply as x. We write xp for a general polarized name, where
p represents an optional polarity. We often write x̃p̃ for a sequence
xp1

1 , . . . , xpn
n of polarized names. Duality on polarities, written p, ex-

changes + and −. As is common in presentations of the pi calculus,
we do not distinguish between names and variables. The definitions
of binding and the free names of a process, fn(P ), are slightly non-
standard. Binding occurrences of names are x in (νx:T )P and ỹ in
xp?[ỹ:T̃ ].P . In (νx:T )P , both x+ and x− may occur in P , and both
are bound. In xp?[ỹ:T̃ ].P , for each i, only yi (unpolarized) may occur
in P . This will become clear when the type system is presented, in
Section 3.4.

To facilitate the presentation of the type system, binding oc-
currences of names are annotated with types. We work up to α-
equivalence as usual, and in proofs we assume that all bound names
are distinct from each other and from all free names.

3.2 Operational Semantics

Following one of the standard approaches to pi calculus semantics
[20] we define a reduction relation on processes, making use of a
structural congruence relation. Structural congruence is the smallest
congruence relation on processes which contains α-equivalence and
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X = X

end = end

?[T1, . . . , Tn].S = ![T1, . . . , Tn].S

![T1, . . . , Tn].S = ?[T1, . . . , Tn].S

&〈 l1 :S1, . . . , ln :Sn 〉 = ⊕〈 l1 :S1, . . . , ln :Sn 〉
⊕〈 l1 :S1, . . . , ln :Sn 〉 = &〈 l1 :S1, . . . , ln :Sn 〉

µX.S = µX.S

Fig. 2 The dual of a session type

P, Q ::= 0 terminated process
| P |Q parallel combination
| !P replication
| xp?[y1 :T1, . . . , yn :Tn].P input
| xp![y1

p1 , . . . , yn
pn ].P output

| (νx:T )P channel creation
| xp.{l1 :P1, . . . , ln :Pn} branch
| xp/l.P choice

Fig. 3 Syntax of processes

P | 0 ≡ P S-Unit
P |Q ≡ Q | P S-Comm

P | (Q |R) ≡ (P |Q) |R S-Assoc
!P ≡ P | !P S-Rep

(νx:T )P |Q ≡ (νx:T )(P |Q) if x, x+, x− 6∈ fn(Q) and T 6= end S-Extr
(νx:T )0 ≡ 0 if T is not a session type S-Nil

(νx:end)0 ≡ 0 S-NilS
(νx:T )(νy:U)P ≡ (νy:U)(νx:T )P S-Switch

Fig. 4 Structural congruence

is closed under the equations in Figure 4. The structural congruence
rules are standard. Rule S-NilS specifies the type end in the ν-binding,
because of the way in which the type system (Section 3.4) requires
the 0 process to be typed in an environment of fully-used channels.

The reduction relation is defined inductively by the rules in Fig-
ure 5. To enable our Type Preservation Theorem to be stated (The-
orem 1, Section 4), reductions are annotated with labels of the form
α, l. These labels indicate the channel name and branch selection la-
bel, if any, which are involved in each reduction. Consider a reduction
which involves communication on channel x. If x is not ν-bound then
α = x. If x is ν-bound then α = τ . If the reduction consists of trans-
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xp?[ỹ:T̃ ].P | xp̄![z̃q̃].Q
x,−→ P{z̃q̃/ỹ} |Q R-Com

p is either + or − 1 6 i 6 n
R-Select

xp.{l1 :P1, . . . , ln :Pn} | xp̄/li.Q
x,li−→ Pi |Q

P
α,l−→ P ′ α 6= x T is not a session type

R-New
(νx : T )P

α,l−→ (νx : T )P ′

P
x,l−→ P ′

R-NewS
(νx : S)P

τ,−→ (νx : tail(S, l))P ′

P
α,l−→ P ′

R-Par
P |Q α,l−→ P ′ |Q

P ′ ≡ P P
α,l−→ Q Q ≡ Q′

R-Cong
P ′ α,l−→ Q′

Fig. 5 The reduction relation

xq{ũp̃/ṽ} = xq if x 6∈ ṽ

x{ũp̃/ṽ} = upi
i if x = vi

0{ũp̃/ṽ} = 0

(P |Q){ũp̃/ṽ} = P{ũp̃/ṽ} |Q{ũp̃/ṽ}
(!P ){ũp̃/ṽ} = !(P{ũp̃/ṽ})

(xq?[ỹ:T̃ ].P ){ũp̃/ṽ} = xq{ũp̃/ṽ}?[ỹ:T̃ ].P{ũp̃/ṽ}
(xq![ỹ].P ){ũp̃/ṽ} = xq{ũp̃/ṽ}![ỹ{ũp̃/ṽ}].P{ũp̃/ṽ}
((νx:T )P ){ũp̃/ṽ} = (νx:T )P{ũp̃/ṽ}

(xq.{l̃ : P̃}){ũp̃/ṽ} = xq{ũp̃/ṽ}.{l̃ : P̃{ũp̃/ṽ}}
(xq/l.P ){ũp̃/ṽ} = xq{ũp̃/ṽ}/l.P{ũp̃/ṽ}

Fig. 6 Substitution

tail(?[T̃ ].S, ) = S

tail(![T̃ ].S, ) = S

tail(&〈 l̃ : S̃ 〉, li) = Si

tail(⊕〈 l̃ : S̃ 〉, li) = Si

tail(µX.S, l) = tail(S{µX.S/X}, l)

Fig. 7 The tail function
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mission of a choice label then l is that label, otherwise l = . We
assume that the label does not occur as a choice label.

Rule R-Com is the standard communication reduction for the pi
calculus. Substitution of polarized names for unpolarized variables
is defined in Figure 6; it is only necessary to substitute for input-
bound variables, and these are not polarized. The channel on which
communication takes place, and the names which are transmitted,
are all polarized, perhaps as the result of substitutions arising from
earlier reductions.

Rule R-Select resolves a choice between labelled processes by
sending a label along a channel. The standard rule for reduction un-
der a ν-binding is replaced by two rules, R-New and R-NewS. These
rules use the annotation on the reduction in the hypothesis to calcu-
late the correct type for the ν-binding in the conclusion. The function
tail is defined in Figure 7. Rules R-Par and R-Cong are standard.

3.3 Subtyping

The inductive rules in Figure 8, which define subtyping between non-
recursive types, show the key features of subtyping for session types.
If T is a subtype of U , written T 6 U , then a channel of type T may
safely be used wherever a channel of type U is expected. The defi-
nition of subtyping for session types, and especially recursive session
types, is one of the main contributions of the paper.

Rules S-InS and S-OutS specify covariance and contravariance, re-
spectively, in the message type, and covariance in the continuation
type. Rule S-Chan specifies invariance in the message type. The vari-
ance of the message type in these cases is the same as in Pierce and
Sangiorgi’s system of input/output subtyping in the pi calculus [25].

Rules S-Branch and S-Choice specify that branch is covariant, and
choice contravariant, in the set of labels. This is as expected if a
branch is viewed as an input and a choice as an output. Less in-
tuitive is the fact that both branch and choice are covariant in the
continuation types, but the definition is justified by the proof of safety
of the type system.

To extend subtyping to recursive types, we use a coinductive def-
inition.

Definition 1. For all types T , define unfold(T ) by recursion on the
structure of T :

unfold(µX.T ) = unfold(T{µX.T/X})

and in all other cases, unfold(T ) = T .
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Because we assume that recursive types are contractive, unfold termi-
nates. For any recursive type T , unfold(T ) is the result of repeatedly
unfolding the top level recursion until a non-recursive type construc-
tor is reached.

Definition 2. Let Type be the set of all closed type expressions de-
fined by the grammar for T (Figure 1).

Definition 3. A relation R ⊆ Type × Type is a type simulation if
(T,U) ∈ R implies the following conditions:

1. If unfold(T ) = [̂T1, . . . , Tn] then unfold(U) = [̂U1, . . . , Un] and
for all i ∈ {1, . . . , n}, (Ti, Ui) ∈ R and (Ui, Ti) ∈ R.

2. If unfold(T ) = ?[T1, . . . , Tn].S1 then unfold(U) = ?[U1, . . . , Un].S2

and (S1, S2) ∈ R and for all i ∈ {1, . . . , n}, (Ti, Ui) ∈ R.
3. If unfold(T ) = ![T1, . . . , Tn].S1 then unfold(U) = ![U1, . . . , Un].S2

and (S1, S2) ∈ R and for all i ∈ {1, . . . , n}, (Ui, Ti) ∈ R.
4. If unfold(T ) = &〈 l1 :S1, . . . , lm :Sm 〉 then

unfold(U) = &〈 l1 :S′
1, . . . , ln :S′

n 〉 and m 6 n and for all i ∈
{1, . . . ,m}, (Si, S

′
i) ∈ R.

5. If unfold(T ) = ⊕〈 l1 :S1, . . . , lm :Sm 〉 then
unfold(U) = ⊕〈 l1 :S′

1, . . . , ln :S′
n 〉 and n 6 m and for all i ∈

{1, . . . , n}, (Si, S
′
i) ∈ R.

6. If unfold(T ) = end then unfold(U) = end.

Definition 4. The coinductive subtyping relation 6c is defined by
T 6c U if and only if there exists a type simulation R such that
(T,U) ∈ R.

Definition 5. If T̃ = T1, . . . , Tn and Ũ = U1, . . . , Un and for all
i ∈ {1, . . . , n}, (Ti 6c Ui), then we write T̃ 6c Ũ .

In a practical language we would want to regard the branches in
&〈 li : Ti 〉16i6n and ⊕〈 li : Ti 〉16i6n as functions from labels to types,
not as sequences; this would allow the subtyping relation to vary the
order of the branches. We do not discuss this point further in the
present paper.

3.4 Type System

The rules in Figure 9 inductively define judgements of the form Γ ` P
where Γ is an environment. Such a judgement means that the process
P uses channels as specified by the types in Γ . A process is either
correctly typed or not; we do not assign types to processes.
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S-End
end 6 end

∀i.(Ti 6 Ui) ∀i.(Ui 6 Ti)
S-Chan

[̂T̃ ] 6 [̂Ũ ]

∀i.(Ti 6 Ui) V 6 W
S-InS

?[T̃ ].V 6 ?[Ũ ].W

∀i.(Ui 6 Ti) V 6 W
S-OutS

![T̃ ].V 6 ![Ũ ].W

m 6 n ∀i ∈ {1, . . . , m}.Si 6 Ti

S-Branch
&〈 li : Si 〉16i6m 6 &〈 li : Ti 〉16i6n

m 6 n ∀i ∈ {1, . . . , m}.Si 6 Ti

S-Choice
⊕〈 li : Si 〉16i6n 6 ⊕〈 li : Ti 〉16i6m

Fig. 8 Subtyping for non-recursive types

Definition 6. An environment Γ is a function from optionally po-
larized names to types. If xp ∈ dom(Γ ) and Γ (xp) = T then we write
xp : T ∈ Γ . Similarly, we sometimes write an environment explicitly
as Γ = xp1

1 : T1, . . . , x
pn
n : Tn. If xp 6∈ dom(Γ ) then we write Γ, xp : T

for the environment which extends Γ by mapping xp to T , as long as
this environment satisfies the condition below.

For any environment Γ and any name x, exactly one of the fol-
lowing conditions must apply.

1. x 6∈ dom(Γ ) and x+ 6∈ dom(Γ ) and x− 6∈ dom(Γ ).
2. Γ (x) = T and x+ 6∈ dom(Γ ) and x− 6∈ dom(Γ ).
3. Γ (x+) = S and x 6∈ dom(Γ ) and x− 6∈ dom(Γ ).
4. Γ (x−) = S and x 6∈ dom(Γ ) and x+ 6∈ dom(Γ ).
5. Γ (x+) = S and Γ (x−) = S′ and x 6∈ dom(Γ ).

At several points in the definition of the type system, we need
to include the condition that two session types S and S′ are dual.
In the presence of recursive types, it is not sufficient to specify that
S′ = S [33]. For example, we want µX.?[int].X and ![int].µX.![int].X
to be dual. We therefore define the coinductive duality relation ⊥c in
a similar way to the coinductive subtyping relation.

Definition 7. Let SType be the set of all closed type expressions de-
fined by the grammar for S (Figure 1).

Definition 8. A relation R ⊆ SType × SType is a duality relation if
(T,U) ∈ R implies the following conditions:
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Γ completed
T-Nil

Γ ` 0

Γ1 ` P Γ2 ` Q
T-Par

Γ1 + Γ2 ` P |Q

Γ ` P Γ unlimited
T-Rep

Γ ` !P

Γ, x :T ` P T is not a session type
T-New

Γ ` (νx :T )P

Γ, x+ :S, x− :S′ ` P S ⊥c S′

T-NewS
Γ ` (νx :S)P

Γ, xp:S, ỹ:Ũ ` P T̃ 6c Ũ
T-InS

Γ, xp:?[T̃ ].S ` xp?[ỹ:Ũ ].P

Γ, xp:S ` P Ũ 6c T̃
T-OutS

(Γ, xp:![T̃ ].S) + ỹq̃:Ũ ` xp![ỹq̃].P

Γ, x:̂ [T̃ ], ỹ:Ũ ` P T̃ 6c Ũ
T-In

Γ, x:̂ [T̃ ] ` x?[ỹ:Ũ ].P

Γ, x:̂ [T̃ ] ` P Ũ 6c T̃
T-Out

(Γ, x:̂ [T̃ ]) + ỹq̃:Ũ ` x![ỹq̃].P

m 6 n ∀i ∈ {1, . . . , m}.(Γ, xp:Ti ` Pi)
T-Offer

Γ, xp:&〈 li : Ti 〉16i6m ` xp.{ li : Pi }16i6n

l = li ∈ {l1, . . . , ln} Γ, xp:Ti ` P
T-Choose

Γ, xp:⊕ 〈 li : Ti 〉16i6n ` xp/l.P

Fig. 9 Typing rules

1. If unfold(T ) = ?[T1, . . . , Tn].S1 then unfold(U) = ![U1, . . . , Un].S2

and (S1, S2) ∈ R and for all i ∈ {1, . . . , n}, Ti 6c Ui and Ui 6c Ti.
2. If unfold(T ) = ![T1, . . . , Tn].S1 then unfold(U) = ?[U1, . . . , Un].S2

and (S1, S2) ∈ R and for all i ∈ {1, . . . , n}, Ti 6c Ui and Ui 6c Ti.
3. If unfold(T ) = &〈 li : Si 〉16i6n then unfold(U) = ⊕〈 li : S′

i 〉16i6n

and for all i ∈ {1, . . . , n}, (Si, S
′
i) ∈ R.

4. If unfold(T ) = ⊕〈 li : Si 〉16i6n then unfold(U) = &〈 li : S′
i 〉16i6n

and for all i ∈ {1, . . . , n}, (Si, S
′
i) ∈ R.

5. If unfold(T ) = end then unfold(U) = end.

Definition 9. The coinductive duality relation ⊥c is defined by T ⊥c

U if and only if there exists a duality relation R such that (T,U) ∈ R.

Definition 10. Let Γ be an environment.



16 Simon Gay, Malcolm Hole

1. Γ is unlimited if it contains no session types.
2. Γ is completed if every session type in Γ is end.
3. Γ is balanced if whenever x+ :S ∈ Γ and x− :S′ ∈ Γ then S ⊥c S′.

Definition 11. Addition of a typed name to an environment is de-
fined by

Γ + x+ :S = Γ, x+ :S if x+ 6∈ dom(Γ ) and x 6∈ dom(Γ )
and S is a session type

Γ + x− :S = Γ, x− :S if x− 6∈ dom(Γ ) and x 6∈ dom(Γ )
and S is a session type

Γ + x :T = Γ, x :T if x 6∈ dom(Γ ) and x+ 6∈ dom(Γ )
and x− 6∈ dom(Γ )

(Γ, x :T ) + x :T = Γ, x :T if T is not a session type

and is undefined in all other cases. Addition is extended inductively
to a partial binary operation on environments.

There are two notable features of the typing rules. The first is the
fact that the types of session channels change during a derivation,
reflecting the construction of sequences of communication. This can
be seen in rules T-InS, T-OutS, T-Offer and T-Choose. As a result, the
Type Preservation Theorem (Theorem 1, Section 4) must describe the
way in which the types of session channels change during execution
of a process.

The second is the way in which the rules guarantee that each
end (x+ or x−) of a session channel is owned by just one process.
This is achieved by means of the addition operation on environments.
Addition is a partial operation, and the typing rules which use it have
as an implicit hypothesis the requirement that their use of addition
is well-defined. In rule T-Par, the construction of Γ1 + Γ2 requires
that each session channel occurs in at most one of Γ1 and Γ2. In rule
T-OutS, the construction of Γ + ỹq̃ requires that the names ỹq̃ do not
occur in Γ and are therefore not used in the continuation process P
after they have been sent on xp. This use of addition is based on the
linear type system of Kobayashi et al. [18].

Rule T-Nil ensures that a process contains enough communication
operations to fully use each session channel. However, it is not possible
to guarantee that every session channel is fully used at run-time,
because of the possibility of deadlocks. For example, the process

x−?[u:int].y+![2].0 | y−?[v:int].x+![3].0

is deadlocked but the typing

x−:?[int].end, x+:![int].end, y−:?[int].end, y+:![int].end `
x−?[u:int].y+![2].0 | y−?[v:int].x+![3].0
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indicates that every component of every session type has a matching
send or receive operation.

We treat recursive types as definitionally equal to their unfoldings;
typing derivations may fold/unfold freely. We incorporate subsump-
tion into the typing rules, rather than by means of a rule such as

Γ (xp) = T T 6c U

Γ ` xp :U

because it makes the connection between the typing rules and the
typechecking algorithm more direct. However, this is not enough in
itself to yield a typechecking algorithm: rule T-Par does not specify
how to express the environment Γ as Γ1 + Γ2 and we have not yet
presented an algorithm for checking the subtyping relation between
arbitrary types. We address these points in Section 5.

3.5 Example Typing Derivations

Assuming that the necessary data types and typing rules are added,
the derivation of the final typing judgement in Section 2.2,

a:̂ [T ] ` client

where

clientbody(x−) = x−/plus.x−![2].x−![3].x−?[u:int].0
client = (νx : S)(a![x+].clientbody(x−))

is as follows:

a:̂ [T ], x−:end completed
T-Nil

a:̂ [T ], x−:end ` 0
...

a:̂ [T ], x−:![int].![int].?[int].end ` x−![2].. . .0
T-Choose

a:̂ [T ], x−:⊕ 〈 plus : . . ., eq : . . . 〉 ` clientbody(x−) S 6c T
T-Out

a:̂ [T ], x+:S, x−:S ` a![x+].clientbody(x−)
T-NewS

a:̂ [T ] ` (νx : S)(a![x+].clientbody(x−))

A key point about this derivation is the change in environment asso-
ciated with the T-Out rule. To form the process a![x+].clientbody(x−)
the typed name x+ :S must be added to the environment. We have

(a : [̂T ], x− :S) + x+ :S = a : [̂T ], x+ :S, x− :S



18 Simon Gay, Malcolm Hole

(the order of names within the environment is not significant).
It is the definition of + which controls whether or not a channel

can be used after it has been sent. For example, if a : [̂![int].end] and
x : ![int].end then the process a![x].x![2].0 cannot be typed. We have

a : [̂![int].end], x :end ` 0

and using rule T-OutS we can derive

a : [̂![int].end], x : ![int].end ` x![2].0.

To derive a typing for a![x].x![2].0 we would have to use rule T-Out

and this would require adding x : ![int].end to the environment; but

(a : [̂![int].end], x : ![int].end) + x : ![int].end

is not defined.
The situation is different if x is not a session channel. If a : [̂̂ [int]]

and x : [̂int] then we have the derivation

a : [̂̂ [int]] ` 0
T-Out

a : [̂̂ [int]], x : [̂int] ` x![2].0
T-Out

a : [̂̂ [int]], x : [̂int] ` a![x].x![2].0

which relies on the fact that

(a : [̂̂ [int]], x : [̂int]) + x : [̂int] = a : [̂̂ [int]], x : [̂int].

3.6 Embedding the Simply Typed Pi Calculus

To demonstrate that our language and type system are an exten-
sion of a more standard pi calculus, we briefly show that a simpler
language without session types can be embedded in our language.

The following grammar defines non-recursive channel types, and
the syntax of a standard pi calculus with synchronous output.

T ::= [̂T1, . . . , Tn]
P,Q ::= 0 | (P |Q) | !P | x?[y1 :T1, . . . , yn :Tn].P

| x![y1, . . . , yn].P | (νx :T )P

The typing rules in Figure 10 define judgements Γ .P in which Γ is a
function from names (there are no polarities) to channel types. This is
essentially the simple type system for the pi calculus [30, Chapter 6].

Proposition 1. If Γ . P then Γ ` P .
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T-Nil′

Γ . 0

Γ . P Γ . Q
T-Par′

Γ . P |Q

Γ . P
T-Rep′

Γ . !P

Γ, x :T . P
T-New′

Γ . (νx :T )P

Γ, x : [̂T̃ ], ỹ : T̃ . P
T-In′

Γ, x : [̂T̃ ] . x?[ỹ : T̃ ].P

Γ, x : [̂T̃ ], ỹ : T̃ . P
T-Out′

Γ, x : [̂T̃ ], ỹ : T̃ . x![ỹ].P

Fig. 10 Typing rules for the simply typed pi calculus

Proof. By induction on the derivation of Γ . P , considering the pos-
sibilities for the last rule.

T-Nil′: Γ is completed because it contains no session types, so
T-Nil gives Γ ` 0.

T-Par′: By the induction hypothesis, Γ ` P and Γ ` Q. Because
Γ contains no session types we have Γ + Γ = Γ . So T-Par gives
Γ ` P |Q.

T-Rep′: By the induction hypothesis, Γ ` P . Because Γ contains
no session types, it is unlimited. So T-Rep gives Γ `!P .

T-New′: By the induction hypothesis, Γ, x : T ` P . Because T is
not a session type, T-New gives Γ ` (νx :T )P .

T-In′: By the induction hypothesis, Γ, x : [̂T̃ ], ỹ : T̃ ` P . Rule T-In,
using reflexivity of 6c (Proposition 2, Section 4), gives Γ, x : [̂T̃ ] `
x?[ỹ : T̃ ].P .

T-Out′: By the induction hypothesis, Γ, x : [̂T̃ ], ỹ : T̃ ` P . Because
there are no session types, (Γ, x : [̂T̃ ], ỹ : T̃ ) + ỹ : T̃ = Γ, x : [̂T̃ ], ỹ : T̃ .
So T-Out, using reflexivity of 6c, gives Γ, x : [̂T̃ ], ỹ : T̃ ` x![ỹ].P . ut

4 Soundness of the Type System

The proof that correctly-typed processes have no communication er-
rors at run-time follows a pattern familiar from other type systems
for the pi calculus. We first prove some basic properties of the coin-
ductive subtyping and duality relations, then prove a series of results
leading to a Type Preservation theorem, and finally state a Type
Safety theorem which explicitly shows that a typable process cannot
immediately generate a run-time error.

Proposition 2. The relation 6c is reflexive.
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Proof. For T ∈ Type we need to construct a type simulation R such
that (T, T ) ∈ R. Let R = {(U,U) | U ∈ Type}. Clearly (T, T ) ∈ R,
and it is easy to check that R is a type simulation. Consider (U, V ) ∈
R. A typical case is that unfold(U) =?[U1, . . . , Un].S. Because V =
U , we trivially have unfold(V ) =?[U1, . . . , Un].S. The definition of
R means that (S, S) ∈ R and for all i ∈ {1, . . . , n}, (Ui, Ui) ∈ R.
Therefore case (2) of Definition 3 is satisfied. The other cases are
similar. ut

Proposition 3. The relation 6c is transitive.

Proof. Suppose that T 6c T ′ and T ′ 6c T ′′. To prove that T 6c T ′′ we
need to construct a type simulation R such that (T, T ′′) ∈ R. Let R1

and R2 be type simulations such that (T, T ′) ∈ R1 and (T ′, T ′′) ∈ R2.
Denoting relational composition by R1 ·R2, let

R = (R1 ·R2) ∪ (R2 ·R1)
= {(T, V ) | for some U, (T,U) ∈ R1 and (U, V ) ∈ R2}
∪ {(V, T ) | for some U, (V,U) ∈ R2 and (U, T ) ∈ R1}.

Clearly (T, T ′′) ∈ R. We need to show that R is a type simulation.
Consider (U, V ) ∈ R. There are 12 cases: two for each case of Defini-
tion 3, depending on whether (U, V ) ∈ R1 ·R2 or (U, V ) ∈ R2 ·R1.

A typical case is (U, V ) ∈ R1 ·R2 and unfold(U) = ![T1, . . . , Tn].S1.
Then there exists W such that (U,W ) ∈ R1 and (W,V ) ∈ R2.
Because R1 is a type simulation, unfold(W ) =![T ′

1, . . . , T
′
n].S2 and

(S1, S2) ∈ R1 and for all i ∈ {1, . . . , n}, (T ′
i , Ti) ∈ R1. Because R2 is

a type simulation, unfold(V ) =![T ′′
1 , . . . , T ′′

n ].S3 and (S2, S3) ∈ R2 and
for all i ∈ {1, . . . , n}, (T ′′

i , T ′
i ) ∈ R2. Therefore (S1, S3) ∈ R1 ·R2 ⊆ R

and for all i ∈ {1, . . . , n}, (T ′′
i , Ti) ∈ R2 · R1 ⊆ R. So case (3) of

Definition 3 is satisfied.
The other cases are similar. ut

Lemma 1. µX.T 6c T{µX.T/X} and T{µX.T/X} 6c µX.T .

Proof. Follows directly from the fact that unfold(µX.T ) =
unfold(T{µX.T/X}). ut

Lemma 2 (Inversion). Suppose that T 6c T ′.

1. If unfold(T ′) = end then unfold(T ) = end.
2. If unfold(T ′) = ?[T̃ ].U then unfold(T ) = ?[Ṽ ].W with Ṽ 6c T̃ and

W 6c U .
3. If unfold(T ′) = ![T̃ ].U then unfold(T ) = ![Ṽ ].W with T̃ 6c Ṽ and

W 6c U .
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4. If unfold(T ′) = &〈 li : Ti 〉16i6n then unfold(T ) = &〈 li : Ui 〉16i6m

with m 6 n and ∀i ∈ {1, . . . ,m}.Ui 6c Ti.
5. If unfold(T ′) = ⊕〈 li : Ti 〉16i6n then unfold(T ) = ⊕〈 li : Ui 〉16i6m

with n 6 m and ∀i ∈ {1, . . . , n}.Ui 6c Ti.
6. If unfold(T ′) = [̂Ũ ] then unfold(T ) = [̂Ṽ ] with Ũ 6c Ṽ and

Ṽ 6c Ũ .

Proof. Case (4) is typical; the others are similar. Let R be a type
simulation such that (T, T ′) ∈ R and suppose that unfold(T ′) =
&〈 li : Ti 〉16i6n ∈ R. In order not to contradict Definition 3, we
must have unfold(T ) = &〈 li : Ui 〉16i6m with m 6 n and ∀i ∈
{1, . . . ,m}.(Ui, Ti) ∈ R. Hence ∀i ∈ {1, . . . ,m}.Ui 6c Ti. ut

Lemma 3. For all S1, S2 ∈ SType, if S1 6c S2 and unfold(S2) 6= end
then it is not the case that S1 6c S2.

Proof. Follows from Lemma 2, because only one of S1 and S1 can
match the structure of S2. ut

Proposition 4. The relation ⊥c is symmetric.

Proof. Suppose that T1 ⊥c T2. To show that T2 ⊥c T1 we must con-
struct a duality relation R such that (T2, T1) ∈ R. Let R′ be a duality
relation such that (T1, T2) ∈ R′. Let R = {(U, T ) | (T,U) ∈ R′}.
Clearly (T2, T1) ∈ R, and we must show that R is a duality relation.

Suppose that (U, T ) ∈ R, meaning that (T,U) ∈ R′. We con-
sider the possibilities for U , according to Definition 8. Case (1) is
typical and the others are similar. So suppose that unfold(U) =
?[U1, . . . , Un].S2. By considering the cases of Definition 8 as applied
to R′, we must have unfold(T ) = ![T1, . . . , Tn].S1, (S1, S2) ∈ R′ and
for all i ∈ {1, . . . , n}, Ti 6c Ui and Ui 6c Ti. Therefore (S2, S1) ∈ R,
and so we have verified the conditions of case (1). ut

Proposition 5. If S ∈ SType then S ⊥c S.

Proof. Let R = {(S, S) | S ∈ SType}. We must show that R is
a duality relation. We consider the possibilities for S, according to
Definition 8. Case (2) is typical and the others are similar.

If unfold(S) = ![T1, . . . , Tn].S1 then unfold(S) = ?[T1, . . . , Tn].S1.
We have, for all i ∈ {1, . . . , n}, Ti 6c Ti by Proposition 2; also,
(S1, S1) ∈ R. ut

Lemma 4. If S ⊥c S′ then tail(S, l) ⊥c tail(S′, l).

Proof. Let R be a duality relation such that (S, S′) ∈ R. Each case of
Definition 8 immediately implies that (tail(S, l), tail(S′, l)) ∈ R. ut
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Lemma 5. If Γ, xp : S ` P and S is a session type and xp 6∈ fn(P )
then S = end.

Proof. A straightforward induction on the derivation of Γ, xp :S ` P ,
ultimately depending on the hypothesis that the environment in T-Nil

is completed. ut

Lemma 6. If Γ ` P and T is not a session type then Γ, x:T ` P .

Proof. A straightforward induction on the derivation of Γ ` P , ul-
timately depending on the fact that adding a non-session type to a
completed or unlimited environment produces an environment which
is also completed or unlimited. ut

Lemma 7. If Γ ` P then fn(P ) ⊆ dom(Γ ).

Proof. A straightforward induction on the derivation of Γ ` P . ut

Lemma 8 (Substitution). If Γ, w :W ` P and Z 6c W and Γ +zr :
T is defined then Γ + zr :Z ` P{zr/w}.

Proof. By induction on the derivation of Γ, w : W ` P , with a case-
analysis on the last rule used. We show the case for T-OutS, meaning
that P = xp![ỹq̃].P ′; the others are similar but simpler. For notational
simplicity, without losing the essence of the argument, we consider
the case in which a single name is output. There are several sub-
cases, depending on the position of w and the form of W . In most
cases, transitivity of subtyping (Proposition 3) plays a key role. Note
that it is not possible to type a process of the form w![w].P ′ if w is
a session channel, because the instance of T-OutS would require an
environment (Γ, w :S)+w :T , but the addition would not be defined.

1. w is the output name. In this case the derivation ends with

Γ, xp :S ` P ′ W 6c T
T-OutS

(Γ, xp : ![T ].S) + w :W ` xp![w].P ′

By Proposition 3 we have Z 6c T . We now consider the form of
W and the relationship of w to Γ .

(a) W is not a session type. Because Z 6c W is not a session type,
z must be unpolarized.

i. w ∈ dom(Γ ). In this case we have

Γ ′, w :W,xp :S ` P ′ W 6c T

(Γ ′, w :W,xp : ![T ].S) + w :W ` xp![w].P ′
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By the induction hypothesis we have

Γ ′, z :Z, xp :S ` P ′{z/w}

so T-OutS gives

Γ ′, z :Z, xp : ![T ].S ` xp![z].P ′{z/w}

which, because (xp![w].P ′){z/w} = xp![z].P ′{z/w}, is the
required judgement.

ii. w 6∈ dom(Γ ). In this case we have

Γ, xp :S ` P ′ W 6c T

(Γ, w :W,xp : ![T ].S) + w :W ` xp![w].P ′

By the induction hypothesis we have

Γ, z :Z, xp :S ` P ′

so T-OutS gives

Γ ′, z :Z, xp : ![T ].S ` xp![z].P ′

which, because Lemma 7 implies that P ′{z/w} = P ′, is
the required judgement.

(b) W is a session type, so w 6∈ dom(Γ ). We have

Γ, xp :S ` P ′ W 6c T

Γ, w :W,xp : ![T ].S ` xp![w].P ′

By the induction hypothesis we have

(Γ, xp :S) + zr :Z ` P ′{zr/w}

and by Lemma 7, P ′{zr/w} = P ′. T-OutS gives

(Γ, xp : ![T ].S) + zr :Z ` xp![zr].P ′

which is the required judgement.
2. w is the channel used for output. In this case W =![T ].S. Because

Z 6c W , we have Z =![T ′].S′ with S′ 6c S and T 6c T ′. The
derivation ends with

Γ,w :S ` P ′ U 6c T

(Γ,w : ![T ].S) + yq :U ` w![yq].P ′

By Proposition 3 we have U 6c T ′. By the induction hypothesis
we have

Γ + zr :S′ ` P ′{zr/w}
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so T-OutS gives

Γ + zr : ![T ′].S′ + yq :U ` zr![yq].P ′{zr/w}

as required.
3. w is not involved in the output. In this case the derivation ends

with
Γ, w :W,xp :S ` P ′ U 6c T

(Γ, w :W,xp : ![T ].S) + yq :U ` xp![yq].P ′

The induction hypothesis gives

(Γ, xp :S) + zr :Z ` P ′{zr/w}

and T-OutS gives

(Γ, xp : ![T ].S) + zr :Z + yq :U ` xp![yq].P ′{zr/w}

as required. ut

Lemma 9 (Structural Congruence Preserves Typing). If Γ `
P and P ≡ Q then Γ ` Q.

Proof. By induction on the derivation of P ≡ Q, with a case-analysis
on the last rule used. The inductive cases are the congruence rules,
and are straightforward. Of the other cases, we show S-Extr, in both
directions, in the case involving a session type.

(Left-to-right): We have

Γ1, x
+ :S, x− :S′ ` P S ⊥c S′

T-NewS
Γ1 ` (νx :S)P Γ2 ` Q

T-Par
Γ1 + Γ2 ` (νx :S)P |Q

which can be rearranged to give

Γ1, x
+ :S, x− :S′ ` P Γ2 ` Q

T-Par
(Γ1 + Γ2), x+ :S, x− :S′ ` P |Q S ⊥c S′

T-NewS
Γ1 + Γ2 ` (νx :S)(P |Q)

because we can assume that x+, x− 6∈ dom(Γ2) by the variable con-
vention.

(Right-to-left): We have

Γ1 ` P Γ2 ` Q
T-Par

Γ, x+ :S, x− :S′ ` P |Q S ⊥c S′

T-NewS
Γ ` (νx :S)(P |Q)
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where Γ1 + Γ2 = Γ, x+ : S, x− : S′. Because x+ 6∈ fn(Q) and x− 6∈
fn(Q), and S 6= end (hence also S′ 6= end), Lemma 5 gives x+, x− 6∈
dom(Γ2). Therefore Γ1 = Γ ′

1, x
+ :S, x− :S′ with Γ ′

1 + Γ2 = Γ . We can
construct the derivation

Γ ′
1, x

+ :S, x− :S′ ` P S ⊥c S′

T-NewS
Γ ′

1 ` (νx :S)P Γ2 ` Q
T-Par

Γ ` (νx :S)P |Q

ut

Theorem 1 (Type Preservation).

1. If Γ ` P and P
τ,−→ Q then Γ ` Q.

2. If Γ, x+:S, x−:S′ ` P and S ⊥c S′ and P
x,l−→ Q then

Γ, x+:tail(S, l), x−:tail(S, l) ` Q.
3. If Γ, x:T ` P and P

x,−→ Q then Γ, x:T ` Q.

Proof. By induction on the derivation of the reduction, considering
the cases appropriate for the form of the label.

1. The important case is when the derivation of the reduction ends
with R-NewS. We have

P
x,l−→ P ′

R-NewS
(νx : S)P

τ,−→ (νx : tail(S, l))P ′

and the derivation of Γ ` (νx : S)P ends with

Γ, x+ :S, x− :S′ ` P S ⊥c S′

T-NewS
Γ ` (νx :S)P

By the induction hypothesis (clause 2) we have

Γ, x+ : tail(S, l), x− : tail(S′, l) ` P ′

By Lemma 4, tail(S, l) ⊥c tail(S′, l). So T-NewS gives

Γ ` (νx : tail(S, l))P ′

as required.
The cases for R-New, R-Par and R-Cong follow straightforwardly
from the induction hypothesis, using Lemma 9 for R-Cong.
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2. There are two important cases: R-Com and R-Select. For R-Com

we have
xp?[ỹ:T̃ ].P | xp̄![z̃q̃].Q

x,−→ P{z̃q̃/ỹ} |Q

and the form of the environment Γ, x+:S, x−:S′ means that p is
either + or −; without loss of generality assume p = +. The deriva-
tion of Γ, x+:S, x−:S′ ` x+?[ỹ:T̃ ].P | x−![z̃q̃].Q ends as follows;
note that S must be of the form ?[Ũ ].S1 with Ũ 6c T̃ and S′

must be of the form ![Ũ ].S2 with S1 ⊥c S2, and Γ1 + Γ2 = Γ , and
Γ3 + z̃q̃:Ṽ = Γ2, and Ṽ 6c Ũ .

Γ1, x
+:S1, ỹ:T̃ ` P

Γ1, x
+:?[Ũ ].S1 ` x+?[ỹ:T̃ ].P

Γ3, x
−:S2 ` Q

Γ2, x
−:![Ũ ].S2 ` x−![z̃q̃].Q

Γ, x+:?[Ũ ].S1, x
−:![Ũ ].S2 ` x+?[ỹ:T̃ ].P | x−![z̃q̃].Q

By transitivity (Proposition 3) we have Ṽ 6c T̃ , and Lemma 8
gives

(Γ1, x
+:S1) + z̃q̃:Ṽ ` P{z̃q̃/y}.

By using T-Par we can derive

(Γ1, x
+:S1) + z̃q̃:Ṽ + (Γ3, x

−:S2) ` P{z̃q̃/y} |Q

which is the desired judgement, because Γ1 + z̃q̃:Ṽ + Γ3 = Γ .
The case of R-Select is similar, but simpler because there is no
substitution. The cases of R-Par, R-New and R-Cong again follow
straightforwardly from the induction hypothesis.

3. The main case is R-Com, which follows by similar but simpler
reasoning to that for clause (2). The other cases follow straight-
forwardly from the induction hypothesis. ut

We now prove that a correctly-typed process contains no immedi-
ate possibilities for a communication error. We need to assume that
the process is typed in a balanced environment; note that the Type
Preservation theorem guarantees that the property of being typable
in a balanced environment is preserved by reductions.

Theorem 2 (Type Safety). Let Γ ` P where Γ is balanced.

1. If P ≡ (νũ:T̃ )(x?[ỹ:Ṽ ].P1 | x![z̃q̃].P2 | Q) then among Γ, ũ:T̃ we
have x:̂ [Ũ ] and z̃q̃:W̃ with W̃ 6 Ũ 6 Ṽ .

2. If P ≡ (νũ:T̃ )(xp?[ỹ:Ṽ ].P1 | xp![z̃q̃].P2 | Q) with p = + or p = −

then x+, x− 6∈ fn(Q) and among Γ, ũ:T̃ we have xp:?[Ũ ].S and
xp:![Ũ ].S and z̃q̃:W̃ with W̃ 6 Ũ 6 Ṽ .
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3. If P ≡ (νũ:T̃ )(xp.{ li : Pi }16i6n | xp/l.Q |R) then
l ∈ {l1, . . . , ln} and x+, x− 6∈ fn(R).

Proof. By analyzing the final steps in the derivation of Γ ` P , and
using the information in the hypotheses of the typing rules used. ut

At the top level, a process P is typechecked in a balanced en-
vironment; in practice we would expect a complete program to be
typechecked in the empty environment, or perhaps an environment
containing globally-defined standard channels but no session chan-
nels. The Type Preservation Theorem guarantees that as P reduces,
each subsequent process Q is typable in a balanced environment, and
the Type Safety Theorem guarantees that Q has no immediate com-
munication errors.

5 Typechecking and Inferring Polarities

We now convert the typing rules of Figure 9 into a typechecking
algorithm. There are three significant issues to address.

1. We need an algorithm for checking the subtyping relation 6c be-
tween arbitrary types.

2. Rule T-Par does not specify how to express the environment Γ as
Γ1 + Γ2, so reading it upwards does not directly form part of a
syntax-directed typechecking algorithm.

3. We want to eliminate polarities from the syntax, and infer them
during typechecking.

Before dealing with these points, we briefly mention two minor issues.
The first is that although the typing rules are not completely syntax-
directed, distinctions between T-In and T-InS, T-Out and T-OutS, and
T-New and T-NewS can easily be made on the basis of type informa-
tion in the environment or the ν-binding. The second is that we do
not need an algorithm for checking the duality relation ⊥c between
arbitrary types; when incorporating rule T-NewS into the typecheck-
ing algorithm, we replace S′ by S.

5.1 Algorithmic Subtyping

To obtain an algorithm for checking the subtyping relation, we fol-
low the approach taken by Pierce and Sangiorgi [25] in their system
of input/output subtyping for the pi calculus. Algorithmic issues in
subtyping recursive types are discussed at greater length by Pierce
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T 6 U ∈ Σ
AS-Assump

Σ ` T 6 U

AS-End
Σ ` end 6 end

Σ, µX.T 6 U ` T{µX.T/X} 6 U
AS-RecL

Σ ` µX.T 6 U

Σ, T 6 µX.U ` T 6 U{µX.U/X}
AS-RecR

Σ ` T 6 µX.U

Σ ` T̃ 6 Ũ Σ ` V 6 W
AS-InS

Σ ` ?[T̃ ].V 6 ?[Ũ ].W

Σ ` Ũ 6 T̃ Σ ` V 6 W
AS-OutS

Σ ` ![T̃ ].V 6 ![Ũ ].W

m 6 n ∀i ∈ {1, . . . , m}.(Σ ` Si 6 Ti)
AS-Branch

Σ ` &〈 li : Si 〉16i6m 6 &〈 li : Ti 〉16i6n

m 6 n ∀i ∈ {1, . . . , m}.(Σ ` Si 6 Ti)
AS-Choice

Σ ` ⊕〈 li : Si 〉16i6n 6 ⊕〈 li : Ti 〉16i6m

Fig. 11 Algorithmic subtyping rules

[26, Chapter 21]. The inference rules in Figure 11 define judgements
Σ ` T 6 U , in which T and U are types and Σ is a sequence of
assumed instances of the subtyping relation. The rules AS-RecL and
AS-RecR add assumptions to Σ in order to limit the unfolding of re-
cursive types. In rules AS-InS and AS-OutS we write Σ ` T̃ 6 Ũ for
∀i.(Σ ` Ti 6 Ui). If ∅ ` T 6 U is derivable then we write ` T 6 U
or just T 6 U .

We obtain an algorithm for checking the algorithmic subtyping re-
lation 6 by reading these inference rules upwards, with two additional
specifications. First, in order to guarantee termination, AS-Assump

should always be used if it is applicable. Second, in order to make the
algorithm deterministic, we arbitrarily specify that AS-RecL should
be used in preference to AS-RecR if they are both applicable. At the
top level, the algorithm is applied to the initial goal ∅ ` T 6 U .

We now prove that the subtyping algorithm is sound and complete
with respect to the coinductive definition of the relation 6c. The proof
is based on that of Pierce and Sangiorgi [25]; the main differences are
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due to the fact that we have defined 6c syntactically, by means of
unfold , rather than by defining a completely unfolded tree for each
type.

Lemma 10. The subtyping algorithm always terminates.

Proof. Given a type T , define Sub(T ) to be the set of all subterms of
T , with free type variables replaced by their (recursive) definitions.
Sub(T ) is defined recursively on the structure of T , as follows. Note
that for any T , Sub(T ) is finite because its size is bounded by the
number of distinct subterms of T .

Sub (̂ [T1, . . . , Tn]) = {̂ [T1, . . . , Tn]}
∪ Sub(T1) ∪ . . . ∪ Sub(Tn)

Sub(?[T1, . . . , Tn].S) = {?[T1, . . . , Tn].S} ∪ Sub(S)
∪ Sub(T1) ∪ . . . ∪ Sub(Tn)

Sub(![T1, . . . , Tn].S) = {![T1, . . . , Tn].S} ∪ Sub(S)
∪ Sub(T1) ∪ . . . ∪ Sub(Tn)

Sub(&〈 l1 :S1, . . . , ln :Sn 〉) = {&〈 l1 :S1, . . . , ln :Sn 〉}
∪ Sub(S1) ∪ . . . ∪ Sub(Sn)

Sub(⊕〈 l1 :S1, . . . , ln :Sn 〉) = {⊕〈 l1 :S1, . . . , ln :Sn 〉}
∪ Sub(S1) ∪ . . . ∪ Sub(Sn)

Sub(µX.T ) = {µX.T}
∪ {U{µX.T/X} | U ∈ Sub(T )}

Sub(end) = {end}
Sub(X) = {X}

Consider applying the algorithm to the input ∅ ` T 6 U , and let
Sub(T,U) = Sub(T ) ∪ Sub(U). Let Σ ` T ′ 6 U ′ be a goal aris-
ing during execution of the algorithm. We prove that the following
properties hold for all such goals.

1. T ′ ∈ Sub(T,U) and U ′ ∈ Sub(T,U).
2. For every assumption V1 6 V2 ∈ Σ, V1 ∈ Sub(T,U) and V2 ∈

Sub(T,U).
3. Σ contains no repeated assumptions: if V1 6 V2 ∈ Σ and V ′

1 6
V ′

2 ∈ Σ then either V1 6= V ′
1 or V2 6= V ′

2 .

These properties clearly hold for the initial call ∅ ` T 6 U , and it is
straightforward to check that if the current call satisfies them then
so do the new subgoals.
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We now define a measure M(Σ ` T 6 U) on recursive calls, by

M(Σ ` T 6 U) = (n, m)

where n is the number of assumptions in Σ and m is the maximum
nesting of type constructors in either T or U . Measures are ordered
by

(n, m) > (n′,m′) if n < n′ or (n = n′ and m > m′).

It is straightforward to check that the application of a rule by the
algorithm generates subgoals with smaller measures than the current
goal. The ordering of measures is well-founded, because the first com-
ponent is bounded above by the cardinality of Sub(T,U)×Sub(T,U),
which is finite, and the second component is bounded below by 1.
Therefore the algorithm always terminates. ut

Definition 12. A goal Σ ` T 6 U is sound if T 6c U and for all
V1 6 V2 ∈ Σ, V1 6c V2.

Lemma 11. If a goal is sound then the conclusion of one of the rules
in Figure 11 matches the goal and the new subgoals corresponding to
the hypotheses of the rule are all sound goals.

Proof. Let Σ ` T 6 U be a sound goal. If T 6 U ∈ Σ then rule
AS-Assump applies and there are no subgoals. If either AS-RecL or
AS-RecR applies then soundness of the new subgoal follows from
soundness of the original goal and Lemma 1. In the other cases,
soundness of the new subgoals follows from the definition of 6c. ut

Lemma 12. If T 6c U then the subtyping algorithm does not return
false when applied to Σ ` T 6 U .

Proof. Consider the derivation produced by the algorithm when given
∅ ` T 6 U as input, assuming that T 6c U . The initial goal is sound;
by Lemma 11 all of the generated subgoals are sound; and again by
Lemma 11, when given a sound goal the algorithm can always either
proceed or return true. ut

Theorem 3. If T 6c U then ` T 6 U .

Proof. By Lemma 10 the algorithm terminates. By Lemma 12 the
algorithm does not return false. Therefore it must return true. ut

Lemma 13. If Σ ` T 6 U then Σ,Σ′ ` T 6 U for any Σ′.

Proof. By induction on the derivation of Σ ` T 6 U . ut
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Lemma 14. 1. Suppose ` µX.T 6 U and µX.T 6 U 6∈ Σ. Then
Σ,µX.T 6 U ` V1 6 V2 implies Σ ` V1 6 V2.

2. Suppose ` T 6 µX.U and T 6 µX.U 6∈ Σ. Then Σ, T 6 µX.U `
V1 6 V2 implies Σ ` V1 6 V2.

Proof. We prove (1) by induction on the derivation of Σ,µX.T 6
U ` V1 6 V2. The proof of (2) is similar.

If the last rule used in the derivation is AS-Assump then there are
two cases.

1. V1 6 V2 ∈ Σ. In this case, AS-Assump also gives Σ ` V1 6 V2.
2. V1 = µX.T and V2 = U . By hypothesis ` µX.T 6 U , hence by

Lemma 13 we have Σ ` µX.T 6 U .

If the last rule in the derivation is not AS-Assump, then the induction
hypothesis allows T 6 µX.U to be removed from the assumptions
of the hypotheses, and the same rule then gives a derivation of Σ `
V1 6 V2. ut

Lemma 15. 1. If ` µX.T 6 U then ` T{µX.T/X} 6 U .
2. If ` T 6 µX.U then ` T 6 U{µX.U/X}.

Proof. We prove (1); the proof of (2) is similar. The last rule used in
the derivation of ` µX.T 6 U is AS-RecL with hypothesis µX.T 6
U ` T{µX.T/X} 6 U . By applying Lemma 14 to this hypothesis we
have ` T{µX.T/X} 6 U . ut

Corollary 1. If ` T 6 U then ` unfold(T ) 6 unfold(U).

Theorem 4. If ` T 6 U then T 6c U .

Proof. By Corollary 1 and the fact that 6c is defined in terms of
the unfolded structure of types, it is sufficient to consider the case in
which T and U are guarded types. We show that

R = {(T,U) | ` T 6 U and T and U are guarded}

is a type simulation. We give the details of case (4) of Definition 3;
the other cases are similar.

Assume that (T,U) ∈ R and unfold(T ) = &〈 l1 :S1, . . . , lm :Sm 〉.
Because T is guarded, this means that T = &〈 l1 :S1, . . . , lm :Sm 〉.
Because U is also guarded, the last rule in the derivation of ` T 6 U
must be AS-Branch, meaning that U = &〈 l1 :S′

1, . . . , ln :S′
n 〉 with

m 6 n and ∀i ∈ {1, . . . ,m}.(` Si 6 S′
i). Corollary 1 gives, for each i,

` unfold(Si) 6 unfold(S′
i), and so (Si, S

′
i) ∈ R. ut

Corollary 2. ` T 6 U if and only if T 6c U .
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5.2 Typechecking

We now have an algorithm for checking the subtyping relation. The
next issue in typechecking is how to calculate an appropriate repre-
sentation of Γ as Γ1 + Γ2 in order to implement the rule T-Par. This
point has arisen in other settings involving linear type systems [18,
19] and we adopt the same solution: the typechecking algorithm must
calculate the set of session channel names used by each process, so
that when typechecking P | Q, the session channels used by P are
removed from the environment before typechecking Q. We formalize
the typechecking algorithm as a collection of inference rules for judge-
ments Γ `X P :Y , where Γ , X and P are inputs to the typechecking
function and Y is calculated. Here X and Y are sets of polarized
or unpolarized names. Y is the set of names which are used by P ,
either for communication or in messages. X is used to record the
names which are available for use by the current thread; when xp is
used for the first time, xp is removed from X. At the top level, the
typechecking function is called with X = dom(Γ ).

The final aspect of the typechecking algorithm is that by impos-
ing some additional constraints on the type system, we are able to
eliminate polarities from the syntax of processes; they can be inferred
during typechecking. However, it is not possible to eliminate polar-
ities from our theory altogether: the Type Preservation theorem of
Section 4 can only be proved if polarities are included. The explana-
tion is that in order to infer polarities, we must add extra hypotheses
to the typing rules. This has the effect of eliminating some typable
processes. If the typing rules are modified throughout the system,
then Type Preservation no longer holds. However, if we use the mod-
ified typing rules at the top level only, then the processes which are
no longer typable all contain immediate deadlocks, and we consider
it acceptable to eliminate them. Before presenting the typechecking
algorithm, we will now explain this point a little further.

The essential idea for eliminating polarities is to add the hypoth-
esis xp 6∈ Γ to the rules T-InS, T-OutS, T-Offer and T-Choose. This
ensures that every environment in a typing derivation is balanced. It
means that when a process owns both x+ and x− — for example,
immediately inside (νx) — one end of x cannot be used for commu-
nication until the other end has been sent as part of a message. This
enforces the intuitive principle that each end of a session channel is
used by just one parallel thread within a system. It also means that
whenever a polarized channel name xp occurs at the top level of a
process, p is uniquely determined by the current environment Γ : if
xp is used for communication then either xp 6∈ Γ , or xp and xp have
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dual types of which only one matches the communication operation
in question. If xp occurs as part of a message, then it is not possi-
ble for both xp and xp to have types which match the channel type.
Therefore polarities can be inferred.

An example of a process which cannot be typed with the modified
rules is

x+![ ].x−?[ ].0 (1)

Given synchronous communication and linear control of session chan-
nels, a process which use both ends of a session channel within the
same thread is deadlocked, and although our type system does not
aim to eliminate deadlocks in general, it seems harmless to exclude
some deadlocks.

However, because our type system is not powerful enough to elimi-
nate deadlocks in general, modifying the rules in this way throughout
the language would result in a failure of Type Preservation. For ex-
ample, if S =?[ ].end then the process

z+![x−].z+?[y:S].x+![ ].y?[ ].0 | z−?[u:S].z−![u].0

is typable in the environment

x+:S, x−:S, z+:![S].?[S].end, z−:?[S].![S].end

but reduces in two steps to (1), which cannot be typed without in-
troducing an unbalanced environment during the derivation.

Our typechecking algorithm is defined by the inference rules in
Figures 12 and 13. Typability in this system implies typability in the
original type system (Theorem 5), so typable processes are guaran-
teed to execute safely. Note that the transformation from the typing
rules of Figure 9 to the algorithm is independent of subtyping and
would also apply to a language with session types but no subtyp-
ing. However, the details of developing the algorithm and eliminating
polarities have not been published before.

Some definitions and results are needed in order to understand the
operation of the typechecking algorithm. The inference rules define
judgements Γ `X P :Y . If this judgement is derivable then the algo-
rithm calculates Y from Γ , X and P . Γ is an environment of the same
form as in Section 3; in particular, note that names in dom(Γ ) may
have polarities. X is a subset of dom(Γ ), specifying which session
channels are available for use by P . P is a process in which all names
are unpolarized; any polarities which are necessary are calculated by
the algorithm and recorded by manipulating the environment and the
set X. Y , which is returned by the algorithm, is a subset of X which
indicates the session channels which are used by P .
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TC-Nil
Γ `X 0:{xp ∈ X | Γ (xp) = end}

Γ `X P :Y Γ − Y `X−Y Q:Z
TC-Par

Γ `X P |Q:Y ∪ Z

Γ `∅ P :∅
TC-Rep

Γ `X !P :∅

Γ, x:T `X P :Y
TC-New

Γ `X (νx:T )P :Y

Γ, x+:S, x−:S `X∪{x+,x−} P :Y {x+, x−} ⊆ Y end 66 S ∈ SType
TC-NewS

Γ `X (νx:S)P :Y − {x+, x−}

Γ, x:̂ [T̃ ], ỹ:Ũ `X∪Y S P :Y Y S ⊆ Y T̃ 6 Ũ
TC-In

Γ, x:̂ [T̃ ] `X x?[ỹ:Ũ ].P :Y − Y S

(Γ, x:̂ [T̃ ])− ỹq̃:Ũ `X−Y S P :Y Ũ 6 T̃ Y S ⊆ X
TC-Out

Γ, x:̂ [T̃ ] `X x![ỹ].P :Y ∪ {ỹq̃}

In TC-In, Y S = {yi | Ui ∈ SType}. In TC-Out, Y S = {yqi
i | Ui ∈ SType}.

Fig. 12 Inference rules for the typechecking algorithm

The rules in Figures 12 and 13 are not syntax-directed: there are
four possible rules for each of input and output, and three possible
rules for each of offer and choose. We will explain below how a choice
of rule is uniquely determined in each case by type information in Γ .

Several rules make use of the operations Γ − Γ ′, Γ − Y where Y
is a set of names, and X − Y where X and Y are sets of names. We
also need the operation Γ |X where X is a set of names, in order to
state some important invariants of the algorithm.

Definition 13. The partial operation of subtraction on environments
and typed names is defined as follows:

(Γ, x :T )− x :T = Γ, x :T if T is not a session type
(Γ, xp :S)− xp :S = Γ if S is a session type

and is undefined in all other cases. Subtraction is extended inductively
to a partial operation on environments.

Definition 14. If Γ is an environment and Y is a set of optionally
polarized names, then Γ − Y = {xp :T ∈ Γ | xp 6∈ Y }.

Definition 15. If X and Y are sets of optionally polarized names,
then X − Y = {xp ∈ X | xp 6∈ Y }.
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Γ, x:S, ỹ:Ũ `X∪Y S P :Y Y S ⊆ Y T̃ 6 Ũ x ∈ X ∩ Y
TC-InS1

Γ, x:?[T̃ ].S `X x?[ỹ:Ũ ].P :Y − Y S

Γ, x+:S, ỹ:Ũ `(X∪Y S)−{x−} P :Y Y S ⊆ Y T̃ 6 Ũ x+ ∈ X ∩ Y
TC-InS2

Γ, x+:?[T̃ ].S `X x?[ỹ:Ũ ].P :Y − Y S

Γ, x−:S, ỹ:Ũ `(X∪Y S)−{x+} P :Y Y S ⊆ Y T̃ 6 Ũ x− ∈ X ∩ Y
TC-InS3

Γ, x−:?[T̃ ].S `X x?[ỹ:Ũ ].P :Y − Y S

(Γ − ỹq̃:Ũ), x:S `X−Y S P :Y Ũ 6 T̃ x ∈ X ∩ Y Y S ⊆ X
TC-OutS1

Γ, x:![T̃ ].S `X x![ỹ].P :Y ∪ Y S

(Γ − ỹq̃:Ũ), x+:S `X−{x−}−Y S P :Y Ũ 6 T̃ x+ ∈ X ∩ Y Y S ⊆ X

Γ, x+:![T̃ ].S `X x![ỹ].P :Y ∪ Y S TC-OutS2

(Γ − ỹq̃:Ũ), x−:S `X−{x+}−Y S P :Y Ũ 6 T̃ x− ∈ X ∩ Y Y S ⊆ X

Γ, x−:![T̃ ].S `X x![ỹ].P :Y ∪ Y S TC-OutS3

m 6 n ∀i ∈ {1, . . . , m}.(Γ, x:Ti `X Pi:Y ) x ∈ X ∩ Y
TC-Offer1

Γ, x:&〈 li : Ti 〉16i6m `X x.{ li : Pi }16i6n:Y

m 6 n ∀i ∈ {1, . . . , m}.(Γ, x+:Ti `X−{x−} Pi:Y ) x+ ∈ X ∩ Y
TC-Offer2

Γ, x+:&〈 li : Ti 〉16i6m `X x.{ li : Pi }16i6n:Y

m 6 n ∀i ∈ {1, . . . , m}.(Γ, x−:Ti `X−{x+} Pi:Y ) x− ∈ X ∩ Y
TC-Offer3

Γ, x−:&〈 li : Ti 〉16i6m `X x.{ li : Pi }16i6n:Y

Γ, x:Ti `X P :Y l = li ∈ {l1, . . . , ln} x ∈ X ∩ Y
TC-Choose1

Γ, x:⊕ 〈 li : Ti 〉16i6n `X x/l.P :Y

Γ, x+:Ti `X−{x−} P :Y l = li ∈ {l1, . . . , ln} x+ ∈ X ∩ Y
TC-Choose2

Γ, x+:⊕ 〈 li : Ti 〉16i6n `X x/l.P :Y

Γ, x−:Ti `X−{x+} P :Y l = li ∈ {l1, . . . , ln} x− ∈ X ∩ Y
TC-Choose3

Γ, x−:⊕ 〈 li : Ti 〉16i6n `X x/l.P :Y

In TC-InSi, Y S = {yi | Ui ∈ SType}. In TC-OutSi, Y S = {yqi
i | Ui ∈ SType}.

Fig. 13 Inference rules for the typechecking algorithm, continued



36 Simon Gay, Malcolm Hole

Definition 16. If Γ is an environment and X is a set of optionally
polarized names, then Γ |X = {xp :T ∈ Γ | xp ∈ X or T 6∈ SType}.

Lemma 16. The following properties are invariants of the typecheck-
ing algorithm.

1. Y ⊆ X ⊆ dom(Γ ), and for every xp ∈ X, Γ (xp) ∈ SType.
2. for all names x, if x+ ∈ X or x− ∈ X then x 6∈ X.
3. Γ |X is balanced
4. if {x+, x−} ⊆ X then Γ (x+) 6= end and Γ (x−) 6= end

Proof. The top-level call of the typechecker satisfies the invariants
because Γ is balanced and X = dom(Γ ). We check, for each infer-
ence rule, that if the conclusion satisfies the invariants then so do the
hypotheses. Property (1) is straightforward. Property (2) relies on
the fact that the additions to X in rules TC-NewS, TC-In and TC-InSi

are bound names which can be assumed not to be in X. Property
(3) relies on the fact that in rules TC-InSi, TC-OutSi, TC-Offeri and
TC-Choosei (where the change in the type of xp could potentially un-
balance the environment), xp is removed from X, so it is not possible
that both x+ and x− are in the environment Γ |X . Property (4) relies
on the condition T 6= end in rule TC-NewS and the fact that in rules
TC-InSi, TC-OutSi, TC-Offeri and TC-Choosei (where the type of xp

could become end), xp is removed from X. ut

We can now clarify the interpretation of the inference rules in
Figures 12 and 13 as an algorithm; we describe each case. In all
cases, recursive types are unfolded until their structure is exposed.

TC-Nil: The algorithm assumes that all of the end types in Γ |X
are introduced at this leaf of the derivation tree.

TC-Par: First typecheck P to calculate the session channels Y
which it uses. These channels are removed from Γ and from X before
typechecking Q. This ensures that each session channel is only used
by one parallel component of the system.

TC-Rep: Typecheck P in an environment which contains no session
channels.

TC-New, TC-NewS: The type declaration attached to (νx) deter-
mines which rule should be used. TC-New is straightforward because
no session channels are involved. TC-NewS adds x+ and x− to Γ and
to X, and checks that P actually uses them; they are removed from
Y in order to maintain the invariant that Y ⊆ X. The condition
end 66 S is necessary in order to maintain Property 4 of Lemma 16;
it is expressed in terms of subtyping so that cases such as µX.end are
covered. This condition means that processes of the form (νx :end)P
cannot be typechecked, but this seems to be a harmless restriction.
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TC-In, TC-InSi: The type of x in the environment determines which
rule to use. If we have x : [̂T̃ ] then TC-In applies. If we have x :S for
some session type S then, by the contrapositive of Lemma 16(2),
only TC-InS1 applies; if S is not an input type then this is a type
error. If both x+ and x− are in the environment then Lemma 16(3)
guarantees that at most one of them has an input type, and this
determines whether TC-InS2 or TC-InS3 applies (or neither, which is
a type error). In a similar way to TC-NewS, P must actually use the
session channels which are in ỹ; also, channel x must be present in
X. The additional condition that x is in Y ensures that either x is
used by P , in order to fully use its communication capabilities, or
that P is 0 and x, if it is a session channel, has type end. In the case
of TC-InS2 or TC-InS3, the opposite polarity of x is removed from
X to ensure that it is not used by P ; this is necessary in order to
maintain Property 3 of Lemma 16, and corresponds to the discussion
of typechecking at the beginning of this section.

TC-Out, TC-OutSi: The choice between these rules is determined
in the same way as for the input rules, and channel x is handled in
the same way. In all cases, any session channels which form part of
the message must be removed from X before typechecking P .

TC-Offeri: The choice between these rules is determined in the
same way as the previous cases. The Y calculated by typechecking
each Pi must all be the same; this requires all of the Pi to use exactly
the same set of session channels, and corresponds to the condition in
rule T-Offer that all branches are typed in the same environment.

TC-Choosei: The choice of rule is determined in the usual way. The
rules themselves behave like simplified forms of the TC-OutS rules.

We now prove that successful typechecking of a process implies the
existence of a typing in the original system, and hence that execution
is safe.

Definition 17. The function Erase removes all polarities from the
names within a process.

Theorem 5 (Soundness of Typechecking). If Γ `X Erase(P ):Y
then Γ |Y ` P .

Proof. By induction on the derivation of Γ `X Erase(P ):Y , with a
case-analysis on the last rule used.

TC-Nil: As Erase(0) = 0, we have Γ `X 0:X and Γ |X is com-
pleted. Rule T-Nil gives Γ |X ` 0 directly.

TC-Par: As Erase(P | Q) = Erase(P ) | Erase(Q), we have Γ `X

P |Q:Y ∪Z where the hypotheses of the rule are Γ `X Erase(P ):Y and
Γ − Y `X−Y Erase(Q):Z. The induction hypothesis gives Γ |Y ` P



38 Simon Gay, Malcolm Hole

and (Γ − Y )|Z ` Q. Rule T-Par gives Γ |Y + (Γ − Y )|Z ` P |Q (the
sum of environments is defined because they have no session channels
in common). Finally, Γ |Y + (Γ − Y )|Z = Γ |Y ∪Z .

TC-New: As Erase((νx:T )P ) = (νx:T )Erase(P ), we have Γ `X

(νx:T )Erase(P ):Y where the hypothesis of the rule is Γ, x:T `X

Erase(P ):Y . The induction hypothesis gives (Γ, x:T )|Y ` P . Because
(Γ, x:T )|Y = Γ |Y , x:T , rule T-New gives Γ |Y ` (νx:T )P .

TC-NewS: As Erase((νx:S)P ) = (νx:S)Erase(P ), we have Γ `X

(νx:S)Erase(P ):Y − {x+, x−} where the main hypothesis of the rule
is Γ, x+:S, x−:S `X∪{x+,x−} Erase(P ):Y . The induction hypothe-
sis gives (Γ, x+:S, x−:S)|Y ` P , so Γ |Y , x+:S, x−:S ` P because
{x+, x−} ⊆ Y . Because S ⊥c S by Proposition 5, rule T-NewS gives
Γ |Y ` (νx:S)P .

TC-In: Because Erase(x?[ỹ:Ũ ].P ) = x?[ỹ:Ũ ].Erase(P ), we have
Γ, x:̂ [T̃ ] `X x?[ỹ:Ũ ].Erase(P ):Y − {yi | Ui ∈ SType} where the main
hypothesis of the rule is Γ, x:̂ [T̃ ], ỹ:Ũ `X∪{yi|Ui∈SType} Erase(P ):Y .
The induction hypothesis gives (Γ, x:̂ [T̃ ], ỹ:Ũ)|Y ` P . The restric-
tion of the environment to Y removes the yi such that Ui is not a
session type, but by Lemma 6 we can re-introduce them to obtain
Γ |Y , x:̂ [T̃ ], ỹ:Ũ ` P . Rule T-In gives Γ |Y , x:̂ [T̃ ] ` x?[ỹ:Ũ ].P , which
is what we need because (Γ, x:̂ [T̃ ])|Y −{yi|Ui∈SType} = Γ |Y , x:̂ [T̃ ].

TC-Out: Because Erase(x![ỹq̃].P ) = x![ỹ].Erase(P ), we have
Γ, x:̂ [T̃ ] `X x![ỹ].Erase(P ):Y ∪{ỹq̃} where the main hypothesis of the
rule is (Γ, x:̂ [T̃ ])−ỹq̃:Ũ `X−{yi

qi |Ui∈SType} Erase(P ):Y . The polarities
q̃ for ỹ can be calculated as follows. The construction of (Γ, x:̂ [T̃ ])−ỹq̃

implicitly requires a check that ỹq̃:Ũ ∈ Γ for some optional polarities
q̃ and types Ũ . If, for some i, both y+

i and y−i are in the environment,
then by Properties 3 and 4 of Lemma 16, their types are dual and not
equal to end. Therefore by Lemma 3 at most one of them can be a sub-
type of Ti. The induction hypothesis gives ((Γ, x:̂ [T̃ ])− ỹq̃:Ũ)|Y ` P

and so rule T-Out gives ((Γ, x:̂ [T̃ ])− ỹq̃:Ũ)|Y +ỹq̃ ` x![ỹq̃].P . Because
((Γ, x:̂ [T̃ ])− ỹq̃:Ũ)|Y + ỹq̃ = (Γ, x:̂ [T̃ ])|Y ∪{ỹq̃}, this is the required
judgement.

TC-InSi: These three cases are essentially the same as TC-In. The
condition x ∈ Y guarantees that x is present in (Γ, x:S, ỹ:Ũ)|Y .

TC-OutSi: These three cases are essentially the same as TC-Out.
The condition x ∈ Y has the same purpose as for TC-InSi.

TC-Offeri: Consider TC-Offer1; the others use the same reason-
ing. Because Erase(x.{ li : Pi }16i6n) = x.{ li : Erase(Pi) }16i6n,
we have Γ, x:&〈 li : Ti 〉16i6m `X x.{ li : Erase(Pi) }16i6n:Y with
Γ, x:Ti `X Erase(Pi):Y as hypothesis i of the rule. The induction
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hypothesis gives (Γ, x:Ti)|Y ` Pi for each i. Because x ∈ Y we
have (Γ, x:Ti)|Y = Γ |Y , x:Ti, and so rule T-Offer gives Γ |Y , x:&〈 li :
Ti 〉16i6m `X x.{ li : Pi }16i6n, which is the required typing because
(Γ, x:&〈 li : Ti 〉16i6m)|Y = Γ |Y , x:&〈 li : Ti 〉16i6m.

TC-Choosei: These cases use similar reasoning to TC-Offeri and
TC-OutSi. ut

6 Conclusions

We have added a notion of subtyping to a system of session types for
the pi calculus, formalized the syntax, operational semantics and typ-
ing rules of the resulting language, and proved that a correctly-typed
process executes without communication errors. We have demon-
strated that subtyping increases the flexibility of session types as
specifications of protocols in, for example, client-server systems. We
have also shown that our typing rules, presented declaratively for
formal convenience, can be converted into a practical typechecking
algorithm which is also able to infer the polarities of channels.

The most obvious direction for future work is to study behavioural
equivalence in the presence of session types. It is likely that adding
assumptions about typability to a standard bisimulation equivalence
will provide stronger reasoning principles for process equivalence; this
effect has been found in other type systems for the pi calculus [18,
25,27]. Another possibility is to investigate polymorphism in session
types. We have some preliminary results on a form of bounded poly-
morphism [13], but we have not yet considered the full range of pos-
sibilities.
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