
Under consideration for publication in Math. Struct. in Comp. Science

Bounded polymorphism in session types

S imon J. Gay

Department of Computing Science, University of Glasgow, UK
Email: simon@dcs.gla.ac.uk

Received 9 December 2006

Session types allow high-level specifications of structured patterns of communication,

such as client-server protocols, to be expressed as types and verified by static

typechecking. In collaboration with Malcolm Hole, we have previously introduced a

notion of subtyping for session types, formulated for an extended pi calculus. Subtyping

allows one part of a system, for example a server, to be refined without invalidating

type-correctness of other parts, for example clients. We now introduce bounded

polymorphism, based on the same notion of subtyping, in order to support more precise

and flexible specifications of protocols; in particular, a choice of type in one message may

affect the types of future messages. We formalize the syntax, operational semantics and

typing rules of an extended pi calculus, and prove that typechecking guarantees absence

of run-time communication errors. We study algorithms for checking instances of the

subtype relation in two versions of our system, which we call Kernel S6 and Full S6,

and establish that subtyping in Kernel S6 is decidable but subtyping in Full S6 is

undecidable.

1. Introduction

Distributed systems are typically structured around protocols which specify the form and
sequence of communications between agents. Such protocols are often complex, involving
substantial numbers of states and a variety of state transitions caused by different types of
message. When implementing an agent which is intended to follow a particular protocol, it
is desirable to be able to verify (preferably automatically) that the sequence and structure
of messages sent and received is correct according to the protocol. However, standard
programming languages do not provide good support for this kind of verification.

The theory of session types addresses this problem by defining a notion of type which
can capture the specification of a protocol. Session types can be associated with commu-
nication channels, and the actual use of a channel by a program can be statically checked
against its type. For example, in a client-server system, the type ?[int].![int].end on the
server side of a channel specifies a simple protocol in which the server receives an integer
and sends back an integer; the type

S1 = &〈 go :?[int].![int].end, quit :end 〉 (1)

specifies a choice (&) between immediate termination (quit) and non-trivial behaviour

S. J. Gay 2

(go). Session types were first proposed by (Honda 1993) and have been further developed
by a number of researchers including the present author (Bonelli et al. 2005; Fähndrich
et al. 2006; Garralda et al. 2006; Gay and Hole 1999, 2005; Takeuchi et al. 1994; Honda
et al. 1998; Neubauer and Thiemann 2004a,b; Vallecillo et al. 2006; Vasconcelos et al.
2004, 2006; Yoshida and Vasconcelos 2006). Recently, session types have begun to be
applied to the specification of web services and business processes (Carbone et al. 2006).

A session type describes a bilateral or two-party protocol. Throughout this paper we
will use simple client-server systems as examples, but the applications of session types
are not restricted to this case; in general they can describe any bilateral protocol used
within a distributed system. Given that a protocol specifies which party sends the first
message, it is convenient to view the initial sender as a client and the initial receiver as a
server, but this classification applies only to that particular protocol run. In general, an
agent within a distributed system may, at different times, find itself on the server side
or the client side of various protocols, and it may even be interleaving runs of several
protocols, acting as client or server independently in each one.

In previous papers (Gay and Hole 1999, 2005) we increased the expressive power of
session types by defining a notion of subtyping. The main application was to allow server
upgrades, which alter the protocol and hence its session type, to be made without re-
moving the type-correctness of older clients. If the specification (1) above is modified
to

S2 = &〈 go :?[int].![int].end, new :?[real].![bool].end, quit :end 〉 (2)

then we have S1 6 S2, meaning that a client that only knows about go and quit can be
successfully typechecked against S2. Subtyping is explained further in Section 2.3.

We are now interested in polymorphic protocol specifications. We naturally have sub-
type polymorphism: for example if int 6 real then a client of protocol (2) can send an int

or a real after selecting new. However, because input (?) behaves covariantly and output
(!) behaves contravariantly, the type

S3 = &〈 go :?[real].![real].end, quit :end 〉. (3)

cannot be used to specify a protocol in which the go service receives and sends values of
the same subtype of real. This situation is familiar from object-oriented languages, if we
think of receiving a method parameter and sending the result.

In this paper we introduce a notion of bounded polymorphism, similar in general terms
to F<:(Cardelli and Wegner 1985). We choose to associate polymorphism with the labels
in the branching (&) type; for example, instead of (3) we define

S4 = &〈 go(X 6 real) :?[X].![X].end, quit :end 〉

and allow the client, when choosing go, to instantiate X to either int or real. As far
as we know this is the first study of bounded polymorphism in the pi calculus, and
the first study of any form of polymorphism in relation to session types. In addition
to the example above, and other examples in Section 2, recent interest in session types
for object-oriented languages (Dezani-Ciancaglini et al. 2005, 2006) means that bounded

Bounded polymorphism in session types 3

polymorphism may become relevant to integrating session types with a language such as
Java 1.5.

We expand on the above explanation in Section 2, then formalize our system in Sec-
tion 3 and prove a type safety result in Section 4. In Section 5 we discuss practical
typechecking and prove that our subtype relation is decidable. In Section 6 we generalize
our subtype relation in a similar way to the generalization from Kernel F<:to Full F<:,
and prove that this makes the subtype relation undecidable. Finally, in Section 7, we
discuss related work as well as possible extensions to our language.

2. Session types and bounded polymorphism

2.1. Review of session types

Session types in the pi calculus describe structured bilateral interaction between agents
in a distributed system. Both parties participating in a sequence of communications—a
protocol run—are statically type checked, not only to ensure that the types of messages
sent are those expected, but also that the ordering of messages is correct. Furthermore,
choices can be offered and selections made by both parties, the whole dialogue taking
place on a single channel. The examples in this section are based on simple client-server
systems; more generally, in any bilateral protocol, we can view the agent that sends the
first message as the client and the agent that receives the first message as the server.

Consider a server for mathematical operations which offers sine and square functions.
The communications with the client take place on a single session channel, x, with ports
x+ and x−. We call + and − polarities, and we use them to indicate which end of a
session channel is being used in each occurrence in a process. The need for polarities is
explained in Section 2.2. In previous work (Gay and Hole 2005) we have shown that a
modification of the top-level type system allows polarities to be inferred, but it is simpler
to develop the theory if polarities are included and so we use them in the present paper.

In this example, the server will use x+ and the client x−. Each of x+ and x− has an
associated session type, which we will call S5 and S5, respectively.

S5 = &〈 sin :?[real].![real].end, sqr :?[int].![int].end 〉
S5 = ⊕〈 sin : ![real].?[real].end, sqr : ![int].?[int].end 〉

The &〈 . . . 〉 constructor (branch) in the type S5 indicates that a choice is offered, in
this case between two labels, sin and sqr, each of which then has a continuation type
representing a series of inputs and outputs (? for input, ! for output). Dually, the ⊕〈 . . . 〉
constructor (choice) in the type S5 indicates the making of a choice. The pattern of
sending and receiving for each label here is the opposite of that in the type of the
server’s port.

The server and a possible client, parameterized on the port, could be implemented by

serverbody1(y) = y.{ sin :y?[a:real].y![sin(a)].0,

sqr :y?[a:int].x![a2].0 }
clientbody1(z) = z/ sin.z![90].z?[r:real].0

Here the server uses the .{. . .} construct (offer) to offer the labels sin and sqr. Each label

S. J. Gay 4

has a continuation process performing the necessary inputs and outputs as specified in
the type. The client uses the / construct (choose) to choose the label sin from those on
offer and then performs the appropriate sequence of outputs and inputs.

Our type system, defined formally in Section 3.4, allows the judgements

x+:S5 ` serverbody1(x+)
x−:S5 ` clientbody1(x−)

to be derived, checking that the communication structure within each process matches
the structure of the session type S5 or S5, respectively.

Combining the server and client in parallel, we can derive

x+:S5, x
−:S5 ` serverbody1(x

+) | clientbody1(x
−)

and the operational semantics formalized in Section 3.2 defines the behaviour of this
parallel combination as a sequence of reduction steps, each step corresponding to a com-
munication.

In a complete system, there must be a way for the client and server to establish their
connection along channel x. Our standard method is for the client to create a channel x

of type S5 and send one end of it, x+, to the server along a standard (non-session-typed)
channel a of type [̂S5]. The system is defined and typed as follows.

server = a?[y:S5].serverbody1(y)
client = (νx:S5)(a![x+].clientbody1(x−))

a : [̂S5] ` client | server
The system reduces to

(νx:S5)(clientbody1(x
−) | serverbody1(x

+))

by communication on a and standard pi calculus scope extrusion, resulting in a private
connection between client and server. Using standard pi calculus programming tech-
niques, it is straightforward to modify this implementation to produce a multi-threaded
server which can be accessed via the channel a by any number of clients, each obtaining
a private session with a separate thread.

Each end (x+ or x−) of a session channel x must be owned by just one process at any
time: for example, after sending x+ to server, client must not make any further use of it.
This restriction is related to linear (Girard 1987) control of values and our type system
treats session channels in a similar way to the linear and linearized channels studied by
(Kobayashi et al. 1999). The difference is that each end of a session channel may be used
many times by the process that owns it.

2.2. Polarities

The reason for using polarities to distinguish between the two ports of a channel is that
while constructing a typing derivation there may be points at which the types of the two
ports are not directly related (in particular, they are not dual to each other). An example

Bounded polymorphism in session types 5

is the following derivation, using the typing rules presented in Section 3.4:

x+ : end, x− : end, z : int completed
T-Nil

x+ : end, x− : end, z : int ` 0
T-InS

x+ : end, x− : ?[int].end ` x−?[z:int].0
T-OutS

x+ : ![int].end, x− : ?[int].end ` x+![2].x−?[z:int].0
T-New

` (νx:![int].end)x+![2].x−?[z:int].0

in which, on the third line, x+ and x− have different types. It would therefore not be
possible to refer to both of them simply as x.

According to the operational semantics defined in Section 3.2 the process

(νx:![int].end)x+![2].x−?[z:int].0

is deadlocked: communication between the output on x+ and the input on x− could only
happen if they were in separate parallel processes. One might therefore ask why we want
this process to be typable at all. The answer is that it can arise during execution. For
example, we have the following reduction sequence:

(νx:![int].end)a![x−].a?[y:![int].end].x+![2].y?[z:int].0 | a?[z:?[int].end].a![z].0
↓

(νx:![int].end)a?[y:![int].end].x+![2].x−?[z:int].0 | a![x−].0
↓

(νx:![int].end)x+![2].x−?[z:int].0 | 0

and the initial process is typable in the environment a : [̂?[int].end]. In order to prove
that typability is preserved by reduction (Section 4) we need to be able to type every
step in the reduction sequence above, and so we use polarities in order to have a type
system in which the final process has a typing derivation. Note that our type system does
not aim to guarantee deadlock-freedom.

2.3. Subtyping

Continuing the example from Section 2.1, suppose that a tangent operation is added to
the server. The new protocol is specified by

S6 = &〈 sin :?[real].![real].end, sqr :?[int].![int].end, tan :?[real].![real].end 〉

and the server implementation becomes

serverbody2(x) = x.{ sin :x?[a:real].x![sin(a)].0,

sqr :x?[a:real].x![a2].0,

tan :x?[a:real].x![tan(a)].0 }
server2 = a?[y:S6].serverbody′(y).

We have the typing judgements

x+:S6 ` serverbody2(x+)
a : [̂S6] ` server2.

S. J. Gay 6

According to the definition of subtyping for session types (Gay and Hole 1999, 2005),
S5 6 S6. It is not obvious why this is correct (rather than S6 6 S5), but it can be
understood in the following ways.

1 We want a system consisting of the original client and the new server to be typable,
because the original client is still correctly using services of the new server. It should
not matter that the original client does not know about the new service. We therefore
want to be able to derive (note the change in the type of a)

a : [̂S6] ` client1

and this is indeed derivable in our type system. The behaviour of client1 is to send
a value of type S5 on a channel of type [̂S6]. If S5 6 S6 then this is exactly the
same situation as in the system of subtyping for pi calculus defined by (Pierce and
Sangiorgi 1993, 1996).

2 We have the typing

a : [̂S5] ` client1 | server2
and in order for the first step of reduction to preserve typability we need

∅ ` (νx:S5)(clientbody1(x−) | serverbody2(x+))

which in turn requires

x+ : S5, x
− : S5 ` clientbody1(x−) | serverbody2(x+)

which requires

x+ : S5 ` serverbody2(x+).

If S5 6 S6 then this follows from

y : S6 ` serverbody2(y)

by a substitution lemma of exactly the usual kind. For example, in a functional
language in which int 6 real we would expect y : real ` sin(y) : real to imply x : int `
sin(x) : real.

3 Because a branch type looks like a record type, in the sense that it has a set of labelled
components, the fact that subtyping for branch types is covariant in the set of labels
may be counterintuitive; recall that subtyping for record types is contravariant in
the set of labels. However, a choice type looks equally similar to a record type, and
subtyping for choice types is contravariant in the set of labels.

4 We can regard a branch type as analogous to an input type, with an explicit set of
possible values (the labels) for the message rather than a type specifying the set of
possible values. Similarly, a choice type is analogous to an output type. From this
point of view, the covariance of branch (in the set of labels) and the contravariance of
choice exactly match the covariance of input and the contravariance of output, both
in our system and in that of (Pierce and Sangiorgi 1993, 1996).

Bounded polymorphism in session types 7

2.4. Bounded polymorphism

Suppose we want to extend the sqr service to real numbers:

S7 = &〈 sin :?[real].![real].end, sqr :?[real].![real].end 〉.

Assuming that int 6 real, a client can request the square of an int but will still receive
a real result. A client that expects to receive an int result will not typecheck against S7.
To allow more precise specifications of protocols, we introduce bounded polymorphism,
associating it with branch and choice types. Each branch is quantified by a type variable
with upper and lower bounds. We define the type of our server’s channel by

S8 = &〈 sin :?[real].![real].end, sqr(int 6 X 6 real) :?[X].![X].end 〉

and the type of the client’s side is

S8 = ⊕〈 sin : ![real].?[real].end, sqr(int 6 X 6 real) : ![X].?[X].end 〉.

The appropriate lower bound for X is the least (in the subtype relation) type for which
squaring makes sense; we assume that this is int. The implementation of the server is

serverbody3(x) = x.{ sin :x?[a:real].x![sin(a)].0,

sqr(int 6 X 6 real) :x?[a:X].x![a2].0 }.

In order to typecheck

x:S8 ` serverbody3(x)

it is necessary to check

int 6 X 6 real ;x:?[X].![X].end ` x?[a:X].x![a2].0

and for this we assume a type system for data expressions in which

int 6 X 6 real ; a:X ` a2:X

is derivable.
A client which uses the sqr service at type int is defined by

clientbody2(x) = x/ sqr(int).x![5].x?[r:int].0

and the code following x/ sqr(int) is typechecked with respect to the appropriate instan-
tiation of ![X].?[X].end:

x:![int].?[int].end ` x![5].x?[r:int].0

The complete system, after the initial creation of channel x and transmission of the
server’s end x+, has the following reduction sequence, in which the annotations x, sqr(int)

S. J. Gay 8

etc. show the channel and label (if any) involved in each reduction.

serverbody3(x+) | clientbody2(x−)
↓ x, sqr(int)

x+?[a:int].x+![a2].0 | x−![5].x−?[r:int].0
↓ x

x+![25].0 | x−?[r:int].0
↓ x

0 | 0

For notational simplicity, the formalization presented in this paper requires every label in
a branch or choice type to specify exactly one bounded type variable. This could easily
be generalized. Alternatively, an unquantified label such as sin in the example can be
regarded as an abbreviation of sin(Bot 6 X 6 Top) where X is a dummy type variable;
multiple quantification such as

service(T 6 X 6 T ′, U 6 Y 6 U ′) :S

can be encoded by introducing a nested branch:

service(T 6 X 6 T ′) :&〈 s(U 6 Y 6 U ′) :S 〉.

In some situations there might be a natural upper bound for a type variable but no
natural lower bound, or vice versa. In this case the type Bot or Top can be used for the
missing bound, as a kind of dummy in order to maintain a uniform syntax. As we will
see later, the types Bot and Top cannot be used to instantiate polymorphism.

Associating bounded polymorphism with the labels in branch and choice types is not
the only possibility. However, it seems reasonable that the common situation in a protocol
is to have a choice between several options, each with its own sequence of typed messages
and therefore its own possibility for instantiating polymorphism. The most obvious alter-
native would be to introduce a completely new construct allowing bounded quantification
over a type variable, and a corresponding new kind of message which would instantiate
a type variable and do nothing else. With this approach, it would never be necessary to
introduce a branch type purely in order to introduce polymorphism; however, it would
be necessary to introduce an extra message into every polymorphic branch of a branch
type. On the assumption that polymorphism in protocols will usually coincide with a
choice between two or more options, we feel that our approach is simpler.

2.5. Session types as bounds

We are not restricted to data types as bounds for type variables. A branching type can
be moved up the subtype relation by extending the set of labels and/or moving the
continuation types up the subtype relation; see Section 3.3 and (Gay and Hole 2005) for
details. For example, if

S9 = &〈 sin :?[real].![real].end, cos :?[real].![real].end, sqr :?[int].![int].end 〉

then S5 6 S9. Now consider a “testing server” which enables a client of a mathematical
server to have the server tested before using it. The testing server receives the channel

Bounded polymorphism in session types 9

that the client intends to use to communicate with the mathematical server, carries
out some tests, then returns a boolean result to the client, followed by the channel†. If
the testing server is able to test the sin and sqr services specified by type S5, then an
appropriate type for communication with the testing server is

&〈 test(Bot 6 X 6 S5) :?[X].![bool].![X].end 〉

where Bot is a dummy bound as explained in Section 2.4. A client of the testing server
can give it a channel whose type is any subtype of S5; for example, because S5 6 S9 we
have S9 6 S5 (Lemma 4, Section 4). This means that the channel could be of a type
which contains additional or refined services, but only sin and sqr will be tested.

It is very important to realize that, in our system, polymorphism cannot be instantiated
with type Bot or Top. These types are used as bounds only to maintain a uniform syntax
for the introduction of polymorphism. Thus, in the example above, the type variable X

can only be instantiated by a type which actually is a choice type and therefore it will
contain at least the labels sin and sqr.

2.6. Lower and upper bounds

The reason for including lower as well as upper bounds on type variables is so that type
variables and their duals can be treated symmetrically. Suppose that we have T 6 X 6 U

in a branch label. It is possible to use X within the corresponding branch. If a channel
of type X needs to be sent on another channel, of type [̂V] say, then we need X 6 V .
Because duality reverses the subtype relation (Lemma 4, Section 4), this can only be
estalished by making use of the lower bound for X: T 6 X implies X 6 T and by
checking that T 6 V , transitivity gives X 6 V . It is not easy to find a natural example
in which the lower bound must be used in this way, and it might turn out that in practice
it is reasonable to prevent the use of X and work with upper bounds only. However, we
have chosen to develop the theory in its symmetrical form.

A concrete, although artificial, example of the phenomenon described above is the
following typing.

x:&〈a(?[int].end 6 X 6?[real].end) : end〉, z :̂ [![int].end] `
x.{a(?[int].end 6 X 6?[real].end).(νy:X)z![y−].y+?[u:real].0}

Here the type of y− is X, so the output z![y−] requires X 6 ![int].end. The input
y+?[u:real] does not play a significant role in illustrating this point; it is present so
that there is a complete sequence of communications on y+.

2.7. Kernel and full versions of S6

We propose two versions of bounded polymorphism for session types, called Kernel S6

and Full S6 by analogy with Kernel and Full F<:(Cardelli and Wegner 1985; Pierce

† Returning the channel is only worthwhile if the session type is made recursive, so that the same
channel can be used for more requests.

S. J. Gay 10

2002). The difference is that in Kernel S6 the bounds of quantified type variables do not
change when moving up the subtype relation, whereas in Full S6 the bounds are allowed
to vary. The following example illustrates a situation in which the increased flexibility of
Full S6 is needed.

Consider a mathematical server which provides the service of addition on any subtype
of real. It uses a session channel of type

S10 = &〈 plus(int 6 X 6 real) :?[X].?[X].![X].end 〉.

If the server is upgraded to work with complex numbers (assuming that real 6 complex)
then its session type becomes

S11 = &〈 plus(int 6 X 6 complex) :?[X].?[X].![X].end 〉.

If an old client is to work with the new server then, exactly as in Section 3.3, we require
S10 6 S11, which in turn requires variation of the upper bound of X.

Sections 3, 4 and 5 deal with Kernel S6. Section 6 defines Full S6.

2.8. Related work

Polymorphism in the style of the polymorphic lambda calculus (System F) (Girard 1972;
Reynolds 1974) has previously been studied in the pi calculus by (Turner 1996) and
(Pierce and Sangiorgi 2000), and implemented in the programming language Pict (Pierce
and Turner 2000). That approach to polymorphism is based on existential quantification,
as polymorphism is instantiated by a message consisting of a type and values of the same
type, and the scope of a type variable is a single message. Our approach is based on
universal quantification, and the scope of a type variable is an entire branch of commu-
nication, potentially including messages in both directions.

Weaker ML-style polymorphism has been studied in the pi calculus (or a related lan-
guage) by (Vasconcelos and Honda 1993) and (Gay 1993). A rather different style of
polymorphism has been proposed by (Liu and Walker 1995). It would be possible to
formulate an ML-style polymorphic type system for session types, but this has not yet
been done. The present paper is the first study of any kind of polymorphism for session
types.

The question of decidability of subtyping in our systems is clearly related to decidability
in F<:. Our proof of decidability for Kernel S6 is closely based on the corresponding proof
for Kernel F<:(Pierce 2002)[Chapter 28]. Our proof of undecidability for Full S6 is based
on an encoding of subtyping problems from Full F<:.

3. The language: syntax, semantics, type system

3.1. Syntax

Our language is based on monadic pi calculus with output prefixing (Milner et al. 1992;
Sangiorgi and Walker 2001) and is very similar syntactically to the language proposed
by (Gay and Hole 1999, 2005) for session types with subtyping. Synchronous output (i.e.

Bounded polymorphism in session types 11

output as a prefix) simplifies the theory of session types by ensuring that outputs on a
particular channel are unambiguously ordered at run-time. The significant modification
of the syntax is that bounded polymorphic definitions are associated with the branching
construct, and sending a label to make a choice also carries a specific type which instanti-
ates the polymorphic definition. The restriction to a monadic syntax (i.e. every message
is a single value rather than a tuple) is for notational convenience; the generalization to
polyadic messages is best handled by introducing an expression language which includes
product types. This issue is separate from the issues of bounded polymorphism which
are the point of this paper. In any case, in a session type, a polyadic message can always
be replaced by a sequence of monadic messages: for example, instead of ![int, real].S we
can consider ![int].![real].S.

To simplify the presentation we have restricted our language to a pure pi calculus
of names and channel types, and omitted recursive types. In Section 7 we discuss the
changes necessary to remove these restrictions; some of these extensions are required by
the examples in Section 2. We have also omitted the original pi calculus choice (+) and
name-matching constructs, which have little interaction with the type system.

The syntax of types is defined by the grammar in Figure 1, assuming an infinite
collection X, Y, . . . of type variables and an infinite collection l1, l2, . . . of labels. A type
variable X can occur in its dual form X. Duality for all session types is defined recursively
by the equations in Figure 2. The type variables Xi, in both normal and dual forms, are
bound in &〈 li(Ti 6 Xi 6 T ′

i) : Si 〉16i6n and ⊕〈 li(Ti 6 Xi 6 T ′
i) : Si 〉16i6n and are

free otherwise. We require each label in a branch or choice type to carry exactly one
type variable. This is for notational convenience and could easily be generalized. We
identify types up to α-equivalence and assume when necessary that the names of bound
type variables are different from each other and from the names of free type variables.
Substitution of types for type variables in types is defined recursively in Figure 3.

The syntax of processes is defined by the grammar in Figure 4. We assume an infinite
collection of names x, y, z, . . ., which is disjoint from the set of labels. Names may be
polarized, occurring as x+ or x− or simply as x. We write xp for a general polarized
name, where p represents an optional polarity. Duality on polarities, written p, exchanges
+ and −. As is common in presentations of the pi calculus, we do not distinguish between
names and variables. The definitions of binding and the free names of a process, fn(P),
are slightly non-standard. Binding occurrences of names are x in (νx:T)P and y in
xp?[y:T].P . In (νx:T)P , both x+ and x− may occur in P , and both are bound. In
xp?[y:T].P , only y (unpolarized) may occur in P . This will become clear when the type
system is presented, in Section 3.4. We work up to α-equivalence as usual, and in proofs
we assume that all bound names are distinct from each other and from all free names.

Most of the syntax of processes is standard. 0 is the inactive process, | is parallel
composition and (νx:T)P declares a local channel x with two ports, x+ and x−, of types
T and T respectively, for use in P . The process xp?[y:T].P receives the name y, which has
type T , on port xp, and then executes P . The process xp![yq].P outputs the name yq on
port xp and then executes P . The process xp.{li(Ti 6 Xi 6 T ′

i) :Pi}16i6n offers a choice
of subsequent behaviours on port xp. One of the Pi can be selected as the continuation
process by sending on port xp the appropriate label, li, and an accompanying type T

S. J. Gay 12

Session types S ::= X type variable

| X dual of type variable

| end terminated session

| ?[T].S input

| ![T].S output

| &〈 li(Ti 6 Xi 6 T ′
i) : Si 〉16i6n branch

| ⊕〈 li(Ti 6 Xi 6 T ′
i) : Si 〉16i6n choice

Types T ::= S session type

| [̂T] standard channel type

| Top top type

| Bot bottom type

Fig. 1. Types

X = X

X = X

end = end

?[T].S = ![T].S

![T].S = ?[T].S

&〈 li(Ti 6 Xi 6 T ′
i) : Si 〉16i6n = ⊕〈 li(Ti 6 Xi 6 T ′

i) : Si 〉16i6n

⊕〈 li(Ti 6 Xi 6 T ′
i) : Si 〉16i6n = &〈 li(Ti 6 Xi 6 T ′

i) : Si 〉16i6n

Top = Bot

Bot = Top

Fig. 2. Duality

X{U/X} = U

X{U/X} = U

Y {U/X} = Y if Y 6= X

Y {U/X} = Y if Y 6= X

end{U/X} = end

(?[T].S){U/X} = ?[T{U/X}].S{U/X}
(![T].S){U/X} = ![T{U/X}].S{U/X}

(&〈 li(Ti 6 Xi 6 Ui) : Si 〉16i6n){U/X} =

&〈 li(Ti{U/X} 6 Xi 6 Ui{U/X}) : Si{U/X} 〉16i6n
∗

(⊕〈 li(Ti 6 Xi 6 Ui) : Si 〉16i6n){U/X} =

⊕〈 li(Ti{U/X} 6 Xi 6 Ui{U/X}) : Si{U/X} 〉16i6n
∗

[̂T]{U/X} = [̂T{U/X}]
Top{U/X} = Top

Bot{U/X} = Bot

∗where X 6∈ {X1, . . . , Xn}

Fig. 3. Substitution of types for type variables in types

Bounded polymorphism in session types 13

P, Q ::= 0 terminated process

| P |Q parallel combination

| !P replication

| xp?[y:T].P input

| xp![yp].P output

| (νx:T)P channel creation

| xp.{li(Ti 6 Xi 6 Ti) : Pi}16i6n branch

| xp/l(T).P choice

Fig. 4. Processes

xq{up/v} = xq if x 6= v

x{up/v} = upi
i if x = v

0{up/v} = 0

(P |Q){up/v} = P{up/v} |Q{up/v}
(!P){up/v} = !(P{up/v})

(xq?[y:T].P){up/v} = xq{up/v}?[y:T].P{up/v}
(xq![yr].P){up/v} = xq{up/v}![yr{up/v}].P{up/v}
((νx:T)P){up/v} = (νx:T)P{up/v}

(xq.{li(Ti 6 Xi 6 Ui) : Pi}16i6n{up/v} =

xq{up/v}.{li(Ti 6 Xi 6 Ui) : Pi{up/v}}16i6n

(xq/l(T).P){up/v} = xq{up/v}/l(T).P{up/v}

Fig. 5. Substitution of names for names in processes

0{U/X} = 0

(P |Q){U/X} = P{U/X} |Q{U/X}
(xq?[y:T].P){U/X} = xq?[y:T{U/X}].P{U/X}

(!P){U/X} = !(P{U/X})
(xq![yr].P){U/X} = xq![yr].P{U/X}
((νx:T)P){U/X} = (νx:T{U/X})P{U/X}

(xq.{li(Ti 6 Xi 6 Ui) : Pi}16i6n{U/X} =

xq.{li(Ti{U/X} 6 Xi 6 Ui{U/X}) : Pi{U/X}}16i6n
∗

(xq/l(T).P){U/X} = xq/l(T{U/X}).P{U/X}

∗where X 6∈ {X1, . . . , Xn}

Fig. 6. Substitution of types for type variables in processes

S. J. Gay 14

such that Ti 6 T 6 T ′
i , as explained in Section 2. The process xp/l(T).P sends the label l

and type T on port xp in order to make a selection from an offered range of options, and
then executes P . We sometimes write (νx̃:T̃)P as shorthand for (νx1:T1) . . . (νxn:Tn)P .

Substitution of polarized names for unpolarized names, P{xp̃/y}, is defined recursively
in Figure 5. Substitution of types for type variables in processes, P{T/X}, is defined
recursively in Figure 6. In both cases we assume that α-conversion is used if necessary
to avoid variable capture.

Example: a multithreaded server

To illustrate our language further, we use a running example of a server which spawns a
separate thread to handle each request from a client. We assume that the types int and
real are available, along with elementary operations on them.

The server provides the services sqr and plus, described by the session type

S = &〈 sqr(int 6 X 6 real) :?[X].![X].end, plus(int 6 X 6 real) :?[X].?[X].![X].end 〉.

An individual run of the protocol is executed by the process thread, defined by

thread(x) = x.{ sqr(int 6 X 6 real) :x?[y:X].x![y2].0,

plus(int 6 X 6 real) :x?[y:X].x?[z:X].x![y + z].0 }.

The natural definition of the server, which receives a session channel on u, passes it to a
new thread, and is ready to receive another session channel, is

server(u) = u?[x:S].(thread(x) | server(u)).

In the absence of recursive process definitions, we use standard pi calculus programming
techniques to convert this definition into a replicated process in which a message on the
“trigger” channel t causes a copy of the replicated part to be made:

repserver(t, u) = !(t?[].u?[x:S].(thread(x) | t![].0)).

Here the message on t has no content and is a pure synchronization. To conform strictly
to our syntax, we could send a dummy value on t, but we will not bother.

The top-level server consists of repserver in parallel with a message on t to extract the
first copy of the replicated part:

server(u) = (νt:̂ [])(repserver(t, u) | t![].0).

A possible client is defined by

clientbody(v) = v/ sqr(int).v![3].v?[y:int].0
client(u) = (νx:S)u![x+].clientbody(x−)

and a complete system is

system(u) = client(u) | server(u).

Bounded polymorphism in session types 15

P | 0 ≡ P SC-Unit

P |Q ≡ Q | P SC-Comm

P | (Q |R) ≡ (P |Q) |R SC-Assoc

!P ≡ P | !P SC-Rep

(νx:T)P |Q ≡ (νx:T)(P |Q) if x, x+, x− 6∈ fn(Q) SC-Extr

(νx:̂ [T])0 ≡ 0 SC-Nil

(νx:end)0 ≡ 0 SC-NilS

(νx:T)(νy:U)P ≡ (νy:U)(νx:T)P SC-Switch

Fig. 7. Structural congruence

xp?[y:T].P | xp̄![zq].Q
x,−→ P{zq/y} |Q R-Com

1 6 j 6 n
R-Select

xp.{li(Ti 6 Xi 6 Ui) :Pi}16i6n | xp̄/lj(T).Q
x,lj(T)
−→ Pj{T/Xj} |Q

P
α,l(U)−→ P ′ α 6= x

R-New

(νx:T)P
α,l(U)−→ (νx:T)P ′

P
x,l(U)−→ P ′

R-NewS
(νx:T)P

τ,−→ (νx:tail(T, l(U)))P ′

P
α,l(T)−→ P ′

R-Par

P |Q α,l(T)−→ P ′ |Q

P ′ ≡ P P
α,l(T)−→ Q Q ≡ Q′

R-Cong

P ′ α,l(T)−→ Q′

Fig. 8. The reduction relation

3.2. Operational semantics

Following one of the standard approaches to pi calculus semantics (Milner 1991) we
define an operational semantics by means of a reduction relation on processes, making
use of a structural congruence relation. Structural congruence is the smallest congruence
relation on processes which contains α-equivalence and is closed under the equations in
Figure 7. The structural congruence rules are standard. Rule SC-Nil specifies the type
end in the ν-binding, because of the way in which the type system (Section 3.4) requires
the 0 process to be typed in an environment of fully-used channels.

The reduction relation is defined inductively by the rules in Figure 8. To enable our
Type Preservation Theorem to be stated (Theorem 1, Section 4), reductions are anno-
tated with labels of the form α, l(T). These labels indicate the channel name and branch
selection label, if any, which are involved in each reduction. Consider a reduction which

tail(?[T].S,) = S

tail(![T].S,) = S

tail(&〈 li(Ti 6 Xi 6 Ui) : Si 〉16i6n, lj(T)) = Sj{T/Xj}
tail(⊕〈 li(Ti 6 Xi 6 Ui) : Si 〉16i6n, lj(T)) = Sj{T/Xj}

Fig. 9. The tail function

S. J. Gay 16

involves communication on channel x. If x is not ν-bound then α = x. If x is ν-bound
then α = τ . If the reduction consists of transmission of a choice label then l is that label
and T is the associated type, otherwise l(T) = . We assume that the label does not
occur as a choice label. The labels have no semantic significance and would be omitted
in any implementation.

Rule R-Com is the standard communication reduction for the pi calculus. Substitution
of a polarized name for and unpolarized name is defined in Figure 5. The channel on
which communication takes place, and the name which is transmitted, are polarized,
perhaps as the result of substitutions arising from earlier reductions.

Rule R-Select resolves a choice between labelled processes, and instantiates polymor-
phism, by sending a label and a type along a channel. The standard rule for reduction
under a ν-binding is replaced by two rules, R-New and R-NewS. These rules use the an-
notation on the reduction in the hypothesis to calculate the correct type for the ν-binding
in the conclusion. The function tail is defined in Figure 9. Rules R-Par and R-Cong are
standard.

Example: execution of the multithreaded server

Continuing the running example, we show a reduction sequence including complete exe-
cution of the client. Each step is either a reduction, a conversion by structural congruence,
or an application of the definition of a process, and in each case we indicate which rule
justifies it. For clarity we show the channel involved in the reduction even when it should
be converted to τ by a surrounding ν.

First we follow the execution of (νx:S)(clientbody(x−) | thread(x+)), omitting the top-
level (νx:S).

clientbody(x−) | thread(x+)
= definition

x−/ sqr(int).x−![3].x−?[y:int].0 |
x+.{ sqr(int 6 X 6 real) : . . ., plus(int 6 X 6 real) : . . . }

↓ x, sqr(int) R-Select

x−![3].x−?[y:int].0 | x?[y:int].x![y2].0
↓ x R-Com

x−?[y:int].0 | x![9].0
↓ x R-Com

0 | 0

We now show how a copy of repserver is extracted from server, and how client sends a
session channel to repserver. This is not specific to session types, and simply illustrates

Bounded polymorphism in session types 17

recursive behaviour in pi calculus.

system(u)
= definition

client(u) | server(u)
= definition

(νx:S)u![x+].clientbody(x−) | (νt:̂ [])(repserver(t, u) | t![].0)
≡ definition

(νx:S)u![x+].clientbody(x−) |
(νt:̂ [])(!(t?[].u?[z:S].(thread(z) | t![].0)) | t![].0)
≡ SC-Rep

(νx:S)u![x+].clientbody(x−) |
(νt:̂ [])(t?[].u?[z:S].(thread(z) | t![].0)|!(t?[].u?[z:S].(thread(z) | t![].0)) | t![].0)

↓ t R-Com

(νx:S)u![x+].clientbody(x−) |
(νt:̂ [])(u?[z:S].(thread(z) | t![].0)|!(t?[].u?[z:S].(thread(z) | t![].0)) | 0)

≡ SC-Unit

(νx:S)u![x+].clientbody(x−) |
(νt:̂ [])(u?[z:S].(thread(z) | t![].0)|!(t?[].u?[z:S].(thread(z) | t![].0)))

= definition
(νx:S)u![x+].clientbody(x−) |

(νt:̂ [])(u?[z:S].(thread(z) | t![].0) | repserver(t, u))
≡ SC-Extr

(νx:S)(νt:̂ [])(u![x+].clientbody(x−) | u?[z:S].(thread(z) | t![].0) | repserver(t, u))
↓ u R-Com

(νx:S)(νt:̂ [])(clientbody(x−) | thread(x+) | t![].0 | repserver(t, u))
≡ SC-Extr

(νx:S)(clientbody(x−) | thread(x+)) | (νt:̂ [])(t![].0 | repserver(t, u))
= definition

(νx:S)(clientbody(x−) | thread(x+)) | server(u)

3.3. Subtyping (Kernel S6)

The subtype relation is based on that of (Gay and Hole 1999, 2005), with extensions
for bounded polymorphism. Because types contain type variables with upper and lower
bounds, subtyping is defined relative to an environment ∆ = T1 6 X1 6 T ′

1, . . . , Tn 6
Xn 6 T ′

n in which the order of bounded type variables is significant and any type variables
in Ti, T

′
i are taken from {X1, . . . , Xi−1}. The upper and lower bounds of the type variables

in branch (&) and choice (⊕) types do not change when moving up the subtype relation,
analogously to Kernel F<:(Cardelli and Wegner 1985; Pierce 2002). Note that the Top

and Bot types are extremal over all types, not just session types. We refer to this system of
subtyping for session types as Kernel S6 or just S6. Our inductive definition of subtyping,
according to the rules in Figure 10, is algorithmic in the terminology of (Pierce 2002) —
that is to say, reflexivity and transitivity are theorems rather than definitions.

S. J. Gay 18

` ∅ E-Empty
` ∆ ∆ ` T 6 U X 6∈ ∆

E-Extend
` ∆, T 6 X 6 U

` ∆
S-Top

∆ ` T 6 Top

` ∆
S-Bot

∆ ` Bot 6 T

` ∆
S-Refl1

∆ ` X 6 X

` ∆
S-Refl2

∆ ` X 6 X

` ∆ T 6 X 6 U ∈ ∆ ∆ ` U 6 V
S-Tr1

∆ ` X 6 V

` ∆ T 6 X 6 U ∈ ∆ ∆ ` V 6 T
S-Tr2

∆ ` V 6 X

` ∆ T 6 X 6 U ∈ ∆ ∆ ` T 6 V
S-Tr3

∆ ` X 6 V

` ∆ T 6 X 6 U ∈ ∆ ∆ ` V 6 U
S-Tr4

∆ ` V 6 X

` ∆
S-End

∆ ` end 6 end

` ∆
S-Chan

∆ ` [̂T] 6 [̂T]

` ∆ ∆ ` V 6 W ∆ ` T 6 U
S-In

∆ ` ?[T].V 6 ?[U].W

` ∆ ∆ ` V 6 W ∆ ` U 6 T
S-Out

∆ ` ![T].V 6 ![U].W

m 6 n ∀16i6m(` ∆, Ti 6 Xi 6 Ui and ∆, Ti 6 Xi 6 Ui ` Ri 6 Si)
S-Branch

∆ ` &〈 li(Ti 6 Xi 6 Ui) : Ri 〉16i6m 6 &〈 li(Ti 6 Xi 6 Ui) : Si 〉16i6n

m 6 n ∀16i6m(` ∆, Ti 6 Xi 6 Ui and ∆, Ti 6 Xi 6 Ui ` Ri 6 Si)
S-Choice

∆ ` ⊕〈 li(Ti 6 Xi 6 Ui) : Ri 〉16i6n 6 ⊕〈 li(Ti 6 Xi 6 Ui) : Si 〉16i6m

Fig. 10. Subtyping rules

Here is an example of a subtyping derivation.

(∗)

(∗) ∆ ` real 6 real
S-Tr1

∆ ` X 6 real

(∗)
S-End

∆ ` end 6 end
S-In

∆ `?[X].end 6 ?[real].end
S-Branch

∅ ` &〈 a(int 6 X 6 real) :?[X].end 〉 6 &〈 a(int 6 X 6 real) :?[real].end 〉

The environment ∆ is int 6 X 6 real. Each hypothesis (∗) is ` int 6 real, which follows
from the assumption int 6 real by rule E-Extend.

3.4. Type system

The rules in Figure 11 inductively define judgements of the form ∆ ;Γ ` P where ∆ is
a list of type variables with upper and lower bounds, exactly as in Section 3.3, and Γ is
an environment. Such a judgement means that the process P uses channels as specified
by the types and bounds in ∆ ; Γ. A process is either correctly typed or not; we do not

Bounded polymorphism in session types 19

assign types to processes. Implicitly, whenever a ∆-environment appears in a typing rule,
the judgement ` ∆ is one of the hypotheses.

Definition 1. An environment Γ is a function from optionally polarized names to types.
The types Bot and Top are not allowed in an environment. If xp ∈ dom(Γ) and Γ(xp) = T

then we write xp : T ∈ Γ. Similarly, we sometimes write an environment explicitly as
Γ = xp1

1 : T1, . . . , x
pn
n : Tn. If xp 6∈ dom(Γ) then we write Γ, xp : T for the environment

which extends Γ by mapping xp to T , as long as this environment satisfies the conditions
below.

For any environment Γ and any name x, the following conditions must hold.

1 If x ∈ dom(Γ) then x+ 6∈ dom(Γ) and x− 6∈ dom(Γ).
2 If xp ∈ dom(Γ) and p is either + or − then x 6∈ dom(Γ) and xp 6∈ dom(Γ) and Γ(xp)

is a session type.

Definition 2. Let Γ be an environment.

1 Γ is unlimited if it contains no session types.
2 Γ is completed if every session type in Γ is end.
3 Γ is balanced if whenever x+ : S ∈ Γ and x− : S′ ∈ Γ then S′ = S.

Definition 3. Addition of a typed name to an environment is defined by

Γ + x+ : S = Γ, x+ : S if x+ 6∈ dom(Γ) and x 6∈ dom(Γ)
and S is a session type

Γ + x− : S = Γ, x− : S if x− 6∈ dom(Γ) and x 6∈ dom(Γ)
and S is a session type

Γ + x : T = Γ, x : T if x 6∈ dom(Γ) and x+ 6∈ dom(Γ)
and x− 6∈ dom(Γ)

(Γ, x : T) + x : T = Γ, x : T if T is not a session type

and is undefined in all other cases. Addition is extended inductively to a partial binary
operation on environments.

The typing rules are similar to those of (Gay and Hole 2005) and share two character-
istic features which are worth pointing out here. The first is that as a typing derivation
is constructed, the session types in the environment change to reflect the sequence of
communication. This can be seen in rules T-InS, T-OutS, T-Offer and T-Choose. For
example, consider the following typing derivation:

x+ : end ` 0
T-OutS

x+ : ![int].end ` x+![2].0

As a result, the Type Preservation Theorem (Theorem 1, Section 4) must, as usual for
session types, describe the way in which the types of session channels change during
execution of a process.

The second is the way in which the rules guarantee that each end (x+ or x−) of a session
channel is owned by just one process. This is achieved by means of the addition operation
on environments. Addition is a partial operation, and the typing rules which use it have

S. J. Gay 20

Γ completed
T-Nil

∆;Γ ` 0

∆; Γ1 ` P ∆;Γ2 ` Q
T-Par

∆;Γ1 + Γ2 ` P |Q

∆ ; Γ ` P Γ unlimited
T-Rep

∆ ; Γ `!P

∆;Γ, x:̂ [T] ` P
T-New

∆; Γ ` (νx:̂ [T])P

∆;Γ, x+:S, x−:S ` P
T-NewS

∆;Γ ` (νx:S)P

∆ ` T 6 ?[U].S ∆; Γ, xp:S, y:U ` P
T-InS

∆ ;Γ, xp:T ` xp?[y:U].P

∆ ` T 6 ![U].S ∆; Γ, xp:S ` P
T-OutS

∆ ; (Γ, xp:T) + yq:U ` xp![yq].P

∆ ` T 6 [̂V] ∆ ` V 6 U ∆ ;Γ, x:T, y:U ` P
T-In

∆;Γ, x:T ` x?[y:U].P

∆ ` T 6 [̂V] ∆ ` U 6 V ∆ ; Γ, x:T ` P
T-Out

∆; (Γ, x:T) + yq:U ` x![yq].P

∆ ` T 6 &〈 li(Ti 6 Xi 6 Ui) : Si 〉16i6n ∀16i6n(∆, Ti 6 Xi 6 Ui; Γ, xp:Si ` Pi)
T-Offer

∆;Γ, xp:T ` xp.{li(Ti 6 Xi 6 Ui) :Pi}16i6n

∆ ` T 6 ⊕〈 li(Ti 6 Xi 6 Ui) : Si 〉16i6n ∆; Γ, xp:Sj{T/Xj} ` P

l = lj ∈ {l1, . . . , ln} ∆ ` Tj 6 U 6 Uj U 6= Bot, Top
T-Choose

∆;Γ, xp:T ` xp/l(U).P

Fig. 11. Typing rules

as an implicit hypothesis the requirement that their use of addition is well-defined. In
rule T-Par, the construction of Γ1 + Γ2 requires that each session channel occurs in at
most one of Γ1 and Γ2. In rule T-OutS, the construction of Γ + yq : Ũ requires that the
name yq does not occur in Γ and is therefore not used in the continuation process P

after it has been sent on xp. This use of addition is based on the linear type system of
(Kobayashi et al. 1999).

Rule T-Nil ensures that a process contains enough communication operations to fully
use each session channel. However, it is not possible to guarantee that every session
channel is fully used at run-time, because of the possibility of deadlocks. This point
is discussed further by (Gay and Hole 2005). In rule T-Offer each branch is typed
with the corresponding type for the channel, including the appropriate upper and lower
bounds for the type variable; in rule T-Choose the continuation process is typed with
the appropriately-instantiated polymorphic channel type. A crucial feature of the system
is that polymorphism cannot be instantiated with the types Bot or Top, as indicated by
the condition U 6= Bot,Top in rule T-Choose. This condition guarantees that if a type
variable has at least one bound which is not Bot or Top then any type instantiating it
has the same structure as that bound. Rule T-NewS creates both ends of a new channel

Bounded polymorphism in session types 21

with dual types. The use of S indicates that the type must be a session type, meaning
either a definite (non-variable) session type or a type variable which can be proved to be
bounded by a definite session type.

Example: typing the multithreaded server

We now show typing derivations for some of the processes in the running example. First,
thread. The final step of the derivation is

∅ ` S 6 &〈 sqr(int 6 X 6 real) :?[X].![X].end,

plus(int 6 X 6 real) :?[X].?[X].![X].end 〉
int 6 X 6 real; x:?[X].![X].end ` x?[y:X].x![y2].0

int 6 X 6 real; x:?[X].?[X].![X].end ` x?[y:X].x?[z:X].x![y + z].0
T-Offer

∅; x:S ` x.{ sqr(int 6 X 6 real) :x?[y:X].x![y2].0,

plus(int 6 X 6 real) :x?[y:X].x?[z:X].x![y + z].0 }

The subtyping judgement (first hypothesis) follows immediately from the definition of S.
The derivation of the second hypothesis is as follows (the third is similar). We omit the
subtyping judgements, which are simply instances of reflexivity. We also make use of the
necessary adaptations for an expression language allowing y2 to be typed.

rules for expressions

int 6 X 6 real; y:X ` y2:X

x:end, y:X completed
T-Nil

int 6 X 6 real; x:end, y:X ` 0
T-OutS

int 6 X 6 real; x:![X].end, y:X ` x![y2].0
T-InS

int 6 X 6 real; x:?[X].![X].end ` x?[y:X].x![y2].0

Next, client. Again we omit the subtyping judgements. We also omit the empty ∆-
environments.

∅ ` int 6 int 6 real

u:̂ [S] ` 3:int

u:̂ [S], x−:end, y:int completed
T-Nil

u:̂ [S], x−:end, y:int ` 0
T-InS

u:̂ [S], x−:?[int].end ` x−?[y:int].0
T-OutS

u:̂ [S], x−:![int].?[int].end ` x−![3].x−?[y:int].0
T-Choose

u:̂ [S], x−:S ` x−/ sqr(int).x−![3].x−?[y:int].0
T-Out

u:̂ [S], x+:S, x−:S ` u![x+].x−/ sqr(int).x−![3].x−?[y:int].0
T-NewS

u:̂ [S] ` (νx:S)u![x+].x−/ sqr(int).x−![3].x−?[y:int].0

Observe that in the second hypothesis of T-Choose, the type of x− is the type of the sqr

branch of S with int substituted for X. This derivation also shows how after u![x+], x+

is not in the environment above T-Out.
In these example derivations we have omitted several subtyping judgements. For ex-

ample, in the general form of rule T-OutS there is a hypothesis ∆ ` T 6 ![U].S. In
our derivations for the running example, these hypotheses are always straightforward
instances of reflexivity of subtyping, because T is always an explicit type expression of
the correct form. In more complex examples, T could be a type variable X, and in this

S. J. Gay 22

case it would be necessary to make use of information (from ∆) about the bounds of X

in order to construct a derivation of ∆ ` X 6 ![U].S. This would be seen in a typing
derivation for the example in Section 2.5.

4. Soundness of the type system

The proof that correctly-typed processes have no communication errors at run-time fol-
lows a pattern familiar from other type systems for the pi calculus, and in particular is
similar to the corresponding proof in (Gay and Hole 2005). By communication error we
mean an attempt to transmit a message of a form that the receiver is not prepared for.
There are several possibilities.

1 Sending a value whose type does not match (i.e. is not a subtype of) the type declared
by the receiver. For example:

x+?[y:int].0 | x−![2.5].0

or

x+?[y:?[int].end].0 | (νz:?[?[int].end].end)x−![z+].0.

2 Selecting a label that is not one of the options offered by the receiver. For example:

x+.{ sqr(int 6 X 6 real) :x?[a:X].x![a2].0 } | x−/ cos(real).x−![2].x−?[y:real].0

3 Instantiating polymorphism with a type that is not within the declared bounds. For
example:

x+.{ sqr(int 6 X 6 real) :x?[a:X].x![a2].0 } | x−/ sqr(?[int].end).0

4 Selecting a label when the receiver is expecting a message. For example:

x+?[y:int].0 | x−/ sqr(?[int].end).0

Similarly, sending a message when the receiver is expecting a label.
5 Duplication of a channel port. For example:

x+?[y:int].0 | x+?[z:real].0 | x−![2].0

In cases 2 and 4 the operational semantics does not define a reduction. We regard these
cases as situations in which it appears superficially that a communication could be pos-
sible, because there is an input on x+ and an output on x−, but communication does
not take place because of a mismatch between the kind of input and the kind of output.

All of the above are also examples of immediate communication errors, meaning that
the send and receive involved are the first action in each process. In general, a commu-
nication error could arise after a number of correct communication steps.

Our strategy for proving that a correctly-typed process has no communication errors
is to prove that it has no immediate communication errors (Theorem 2) and that a
successful communication step results in another correctly-typed process (Theorem 1).

We first prove the necessary lemmas showing that typings are preserved by structural
congruence and by substitutions of names for names and types for type variables.

Bounded polymorphism in session types 23

At the top level we are interested in the execution of closed processes which are typable
in an empty environment: ∅ ; ∅ ` P .

It is worth noting that because we do not assign types to terms, many of the complex-
ities of F<:(meets and joins, minimal types and so on) do not arise in our system.

Lemma 1. T{U/X} = T{U/X}.

Proof. Straightforward induction on the structure of T .

Lemma 2. tail(S, l(U)) = tail(S, l(U)).

Proof. Directly from the definition of tail , using Lemma 1.

Lemma 3 (Weakening in subtyping judgements). If ` ∆ and ∆ ` T 6 U and
` ∆,∆′ then ∆,∆′ ` T 6 U and the derivations have the same size.

Proof. Straightforward induction on the derivation of ∆ ` T 6 U .

Lemma 4 (Subtyping and duality). If ∆ ` T 6 U then ∆ ` U 6 T and the
derivations have the same size.

Proof. Straightforward induction on the derivation of ∆ ` T 6 U .

Lemma 5 (Reflexivity of subtyping). ∆ ` T 6 T .

Proof. Straightforward induction on the structure of T .

Lemma 6 (Transitivity of subtyping). If ∆ ` T 6 U and ∆ ` U 6 V then ∆ ` T 6
V .

Proof. By induction on the sum of the sizes of the derivations of ∆ ` T 6 U and
∆ ` U 6 V . If either derivation finishes with S-Refli or S-End, or if the first derivation
finishes with S-Bot, or if the second derivation finishes with S-Top, then the conclusion
is immediate. If the derivation of ∆ ` T 6 U finishes with an application of S-Tri then
one of the four following cases applies.

— S-Tr1: In this case T = X, and we have T1 6 X 6 T2 ∈ ∆ and ∆ ` T2 6 U . The
induction hypothesis gives ∆ ` T2 6 V , and S-Tr1 gives ∆ ` X 6 V as required.

— S-Tr2: In this case U = X, and we have T1 6 X 6 T2 ∈ ∆ and ∆ ` T 6 T1. The last
rule in the derivation of ∆ ` X 6 V must be S-Tr1 (the cases of S-Refl1 and S-Top

have been eliminated), and we have ∆ ` T2 6 V . The derivation of ` ∆ contains
a derivation of ∆′ ` T1 6 T2, for some ∆′ ⊂ ∆. By Lemma 3, ∆ ` T1 6 T2 with
a derivation of the same size. The induction hypothesis applied to ∆ ` T 6 T1 and
∆ ` T1 6 T2 gives ∆ ` T 6 T2. Applying the induction hypothesis to this judgement
and ∆ ` T2 6 V gives ∆ ` T 6 V as required.

— S-Tr3: In this case T = X, and we have T1 6 X 6 T2 ∈ ∆ and ∆ ` T1 6 U . The
induction hypothesis gives ∆ ` T1 6 V , and S-Tr3 gives ∆ ` X 6 V as required.

— S-Tr4: In this case U = X, and we have T1 6 X 6 T2 ∈ ∆ and ∆ ` T 6 T2. The last
rule in the derivation of ∆ ` X 6 V must be S-Tr3 (the cases of S-Refl2 and S-Top

have been eliminated), and we have ∆ ` T1 6 V . The derivation of ` ∆ contains a

S. J. Gay 24

derivation of ∆′ ` T1 6 T2, for some ∆′ ⊂ ∆. By Lemma 4, ∆′ ` T2 6 T1 with a
derivation of the same size. By Lemma 3, ∆ ` T1 6 T2, with a derivation again of the
same size. The induction hypothesis applied to ∆ ` T 6 T2 and ∆ ` T2 6 T1 gives
∆ ` T 6 T1. Applying the induction hypothesis to this judgement and ∆ ` T1 6 V

gives ∆ ` T 6 V as required.

If the derivation of ∆ ` U 6 V finishes with an application of S-Tri then there are
four cases which are similar to the cases above. The remaining possibilities are that the
derivations of ∆ ` T 6 U and ∆ ` U 6 V finish with applications of the same rule,
namely one of S-Chan, S-In, S-Out, S-Branch and S-Choice. These cases proceed by
straightforward use of the induction hypothesis.

Lemma 7 (Substitution of types preserves subtyping).
If ∆, T1 6 X 6 T2,∆′ ` T 6 U and ∆ ` T1 6 V and ∆ ` V 6 T2 then ∆,∆′{V/X} `

T{V/X} 6 U{V/X}.

Proof. Straightforward induction on the derivation of ∆, T1 6 X 6 T2,∆′ ` T 6 U .

Lemma 8. If ∆ ; Γ, xp : S ` P and S is a session type and xp 6∈ fn(P) then S = end.

Proof. A straightforward induction on the derivation of ∆ ; Γ, xp : S ` P , ultimately
depending on the hypothesis that the environment in T-Nil is completed.

Lemma 9. If ∆ ; Γ ` P and x 6∈ dom(Γ) and T is not a session type then ∆ ; Γ, x:T ` P .

Proof. A straightforward induction on the derivation of ∆ ; Γ ` P , ultimately depend-
ing on the fact that adding a non-session type to a completed or unlimited environment
produces an environment which is also completed or unlimited.

Lemma 10. If ∆ ; Γ ` P and xp 6∈ dom(Γ) then ∆ ; Γ, xp:end ` P .

Proof. A straightforward induction on the derivation of ∆ ; Γ ` P .

Lemma 11. If ∆ ; Γ, xp:end ` P and xp 6∈ fn(P) then ∆ ; Γ ` P .

Proof. A straightforward induction on the derivation of ∆ ; Γ, xp:end ` P .

Lemma 12. If ∆ ; Γ ` P then fn(P) ⊆ dom(Γ).

Proof. A straightforward induction on the derivation of ∆ ; Γ ` P .

Lemma 13 (Structural congruence preserves typing).
If ∆ ; Γ ` P and P ≡ Q then ∆ ; Γ ` Q.

Proof. By induction on the derivation of P ≡ Q, with a case-analysis on the last rule
used. The inductive cases are the congruence rules, and are straightforward. Of the other
cases, we show SC-Extr, in both directions, in the case involving a session type.

Bounded polymorphism in session types 25

(Left-to-right): We have

∆ ; Γ1, x
+ : S, x− : S ` P

T-NewS
∆ ;Γ1 ` (νx : S)P ∆ ;Γ2 ` Q

T-Par
∆ ;Γ1 + Γ2 ` (νx : S)P |Q

which can be rearranged to give

∆ ; Γ1, x
+ : S, x− : S ` P ∆ ;Γ2 ` Q

T-Par
∆ ; (Γ1 + Γ2), x+ : S, x− : S ` P |Q

T-NewS
∆ ;Γ1 + Γ2 ` (νx : S)(P |Q)

because we can assume that x+, x− 6∈ dom(Γ2) by the variable convention.
(Right-to-left): We have

∆ ; Γ1 ` P ∆ ;Γ2 ` Q
T-Par

∆ ;Γ, x+ : S, x− : S ` P |Q
T-NewS

∆ ;Γ ` (νx : S)(P |Q)

where Γ1 + Γ2 = Γ, x+ : S, x− : S. By assumption, x+ 6∈ fn(Q) and x− 6∈ fn(Q).
If S 6= end (hence also S 6= end) then Lemma 8 gives x+, x− 6∈ dom(Γ2). Therefore
Γ1 = Γ′

1, x
+ : S, x− : S with Γ′

1 + Γ2 = Γ. We can construct the derivation

∆ ; Γ′
1, x

+ : S, x− : S ` P
T-NewS

∆ ;Γ′
1 ` (νx : S)P ∆ ;Γ2 ` Q

T-Par
∆ ;Γ ` (νx : S)P |Q

If S = end (hence also S = end) then by Lemmas 10 and 11 we can remove x+ and
x− (if they occur) from Γ2 to give Γ′

2, and add them to Γ1 to give Γ′
1, with the result

that ∆ ; Γ′
1 ` P , ∆ ; Γ′

2 ` Q, Γ′
1 = Γ′′

1 , x+ : end, x− : end and Γ′′
1 + Γ′

2 = Γ. We can then
construct the derivation

∆ ; Γ′′
1 , x+ : end, x− : end ` P

T-NewS
∆ ;Γ′′

1 ` (νx : end)P ∆ ;Γ′
2 ` Q

T-Par
∆ ;Γ ` (νx : end)P |Q

Lemma 14 (Substitution of names preserves typing).
If ∆ ; Γ, x:U ` P and ∆ ` T 6 U and Γ + yp:T is defined then ∆ ; Γ + yp:T ` P{yp/x}.

Proof. By induction on the derivation of ∆ ; Γ, x:U ` P . Note that T and U cannot
be Bot or Top because of the assumptions on environments. The proof is similar to the
proof of the substitution lemma given by (Gay and Hole 2005). Lemmas 6 and 12 are
used.

Lemma 15 (Substitution of types preserves typing). If ∆, T1 6 X 6 T2,∆′ ; Γ ` P

and ∆ ` T1 6 T and ∆ `6 T2 and T 6= Bot,Top then ∆,∆′{T/X} ; Γ{T/X} ` P{T/X}.

S. J. Gay 26

Proof. By induction on the derivation of ∆, T1 6 X 6 T2,∆′ ; Γ ` P .

We now prove that reduction preserves typability. It is sufficient to prove this with an
empty ∆-environment; the inductive cases do not require generalization of ∆.

Theorem 1 (Type preservation).

1 If ∅ ; Γ ` P and P
τ,−→ Q then ∅ ; Γ ` Q.

2 If ∅ ; Γ, x+:S, x−:S ` P and P
x,−→ Q then ∅ ; Γ, x+:tail(S,), x−:tail(S,) ` Q.

3 If ∅ ; Γ, x+:S, x−:S ` P and P
x,l(U)−→ Q then ∅ ; Γ, x+:tail(S, l(U)), x−:tail(S, l(U)) `

Q.
4 If ∅ ; Γ, x:T ` P and P

x,−→ Q then ∅ ; Γ, x:T ` Q.

Proof. By induction on the derivation of the reduction, considering the cases appropri-
ate for the form of the label. During the proof we omit the empty ∆-environment from
the typing judgements.

1 The important case is when the derivation of the reduction ends with R-NewS. We
have

P
x,l(U)−→ P ′

R-NewS
(νx : S)P

τ,−→ (νx : tail(S, l(U)))P ′

and the derivation of Γ ` (νx : S)P ends with

Γ, x+ : S, x− : S ` P
T-NewS

Γ ` (νx : S)P

By the induction hypothesis (clause 2) we have

Γ, x+ : tail(S, l(U), x− : tail(S, l(U)) ` P ′

By Lemma 2, tail(S, l(U)) = tail(S, l(U)). So T-NewS gives

Γ ` (νx : tail(S, l(U)))P ′

as required.
The cases for R-New, R-Par and R-Cong follow straightforwardly from the induction
hypothesis, using Lemma 13 for R-Cong.

2 The important case is R-Com. We have

xp?[y:T].P | xp̄![zq].Q
x,−→ P{zq/y} |Q

and the form of the environment Γ, x+:S, x−:S means that p is either + or −; without
loss of generality assume p = +. The derivation of Γ, x+:S, x−:S ` x+?[y:T].P |
x−![zq].Q ends as follows, where Γ1 + Γ2 = Γ and Γ3 + zq:V = Γ2.

` S 6 ?[T].S1 Γ1, x
+:S1, y:T ` P

T-InS
Γ1, x

+:S ` x+?[y:T].P

` S 6 ![V].S2 Γ3, x
−:S2 ` Q

T-OutS
Γ2, x

−:S ` x−![zq].Q
T-Par

Γ, x+:S, x−:S ` x+?[y:T].P | x−![zq].Q

Because the ∆-environments are empty, S cannot be a type variable. Also, the general

Bounded polymorphism in session types 27

assumptions on environments mean that S 6= Bot. Therefore the condition S 6 ?[T].S1

means that S =?[U].S3 with U 6 T and S3 6 S1. So S = ![U].S3 and the condition
S 6 ![V].S2 means that V 6 U and S3 6 S2. By transitivity (Lemma 6) we have
V 6 T , and Lemma 14 gives

(Γ1, x
+:S1) + zq:V ` P{zq/y}.

Using Lemma 14 again gives

(Γ1, x
+:S3) + zq:V ` P{zq/y}

Γ3, x
−:S3 ` Q.

By using T-Par we can derive

(Γ1, x
+:S3) + zq:Ṽ + (Γ3, x

−:S3) ` P{zq/y} |Q

which is the desired judgement, because Γ1 + zq:V + Γ3 = Γ and S3 = tail(S,). The
cases of R-New, R-Par and R-Cong again follow straightforwardly from the induction
hypothesis.

3 The important case is R-Select. We have

xp.{li(Ti 6 Xi 6 Ui) :Pi}16i6n | xp̄/lj(T).Q
x,lj(T)−→ Pj{T/Xj} |Q

with 1 6 j 6 n. Again we assume without loss of generality that p = +. The derivation
of Γ, x+:S, x−:S ` xp.{li(Ti 6 Xi 6 Ui) :Pi}16i6n | xp̄/lj(T).Q ends as follows; Γ1 +
Γ2 = Γ. Note that S must be of the form &〈 li(Ti 6 Xi 6 Ui) : S′

i 〉16i6m with m 6
n and, for each i, S′

i 6 Si. Therefore S = ⊕〈 li(Ti 6 Xi 6 Ui) : S′
i 〉16i6m, and

T-Choose also requires that S′
j 6 S′.

∀16i6n(Ti 6 Xi 6 Ui; Γ1, x
+:Si ` Pi)

Γ1, x
+:S ` xp.{li(Ti 6 Xi 6 Ui) :Pi}16i6n

(∗) Γ2, x
−:S′{T/Xj} ` Q

Γ2, x
−:S ` xp̄/lj(T).Q

Γ, x+:S, x−:S ` xp.{li(Ti 6 Xi 6 Ui) :Pi}16i6n | xp̄/lj(T).Q

The additional hypotheses (*) are ` Tj 6 T 6 Uj and T 6= Bot,Top. By Lemma 15,
Γ1, x

+:Sj{T/Xj} ` Pj{T/Xj}. By Lemmas 7 and 14, Γ1, x
+:S′

j{T/Xj} ` Pj{T/Xj}.
Also by Lemma 14 we have Γ2, x

−:S′
j{T/Xj} ` Q. By using T-Par we can derive

Γ, x+:S′
j{T/Xj}, x−:S′

j{T/Xj} ` Pj{T/Xj} |Q

which, because tail(S, lj(T)) = S′
j{T/Xj}, is the required typing. The cases of R-New,

R-Par and R-Cong again follow straightforwardly from the induction hypothesis.
4 The main case is R-Com, which follows by similar but simpler reasoning to that for

clause (2). The others follow straightforwardly from the induction hypothesis.

We now prove that a correctly-typed process contains no immediate possibilities for a
communication error. We need to assume that the process is typed in a balanced envi-
ronment; the Type Preservation theorem guarantees that the property of being typable
in a balanced environment is preserved by reduction.

In order to state a Runtime Safety theorem, we introduce some terminology.

S. J. Gay 28

Definition 4. A process is an xp-process if it is ready to interact on xp, i.e. if it has one
of the following forms.

1 xp?[y:T].P
2 xp![yq].P
3 xp.{li(Ti 6 Xi 6 Ti) : Pi}16i6n

4 xp/l(T).P

Theorem 2 (Runtime safety). Let ∅ ; Γ ` P where Γ is balanced.

1 If P ≡ (νũ:T̃)(P1 | . . . | Pn) then, for any x, at most one of the Pi is an x+-process
and at most one is an x−-process.

2 If P ≡ (νũ:T̃)(P1 |P2 |Q) and P1 is an x+-process and P2 is an x−-process then either

(a) P1 is an input and P2 is an output (or vice versa), or

(b) P1 is an offer and P2 is a choose (or vice versa).

3 If P ≡ (νũ:T̃)(xp?[y:V].P1 | xp![zq].P2 |Q) then either

(a) p is blank and among Γ, ũ:T̃ we have x:̂ [U] and zq:W with ∅ ` W 6 U 6 V

(b) p is not blank and among Γ, ũ:T̃ we have xp:?[U].S and xp:![U].S and zq:W with
∅ ` W 6 U 6 V .

4 If P ≡ (νũ:T̃)(xp.{ li(Ti 6 Xi 6 Ui) : Pi }16i6n |xp/l(U).Q |R) then l ∈ {l1, . . . , ln},
l = lj say, and among Γ, ũ:T̃ we have xp:&〈 li(Ti 6 Xi 6 Ui) : Si 〉16i6m with m 6 n

and ∅ ` Tj 6 U 6 Uj .

Proof. By analyzing the final steps in the derivation of ∅ ; Γ ` P , and using the infor-
mation in the hypotheses of the typing rules used. Note that the T̃ may be session types
or other types.

At the top level a process P is typechecked in the empty environment. The Type
Preservation theorem guarantees that as P reduces, each subsequent process Q is typable;
the Runtime Safety theorem guarantees that Q has no immediate communication errors.
Therefore no communication errors occur during the execution of P .

5. Typechecking

Several steps are necessary in order to convert the typing and subtyping rules of Sec-
tion 3 into a practical typechecking algorithm. The first step is that the typing rules must
be converted from declarative to algorithmic form; specifically, so that the splitting of
the environment in T-Par can be calculated. This process is standard for type systems
with linear features, and is described in detail by (Gay and Hole 2005) for the pi cal-
culus with session types but without bounded polymorphism; the presence of bounded
polymorphism and the ∆ environment does not require any new techniques.

The second step is that it may be desirable to infer polarities, so that they can be
eliminated from the top-level syntax. This can also be done by the technique described
by (Gay and Hole 2005). The only penalty, as discussed in that paper, is that some
deadlocked processes become untypable; this does not seem to be a significant loss.

Bounded polymorphism in session types 29

The third step is to establish that the subtyping rules form an effective algorithm for
checking instances of the subtype relation. The rules have already been presented in such
a way that they have a natural interpretation as an algorithm; we now turn our attention
to proving that this algorithm terminates.

5.1. Decidability of subtyping

The proof in this section closely follows the proof of decidability of subtyping for Kernel
F<:, as presented by (Pierce 2002)[Chapter 28].

Definition 5. The function weight∆(T) is defined recursively by the following clauses.
The total size of the types in ∆ plus the size of T decreases with each recursive call, so
termination is guaranteed.

weight∆1,T6X6U,∆2
(X) = 1 + weight∆1

(T) + weight∆1
(U)

weight∆1,T6X6U,∆2
(X) = 1 + weight∆1

(T) + weight∆1
(U)

weight∆(Top) = 1
weight∆(Bot) = 1
weight∆(end) = 1
weight∆(̂ [T]) = 1 + weight∆(T)
weight∆(?[T].S) = 1 + weight∆(S) + weight∆(T)
weight∆(![T].S) = 1 + weight∆(S) + weight∆(T)
weight∆(&〈 li(Ti 6 Xi 6 Ui) : Si 〉16i6n) = 1 + Σiweight∆(Ti) + Σiweight∆(Ui)

+Σiweight∆,Ti6Xi6Ui
(Si)

weight∆(⊕〈 li(Ti 6 Xi 6 Ui) : Si 〉16i6n) = 1 + Σiweight∆(Ti) + Σiweight∆(Ui)
+Σiweight∆,Ti6Xi6Ui

(Si)

The function weight(∆) is defined recursively by

weight(∅) = 1
weight(∆, T 6 X 6 U) = 1 + weight(∆) + weight∆(T) + weight∆(U)

The weight of a subtyping judgement is defined by

weight(∆ ` T 6 U) = weight(∆) + weight∆(T) + weight∆(U).

The weight of a judgement that an environment is well-formed is defined by

weight(` ∆) = weight(∆).

Lemma 16. If ` ∆,∆′ then weight∆,∆′(T) = weight∆(T).

Proof. By induction on the structure of T .

Theorem 3. The subtype relation is decidable.

Proof. The rules in Figure 10 define an algorithm for checking instances of the subtype
relation. The rules are applied in a pattern-matching style, in the order in which they
appear in the Figure. The condition that environments are well-formed (` ∆) does not
need to be checked repeatedly, but it is checked for the top-level call (i.e. checking ∆ `

S. J. Gay 30

m 6 n ∀16i6m(∆ ` Vi 6 Ti 6 Ui 6 Wi and ∆, Ti 6 Xi 6 Ui ` Ri 6 Si)
S-Branch

∆ ` &〈 li(Ti 6 Xi 6 Ui) : Ri 〉16i6m 6 &〈 li(Vi 6 Xi 6 Wi) : Si 〉16i6n

m 6 n ∀16i6m(∆ ` Vi 6 Ti 6 Ui 6 Wi and ∆, Ti 6 Xi 6 Ui ` Ri 6 Si)
S-Choice

∆ ` ⊕〈 li(Vi 6 Xi 6 Wi) : Ri 〉16i6n 6 ⊕〈 li(Ti 6 Xi 6 Ui) : Si 〉16i6m

Fig. 12. Modified subtyping rules for Full S6

T 6 U requires checking ` ∆) and when the environment is enlarged in rules S-Branch

and S-Choice. The algorithm terminates on all inputs because in each rule, the weight
of each hypothesis (recursive call) is less than the weight of the conclusion (goal). The
proof for rules S-Tri makes use of Lemma 16. The proof for rule S-Branch (and similarly
S-Choice) depends on the fact that weight∆(&〈 li(Ti 6 Xi 6 Ui) : Si 〉16i6n) includes
Σiweight∆,Ti6Xi6Ui

(Si).

6. The generalization to Full S6

We can consider a generalization of the subtype relation, as indicated in Section 2, in
which the upper and lower bounds of type variables are allowed to vary. This requires
modification of the subtyping rules S-Branch and S-Choice as shown in Figure 12. We
call the resulting system Full S6.

We can rerun the proofs of Section 4, leading to Type Preservation and Type Safety
theorems for S6. The only significantly different proof is transitivity of subtyping.

Lemmas 3–5 are true in Full S6 and are proved exactly as before.

Definition 6. For a type T , size(T) is defined to be the total number of nodes in the
syntax tree of T , using clauses such as size(?[T].S) = 1 + size(S) + size(T).

Lemma 17 (Transitivity of subtyping and narrowing in Full S6). For all n > 0:

1 If size(U) 6 n and ∆ ` T 6 U and ∆ ` U 6 V then ∆ ` T 6 V .
2 If size(T) + size(U) 6 n and ∆, T 6 X 6 U,∆′ ` V 6 W and ∆ ` T 6 T ′ and

∆ ` U ′ 6 U then ∆, T ′ 6 X 6 U ′,∆′ ` V 6 W .

Proof. This proof closely follows the corresponding proof for Full F<:, as presented by
(Pierce 2002)[Chapter 28]. The proof is by induction on n (we refer to this as the outer
induction).

1 By induction (the inner induction) on the sum of the sizes of the derivations of
∆ ` T 6 U and ∆ ` U 6 V . If either derivation finishes with S-Refli or S-End, or if
the first derivation finishes with S-Bot, or if the second derivation finished with S-Top,
then the conclusion is immediate. If either derivation finishes with an application of
S-Tri then the argument is identical to the proof of Lemma 6. The remaining possi-
bilities are that the derivations of ∆ ` T 6 U and ∆ ` U 6 V finish with applications
of the same rule, namely one of S-Chan, S-In, S-Out, S-Branch and S-Choice. The
first three of these proceed by straightforward use of the inner induction hypothesis.
The last two cases are similar to each other; we consider S-Branch.

Bounded polymorphism in session types 31

The types T , U , V have the form

T = &〈 li(Ti 6 Xi 6 T ′
i) : T ′′

i 〉16i6m

U = &〈 li(Ui 6 Xi 6 U ′
i) : U ′′

i 〉16i6n

V = &〈 li(Vi 6 Xi 6 V ′
i) : V ′′

i 〉16i6r

with m 6 n 6 r and, for each i,

∆ ` Vi 6 Ui 6 Ti 6 T ′
i 6 U ′

i 6 V ′
i (4)

∆, Ti 6 Xi 6 T ′
i ` T ′′

i 6 U ′′
i (5)

∆, Ui 6 Xi 6 U ′
i ` U ′′

i 6 V ′′
i (6)

Applying the outer induction hypothesis (part 1) to (4) gives

∆ ` Vi 6 Ti 6 T ′
i 6 V ′

i (7)

Applying the outer induction hypothesis (part 2) to (6), using (4), gives

∆, Ti 6 Xi 6 T ′
i ` U ′′

i 6 V ′′
i (8)

Applying the outer induction hypothesis (part 1) to (5) and (8) gives

∆, Ti 6 Xi 6 T ′
i ` T ′′

i 6 V ′′
i (9)

Using (7) and (9) in an instance of S-Branch gives ∆ ` T 6 V .
2 By an inner induction on the size of the derivation of ∆, T 6 X 6 U,∆′ ` V 6 W ,

with a case analysis on the last rule. The interesting cases are the S-Tri when X is
the variable involved in the rule.

— S-Tr1: In this case V = X and we have ∆, T 6 X 6 U,∆′ ` U 6 W with a
smaller derivation. Applying the inner induction hypothesis gives

∆, T ′ 6 X 6 U ′,∆′ ` U 6 W (10)

Applying Lemma 3 to ∆ ` U ′ 6 U gives

∆, T ′ 6 X 6 U ′,∆′ ` U ′ 6 U (11)

Applying the outer induction hypothesis (part 1) to (10) and (11) gives

∆, T ′ 6 X 6 U ′,∆′ ` U ′ 6 W (12)

and then S-Tr1 gives ∆, T ′ 6 X 6 U ′,∆′ ` X 6 W as required.

— S-Tr2: This case is similar to S-Tr1.

— S-Tr3: In this case V = X and we have ∆, T 6 X 6 U,∆′ ` T 6 W with a
smaller derivation. Applying the inner induction hypothesis gives

∆, T ′ 6 X 6 U ′,∆′ ` T 6 W (13)

Applying Lemma 3 to ∆ ` T 6 T ′ gives

∆, T ′ 6 X 6 U ′,∆′ ` T 6 T ′ (14)

S. J. Gay 32

Applying Lemma 4 to (14) gives

∆, T ′ 6 X 6 U ′,∆′ ` T ′ 6 T (15)

Applying the outer induction hypothesis (part 1) to (13) and (15) gives

∆, T ′ 6 X 6 U ′,∆′ ` T ′ 6 W (16)

and then S-Tr1 gives ∆, T ′ 6 X 6 U ′,∆′ ` X 6 W as required.

— S-Tr4: This case is similar to S-Tr3.

Lemmas 7–15 are true in Full S6 and are proved exactly as before. The statement of
the Type Preservation theorem is exactly the same as in Kernel S6.

Theorem 4 (Type preservation in Full S6).

1 If ∅ ; Γ ` P and P
τ,−→ Q then ∅ ; Γ ` Q.

2 If ∅ ; Γ, x+:S, x−:S ` P and P
x,−→ Q then ∅ ; Γ, x+:tail(S,), x−:tail(S,) ` Q.

3 If ∅ ; Γ, x+:S, x−:S ` P and P
x,l(U)−→ Q then ∅ ; Γ, x+:tail(S, l(U)), x−:tail(S, l(U)) `

Q.
4 If ∅ ; Γ, x:T ` P and P

x,−→ Q then ∅ ; Γ, x:T ` Q.

Proof. Only the proof of part 3 is different from the proof of Theorem 1. The important
case is R-Select. We have

xp.{li(Ti 6 Xi 6 Ui) :Pi}16i6n | xp̄/lj(T).Q
x,lj(T)−→ Pj{T/Xj} |Q

with 1 6 j 6 n. We assume without loss of generality that p = +. The derivation of
Γ, x+:S, x−:S ` xp.{li(Ti 6 Xi 6 Ui) :Pi}16i6n | xp̄/lj(T).Q ends as follows. Note that
S must be of the form &〈 li(Vi 6 Xi 6 Wi) : Si 〉16i6m with m 6 n and for each i,
` Ti 6 Vi and ` Wi 6 Ui and ` S′

i 6 Si. Therefore S = ⊕〈 li(Vi 6 Xi 6 Wi) : Si 〉16i6m,
and Γ1 + Γ2 = Γ. T-Choose also requires that S′

j 6 S′.

∀16i6n(Ti 6 Xi 6 Ui; Γ, x+:Si ` Pi)

Γ1, x
+:S ` xp.{li(Ti 6 Xi 6 Ui) :Pi}16i6n

(∗) Γ2, x
−:S′{T/Xj} ` Q

Γ2, x
−:S ` xp̄/lj(T).Q

Γ, x+:S, x−:S ` xp.{li(Ti 6 Xi 6 Ui) :Pi}16i6n | xp̄/lj(T).Q

The additional hypotheses (*) are ` Vj 6 T , ` T 6 Wj and T 6= Bot,Top. By transitivity,
` Tj 6 T and ` T 6 Uj . The proof can now be completed exactly as in the proof of
Theorem 1.

The statement and proof of the Runtime Safety theorem are exactly the same as in
Kernel S6.

Theorem 5 (Runtime safety in Full S6). Let ∅ ; Γ ` P where Γ is balanced.

1 If P ≡ (νũ:T̃)(P1 | . . . | Pn) then, for any x, at most one of the Pi is an x+-process
and at most one is an x−-process.

2 If P ≡ (νũ:T̃)(P1 |P2 |Q) and P1 is an x+-process and P2 is an x−-process then either

(a) P1 is an input and P2 is an output (or vice versa), or

Bounded polymorphism in session types 33

(b) P1 is an offer and P2 is a choose (or vice versa).

3 If P ≡ (νũ:T̃)(xp?[y:V].P1 | xp![zq].P2 |Q) then either

(a) p is blank and among Γ, ũ:T̃ we have x:̂ [U] and zq:W with ∅ ` W 6 U 6 V

(b) p is not blank and among Γ, ũ:T̃ we have xp:?[U].S and xp:![U].S and zq:W with
∅ ` W 6 U 6 V .

4 If P ≡ (νũ:T̃)(xp.{ li(Ti 6 Xi 6 Ui) : Pi }16i6n |xp/l(U).Q |R) then l ∈ {l1, . . . , ln},
l = lj say, and among Γ, ũ:T̃ we have xp:&〈 li(Ti 6 Xi 6 Ui) : Si 〉16i6m with m 6 n

and ∅ ` Tj 6 U 6 Uj .

Proof. By analyzing the final steps in the derivation of ∅ ; Γ ` P , and using the infor-
mation in the hypotheses of the typing rules used.

It turns out that subtyping in Full S6 is undecidable, which can easily be shown by an
encoding of subtyping problems from Full F<:. In the following definitions and results,
“Full F<:” refers to the algorithmic presentation of the subtyping system in (Pierce 2002).

Definition 7. The function [[·]] from types in Full F<:to Full S6 is defined as follows.

[[Top]] = Top

[[X]] = X

[[T → U]] = ![[[T]]].[[U]]
[[∀X<:T.U]] = ⊕〈 l(X 6 [[T]]) : [[U]] 〉

The function [[·]] from subtyping environments in Full F<:to subtyping environments in
Full S6 is defined as follows.

[[∅]] = ∅
[[Γ, X<:T]] = [[Γ]],Bot 6 X 6 [[T]]

Proposition 1. For all types T , U in Full F<:, Γ ` T<:U if and only if [[Γ]] ` [[T]] 6 [[U]].

Proof. Each direction is a straightforward induction on the derivation of the assumed
judgement. The key to the proof is the match between the variance of the constructors.

Theorem 6. Subtyping in Full S6 is undecidable.

Proof. Subtyping in Full F<:is undecidable.

It remains to be seen whether the undecidability of subtyping in Full S6 is a serious
practical problem. The subtyping rules can of course still be used as a semi-algorithm.
It would be interesting to investigate whether restrictions on the form of types that
are allowed as upper and lower bounds can restore decidability. Note, however, that the
approach followed by (Katiyar and Sankar 1992) for completely bounded quantification is
not sufficient. This is because branch and choice types have similar subtyping behaviour
to record types, and record types have been shown to break the decidability of completely
bounded quantification.

S. J. Gay 34

7. Conclusions and future work

Building on our previous theory of subtyping, we have proposed a system of bounded
polymorphism for session types in the pi calculus. This allows polymorphic protocol
specifications such that a client, when selecting a service, can consistently instantiate
the types of all subsequent communications with the server. We have formalized the
syntax, operational semantics and type system of an extended pi calculus, and proved
that static typechecking guarantees absence of runtime communication errors. There are
two versions of the system: Kernel S6 and Full S6; these differ in whether or not the
bounds of type variables are allowed to vary when moving up the subtype relation. We
have proved that subtyping is decidable in Kernel S6 but undecidable in Full S6.

There are some obvious possibilities for further development of S6. The first is to allow
recursive types, in order to describe protocols with repetitive behaviour. For example,
modifying example (1) of Section 1 to

S = &〈 go :?[int].![int].S, quit :end 〉

describes the protocol for a server that repeatedly offers the go behaviour; the quit option
is now more meaningful. We included recursive types in our previous work on subtyping
for session types (Gay and Hole 2005) and we would expect to proceed in a similar way.

The second is to investigate whether decidable subtyping can be achieved for a re-
stricted, but still usefully flexible, version of Full S6 in which the bounds of type vari-
ables can only take certain forms. For example, restricting bounds to be data types (not
session types) might lead to decidability; another possibility might be to restrict the
complexity, perhaps in terms of the depth of branch and choice types, of session types
used as bounds.

Finally, the examples in Section 2 made use of basic data types such as int and real,
implicitly assuming that the associated basic operations can be given types that make
the examples work and do not cause problems for the typechecking algorithm. For very
simple typings such as

int 6 X 6 real ; a:X ` a2:X

(Section 2.4) this is believable. For a more realistic expression language, perhaps ap-
proaching the complexity of F<:, it would be worth formalizing the complete system of
pi calculus with expressions and checking that the necessary metatheoretic properties
hold.

Acknowledgements

This research was begun in collaboration with the author’s PhD student Malcolm Hole,
who died on 28th February 2004; it was his suggestion to investigate bounded polymor-
phism as a way of increasing the expressive power of session types. He was funded by the
EPSRC project “Novel Type Systems for Concurrent Programming Languages” (grants
GR/L75177, GR/N39494). The author is grateful to the anonymous referees for their
detailed reviews and helpful comments.

Bounded polymorphism in session types 35

References

Bonelli, E., Compagnoni, A. and Gunter, E. (2005) Correspondence assertions for process
synchronization in concurrent communication. Journal of Functional Programming
15(2):219–247.

Carbone, M., Honda, K., Yoshida, N., Milner, R., Brown, G. and Ross-
Talbot, S. (2006) A theoretical basis of communication-centred concurrent
programming. W3C Web Services Choreography Working Group Report.
www.w3.org/2002/ws/chor/edcopies/theory/note.pdf.

Cardelli, L. and Wegner, P. (1985) On understanding types, data abstraction, and poly-
morphism. Computing Surveys 17(4):471–522.

Dezani-Ciancaglini, M., Mostrous, D., Yoshida, N. and Drossopolou, S. (2006) Session
types for object-oriented languages. In Proceedings of the European Conference on
Object-Oriented Programming (ECOOP), volume 4067 of Lecture Notes in Computer
Science, pages 328–352. Springer.

Dezani-Ciancaglini, M., Yoshida, N., Ahern, A. and Drossopolou, S. (2005) A distributed
object-oriented language with session types. In Proceedings of the Symposium on Trust-
worthy Global Computing , volume 3705 of Lecture Notes in Computer Science, pages
299–318. Springer.

Fähndrich, M., Aiken, M., Hawblitzel, C., Hodson, O., Hunt, G., Larus, J. R. and Levi,
S. (2006) Language support for fast and reliable message-based communication in
Singularity OS. In EuroSys 2006 . ACM Press.

Garralda, P., Compagnoni, A. and Dezani-Ciancaglini, M. (2006) BASS: Boxed Ambients
with Safe Sessions. In Proceedings of the ACM Symposium on Principles and Practice
of Declarative Programming , pages 61–72. ACM Press.

Gay, S. J. (1993) A sort inference algorithm for the polyadic π-calculus. In Proceedings
of the 20th ACM Symposium on Principles of Programming Languages. ACM Press.

Gay, S. J. and Hole, M. J. (1999) Types and subtypes for client-server interactions. In
ESOP’99: Proceedings of the European Symposium on Programming Languages and
Systems, volume 1576 of Lecture Notes in Computer Science, pages 74–90. Springer.

Gay, S. J. and Hole, M. J. (2005) Subtyping for session types in the pi calculus. Acta
Informatica 42(2/3):191–225.

Girard, J.-Y. (1972) Interprétation fonctionelle et élimination des coupures dans
l’arithmétique d’ordre supérieur . Ph.D. thesis, University of Paris VII.

Girard, J.-Y. (1987) Linear Logic. Theoretical Computer Science 50(1):1–102.
Honda, K. (1993) Types for dyadic interaction. In CONCUR’93: Proceedings of the

International Conference on Concurrency Theory , volume 715 of Lecture Notes in
Computer Science, pages 509–523. Springer.

Honda, K., Vasconcelos, V. and Kubo, M. (1998) Language primitives and type discipline
for structured communication-based programming. In ESOP’98: Proceedings of the
European Symposium on Programming , volume 1381 of Lecture Notes in Computer
Science, pages 122–138. Springer.

Katiyar, D. and Sankar, S. (1992) Completely bounded quantification is decidable. In
Proceedings of the ACM SIGPLAN Workshop on ML and its Applications.

S. J. Gay 36

Kobayashi, N., Pierce, B. C. and Turner, D. N. (1999) Linearity and the Pi-Calculus.
ACM Transactions on Programming Languages and Systems 21(5):914–947.

Liu, X. and Walker, D. (1995) A polymorphic type system for the polyadic π-calculus.
In CONCUR’95: Proceedings of the International Conference on Concurrency Theory ,
volume 962 of Lecture Notes in Computer Science. Springer.

Milner, R. (1991) The polyadic π-calculus: a tutorial. Technical Report 91-180, Labora-
tory for Foundations of Computer Science, Department of Computer Science, Univer-
sity of Edinburgh.

Milner, R., Parrow, J. and Walker, D. (1992) A calculus of mobile processes, I and II.
Information and Computation 100(1):1–77.

Neubauer, M. and Thiemann, P. (2004a) An implementation of session types. In Prac-
tical Aspects of Declarative Languages (PADL’04), volume 3057 of Lecture Notes in
Computer Science, pages 56–70. Springer.

Neubauer, M. and Thiemann, P. (2004b) Session types for asynchronous communication.
Manuscript.

Pierce, B. C. (2002) Types and Programming Languages. MIT Press.
Pierce, B. C. and Sangiorgi, D. (1993) Types and subtypes for mobile processes. In

Proceedings, Eighth Annual IEEE Symposium on Logic in Computer Science. IEEE
Computer Society Press.

Pierce, B. C. and Sangiorgi, D. (1996) Typing and subtyping for mobile processes. Math-
ematical Structures in Computer Science 6(5):409–454.

Pierce, B. C. and Sangiorgi, D. (2000) Behavioral equivalence in the polymorphic pi-
calculus. Journal of the ACM 47(3).

Pierce, B. C. and Turner, D. N. (2000) Pict: A programming language based on the
pi-calculus. In Plotkin, G., Stirling, C. and Tofte, M., editors, Proof, Language and
Interaction: Essays in Honour of Robin Milner . MIT Press.

Reynolds, J. C. (1974) Towards a theory of type structure. In Paris colloquium on
programming , volume 19 of Lecture Notes in Computer Science. Springer.

Sangiorgi, D. and Walker, D. (2001) The π-calculus: a Theory of Mobile Processes. Cam-
bridge University Press.

Takeuchi, K., Honda, K. and Kubo, M. (1994) An interaction-based language and its
typing system. In PARLE ’94: Parallel Architectures and Languages Europe, volume
817 of Lecture Notes in Computer Science. Springer.

Turner, D. N. (1996) The Polymorphic Pi-Calculus: Theory and Implementation. Ph.D.
thesis, University of Edinburgh.

Vallecillo, A., Vasconcelos, V. T. and Ravara, A. (2006) Typing the behavior of software
components using session types. Fundamenta Informaticae 73(4):583–598.

Vasconcelos, V. T., Gay, S. J. and Ravara, A. (2006) Type checking a multithreaded
functional language with session types. Theoretical Computer Science 368(1–2):64–
87.

Vasconcelos, V. T. and Honda, K. (1993) Principal typing schemes in a polyadic π-
calculus. In CONCUR’93: Proceedings of the International Conference on Concurrency
Theory , volume 715 of Lecture Notes in Computer Science. Springer.

Bounded polymorphism in session types 37

Vasconcelos, V. T., Ravara, A. and Gay, S. J. (2004) Session types for functional mul-
tithreading. In CONCUR’04: Proceedings of the International Conference on Con-
currency Theory , volume 3170 of Lecture Notes in Computer Science, pages 497–511.
Springer.

Yoshida, N. and Vasconcelos, V. T. (2006) Language primitives and type discipline for
structured communication-based programming revisited - two systems for higher-order
session communication. In Procedings of the 1st International Workshop on Security
and Rewriting Techniques (SecReT 2006), Electronic Notes in Theoretical Computer
Science. Elsevier.

