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Abstract. We introduce model-checking techniques for the automated
analysis of quantum information protocols. These protocols take advan-
tage of features of quantum theory such as entanglement and quantum
measurement and some implementations already exist. Our techniques en-
able us to model a class of quantum protocols (those expressible within the
stabilizer formalism) which are simulable in polynomial time. We discuss
the QMC model checker, which verifies models of systems that combine
both quantum and classical computations. The modelling language of the
tool is presented, along with the temporal quantum propositional logic
(QCTL) that is used for specifying properties. We discuss model-checking
procedures and efficiency issues. We apply QMC to a case study.

1 Introduction and Background

The novel field of quantum computation and quantum information has been grow-
ing at a rapid rate; the study of quantum information in particular has led to
the emergence of communication and cryptographic protocols with no direct ana-
logues in classical computing. Quantum information protocols have interesting
properties which are not exhibited by their classical counterparts, but they are
most distinguished for their applications in cryptography. Notable results include
the unconditional security proof [1] of quantum key distribution [2, 3] and the
impossibility proof of unconditionally secure quantum bit commitment [4]. The
former of these results in particular is one of the reasons for the widespread in-
terest in this field, and it demonstrates an achievement not possible in classical
cryptographic systems.

The benefits of automated verification techniques are well known for classical
communication protocols, especially in the cryptographic setting. Model-checking
has been used to uncover subtle flaws in protocols and system designs [5, 6]. Our
research programme is to apply similar techniques to quantum protocols with the
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expectation of gaining corresponding benefits. Today, while simulation tools for
quantum information systems abound (see [7] for a list), to our knowledge no
other authors have developed a tool aimed at verification.

In this paper we describe just such a tool and apply it to a case study; this tool
is based on our earlier work [8, 9], and is named QMC (Quantum Model Checker);
it allows for automated verification of properties of quantum systems using model-
checking techniques. Properties to be verified are expressed using QCTL [10], a
CTL-based temporal logic designed specifically for quantum information. QMC
analyses systems which can be expressed within the stabilizer formalism, which
is known to be simulable in polynomial time [11, 12, 13]. This is significant, as
any kind of model-checking necessarily involves simulation and, in general, quan-
tum systems cannot be simulated efficiently on classical hardware. The systems
expressible in this formalism are restricted, in the sense that the set of operations
which they can perform is not universal for quantum computation. Nevertheless,
stabilizer circuits are sufficient to describe a number of systems of practical inter-
est.

Existing simulation tools for quantum systems [7] are designed to help the user
understand the function of a given quantum circuit; some tools have a graphical
user interface, and many allow the simulation of circuits with arbitrary quantum
gates, even if there is a substantial computational cost due to the limited power of
the classical machine running the simulation. Simulators which allow only stabilizer
circuits include CHP [12] and GraphSim [13]; the algorithms in QMC are based on
those used in the former of these two, as well as on particular algorithms developed
in [14]. We do not know of any previous tool which provides automated checking of
a circuit specification. Another distinctive characteristic of QMC is the automatic
exploration of all possibilities generated by quantum measurements, which are
probabilistic by nature [15].

Acknowledgements. We would like to acknowledge the help of Paulo Mateus and
Pedro Baltazar (IST Lisbon) regarding the semantics of the logics EQPL and
QCTL.

Background. We do not assume a familiarity with the nuts and bolts of quantum
computing; instead, we review the basic concepts here and refer the reader to stan-
dard texts, e.g. [15], for details. In this paper we are interested in communication
systems which may involve both classical computing devices and quantum com-
ponents. In our models we assume the availability of quantum systems consisting
of a finite number of particles, distributed between some users; the users may per-
form certain specific types of quantum operations on these particles, as well as
standard-basis measurements. We confine ourselves to the states and operations
which arise in the so-called stabilizer formalism; according to the Gottesman-Knill
theorem [11], quantum circuits in this formalism are simulable in polynomial time
on a classical computer. These terms will now be explained in more detail.

According to the mathematical formalism of quantum mechanics, the state of
a quantum system is represented as a vector in a Hilbert space. The most basic
system of interest is the qubit, or quantum bit, which corresponds to a particle
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with two degrees of freedom (such as a polarised photon, or a spin-1
2 particle).

The general state of a qubit is given by the vector |ψ〉 = α |0〉+β |1〉, where α and
β are complex numbers with |α|2 + |β|2 = 1, and the vectors {|0〉 , |1〉} form a basis
of the two-dimensional Hilbert space H2. The quantum systems we are interested
in consist of multiple qubits; a 2-qubit system will generally be in a state belonging
to the four-dimensional space H4, and an n-qubit system has a state space which
is the tensor product of n copies of H2, and is spanned by 2n basis vectors.

Computations on systems of qubits are expressed by linear operators that are
unitary. An operator U is unitary if it satisfies UU† = U†U = I (the operator I is
the identity matrix of suitable dimension). Examples of operators include the Pauli
gates X, Y, Z, the phase gate P , the Hadamard operator H and the controlled-not
gate C. The action of the Pauli gates and the phase gate on the state of a single
qubit are shown below.

X(α |0〉+ β |1〉) = α |1〉+ β |0〉 (bit flip)
Y (α |0〉+ β |1〉) = α |1〉 − β |0〉 (bit and sign flip)
Z(α |0〉+ β |1〉) = α |0〉 − β |1〉 (sign flip)
P (α |0〉+ β |1〉) = α |0〉+ iβ |1〉 (phase change)

The Hadamard operation creates superpositions (linear combinations of the basis
states) from a single basis state (see [15] for the formal definition and relevant
notation). For example, applying the Hadamard gate to the first qubit of a two–
qubit system, |ϕ〉 = |1〉 ⊗ 1√

2
(|0〉 + |1〉) = 1√

2
(|10〉 + |11〉), will put the system in

the state

(H ⊗ I) |ϕ〉 = H |1〉 ⊗ 1√
2
(I |0〉+ I |1〉) =

1√
2
(|0〉 − |1〉)⊗ 1√

2
(|0〉+ |1〉)

=
1
2
(|00〉+ |01〉 − |10〉 − |11〉)

Note that the sum of the amplitudes of the coefficients should be identically one
for the state vector to be normalised. The controlled-not gate acts on two qubits,
the control and target; if the control qubit is in state |1〉, then the target qubit is
flipped:

C1,2 |ϕ〉 =
1√
2
(C1,2 |00〉+ C1,2 |10〉) =

1√
2
(|00〉+ |11〉)

The actual state of a quantum system is unknown until it is measured; however,
the act of measurement is destructive and collapses the system probabilistically
to a basis state. Measuring qubit |ψ〉 above with respect to the so-called standard
basis {|0〉 , |1〉} will collapse the qubit into either state |0〉 (with probability |α|2)
or state |1〉 (with probability |β|2).

The stabilizer formalism (originally due to Gottesman [11]) is concerned with
the quantum states that arise in computations involving only the operations men-
tioned above. In order to perform arbitrary quantum computations, a universal
set of gates would be required; however, the Clifford gates {H,C, P} do not con-
stitute a universal set. What is distinctive about this set of gates is that the
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operations may be simulated efficiently on a classical computer (this is known as
the Gottesman–Knill theorem; see [11, 15]).

2 Modelling Quantum Protocols

A quantum protocol is loosely defined as a set of operations and measurements
on a global quantum state, which may be distributed amongst a number of users;
measurement outcomes may be communicated classically between users. Usually
quantum protocols are expressed schematically, using the quantum circuit model
[15]. Of course, this model only allows one to describe the computational parts
of a protocol. For the sake of illustration, we consider the quantum teleportation
protocol, shown using standard quantum circuit notation (see [15] for details) in
Figure 1.

|ψ〉 • H !"!! •#$%&'()* !"!! •

σi |ψ〉

Fig. 1. Quantum circuit diagram for the teleportation protocol.

Teleportation is a process which allows two users who share an entangled pair of
particles, to exchange an unknown qubit state by communicating only two classical
values, namely, the outcomes of two measurements. The protocol is described
below.

Alice wishes to send Bob the qubit state |ψ〉 = α |0〉 + β |1〉; we shall call this
particle ‘1’. To begin with, a pair of particles (labelled ‘2’ and ‘3’) is placed in the
quantum state

|Ψ〉 =
1√
2
(|00〉+ |11〉)

Particle 2 is given to Alice and particle 3 is given to Bob. Since |Ψ〉 is an
entangled state, any measurement performed on the one particle will affect the state
of the other particle irreversibly. (For instance, if Alice were to measure particle
2 with respect to the standard basis, she would collapse the state of particles 2

and 3 to either |00〉 or |11〉 at random with equal probability
(

1√
2

)2
= 0.5.) So we

have a system of three particles described by the overall quantum state |ψ〉⊗ |Ψ〉 .
Alice starts by applying the gate C1,2 and then the Hadamard H1. She subse-

quently measures qubits 1 and 2 with respect to the standard basis, and records
the outcomes of her measurements M1 and M2. She sends these two classical val-
ues to Bob (this is represented by the double line in the figure), who then applies
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the operator XM1 ·ZM2 . At the end of the protocol, particle 3 will be in the state
|ψ〉, thus achieving Alice’s goal of sending the original state of particle 1.

This example shows some typical characteristics of a quantum protocol. This
particular protocol is quite simple, as it involves only two users and just a handful
of operations and measurements. As such, it is amenable to analysis by hand and
can easily be shown to be correct. However, large systems (such as quantum key
distribution networks [16]) would typically include the teleportation protocol as a
primitive and would combine it with other computations and transmissions, both
quantum and classical.

Note the style in which the protocol is presented. Presentations of quantum
protocols in the physics literature tend to be rather informal, and often mix low-
level implementation details (e.g. how to prepare a particular state in a physical
device) with structural aspects (the ordering of operations, measurements and
transmissions). Larger systems tend to combine various quantum computations
with classical procedures for processing and transmitting bit values arising from
measurements.

Various programming and specification formalisms have been proposed in or-
der to address the shortcomings of the quantum circuit model when describing
quantum protocols. These include quantum programming languages and quantum
process algebras (see [17] for a survey). We have built an imperative-style con-
current specification language for the needs of the quantum model-checking tool
QMC. For the purpose of this paper, we will demonstrate the syntax of this lan-
guage by example. In this language the teleportation protocol (assuming we are
trying to teleport the state |ψ〉 = 1√

2
(|0〉+ |1〉)) may be expressed as follows:

program Teleport;
var e1,e2:qubit; ch:channel of integer;
process Alice;
var q:qubit; a,b:integer;
begin
q := newqubit; had q;
e1 := newqubit; e2 := newqubit;
had e1; cnot e1 e2;
cnot q e1; had q;
a := meas q;
b := meas e1;
ch!a; ch!b;
end;
process Bob;
var c,d: integer;
begin
ch?c; ch?d;
if
:: ((c=1) and (d=0)) -> X q; break;
:: ((c=0) and (d=1)) -> Z q; break;
:: ((c=1) and (d=1)) -> X q; Z q; break;
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:: ((c=0) and (d=0)) -> break;
fi
end;
endprogram.

In our setting, we allow for global variables (such as e1, e2), typed communica-
tion channels (such as ch) which are always global, and local (private) variables for
each process (such as a,b,c,d,q). Communication is asynchronous, with executabil-
ity rules restricting the way in which the interleaving of process is performed. For
instance, the process Bob cannot start unless channel ch is filled with a value.

The semantics of a protocol model is given by a tree structure, whose nodes
each consist of a tuple (ρ, |ψ〉 , µ, ν), where ρ is a classical store that maps variable
names to values, |ψ〉 is a global quantum state given by the tensor product of the
states of all qubits declared in the model, µ is a mapping from variable names to
process names (so as to keep track of local variables), and ν is a mapping from
variable names to variable types (variable types are: integers, booleans, floating
point numbers/reals, qubit indices). Note that a qubit variable is a pointer to a
qubit in the overall quantum state; its value is just an integer, namely the index
of the corresponding qubit. Branching in the tree structure occurs whenever there
is non-deterministic choice, looping (which contains non-deterministic choice), or
an indeterminate measurement (i.e. a measurement of the quantum state which
could produce a random result). A formal definition of the operational semantics
of protocol models for QMC is work in progress.

3 Specifying Properties

The properties of quantum protocols which we are interested in reasoning about are
properties of quantum state (e.g. which qubits are ‘active’ in a given state, which
qubits are entangled with the rest of the system) over time. We are also interested
in outcomes of different measurements, and the way in which the values of classical
variables evolve. We have elected to use quantum computational temporal logic
(QCTL [10]) for this purpose.

QCTL adds the usual temporal connectives (AX, EF, EU) of computational tree
logic [18] to the propositional logic EQPL [19].The meaning of formulae in EQPL
is expressed in terms of valuations, which are truth-value assignments for the
symbols qb0, qb1, . . . , qbn corresponding to each qubit in the system. For instance,
the quantum state 1√

2
(|00〉+ |11〉) is understood as a pair of valuations (v1, v2)

for a 2-qubit system such that v1(qb0) = 0, v1(qb1) = 0, v2(qb0) = 1, v2(qb1) = 1.
The formulae accepted by the QMC tool for verification allow the user to reason

about the state of individual qubits, and involve usual logical connectives such as
negation and implication. There are two levels of formulae: classical formulae,
which hold only if all valuations in a state satisfy them, and quantum formulae,
which are essentially logical combinations of classical formulae. For instance, the
quantum conjunction in the formula φ1 ! φ2 is only satisfied if both the classical
formulae φ1 and φ2 are satisfied in the current state. A particularly distinctive
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type of quantum formula is of the form [Q], where Q is a list of qubit variables
qbi, qbj , . . .; this type of formula is satisfied only if the qubits listed are disentangled
from all other qubits in the system. The syntax of QCTL is given below (from [10]):

Classical formulae: α = ⊥ | qb | α ⇒ α | α ∨ α | α ∧ α

Terms: t = x | (t + t) | (tt) | Re(|)〉A) | Im(|)〉A) | ∫ φ

Quantum formulae: γ = (t ≤ t) | ⊥| (α " α) | (α # α) | (α ! α) | [qbi, qbj , . . .]
Temporal formulae: θ = γ | θ " θ | (EXθ) | ([θ EU θ]) | (AFθ)

3.1 Example

The requirement for the teleportation protocol described in section 2 is that, at
the end of the protocol, no matter the measurement outcomes, the third qubit
will be in the same state as the first qubit was to begin with, and this qubit will
be disentangled from the rest of the system. We can express this requirement, for
the case where the input is the quantum state |0〉, in the input language of QMC
using the specification

finalstateproperty ([q2]) # /\ (!q2);

which corresponds to the EQPL formula [q2]! (¬q2). The first part of the formula
asserts that the last qubit (q2) is disentangled from the rest of the system, while
the second part asserts that the current valuation assigns to this qubit a value of
0. The entire formula is true if both parts are true, indicated by the connective of
quantum conjunction (we represent ! in ASCII form by #/\). We can also use a
temporal formula:

property true EU (([q2]) # /\ (!q2)); (1)

4 The QMC Model Checker

We have developed a software tool known as QMC, which automatically explores
all possible behaviours arising from a protocol description (in the format shown in
Section 2), and enables QCTL properties to be checked over the resulting structure.

A protocol model will always consist of definitions of one or more processes;
the commands performed by each of these processes must be interleaved (so as
to emulate concurrent execution), and non–determinism (which occurs explicitly
in selection structures (if :: a -> ... :: b -> ... fi) and implicitly when
measurements with indeterminate outcomes are performed) must be resolved, pro-
ducing an execution tree for the modelled system. A concrete example of this
execution tree will be given in Section 5, where we will use QMC to analyse a
particular protocol.

The QMC tool can be seen as comprising three main components: (1) a process
scheduler, (2) a language interpreter, and (3) a verifier. The role of component (1) is
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essentially to perform the tasks described in the previous paragraph. The language
interpreter handles the execution of individual commands and keeps track of the
overall classical and quantum state at each step. Finally, the verifier is responsible
for evaluating QCTL formulae over the structure generated by (1) and (2).

It is important to explain the way in which global state is represented for QMC
models. As described in Section 2, each node in the execution tree for a given model
contains a tuple (ρ, |ψ〉 , µ, ν) where |ψ〉 in particular is the overall quantum state
at that point in the simulation. The quantum state |ψ〉 is represented internally
in an implicit way: rather than storing the so-called state vector representation
of |ψ〉 (which grows exponentially in length as a function of the total number
of qubits in |ψ〉), we use the stabilizer array representation, which is a binary
representation of the set of Pauli operators that fix (or stabilize) |ψ〉. Using the
stabilizer array representation, we gain significant computational benefits in terms
of both space and time when simulating a given protocol, given that simulation
of stabilizer circuits is performed using a polynomial time algorithm [12], and the
representation of the state grows polynomially with the number of total qubits.
There is scope for optimising the simulation further, notably by using low-level
binary operations and by packing the the stabilizer array representation into 32-
bit registers, as Aaronson and Gottesman chose to do in the final implementation
of the CHP simulator (see [12] for details).

4.1 Verification Algorithms and Complexity

We turn now to the algorithms which QMC uses for the verification of QCTL
formulae over protocol models.

Firstly, one should note that the logic QCTL comprises a purely propositional
fragment, namely the exogenous quantum propositional logic (EQPL) proposed
by Mateus and Sernadas [19]. This fragment may be interpreted, without much
loss of generality, over a single quantum state |ψ〉. The general definition of the
semantics of EQPL has been given [19] in terms of a so-called quantum interpre-
tation structure, which includes not only a quantum state |ψ〉, but also a classical
state ρ and a means of specifying entanglement partitions of |ψ〉. Note that in our
setting we also have a global classical state, which takes the place of ρ.

Evaluating EQPL formulae over any state |ψ〉 arising from the simulation of a
protocol model requires being able to determine all the valuations in that state,
so that the truth value of any propositional constant (e.g.: qbi where 0 ≤ i ≤ N
for an N -qubit system - this constant corresponds to the state of the ith qubit in
the quantum state) can be computed. What this means in more practical terms is
that, in order to determine whether a given qubit has valuation true (1) or false
(0) in the current state, it is necessary to extract all the basis vectors which are
present in the state vector expansion of |ψ〉. The process of extracting all the basis
vectors requires converting from the space–efficient stabilizer array representation
to the state vector corresponding to |ψ〉, and this conversion can take up to a
maximum of 2N steps if all the 2N basis vectors appear in |ψ〉. Even when |ψ〉 is
a stabilizer state, it may contain all of the basis vectors with non-zero coefficients.
Therefore in general, evaluating a classical formula requires solving a sat problem,
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and of course this is NP-complete. This observation seems rather discouraging
given that the process of verifying a state formula requires us to lose the efficient
state representation which is used during simulation.

However, there are cases for which we can avoid the conversion from stabilizer
array to state vector; for certain classes of formula we can extract the necessary
valuation information by processing the stabilizer array directly. We have observed
that certain classical EQPL formulae, which do not involve the conjunction op-
erator ∧, may be checkable on a given state |ψ〉 by just examining the contents
of those columns in the stabilizer array corresponding to the qubits in the for-
mula. We are still investigating optimisations and heuristics such as this, bearing
in mind that the most general EQPL formulae still require performing a state
vector conversion. In future, we should probably investigate using an off-the-shelf
SAT solver.

The most interesting class of quantum state formulae for which we were able
to obtain efficiency improvements (esp. by avoiding the state vector conversion)
were those of the form [qbi, qbj , . . .], i.e. entanglement partition formulae. Such a
formula is true with respect to a given quantum state |ψ〉 if all the qubits indexed
within the square brackets may be separated from all the other qubits in the state
(that is to say, if qubits qbi, qbj , . . . are disentangled from the rest). We refer to a
list of qubits qbi, qbj , . . . as a partition of the state |ψ〉 if the formula [qbi, qbj , . . .]
is satisfied by |ψ〉.

Checking whether a given set of qubits constitutes a partition of a stabilizer
state |ψ〉 is possible using the polynomial time algorithm of Audenaert and Plenio
[14] for the so-called “bipartite Clifford Normal Form (CNFP).” We have imple-
mented this algorithm in QMC. It is worth noting that the algorithm involves a
special sequence of row and column operations on the stabilizer array and allows
us to extract entanglement information from this representation directly.

Note that the implementation of the temporal connectives of QCTL follows
directly from the definitions in [10]. The usual marking algorithms for computa-
tional tree logic are applied to the tree structure generated by QMC. The state
formula contained in a temporal formula is evaluated for all states in the tree,
producing the initial marking.

5 Case Study

QMC is ideally designed to allow for the analysis of systems comprising protocols
with both classical and quantum computations (subject to the restriction that
those quantum computations are expressible within the stabilizer formalism). In
this section we consider a model of a system combining part of the quantum key
distribution protocol BB84 [2] with the quantum error correcting code described
in [20] (the quantum bit flip code). We will discuss these protocols and proceed to
explain the structure of a QMC model for this system. Then we will turn to the
verification of this model using the tool.

Quantum key distribution enables two users, Alice and Bob, to establish a
common cryptographic key which is secure in the presence of eavesdropping. The
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two users are assumed to be linked by a quantum channel (such as an optical fibre,
through which qubits can be transmitted in the form of polarised light bursts),
and they also can communicate over a public, authenticated, classical channel.
The attacker has full access to the quantum channel, but can only monitor the
classical channel passively. Quantum key distribution has been proven uncondi-
tionally secure against all attacks permitted by the laws of quantum mechanics
[1] and implementations of this technology already exist, both in academic [21]
and commercial settings (see e.g. http://www.idquantique.com). We consider a
simplified version of the BB84 protocol for quantum key distribution here, omit-
ting some classical post-processing steps (esp. secret-key reconciliation and privacy
amplification, see [15] for details) that the users must perform after the quantum
transmission is complete.

A single round of the BB84 protocol consists of the following steps:

1. Alice prepares a new qubit in one of the four states: |0〉 , |1〉 , H |0〉 = 1√
2
(|0〉+

|1〉), H |1〉 = 1√
2
(|0〉 − |1〉). The first two form the so-called rectilinear basis,

the other two constitute the diagonal basis. Each of these states represents a
classical bit with respect to the chosen basis (e.g. a 0 is represented by |0〉 in
the rectilinear basis and by H |0〉 in the diagonal basis). She sends the qubit
to Bob over the classical channel, and keeps record of her choice of basis and
bit.

2. Bob receives the qubit; not knowing which basis Alice used to prepare the state,
he chooses one of the two bases and measures it. If his choice of measurement
is compatible with Alice’s (i.e. if he has chosen the same basis that was used
to prepare the state) then the laws of quantum mechanics guarantee that his
measurement result will match Alice’s original bit; otherwise his measurement
result will be either 0 or 1 with equal probability, and the state of the qubit
will become one of the two states of the basis used for measurement.

3. After Alice reveals to Bob which basis she used to prepare the qubit; if his
choice of basis is correct, then both users keep the corresponding bit value and
use it as part of the final key. Otherwise the corresponding bit is discarded by
both users.

The protocol must be repeated several times in order for a key to be established;
a common key bit is generated every time Bob makes a compatible basis choice
for his measurement. We model one run of the protocol here.

A simple attack that can be made on this protocol is the following:

– The attacker, Eve, intercepts the qubit that Alice has sent (note that it is
impossible to copy the qubit due to the no-cloning theorem of quantum me-
chanics [15]), chooses a measurement basis of her own, and measures the qubit
to obtain a (possibly correct) bit value. She then sends the measured qubit to
Bob.

It is not difficult to see that an incorrect choice of measurement basis by Eve
would disturb the qubit which Alice originally sent, placing it in a different basis
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state. It is possible for Alice and Bob to detect this disturbance by exchanging a
few of their bits, but we will not include this step in our model.

We can model Alice’s behaviour as the following QMC process (we assume that
the qubit q is a global variable, and similarly for ch):

process Alice;
var bit,basis:integer;
begin
q := newqubit;

q1:= newqubit; q2:= newqubit; /*for redundant encoding of q*/
q3:= newqubit; q4:= newqubit; /*will be used for error recovery*/

if
:: basis:=0; bit:=0;
:: basis:=0; bit:=1; X q;
:: basis:=1; bit:=0; had q;
:: basis:=1; bit:=1; X q; had q;
fi
cnot q q1; cnot q q2;
ch!q;
end;

Notice how Alice uses the X and H gates to prepare the different qubit states in
each case. Applying the H gate essentially transforms a rectilinear basis state into
a diagonal basis state.

The processes describing the actions of Eve and Bob are quite similar, since
both involve a basis choice and a measurement. Here is the definition of Eve’s
process in QMC’s input language.

process Eve;
var ebit,ebasis:integer;
begin
ch?q;
if
:: ebasis:=0;
:: ebasis:=1; had q;
fi
bbit := meas q;
ch!q;
end;

So far we have assumed that transmissions of qubits are noise-free, i.e. the
communication channels are perfect. Now we will revise our model to describe the
case where a quantum error-correcting code is used to recover from a single bit
flip caused by a noisy channel. The code requires each individual qubit prepared
by Alice to be redundantly encoded into a 3-qubit system, so that the state |0〉 is
transmitted as |000〉, and |1〉 is transmitted as |111〉 . We assume that the quantum
channel may induce a bit flip error on any one of the three qubits that are used in
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this code; for instance, the channel might transform the state
1√
2
(|000〉+ |111〉) into

1√
2
(|010〉+ |101〉)

In this case, the second qubit has been disturbed by the channel. In order to
detect such an error, two additional qubits are used; they are known as ancillas. By
applying a sequence of operations and measurements to the ancillas, the so–called
error syndrome is obtained, which determines the location of the error. Then, the
X operator is applied to the erroneous qubit, thus restoring the initial quantum
state of the 3–qubit system (i.e. 1√

2
(|000〉 + |111〉) in the above example). The

quantum circuit for the bit–flip code is given in Figure 2.

|ψ〉 • • • •
Xi

|ψ〉
|0〉 #$%&'()* •
|0〉 #$%&'()* •

|0〉 #$%&'()* #$%&'()* !"!! •

|0〉 #$%&'()* #$%&'()* !"!! •

Fig. 2. Quantum circuit diagram for the qubit bit–flip code.

In order to account for the error correction in the model of the protocol we
have been describing, we need: (1) to introduce two qubits q1 and q2 which are
used to encode the original state as a three-qubit state, (2) to introduce two qubits
q3 and q4 corresponding to the ancillas which are used to detect the location of
the error in the three-qubit state. The QMC process for Alice needs to include the
additional commands cnot q q1; cnot q q2; just before the transmission ch!q,
thus encoding the state of qubit q across the three qubits.

We model the channel that causes the disturbance as a separate process Disturb,
defined below:

process Disturb;
begin
ch?q;
if
:: X q;
:: X q1;
:: X q2;
fi
ch!q;
end;

The final part of the model consists of the process Correct, which is responsible
for applying the error correction procedure suggested directly by the circuit in
Figure 2. The process uses a variable count to enforce the order in which the
actions stated are executed.
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process Correct;
var a,b: integer;
begin
ch?q;
cnot q q3; cnot q1 q3;
cnot q q4; cnot q2 q4;
a:=meas q3;
b:=meas q4;
if
:: ((a=1) and (b=1)); -> X q;
:: ((a=1) and (b=0)); -> X q1;
:: ((a=0) and (b=1)); -> X q2;
fi
ch!q;
end;

5.1 Properties for Verification

The model of a quantum key distribution system with an error correcting compo-
nent described in the previous section is quite realistic, given that we are taking
into account the possibility of a direct attack on the protocol as well as the pres-
ence of a noisy quantum channel. A larger system for quantum key distribution
might also involve quantum teleportation, so that a qubit is transferred not via
a direct quantum channel but through the use of entangled quantum states. We
discussed the quantum teleportation protocol in Section 2 separately.

There are number of combinatorial possibilities which arise during quantum key
distribution. Depending on the choices of basis made by Alice, Bob and Eve, it may
or may not be possible to detect Eve’s presence. For instance, a compatible choice
of basis by all three users implies that Eve’s measurement of the transmitted qubit
does not cause a disturbance to its state. There will be cases when the outcome
of Bob’s measurement matches the choice of bit originally made by Alice, cases
in which Eve’s measurement is correct, and so on. QMC explores all possibilities
automatically and constructs the correct tree structure for the model described. We
can verify different QCTL formulae expressing success or failure of the protocol.
For instance, the BB84 protocol normally succeeds to produce a key bit if Alice
and Bob use compatible basis choices, i.e. when the following state formula is
satisfied (bbasis,bbit are the variables corresponding to Bob’s chosen basis and
bit value):

property ((basis=bbasis) => (bit=bbit))

This property applies to the entire protocol including the quantum error cor-
rection procedure.

6 Summary and Conclusions

We have described QMC, which is to the best of our knowledge, the first auto-
mated verification tool targeted specifically at protocols for quantum communica-
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tion. A case study for QMC of a system combining quantum key distribution and
quantum error correction was also presented. The modelling language of the tool
was demonstrated by means of an example, and we discussed the logic QCTL,
originally due to Baltazar, Chadha and Mateus [10], which is used in QMC for
specifying properties of systems. Although the examples presented in this paper are
quite simple, they constitute the basic building blocks for practical long-distance
quantum communication and cryptographic systems.

An important aspect of QMC is that it allows the user to model those protocols
involving operations within the quantum stabilizer formalism [11]; while this set
of operations is not universal for quantum computation, it allows us to express a
large class of interesting protocols and has the benefit of efficient simulation on a
classical computer. We discussed the computational cost of verifying EQPL state
formulae on stabilizer states and the possibility of various efficiency improvements,
while noting that the evaluation of such formulae on stabilizer states is an instance
of the sat problem, which is known to be complete for the complexity class NP.

Our long-term objective is to build a model checker that would be able to
model and analyse any protocol with quantum and classical components. However,
it is worth noting that, in contrast to classical systems, the protocols that are
currently in prevalence in the quantum setting are few in number. We envisage
that our tool, at least in the near term, would be used to analyse existing protocols
and systems based on them. This means we can focus on developing techniques
to handle these existing protocols, and we feel that the NP-completeness of the
model-checking procedure is not a major obstacle at this point. For the same
reason, working within the stabilizer formalism is not also a significant limitation,
as we propose to extend our techniques to verify nearly all protocols of current
interest. For example, we should be able to model-check protocols which fall outside
the stabilizer formalism efficiently, as long as the number of non-Clifford gates used
in the particular protocol is small, and they are only applied to a limited number
of qubits [12].

We intend to extend QMC in several ways. For instance, we intend to use a more
expressive modelling language, such as the quantum process calculus CQP [22].
Computing the probability that a formula is satisfied, for all runs of a protocol,
is a feature to be added. Also we are working on formalising the semantics of
the input language and introducing several efficiency improvements and heuristics
in the verification algorithms (as explained in Section 4.1). It will be useful to
experiment with models of larger systems, combining many sub-protocols with
both classical and quantum data. We also plan to develop metrics to characterise
the performance of our tool on various case studies. We hope that QMC will
develop into a useful and essential tool for designers of quantum communication
and quantum cryptographic systems.
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