Modelling SIGNAL in Interaction
Categories

Simon Gay and Rajagopal Nagarajan
{sjg3,rn4}@doc.ic.ac.uk

Department of Computing, Imperial College
180 Queen’s Gate, London SW7 2BZ, United Kingdom

Abstract

Abramsky has recently proposed Interaction Categories as a new paradigm for
the semantics of sequential and parallel computation. Working with the cate-
gory SProc of synchronous processes, which is a key example of an Interaction
Category, we study synchronous dataflow as part of a programme of gaining ex-
perience in the use of Interaction Categories. After making some general points
about representing dataflow in SProc, we present a detailed model of the syn-
chronous dataflow language SIGNAL. We demonstrate that dataflow is a model
of concurrency which can easily be treated in a typed framework, and that the
structure of Interaction Categories is appropriate for describing real concurrent
languages.

1 Motivation

Abramsky [1] has recently proposed a new paradigm for the semantics of se-
quential and concurrent computation: Interaction Categories. This term en-
compasses certain known categories (the category of concrete data structures
and sequential algorithms [5], categories of games [2]) as well as a new category
SProc, with which we will be working in this paper. The distinguishing fea-
ture of Interaction Categories is that composition in them is a dynamic process
of interaction, rather than the static one of function composition found in the
familiar categories of traditional mathematics. SProc can be read either as
“Synchronous Processes” or “Specifications and Processes”; the present work
leans towards the first reading. In particular, we are using SProc to model
SIGNAL [8] - one of a family of synchronous programming languages. Other
members of the family include LUSTRE [9], SILAGE [10] and ESTEREL [4]. Syn-
chrony is easier to handle initially; our aim is to deal with asynchrony later.
Independently of this, dataflow is a model of concurrency which is well-suited
to a typed framework. Thus we choose the synchronous dataflow language
SIGNAL as our starting point. LUSTRE has also been modelled; this work is de-
scribed elsewhere [7]. The purpose of this effort is two-fold: to see how existing
programming paradigms are supported in the new framework, and to obtain
feedback about how appropriate the categorical structures are.

2 The Interaction Category SProc

We will begin with a brief review of the definition of SProc, highlighting those
features which are relevant to modelling dataflow. The basic picture is

Objects Specifications
Morphisms Processes
Composition Synchronous composition + restriction.

This category is a model of 2nd-order Linear Logic, and supports polymor-
phism. Tt also includes a hierarchy of delay operators (as monads) and hence
allows asynchrony to be built on top of synchrony é la Milner [12]. In addition,
specification and verification can be smoothly incorporated via the notion of
specification strutures, although we are not making use of this as yet. The
following definitions relating to SProc are based on Abramsky’s work.

2.1 Basic Definitions

The objects of SProc are pairs A = (X4, S4) where X4 is an alphabet of
actions (labels) and S4 C"°P™f Y% a non-empty prefix-closed subset of the
set of finite sequences over Y. 4, is a safety specification. A process of type
A, written p = A, is a synchronisation tree with labels from X4, such that
traces(p) C Sa. Following Aczel [3], we will make use of a representation of
synchronisation trees as (non-well-founded) sets, in which a process p with

transitions p — ¢, p 2. becomes {(a, q), (b,r)}; the synchronisation tree

looks like

at the top. In order to define the morphisms of SProc, we first define a *-
autonomous structure. Given A and B, the object A ® B has

YagBp = XaxXp

Sagp = {0€Xigp |fst’(c) € SaAsnd™(c) € Sp}.

The duality is trivial on objects: AL = A (this comes from the choice of
linear maps). Hence all the multiplicative connectives are the same: A8 B =
A —o B = A® B. Finally, a morphism p : A — B is a process p such that
p E A — B. Since ® is self-dual, we have not only a *-autonomous category
but a compact-closed category.

Composition is defined in line with the slogan “relational composition ex-
tended in time”. If p: A — B and q : B — C, so that p E A —o B and
q E B —o C, then the composite p;q : A — C can be defined by labelled
transitions:

in which matching of actions takes place in the common type B (as in rela-
tional composition), at each time step. This is the “interaction” of Interaction
Categories.

The identity morphisms are synchronous buffers: whatever is received by
idg : A — A in the left copy of A is instantaneously transmitted to the right
copy. We define the identity proto-morphism id = {((a,a),id) | @ € X4} and
then obtain id4 by restricting to synchronisation trees whose traces are all in
SA—oA: IdA = idrSA—oA'

We extend ® and (-)1 to functors by defining their action on morphisms as
follows. If p: A—C and q: B — Dthenp®q: A® B — C® D is defined by

(a7c) / (bvd) 1

p—Dp q9—1q

!

((a,b),(c,d)) !
q - D

@ @ q

and pt : C — A by
(a,c)
p—0p

c,a
ot (ca) iz
The tensor unit I is defined by Xy = {x}, S = {*x” | n < w}. We also
have 1= I. The correct notion of “point” in a *-autonomous category is
a morphism from 7, and indeed we can identify a process of type A with a
morphism p : I — A. This will be important for our later work, as will the rest
of the *-autonomous structure (i.e. closure), which we now define.

Ifp: A® B — C then A(p) : A — B —o C is defined by

((a,0),¢)
p — q

A(p) 7 A(g).
The evaluation morphism
Appp:(A—oB)®A—B
is defined via a proto-morphism in the same way as the identities:

Ap = {((((a,b),a),b),Ap) |a € X4,b € Xp}

ApAyB = Ap rS((A—oB)@A)—oJ_Es'

We see that the “logical” morphisms giving the closed structure are essentially
formed from identities.

We will make essential use of the compact closed structure of SProc later,
in the following way. If we have a process p of type A ® B, p |E A ® B, then
we can regard it as a morphism p : I — A ® B. Since (-)* is trivial, this is
alsop: I — At ® B,ie. p: I — A —o B. Hence p= A(q) where ¢ : A — B.
From the definition of A(-) we can see that ¢ is morally the same process as p;
we will abuse notation in the rest of the paper by calling them both p, freely
using compact closedness to move types back and forth across arrows.

2.2 Delay

A further part of the structure of SProc which we will need when modelling
SIGNAL is the delay monads. So far, in the synchronous world to which SProc
corresponds, any process has to do a genuine action at every time step. We
now allow for processes which perform “dummy” or “idle” actions some of the
time. There are two delay monads, corresponding to the delay operators in
CCS - 6 which allows for delay before the first action, and A which allows for
delay anywhere except before the first action.

Given an object A, § A is defined by
Ysa =143,
where for notational convenience we take 1 = {x} and assume * ¢ X4, and
Ssa={etU{x"c | (n<w)A(oc€Sa)}

If p: A— B then
8p = {((*, %), ép)} Up.
Thus ép delays for a while and then behaves as p. AA is defined by

Yaa=1+%Xy
and
Saa ={etU{ar ™" az #"2az...| (n; <w) A (a1azas... € Sa)}.

Ap is like é6p with * appearing anywhere except before the first action of p.

It turns out that both of these functors have monad structures. What we
will actually be interested in later on is the combined delay functor § A, which
is also a monad by virtue of the fact that there is a distributive law, i.e. a
natural transformation Aé — 6A.

3 Dataflow in SProc

Having discussed the relevant properties of SProc, we can now talk about
modelling dataflow in general terms, before moving on to a specific language.
SProc gives a framework for plugging processes together on typed interfaces,
which is what we want as a basis for a typed theory of concurrency. General
process calculi such as CCS do not immediately fit into this framework, because
of the fact that their parallel composition does not actually corresond to plug-
ging processes together but rather to placing them side-by-side in a way which
means that they may communicate. What we need to do is work with restricted
composition, in which two processes in parallel which can communicate with
each other are prevented from communicating with anything else. Restricted
composition does correspond to connecting processes rigidly together, and this
is precisely what happens in a dataflow language as networks are built out of
basic nodes. Thus dataflow is a model of concurrency which can very naturally
be modelled in SProc.

We now describe, in a very general way, how the structure of a compact
closed category allows us to construct dataflow networks in a typed framework.
Suppose we are working with networks in which all values come from some type
A, and we use an object A in our category to model this type. A node

is modelled by a process (morphism) p: A ® A — A. Now suppose we have
another node ¢ and we wish to connect the two together to form a simple
network.

The node ¢ is modelled by a morphism¢q: A® A — A ® A, and to model the
network we form

(p®ida);jqg: ARARA— A® A.

Alternatively, we can take the view that to construct our network we first
place p and ¢ next to each other without communication to form a network
with four inputs and three outputs

N
b 5. .3 16 .
2 q
4 7

To model this we first form
PRq:AI @A ® Az ® Ay — A5 ® As ® Ax,

where for clarity we have numbered the occurrences of A. Call this process r.
By compact closure we can view this as a morphism

ri A @A ® Ay — AT @ A5 © As @ Ar,

where we have retained the * on As to indicate that what was previously seen
as an input is now being viewed as an output. To get the effect of adding

the connection between output 5 and input 3, we apply Ap, | to A% and As.
Recall the general definition of Apy g; in the case B = 1 we have

Apy (Ao L)®A— 1,

1.e.

ApAVJ_:AJ‘®A—>I

since L= I. This morphism forces the same actions to occur in A' and A,
which is what we need to say that two ports are connected. This gives

7 (Apa L @ida, @ida,): A1 @ A2 @ Ay — [@ As @ Ar.

By composing this with the canonical isomorphism A : I ® A — A to remove
the I, we obtain
s A ®A® Ay — As @ Ar,

which is a morphism representing the desired network; in fact, s = (p®ida);g.
This procedure is the internalisation of composition in a *-autonomous cate-
gory.

For an acyclic network such as the one above, we can always use composition
to build the morphism we want. But if the network contains feedback loops,
it is essential to use an Ap morphism to form the final link in each loop. For
example, in the network

in which the dotted connection forms a cycle, we start with
prA @Ay — As

and

q: Az = A1 ® As

and form

A(p;9); (Apa,1 @ida); At A1 — As.

Note that although compact closure is necessary in order that all the types
are formed using ® rather than mixtures of ® and 8, it is not important that
()1 is trivial.

Forming a feedback loop in a dataflow network is the way in which a recur-
sive definition is made, and in the usual Kahn-style semantics [11] the behaviour
of the resulting network is given by a least fixed point construction. By con-
trast, our constructions in SProc give a process representing the behaviour of

a network without explicitly introducing any least fixed points; the resolution
of the recursive definitions is distributed among the interactions taking place
at each point of connection between input and output. There is therefore some
work to be done in order to see that our model gives the expected semantics.
This question is dealt with in a forthcoming paper [6].

Another question is how to ensure that a network built from deterministic
nodes remains deterministic, in light of the fact that in general, determinism
is not preserved by composition in SProc. This is also dealt with in [6]; the
property which is preserved is a combination of determinism and functionality,
and we can check that all the nodes used in the modelling of SIGNAL satisfy
this property.

4 Overview of the SiGNAL language

SIGNAL is one of a family of synchronous languages, along with ESTEREL, Lus-
TRE and SILAGE. In this context, synchronous means that outputs are produced
simultaneously with the inputs which cause them. SIGNAL is a dataflow lan-
guage and has been widely used in the areas of signal processing and control.
A SIGNAL program is an executable specification of constraints expressed in
terms of equations. Some of the equations specify that certain outputs are
computed from certain inputs according to particular functions; this is familiar
from any dataflow language. Other equations specify relations between signals.
These relations are to do with constraints on the clocks of signals. The idea of
a clock is shared with LUSTRE, but the way in which clock constraints appear
is a characteristic feature of SIGNAL.

The concept of a clock arises when computations of different data streams
are allowed to proceed at different rates. Rather than forcing a stream to consist
solely of a sequence of genuine data values, undefined elements or delays are
allowed. The clock of a stream indicates the times at which the stream contains
a defined value. In LUSTRE, a stream consists of a sequence of genuine values
and a clock which is represented by a stream of boolean values: for a defined
element of some stream and f for an undefined element. Thus the actual
behaviour of a stream is obtained by “stretching out” its data values so that
they appear at the times specified by its clock. In SIGNAL, by contrast, there
is an “undefined” value * which appears in streams at times when the clock
is thought of as f. So the clock (in the LUSTRE sense) of a stream can be
extracted from the stream itself.

The relations between clocks which can be expressed in a SIGNAL program
are of the form “two streams have the same clock” or “stream A has a slower
clock then stream B”. Thus rather than completely defining the clock of every
stream, as in a LUSTRE program, it is only necessary to express the essential
timing constraints. The compiler then calculates the fastest clock on which
everything can run.

5 SIGNAL programs as SProc processes

Our model of SIGNAL in SProc follows the general plan described previously.
In order to represent clocks, a SIGNAL type A is modelled by the SProc type

6AA. The * action coming from the §A construction is used as the undefined
value. When variables (names of streams) are declared, they are given initial
values; this information is used in the construction of the processes modelling
certain operators, as we will see later. Clock constraints are expressed by
inserting extra processes into the network, which enforce the constraints.

6 SIGNAL operators in SProc

The simplest operators are the static monochronous operators which operate
only on data and do not affect clocks. If f : A — B is a function then we
have the stream extension f* : A — BY“; a static monochronous operator is a
stream function of this form which can also ignore * values. In SProc we have

fY : A — B defined by

= Alla, f(a), f*) [a € Xa}

and then the desired process which takes account of delays is just §A f«.
S1aNAL has a delay operator denoted by $: the program fragment

Y = ZS%k

means that the stream Y is obtained by delaying the stream Z by k steps. Thus
Yn = Zn—k for n > k; for n < k the values of y, are taken from the sequence
of initial values defined when Z is declared. To model this in SProc we use
processes sigdel, : 6AA — 6AA for each type A and each a € X544, where

sigdel, = {((z,a),sigdel,): 2 € Xsaa}.

This deals with the case of a single delay; a longer delay can be built up from
a series of single delays.

The remaining operators depend on clocks, and are known as polychronous.
The when operator takes a signal X and a boolean signal B and outputs X
when B is true. For example:

X: 1 4 L 5 L 6
B:t f t t f t
XwhenB: 1 L L 5 L 6

To model this we introduce a boolean type B in SProc and use

when : AA R 6AB — 6AA

where
when = {((a,t,a),when):a € Xsaa}
U {((a, f,*),when) : a € Zsaa}
U {((a,*,*),when) :a € Zsaa}.

Next is the deterministic merge operator default. U default V takes its nth
value from U if U is defined there, otherwise from V. This is modelled by

default : SAA Q@ 6AA — §AA
where

default = {((a,b,a),default) :a,b € Tsaa}
U {((x,b,b),default) : b € Tsaa}.

The event operator is used to extract the clock of a signal: it produces a
boolean signal with value ¢ when its input is defined, f otherwise. Its type is

event : AA — B
and

event = {((a,t),event):a € X4}
U {((*, f),event)}.

To deal with clock constraints, first note that it is only necessary to take
care of the case in which two signals are made to have the same clock; specifying
that one clock is slower than another is a derived case. We use a process

synchro : AA® AB — 6AARSAB
defined by

synchro = {((*,*,*,%),synchro)}
U {((a,b,a,b),synchro) :a € X4,b € Xp}.

The way in which this works is that a process modelling a SIGNAL operator
can cope with all possible clocks, so that outputs are non-deterministic to the
extent that they contain many possible insertions of #s among the genuine
actions. The process synchro passes on its inputs, but with the freedom of their
clocks restricted so that both outputs have the same clock.

We now present a small example to illustrate composition and some of the
SIGNAL operators. We use Abramsky’s “stream of consciousness” tables to
show possible traces of processes. The first table is for when.

X | B| Xwhen B
1]t 1
4 | f *
* i *
5|t)
* | f *
6 | ¢ 6

We aim to form the composition when;event. Two possible traces for event are
shown below.

Y | eventY Z | eventZ
* f 1 t
1 t * f
2 t * f
4 t 5 t
* f * f
) t 6 t

To find a possible trace for the composition, we need traces in which the output
of when matches the input of event. The second trace of event shown above fits
with the trace of when shown, and together these give a trace of

when;event : 0AA ® AR — 6ARB.

The result is a boolean signal which is not quite the clock of the signal X.

X |B|XwhenB | Z event/
(Z = X when B)
1]t 1 1 t
4 | f * * f
* | 1 * * f
5|t 5 5 t
6 |t 6 6 t

7 Conclusions and Future Work

We have shown how to interpret SIGNAL operators and programs in SProc in
a uniform, typed fashion. The task is made straightforward by the synchronous
and relational nature of SIGNAL. Even though it is a simple application, this
is a worthwhile task as SIGNAL is already used in large-scale applications in
the field of digital signal processing. We have been able to model a SIGNAL
program for a digital stopwatch in SProc, the details of which do not discuss
here due to space restrictions. The use of delay monads to model clocks suggest
that we have the right kind of structures in our framework for modelling such
languages. This feature is brought out more clearly in modelling LUSTRE [7]
where there is a strong interplay between the types and the delays; in SIGNAL

this is reflected in the clock calculation. Each SIGNAL fragment can operate on
its own clock and the SIGNAL compiler uses the dependencies to construct a
hierarchy of clocks. If a single master clock exists (the coarsest common clock)
it will be derived by the compiler. We aim to show that such a clock derived
via our model of a SIGNAL program in the Interaction Category framework is
the same as that derived by the compiler.

We also plan to investigate the translation of ESTEREL which is similar
in spirit to SIGNAL but has more powerful constructs. There is also work in
progress in which we are trying to capture processes directly in SProc.

Acknowledgements

We would like to thank Samson Abramsky for being the guiding light. The
referees Lindsay Errington and Tom Maibaum provided useful comments. Si-
mon Gay is funded by an SERC Studentship; and Raja Nagarajan by project
CONFER (ESPRIT BRA 6454) and ICCF. We gratefully acknowledge their
support.

References

[1] S. Abramsky. Interaction categories. In this volume.

[2] S. Abramsky and R. Jagadeesan. Games and full completeness for multiplicative linear
logic. Technical Report DoC 92/24, Department of Computing, Imperial College of
Science Technology and Medicine, 1992.

[3] P. Aczel. Non-well-founded sets. CSLI Lecture Notes 14. Center for the Study of Lan-
guage and Information, 1988.

[4] G. Berry, P. Couronné, and G. Gonthier. Synchronous programming of reactive systems:
An introduction to ESTEREL. Technical Report 647, INRIA, 1986.

[5] G. Berry and P.-L. Curien. Theory and practice of sequential algorithms: the kernel
of the applicative language CDS. In J. C. Reynolds and M. Nivat, editors, Algebraic
Semantics, pages 35—84. Cambridge University Press, 1985.

[6] S. J. Gay. On iteration and interaction. Draft paper, 1993.

[7] S. J. Gay and R. Nagarajan. Modelling LUSTRE in Interaction Categories. Paper in
preparation, 1993.

[8] P. le Guernic, T. Gautier, M. le Borgne, and C. le Maire. Programming real-time appli-
cations with SIGNAL. Proceedings of the IEEE, 79(9):1305-1320, September 1991.

[9] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data flow pro-
gramming language LUSTRE. Proceedings of the IEEE, 79(9):1305-1320, September 1991.

[10] P. N. Hilfinger. Silage, a high-level language and silicon compiler for digital signal pro-
cessing. In IEEFE Custom Integrated Circuits Conference CICC-85, pages 213-216. IEEE,
May 1985 1993.

[11] G. Kahn. The semantics of a simple language for parallel programming. In Information
Processing 74, 1974.

[12] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

