University of London
Imperial College of Science, Technology and Medicine
Department of Computing

Linear Types
for

Communicating Processes

Simon John Gay

A thesis submitted for the degree of
Doctor of Philosophy of the University of London
and for the Diploma of the Imperial College.

January 1995

To my famaly

Abstract

The use of types is well established in sequential computation, with a range of benefits

which are especially clear in the functional programming paradigm.

e Types are specifications of simple correctness properties, which can be automat-

ically verified by a compiler.

e The Curry-Howard isomorphism provides elegant connections with intuitionistic

logic.

o The categorical semantics of a language can be naturally structured by its type

system.

Abramsky’s theory of interaction categories provides a framework for the transfer of
these benefits to concurrency. This thesis is a study of the foundations and applications
of that theory.

e The fundamental examples of interaction categories are defined: the category
SProc of synchronous processes and the category ASProc of asynchronous pro-
cesses. An abstract axiomatisation of interaction categories is proposed, based

on the essential features of these examples.

o The use of SProc as a semantic category of processes is illustrated by defining a
semantics of dataflow. This is shown to agree with the classical Kahn semantics,

and is applied to the language LUSTRE.

o New categories are defined in which the types are powerful enough to guarantee
deadlock-freedom of processes satisfying them, so that type-checking methods
can be used to support compositional reasoning about deadlock-freedom. This

idea is applied to both synchronous and asynchronous examples.

e A calculus of synchronous processes is defined, with a type system based on the
structure of interaction categories; this corresponds to classical linear logic under
the Curry-Howard isomorphism. The calculus has a denotational semantics in
any category with suitable structure, which is specified abstractly, and an oper-
ational semantics which matches the categorical semantics when SProc is taken

as the semantic category.

Acknowledgements

First of all, I would like to thank my supervisor, Samson Abramsky. He has provided
a great many suggestions for research topics, and without the foundation of his work
on interaction categories my thesis would have been very different. Quite apart from
all the technical help I have received, and the great deal I have learnt from him during
my Ph.D. studies, he has made it possible for me to attend more conferences and
workshops than I had any right to expect. He also encouraged me to collaborate with
Rajagopal Nagarajan; this collaboration has produced a lot of material for both of our
theses. I will take this opportunity to thank Raja for making the Ph.D. experience
less lonely than it might otherwise have been. Among the rest of my colleagues at
Imperial, two deserve special mention: Roy Crole, who has helped and encouraged
me in various ways during the last three years, and lan Mackie, with whom it has
been a pleasure to share the experience of progressing from the first steps of research
to the final writing-up. Radha Jagadeesan, whose time at Imperial coincided with
my first year of research, was always enthusiastic, encouraging and inspiring. Mark
Dawson maintains the computer system which made writing this thesis possible, and
has always been helpful with systems-related problems. Paul Taylor provides a IWTpX
system superior to that which we could expect without him; also, I have used his
commutative diagram and proof tree macro packages while writing this thesis. Samson
Abramsky, Roy Crole, lan Mackie, Guy McCusker, Chris Hankin, Lindsay Errington
and Raja Nagarajan have all made valuable comments on drafts of this thesis; I have

also enjoyed discussions with Greg Meredith on various related topics.

Outside Imperial, I would like to thank the Esprit Basic Research Action 6454 (CON-
FER) for providing funding to attend its workshops, and the participants in those
workshops for the opportunity to air my ideas in a friendly atmosphere. The same
applies to the participants in the joint Imperial-Cambridge-Oxford Games Seminars. |
would also like to thank K. V. S. Prasad for making it possible for me to visit Chalmers
University, Carolyn Brown for inviting me to give a seminar at Sussex, and Martin
Hyland for spending so much time with me and Raja when we visited Cambridge. The
UK Engineering and Physical Sciences Research Council funded my Ph.D. through a
studentship, and I have received additional funding from BNR Europe Ltd. (formerly
STC Technology Ltd.). The final month’s work on my thesis was carried out while
I was employed by Esprit Basic Research Action 9102 (Coordination). I thank all of

these organisations for their financial support.

Finally, T would like to thank my family for their support at every stage of my edu-

cation, and Sheila Dickinson, whose love and encouragement have helped enormously

during the past few months.

Statement

This thesis presents a substantial amount of Samson Abramsky’s work as essential
background material. In Chapter 3, Section 3.2 describes his material, and Section 3.4
contains my novel formulation of some of his material. In Chapter 5, Sections 5.3, 5.4.1
and 5.4.2 all describe Abramsky’s work.

The rest of the research reported in the thesis was carried out either solely by myself or
as a collaboration between myself and Rajagopal Nagarajan. In Chapter 3, Section 3.3
describes joint work and Section 3.6 describes my own work. In Chapter 4, Sections 4.3
and 4.4 describe joint work and Sections 4.5 to 4.8 describe my own work. In Chapter 5,
Sections 5.2 and 5.5 describe joint work, and Sections 5.4.3 and 5.4.4 describe my own

work; all of Chapter 6 describes joint work.

Throughout the thesis, the presentation of all material is entirely my own.

Contents

1 Introduction

1.1 Typed A-calculus and the Curry-Howard Isomorphism
1.2 Linear Logic
1.3 Proofsas Processeso e
1.4 Synchrony and Asynchrony oL
1.5 Outline of the Thesis o o
1.6 Related Work oL

2 Background

2.1 Introduction oL
2.2 Process Calculus Lo
2.3 Linear Categories
2.4 Discussiono e e

3 Interaction Categories

3.1 Introduction L
3.2 The Category SProc e
3.3 Asynchrony via Kleisli Categories
3.4 The Category ASProc
3.5 An Alternative Presentation of ASProc
3.6 Axioms for Interaction Categories
3.7 Discussiono e

4 Synchronous Dataflow

4.1 Introduction L e e e
4.2 The Language LUSTRE o v v vttt it e i e e e
4.3 Dataflow in a Compact Closed Category

8 Contents

4.4 LUSTREIn SProc e e 80
4.5 The Kahn Semantics of Synchronous Dataflow 82
4.6 An SProc Semantics of Synchronous Dataflow 85
4.7 Comparison of the Semantics L. 89
4.8 Application to LUSTRE o o e 94
4.9 Discussion e e e e e 97
5 Verification 99
5.1 Introduction L 99
5.2 Safety e 100
5.3 Specification Structures L L L oL 106
5.4 Synchronous Deadlock-Freedom 108
5.5 Asynchronous Deadlock-Freedom 132
5.6 Discussion e 145
6 Typed Process Calculus 147
6.1 Introduction L 147
6.2 Syntax e 148
6.3 Operational Semantics L oL 156
6.4 Categorical Semantics o oL 165
6.5 Semantics in SProc 171
6.6 Extensions. e 173
6.7 Categorical Logic 174
6.8 Deadlock-Freedom oo 175
6.9 Discussion 176
7 Conclusions 179
7.1 Summary e 179
7.2 Further Research 180

Bibliography 182

1.1

2.1

4.1
4.2
4.3
4.4
4.5

5.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7

List of Figures

Sequent rules for Classical Linear Logic. 15
Operational Semantics of CCS L. 31
A Network in LUSTRE o o 0ot e e e e e 74
A Small Dataflow Network 83
A Non-trivial Network oo oL 83
A Feedback Loop o 85
Modelling a Node 87
Process Configuration for the Dining Philosophers 141
Prefixes Generated by a Process Signature 149
Proved Processes Generated by a Process Signature 152
An Annotated Network L oo 154
Operational Semantics of Typed Process Calculus 158
Operational Semantics of Typed Process Calculus, continued 159
Rules for Bisimulation 00 L. 163
Rules for Bisimulation, continued 164

10

List of Figures

Introduction

The best way to introduce the content of this thesis is by explaining its title: “Linear
Types for Communicating Processes”. “Communicating Processes” means concurrent
systems, constructed from independent computing agents which interact with each
other, collaborating towards the solution of a computational problem. Many such
agents may reside on a single machine, or they may be physically distributed—the key
point is the conceptual identification of separate subsystems, which is the organisa-

tional step needed as a preliminary to the understanding of parallel computers.

The next word, which begins to narrow down the focus of the thesis, is “Types”. The
use of types in programming languages has been very successful, particularly in the
case of functional programming where there is a well-established and elegant body of
type theory. Some of this theory is described in Section 1.1. However, in the field of
concurrency the situation regarding types is much less satisfactory. Although several
formalisms for concurrent processes exist, many are untyped; when types are included,
they usually impose only very weak constraints on processes. In order to emphasise
this point, some of the existing approaches to concurrent types are reviewed at the end
of this chapter. Two consequences of this deficiency in the theory of concurrency are
of particular interest as far as this thesis is concerned. The first is that the connections
between types, syntax and semantics which are described for sequential computation
in Section 1.1 exist only in a rudimentary form for concurrent computation. The sec-
ond is that if types incorporated specifications of interesting program properties, then
the techniques of automatic type checking which have proved so useful in sequential
programming could be applied to the verification of concurrent systems. The possibil-
ity of remedying this situation has recently arisen with the appearance of Abramsky’s
“Interaction categories” approach to semantics and types for concurrency. Indeed,
this thesis is essentially an exploration of the theory and application of interaction

categories.

The interaction categories framework is the culmination of several years’ work by
Abramsky towards a satisfactory theory of types for concurrency. Its history is traced
in Section 1.3. Omne of its notable features is the use of linear logic as a basis for
concurrent type systems; linear logic is briefly described in Section 1.2. This explains

the appearance of the word “Linear” in the title of the thesis.

11

12 Chapter 1. Introduction

1.1 Typed A-calculus and the Curry-Howard Isomorphism

There is an elegant connection between typed functional programming and intuition-
istic logic, which goes variously by the names “Curry-Howard Isomorphism”, “Propo-
sitions as Types Paradigm” and “Proofs as Programs Correspondence”. Consider the
term formation rules for the simply typed A-calculus, which is the core of typed func-

tional programming languages.

z:abFM:pj3 I'tM:a—p3 I'EN:a
Ilz:akz:a F'cXaM:a—f I'-MN:p3

If the terms are removed, leaving just the types, the result is precisely a sequent

presentation of the natural deduction rules for intuitionistic logic.
Iatkpg I'Fa—p I'kFa

A corollary of this observation is that intuitionistic proofs have computational content.

Given a proof, the term formation rules can be used to build up a A-expression whose
type is the proposition which was proved. Conversely, a typed A-expression viewed as
a functional program has correctness properties (such as always sending arguments of
the right types to functions) by virtue of the fact that it is a proof of something. Much

more discussion of this area can be found in [GLT89].

Semantics can also be treated within the same framework. A deduction system such
as the logic presented above can be used to construct a category in which the ob-
jects are propositions and a morphism is a proof of the proposition corresponding
to its target, from the hypotheses corresponding to its source. The Propositions as
Types view then yields a construction of a category whose objects are types and whose
morphisms are (essentially) typed A-terms. The type constructors present in the A-
calculus (corresponding to logical connectives) determine the properties of the asso-
ciated category—for example, A-calculus with pairing gives rise to a cartesian closed
category. Any concrete category with the necessary structure can then be used to give
a semantics to the A-calculus being considered, and the semantic definitions are nat-
urally structured according to the inductive definition of the types being used. Thus
the abstract category serves as a specification for concrete mathematical models of the
language. Such correspondences can be developed for a variety of different theories; a

good introduction to this area is [Cro94].

The aim of this thesis is to extend as much of this theory as possible to concurrency.
This means not only developing a notion of type for processes, but doing it within the
framework of the Curry-Howard isomorphism. This offers the prospect of a logical view

of concurrent types, whether they state simple facts analogous to the property of being

1.2. Linear Logic 13

an integer or capture more complex behavioural specifications. The categorical view
goes hand-in-hand with the logical one, and in the context of concurrency it should give
guidance as to how semantic domains of processes ought to be structured. A Curry-
Howard isomorphism for concurrency represents a unification, to some extent, with
the theory of functional programming (subject to resolving differences between the
logics and categorical structures involved) and this may shed light on how functional
and concurrent languages can best be integrated. Finally, such a theory will include a
calculus of typed processes, and it is to be hoped that the design of this calculus might

expose some of the fundamental primitives of typed concurrent programming.

1.2 Linear Logic

The origin of linear logic can be traced to work of Lambek on the mathematical
analysis of grammatical structures in natural language [Lam58], but it was only with
its rediscovery by Girard [Gir87] that it came to the widespread attention of computer
scientists. The fundamental novelty of linear logic is the absence of the structural
rules of contraction and weakening. These rules allow the hypotheses of a proof to
be used more than once (contraction) or not at all (weakening), so in their absence
every hypothesis must be used exactly once. This considerably reduces the number of
theorems which can be proved, so the structural rules are reintroduced in a restricted
form by means of a modality. A formula of the form ! A can be weakened or contracted

at will, but there are conditions regulating how such formulae can be introduced.

The restrictions on copying and discarding of hypotheses make for a natural view of
formulae as resources, and this is one reason why linear logic (in its intuitionistic form)
has been widely applied to computation. The basic idea is that by using linear formulae
as types, more information about how a program uses its inputs can be captured than
is possible with intuitionistic types. One consequence of linearity is that some of the
intuitionistic connectives split into two versions: linear logic has two conjunctions
(® and &) and two disjunctions (5 and @). The conjunctions have computational
interpretations as type constructors corresponding to strict (®) and lazy (&) pairs; the
lazy pair can be used as a conditional, in which case @ is the natural type of a case-
selector. Girard and Lafont [Laf88, GL87] have applied these ideas to lazy functional
programming and issues of garbage collection. Abramsky [Abr93a] has defined a term
calculus corresponding under the Curry-Howard Isomorphism to intuitionistic linear
logic, and Mackie [Mac94] has implemented a functional programming language based

on this calculus.

The fourth connective, », does not generally appear in intuitionistic linear logic, al-

though Hyland and de Paiva [HdP93] have studied an intuitionistic system which does

14 Chapter 1. Introduction

include it. It is in classical linear logic that » finds its place, as the de Morgan dual
of ® under the linear negation (—)J‘. From the beginning, this version of linear logic
has been advertised as having some connection with concurrency. This is for two rea-
sons: firstly, that negation in a classical logic can be interpreted as modulating the
distinction between input and output, and secondly, that classical linear logic (in con-
trast to classical logic) is constructive and so it is reasonable to attempt to extract
computational content from proofs along the lines of the Curry-Howard Isomorphism.
Early work on connecting classical linear logic with computation included Abramsky’s
proof expressions [Abr93a], with a natural execution model involving multiple proces-
sors working on a pool of computational goals, and Lafont’s interaction nets [Laf90],
in which programming means defining connectives in a generalised logic and building

proofs from them.

Figure 1.1 shows the rules of deduction for classical linear logic, in sequent form.

Sequents are one-sided, of the form + Ay,..., A,. It is also possible to present the
deduction rules in terms of two-sided sequents of the form Aq,..., A, F By,...,B,,
but it then turns out that such a sequent is equivalent to - Af,..., AL By, ..., B,.

Thus there is no loss of generality in working with one-sided sequents; and in fact,

there are then fewer rules, so the system becomes simpler.

This style of presentation assumes that the operation of linear negation is given for
atomic formulae, with AtL+ = A for all A, and defined for compound formulae by de

Morgan duality:

(A By = Aty Bt = 1

(A Byt ¥ 4L Bt 1L g

(A Bt ¥ ate Bt TL

(Ae B ¥ Ata Bt ot ¥ T
(1At = 2 ah (74" = 1ah

The Exchange rule, which is the only one of the classical structural rules to be retained,
allows the formulae in a sequent to be permuted arbitrarily. Omitting even this struc-
tural rule would lead to non-commutative linear logic, in which the connective ® is not
commutative. Several non-commutative versions of linear logic have been studied, for
example in [Yet90] and [BGI1], with various restrictions on the use of the Exchange

rule, but for this thesis the commutative case is sufficient.

The Axiom allows formulae to be introduced in dual pairs, and the Cut rule allows a
dual pair of formulae to be eliminated. The Tensor rule introduces the ® connective.
In both the Tensor and Cut rules, the lists of formulae I' and A in the hypotheses are
strictly preserved; if some formula C' occurs in both hypotheses, then there are two

occurrences of C' in the conclusion. Rules which maintain contexts in this way are

1.2. Linear Logic 15

Structural Rule

FT,A,B,A
FT,B,A,A

Exchange

Identity Rules

, FI,A AL A
Axiom Cut

AL A FT,A

Multiplicative Rules

FI,A FA,B FT,A, B
Tensor — Par

FI,AAQ B FT,Ag B

Additive Rules

FT,A FT,B FT,A FT,B
With — L Plus —— R Plus
FI,A& B FI,Ag¢ B FT,A® B
Unit Rules
FT
—— Unit Bottom Top
T FT, L FT,T

Exponential Rules

FT,7A,7A FT
—— Contr Weak
FIT,7A FI,74
FT,A F?I,A
Der —— Prom
FT,7A FI0,1A

Figure 1.1: Sequent rules for Classical Linear Logic.

16 Chapter 1. Introduction

known as multiplicative. The Par rule introduces the connective », dual to ®. With
only one hypothesis, the multiplicative nature of this rule is not apparent, but » is

also classed as a multiplicative connective.

The additive rules have a different effect on contexts; again, this is only apparent from
the With rule which has two hypotheses. The connective & behaves as a conditional;
a proof of - I', A & B offers a choice between a proof of - I'; A and a proof of - I', B.
The dual connective @ allows a choice to be made, depending on which of the two
Plus rules is used to introduce it. Such choices are resolved when the cut-elimination

procedure is applied to a proof. A cut of the form

FT,A FTI.,B A, At
With ——— T, Plus
FT,A& B A, At g Bt

FT,A

is replaced by the simpler cut
FI,LA FA AL
FT,A

in which the proof of F I', B has been discarded. When cut-elimination is regarded as

Cut

computation via the Curry-Howard isomorphism, this mechanism allows conditionals

to be programmed.

Each of the binary connectives has a unit: I for ®, L for », T for & and 0 for @.
There is a rule for introducing each unit, apart from 0. In each case, the unit rule is

the nullary form of the rule for the corresponding connective.

The exponential rules allow contraction and weakening to be carried out on formulae
to which the modality 7 (dual to !) has been applied. The Promotion rule allows !
to be introduced, as long as the context consists only of formulae of the form 7 X.
A proof of F T', ' A should be thought of as offering a choice between copying !A,
discarding it, and converting it to A. The formula ! A can be cut against ? AL, and
the cut-elimination procedure chooses what to do with ! A on the basis of the rule
which was used to introduce ? AL. The Contraction rule corresponds to copying, the
Weakening rule to dscarding, and the Dereliction rule to removing the !. For example,
the cut

FA,?7AL 74t
T Contraction
FI0,1A FALTA
Cut
F?1,A
reduces to
F20,'4 FA,7AL 74L
T Cut
FI0,1A F?II,A,7A
Cut
F?0,71,A
—— Contraction

T, A

1.3. Proofs as Processes 17

in which the final application of Contraction is actually several applications, one to

each formula in 7T
Finally, a useful derived connective is linear implication.

A-—oop %

At 9 B
Section 1.3 describes Abramsky’s next step in the direction of a Curry-Howard iso-

morphism for concurrency, and shows how these sequent rules can be interpreted as

constructions on processes.

1.3 Proofs as Processes

In an unpublished lecture [Abr91] Abramsky proposed an interpretation of classical lin-
ear logic proof nets as concurrent processes (specifically, 7-calculus terms)—the Proofs
as Processes interpretation. This interpretation is the basis for a concurrent Curry-
Howard isomorphism. Both the interpretation of a classical linear logic sequent as the
interface specification of a process, and the interpretation of the connectives as con-
structions on processes, are direct precursors of the interaction categories paradigm.
Following on from Abramsky’s original lecture, Bellin and Scott [BS94] have made a
detailed study of the translation of proof nets into the w-calculus; a version of Abram-

sky’s original lecture has also now been published [Abr94c].

The starting point of the Proofs as Processes interpretation is that a classical linear
logic sequent - Aq,..., A, corresponds to a process interface specification: there are
n ports in the interface, and the ports have types Aq,..., A,. In the case of functional
programming, a sequent Aj,..., A, - B describes the n inputs and single output of a
function; using one-sided sequents for process interface specifications means that this
way of distinguishing between inputs and outputs is lost. Instead, the linear negation
(—)J‘ is used to represent the distinction between input and output. If A is the type of
some output port, then A' is the type of an input port to which that output can be
connected. When there are two processes with compatible input and output ports, the

Cut rule can be used to form a connection between them. Pictorially, the construction

looks like this.

L [—]]
r A

The connection between the two processes is a private channel. This corresponds to a

restricted or hidden name in process calculus. Hence the Proofs as Processes slogan:

18 Chapter 1. Introduction

cut is parallel composition + restriction.

The interpretation of the Axiom is a process with two ports, of types A and A+. The
actual process used is a bidirectional buffer, which copies information from one port to
the other. This process allows either port to be used as an input—the only restriction

is that when data is received at one port, it is sent out from the other.

Because a process has several ports, which do not necessarily appear in a fixed order
within a sequent, a process interface actually consists of a set of named and typed

ports, written

Fag: Ay, o, Ay
Abramsky uses expressions of the form
Play: Ay, ..z, Ay

in which P is the process having the specified interface. This should not be confused
with the standard notation I' - A for intuitionistic entailment. Chapter 6 introduces

a typed process calculus in which typed processes have exactly this form.

The sequent rules for the multiplicatives allow ports to be grouped into bundles. The
Tensor rule takes two ports, one from each of two processes, and combines them into

a single port.

T T

A® B

The Par rule is similar, but operating on two ports from the same process.

A»s B

This geometrical view of the distinction between ® and » is a theme which will recur

at various points throughout this thesis.

The additive connectives also have process interpretations: & as a conditional construc-
tion, offering a choice between two different processes, and @ as the dual choice-making
operator. The exponential rules, which in classical linear logic allow proofs to be du-
plicated, give a means of copying processes. This is related to the replication operator

of the 7-calculus, and hence to recursion: recursive definitions can be encoded in terms

1.4. Synchrony and Asynchrony 19

of replication. It is also possible to give process interpretations of the unit rules, al-
though Abramsky does not actually do this because the units do not have very natural

interpretations as types.

1.4 Synchrony and Asynchrony

The terms synchronous and asynchronous are used with a variety of meanings by
different authors. In this thesis they have specific meanings which may not coincide
exactly with their meanings elsewhere. Here, synchronous means that there is a global
clock with respect to which actions or events are synchronised. This is a strong re-
quirement: when considering a process with several ports, something must happen
in every port at every clock tick. The result is a situation similar to that of SCCS
[Mil83]. On the other hand, in the asynchronous models which are considered in this
thesis it is always possible for processes to delay, and even when two processes are
interacting there may be periods during which they proceed independently with no
synchronisation. The view of communication underlying these models is like that of
CCS [Mil89], so there must be the possibility of at least enough synchronisation to
allow one process to input at the same time as another outputs; in contrast to CCS,

simultaneous actions are allowed even when they do not involve communication.

1.5 Qwutline of the Thesis

Chapter 2: Background

This chapter reviews some background material which is needed in later chapters. The
first part defines labelled transition systems and the notions of strong bisimulation and
observation equivalence. It also defines the syntax and operational semantics of CCS
and SCCS, so that they can be used as informal notations later on. The second part
collects together the definitions leading up to that of a linear category, and presents
the details of the general construction of the linear logic exponentials which will appear

in a particular case when SProc is defined.

Chapter 3: Interaction Categories

In this chapter the two basic examples of interaction categories are defined: SProc, the
category of synchronous processes, and ASProc, the category of asynchronous processes.
The relationship between them is discussed, and ways of abstractly axiomatising in-

teraction categories are considered. This chapter forms the foundation for the rest of

20 Chapter 1. Introduction

the thesis; later chapters make extensive use of SProc, ASProc and variations on them.

Chapter j: Synchronous Dataflow

This chapter contains the first application of interaction categories—an analysis of
dataflow. First, the synchronous dataflow language LUSTRE is described, and then
a general scheme for constructing dataflow networks in #-autonomous categories is
presented. Using this scheme, a model of LUSTRE is defined in the category SProc.
In general, modelling synchronous dataflow networks in SProc gives an alternative to
the classical Kahn semantics, and this chapter also contains a comparison of the SProc
semantics and the Kahn semantics, including sufficient conditions on a network for the
two models to agree. Finally, this comparison is used to show that the SProc semantics

of LUSTRE is in agreement with the Kahn semantics which has previously been used.

Chapter 5: Verification

In this chapter, the interaction categories paradigm is used to address verification
issues. Two kinds of property are discussed: safety and deadlock-freedom. While
safety properties can be handled in SProc and ASProc, more refined properties require
new categories. Abramsky’s idea of specification structures is presented; this is a
general way of adding properties to the types in some category. The first example
is his specification structure for synchronous deadlock-freedom: this yields a category
based on SProc in which typed processes do not deadlock and typed composition
preserves this property. Next, a category of asynchronous deadlock-free processes is
constructed, using a similar idea but starting from a variation of ASProc (in which a
notion of fairness is introduced as a way of dealing with problems of divergence). In
both the synchronous and asynchronous cases, examples are given which illustrate how

types can be used to assist with reasoning about deadlock-freedom.

Chapter 6: Typed Process Calculus

This chapter introduces a typed calculus of synchronous processes, based on the struc-
ture of interaction categories. The operational semantics and the way it relates to types
lead to a new perspective on traditional subject reduction theorems: in the calculus,
transitions do not preserve types, but change them in predictable ways. The calculus
can be given a denotational semantics in any synchronous interaction category, for
example SProc; when SProc is used, a semantic soundness theorem relates the oper-
ational and denotational semantics by establishing that every typed process satisfies

the safety specification of its semantic type. Furthermore, the categorical semantics

1.6. Related Work 21

is sound with respect to the natural notion of strong bisimulation arising from the

operational semantics.

Chapter 7: Conclusions and Future Work

The final chapter summarises the results of the thesis, and reflects on the relationship
between the material in the thesis and other approaches to typed concurrency. It also
indicates some possible directions for future work on interaction categories and their

applications.

1.6 Related Work

There have been a number of recent pieces of work in the area of types for concurrency.
These will now be surveyed, so that their approaches can be borne in mind as the
thesis develops. At the end, their possible connections with interaction categories will
be indicated.

Sorts in the w-calculus

The 7-calculus was introduced by Milner, Parrow and Walker [MPW89] as a candidate
canonical calculus for processes. An introduction can be found in [Mil91]. In this
calculus, processes communicate by sending values to each other along named channels;
a key feature is that channel names can themselves be sent as values. Milner defines
the notions of sort and sorting as follows. To start with, a collection S of subject sorts
is assumed. Fach name is then assigned a subject sort, and sorted names are denoted
x : 5. An object sort is a finite sequence of subject sorts. A sorting over § is a partial
function ob : § — §* which describes, for any name z : 5, the sort of name-vector
which can be input or output along it. For example, if there are sorted names z : 5,
y: T, z:U and a sorting ob such that 0b(S) = (T'U), then z(yz) and z[yz] are both
valid prefixes but z(y) and z[zy] are not. The sort of an agent is a sequence of subject
sorts, which are the sorts of the names over which the agent is abstracted; thus a
process (whose abstractions have been located at particular names) always has sort
(). If a process has been constructed within the discipline of some sorting o0b it is said
to be well-sorted for ob. A well-sorted process uses names consistently: when reduced
according to the operational semantics, it will never be the case that, for example,
one subprocess tries to output two names along a name z while another subprocess is

trying to input three names.

Sortings are made formal by the introduction of a collection of well-sorted process

22 Chapter 1. Introduction

formation rules, analogous to typed term-formation rules in type theory. By analogy
with functional programming, such rules can be used as the basis of an algorithm which
constructs, if possible, a sorting respected by a given process [Gay93, HV92, Tur94].

Sorts can be extended to incorporate a distinction between input and output [PS93].

Knowing that a process is well-sorted guarantees a particular kind of good behaviour,
and this is one benefit which a type system is expected to provide. However, sorts do
not fit very well into the view of a type as an interface specification. This is because
as soon as the ports on which inputs and outputs will be received and sent have been
specified, a process has sort (), so the sort does not convey any information about

whether the process can communicate with others.

Types for Dyadic Interaction

Honda [Hon93] has proposed a process calculus with a type system which conveys more

information than sorts. Types are defined by the grammar
du=al|lé|16]6;6|6&6|6®6

in which « is an atomic type, T and | denote output and input, ¢ ;6 is sequential com-
position, and & and @ offer and make choices. There is also a notion of duality: each
type ¢ has a co-type ¢, defined inductively to make sequential composition self-dual, &
and @ duals, and T and | duals. The next step is to introduce typed names, and then
construct typed actions and typed processes from them. Actions are constructed from
constant symbols applied to names, and inductively with rules matching the grammar
of types. Terms are constructed inductively with rules for nil, parallel composition,
restriction and replication. There are two constructions which move between actions
and terms. If P is a term, .P is an action. If is an action and @ is a name, a : { is

a term in which the action has been located at the name.

To define reduction of terms, a reduction relation is first defined which allows two
actions to reduce to a term. Reduction of terms then allows two located actions in
parallel to reduce (if their names match) to the term resulting from reduction of the

actions. The transition system of terms with this reduction relation is then studied.

A system of type inference is given, dealing with sequents of the form - P > T in
which P is a term and I' is an assignment of types to names. I' can be thought of
as a description of the interface of the process P, except that the typing rules do not
force the names mentioned in I' to appear in P. For terms typed in this system, with
the transition relation defined previously, a subject reduction theorem is proved and
as a corollary it is shown that reducing well-typed terms does not lead to run-time

errors. For a restricted class of terms, the name-complete terms (in which names and

1.6. Related Work 23

co-names always appear together so that communication should always be possible),

it is shown that typability implies deadlock-freedom.

The types studied in this work extend sorts by providing a number of type constructors
which allow the formation of hierarchies of types rather than the fairly flat structure
of sorts. As Honda points out, the type system remains very syntactic—there is no
semantics of types, and this limits the amount of information which can be deduced

from the fact that a process has a certain type.

Typed Additive Concurrency

Ferrari and Montanari [FM94] have a goal similar to that described in the introduction
to this thesis, namely to discover a good notion of type for concurrency and give a
semantic universe of typed process behaviours. Their approach is rather different from
the sorting approach and Honda’s; as will become clear, it has some similarities with
the interaction categories approach. They give a semantics of typed transitions (and
more generally, sequences of transitions) in terms of matrices. The interpretation of a
transition Fq : A\ LA F5 : Xy between typed process terms Fq : Ay and Fy : Ay is a
matrix of shape Ay X Ay. The notion of type which they propose, and which can be used
to index rows and columns of a matrix, is locality type. A locality type is essentially
a binary tree whose leaves represent “processing sites”, which seem to correspond to
the idea of ports. The processing sites are named by paths from the root; concretely
the name of a processing site is a sequence of [and r labels. The idea is that the type
of a process represents the “degree of concurrency”, in terms of number of processing
sites, required for its execution. A matrix of shape A; X Ay has m rows and n columns,
where m and n are the numbers of leaves in the locality types Ay and Ay respectively.
The entries in a matrix are elements of some idempotent semiring (a ring without
additive inverses in which addition is idempotent), and part of the interpretation of
transitions is an assignment of an element of the underlying semiring to each atomic
action. It is perfectly possible for matrices representing transitions to be non-square,
which corresponds to situations in which a process changes its type during the course

of a transition.

In the CCS-like process calculus which they consider, a matrix is given for each atomic
transition a.F —— F, and there is a matrix construction rule for each clause in the
structured operational semantics. Thus there is a rule for each of the three clauses
defining parallel composition, so that each possible transition of a.F | a.F is repre-
sented by a different matrix. Sequences of transitions are represented by matrices
constructed by multiplication. Since matrices can be considered as the morphisms of a

category whose objects are locality types, the general scheme is that types are objects

24 Chapter 1. Introduction

and process behaviours are morphisms.

This interpretation of transitions is defined independently of the underlying semiring;
the only requirement is that atomic actions can be represented as elements of the
semiring. So by choosing the semiring appropriately, different properties of actions
can be considered. A matrix can be thought of as an observation of a transition, and
hence it is possible to treat different notions of observation in the same framework.
Several examples are given, in which different semirings are used to capture different
aspects of process behaviour. Bisimulation can be defined, with the requirement of
matching not actions themselves but their matrix interpretations. Again, different

underlying semirings lead to different bisimulations.

The primary motivation for this work is the use of matrices to give a semantics of
process behaviours; there is much less emphasis on the types and what they might say

about processes.

Action Structures

In a recent series of papers [Mil93a, Mil93b, Mil93c, Mil93d] Milner has introduced
and studied action structures. An action structure is an algebra in which process
behaviours can be described and analysed. The intention is that by axiomatising the
essential features of actions at a suitable level of generality, action structures can serve
as the foundation of a wide variety of models of concurrency and interaction. There
are two points of contact between the theory of action structures and the ideas of this
thesis. The first is that action structures are categories; the second is that in these

categories the objects, which play the role of types, have a monoidal structure.

An action structure is a strict monoidal category with certain additional properties.
The objects of the category are called aritzes, and the monoidal operation is denoted
by ®. The arity 1 is a strict unit, so that 1 ® m = m = m ® 1 for any arity m. The
morphisms of the category are called actions, and can be thought of as the building
blocks of process behaviours. Given a pair m, n of arities in an action structure A,
the collection A, , of morphisms between them is equipped with a preorder, written
\\ and called reaction. This preorder is used to describe evolution of actions: if a \, b
then the action a can become the action b by carrying out some computational activity.
There is also a collection of names, and for each name z a functor ab, which is used

to capture the effect of abstracting over z.

There is a uniform construction of a process calculus over any action structure. A
syntax similar to that of the w-calculus is defined—this syntax includes operations of
delay, replication, prefixing, non-deterministic sum, abstraction and tensor product.

The tensor product of processes is a synchronous parallel composition, from which

1.6. Related Work 25

asynchronous parallel composition can be defined by means of the delay operator.
Prefix actions are taken from the underlying action structure, and process transitions
are defined in terms of the reaction preorder. This construction assigns an arity to each
process; the tensor operation on arities corresponds to the tensor product of processes
and the abstraction functors correspond to the operation of abstraction on processes,
which is used to parameterise processes on inputs. Once the process calculus has been
defined, another uniform construction yields a bisimulation congruence for it. Further
papers [MMP94, Mil94] introduce the idea of a control structure, which provides an

alternative means of describing the constructions of a process calculus.

Thus the action structures theory supports a general construction of typed process
calculi. Milner gives examples of action structures from which synchronous and asyn-
chronous versions of the mw-calculus can be generated; in these examples the arities
usually consist of the natural numbers with addition as the monoidal operation, but
the 7-calculus with sorting can be obtained by taking the arities to be sequences of
sorts. The theory developed so far concentrates on the use of action structures to de-
scribe process dynamics, rather than the possible use of the type structure to analyse
program specifications; this is a key difference between it and the theory developed in
this thesis.

26

Chapter 1.

Introduction

Background

2.1 Introduction

This chapter presents some background material which it will be useful to have avail-
able in Chapter 3. It is divided into two parts. The first reviews some preliminaries on
labelled transition systems and process calculus, using the notation of CCS [Mil89] and
SCCS [Mil83]. It defines bisimulation and observation equivalence, which are the fun-
damental equivalences used for synchronous and asynchronous processes in the rest of
the thesis. The main proof technique, coinduction, is also defined. Similar definitions

can be found in Milner’s book [Mil89], in greater detail and with more discussion.

The second part makes a series of definitions leading up to that of a linear cate-
gory. While these definitions are standard, it is not always easy to find them collected
together and clearly presented in the literature. Also included is a description of
Barr’s construction [Bar91] of the linear logic exponential as a cofree cocommutative

comonoid.

2.2 Process Calculus

2.2.1 Labelled Transition Systems

In operational terms, a process consists of a set of states between which it can move
by performing various actions. This idea is formalised by the definition of labelled
transition systems. A labelled transition system is a triple (X, L, —) in which X is
a set of states, L is a set of labels or actions, and — C X X L X X is the transition
relation. When z,y € X and @ € L, the notation z SN y is used for (z,a,y) € — .

It is often convenient to refer to a labelled transition system by its set of states.

A labelled transition system can be described as a directed graph with labelled edges.
The states are the vertices of the graph, and each edge represents a transition. When
the set of states is finite, this can be a very easy way to define the transition relation.

For example, the graph

27

28 Chapter 2. Background

a
o——=0

a b
o<=——-0
c Qa
defines a labelled transition system, with four states which have not been named.

The graph corresponding to a labelled transition system may be cyclic, but there is an

important class of labelled transition systems whose graphs are trees, for example:
/ .\
) 4 .\\
[] [[]

These are the synchronisation trees, which will be used to represent processes through-

out the thesis.

When working with a process calculus, there is typically a labelled transition system
whose states include all the processes which can be defined. Thus there is a blurring
of the distinction between processes and states: each state of a process is a process in

its own right, and every process is a state of the ambient labelled transition system.

2.2.2 Bisimulation

A simulation on a labelled transition system (X, L, —) is a binary relation R on
X such that if (z,y) € R then whenever y — 3/, there is 2’ € X such that 2 — 2/
and (2',y’) € R. The idea is that (z,y) € R then z can simulate the behaviour of y in
the sense of being able to perform any action which y can, and this ability is inherited
by the subsequent state. A bisimulation on a labelled transition system is a simulation
whose converse is also a simulation. Explicitly, if R is a bisimulation and (z,y) € R,
then

e whenever —— 2/, there is ¥’ € X such that y — ' and (2/,y') € R

e whenever y —— ¢/, there is &’ € X such that 2 —— &’ and (', y') € R.

There are many bisimulations on a given labelled transition system; including, for

example, the empty relation. A useful equivalence is defined by

def

~

U{R | R is a bisimulation }.

This relation is itself a bisimulation; it is also an equivalence relation, and is the largest
bisimulation in the sense that all others are included in it. From now on, the ~ relation

is referred to simply as bisimulation.

2.2. Process Calculus 29

Bisimulation on a given labelled transition system can be characterised as the greatest
fixed point of a certain operator on binary relations. If (X,L, —) is a labelled
transition system and S C X x X, then the relation F(R) C X x X is defined by
(z,y) € F(R) if and only if

e whenever —— 2/, there is ¥’ € X such that y — ¢’ and (2, 9') € R, and

e whenever y —— ¢/, there is 2’ € X such that 2 — 2’ and (2/,y') € R.

Bisimulation is the greatest (with respect to set inclusion) fixed point of F.

Because bisimulation is a greatest fixed point, the proof technique of coinduction
[MTO1] is naturally associated with it. It follows from the definition of F that a
relation R is a bisimulation if and only if R C F(R). Since ~ is the largest bisimula-
tion, to show that z ~ y it is sufficient to show that (z,y) € R for some bisimulation
R. In turn, to show that some relation R is a bisimulation it suflices to show that
R C F(R). This technique is used throughout the thesis when establishing instances

of bisimulation.

2.2.3 Observation Equivalence

When studying processes it is often useful to regard certain actions as silent or un-
observable. Such actions are typically used to represent internal communication steps
whose details are not visible to the outside world. There is a variation of the notion of
bisimulation, called weak bisimulation, which takes into account the unobservability of
a particular action (which is usually called 7). It is similar to bisimulation in that one
process has to match the transitions of another, but with the crucial difference that a

7 transition can be matched by any number of 7 transitions, including zero.

Suppose that (X, L;, —) is a labelled transition system, where L, = L U {7} and
7 ¢ L. There is a labelled transition system (X, L*,=)in which, ift = a;...a, € L%,
=L is defined by

vty B a() T (e () ()

A transition == represents a sequence of —— transitions whose observable actions
are as specified by ¢. Conversely, for any s € LY, 3 € L* is defined to be the sequence

of actions obtained by removing all occurrences of 7 from s.

A weak bisimulation on a labelled transition system (X, L;, —) is a binary relation
R on X such that if (z,y) € R then

e whenever z — 2/, there is ¥’ € X such that y:a>y’ and (2',y") € R

30 Chapter 2. Background

o whenever y —— ¢/, there is 2/ € X such that r=%2" and (z',y') € R.

The largest weak bisimulation is called observation equivalence and is written =.
Observation equivalence is the greatest fixed point of the operator F defined by
(z,y) € F(R) if and only if

e whenever z — 2', there is ¥’ € X such that y:d>y’ and (z',y’) € R, and

o whenever y —— ¢, there is 2’ € X such that r=%2" and (z',y") € R.

As before, the proof technique of coinduction is available.

In the CCS literature, bisimulations in which 7 actions are not treated specially (i.e.
the relations which were called bisimulations in the previous section) are known as
strong bisimulations, and the largest strong bisimulation is called strong equivalence.
This is the origin of the contrasting term “weak bisimulation”. In this thesis, the
equivalence ~ is used when all actions are considered to be observable, and it is called
bisimulation. The equivalence & is used when 7 is treated as unobservable, and it is

called observation equivalence.

2.2.4 CCS and SCCS

Later in the thesis it will be convenient to use the syntax of both CCS and SCCS to
describe processes which appear in some of the examples. CCS is defined over a set
Act of actions, with 7 € Act. For each a € (Act — {7}) there is @ € (Act — {7}). The
actions @ and @ are complementary in the sense that they can interact with each other

during a communication.

The set £ of processes is defined by the grammar
Pu=nil|a.P|P+P|(P|P)|Plf]|P\A|fix(X =P)

in which @ € Act, A C (Act — {7}), [: (Act — {7}) — (Act — {7}) and X is a variable.
These expressions are given meaning by the transition rules in Figure 2.1, which define
a labelled transition system (&,Act, —). Considering the collection of transition
rules as a system for proving that instances of the transition relation hold, there is one
axiom: the rule allowing a.P to do the action e and become P. P + () is a process
which may behave either as P or as @), the choice being made at the time of its first
transition. P | @ consists of P and @) placed in parallel, which means that they may
make independent transitions or communicate with each other. In a communication
step P does the action ! (which is not 7) and @ does [; the result is a silent action 7.

P\ A is the process P with actions in the set A suppressed, and P[f] is the process

2.2. Process Calculus 31

P2 P Q = @'
a.P 2 p P+Q - P P+Q—qQ
p_“. p! 0% 0 r—tep g-g
PlQ—r|Q PlQ—P|C PlQ—r|¢
P-2. P aadA P2 P E{fix(X = E)/X} —= P
P\ A" P\ A r el prip fix(X = E) —°~ P

Figure 2.1: Operational Semantics of CCS

P with its actions renamed according to the function f. Finally, fix(X = F) is a

recursively defined process whose transitions are obtained by unwinding the definition.

SCCS (Synchronous CCS) is a version of CCS in which simultaneous actions are allowed
[Mil83]. Simultaneity is introduced by specifying that the set Act of actions has an
abelian group structure. The group product is used to construct compound actions
which consist of the simultaneous occurrence of their factors. Instead of the parallel
composition | of CCS, there is a synchronous product operation x which is defined by
the single transition rule

e
PxQ B P Q'.

If @ and 8 are mutual inverses in this rule, the resulting action of P x @ is the group

identity 1 which corresponds to 7 in CCS.
The other difference between SCCS and CCS is that prefixing in SCCS is denoted by

a : P. The summation, restriction, relabelling and recursion operators are all present

in SCCS.

When working with CCS, a choice of equivalence is possible. If one does not wish
to treat 7 actions specially, then strong bisimulation is the equivalence to use. More
commonly, 7 is treated separately, and an equivalence is needed which treats 7 as un-
observable. It turns out that observation equivalence is not a congruence, i.e. is not
preserved by all the process constructions, so the usual equivalence used is observa-
tion congruence which is defined to be the largest congruence contained in observation
equivalence. Observation congruence is usually denoted by = and often referred to sim-
ply as equality. As an added bonus, it is possible to give a complete axiomatisation for
equality [Mil89]. When working with SCCS, strong bisimulation is always used. This
thesis deals with both synchronous and asynchronous processes. Strong bisimulation

is used as the equivalence in the synchronous case, and observation equivalence is used

32 Chapter 2. Background

in the asynchronous case. The general principle is to use the finest equivalence which
makes all the desired equations (which generally means those specifying categorical
structure) hold.

2.8 Linear Categories

As Seely [See87] points out, a categorical model of classical linear logic requires a
x-autonomous category with finite products, and a comonad with some extra proper-
ties. A large amount of material on *-autonomous categories can be found in Barr’s
lecture notes [Bar79]; his later paper [Bar91] contains a selection of the material rele-
vant to linear logic, together with some additional results. Marti-Oliet and Meseguer

[MOMO91] also give a clear definition of a *x-autonomous category.

A monoidal category [Mac71] is a category C with a bifunctor ® : C x C — C,
an object I, and natural isomorphisms whose components are unitlg : T ® A — A,
unitrg : A® I — A and assocypc : A®(B®C) - (A® B) @ C. The natural

isomorphisms have to satisfy certain coherence conditions, namely that the diagrams

assocC assocC

A8(Be(CoD) =% (AeB) e oD =2 (AeB) e C)oD

id ® assoc assoc ® id
A9 (BeC)® D) " (Ae(BoC)eD
and
A®(I® B) assot (A I)® B
id ® unitl unitr ® id
A® B

commute for all objects A, B, C, D of C, and that unitl; = unitr; : I @ I — I. The
purpose of these coherence conditions is to ensure that no non-trivial automorphisms

can be constructed from the basic natural isomorphisms.

A symmelric monoidal category is a monoidal category C with a natural isomorphism
whose components are symmy g : A®@ B — B ® A, such that symmZIB = symmpg 4

and satisfying the additional coherence conditions specified by commutativity of the

2.3. Linear Calegories 33

following diagrams for all objects A, B, C of C.

assocC symm

AR (B (C)—— (A@B)® C C®(A® B)
id ® symm assoc
AR (C®B)—— (A C)® B (C®A)@ B

assoc symm ® id

symm

ARl I®A
A

A symmetric monoidal closed category (also called an autonomous category) is a sym-

metric monoidal category C such that for each object B of C, the functor — @ B has
a right adjoint. The adjoint functor is denoted by B — —. The adjunction specifies a
bijection between the homsets C(A ® B,C') and C(A, B — C'), natural in A and C. If
[A® B — C then the corresponding morphism A — (B — (') is called A(f). The
counit of the adjunction is a natural transformation whose components are morphisms
Apsyp: (A —-B)®A— B. Given g : A — (B — ('), the corresponding morphism
A® B — C is defined by (¢ ®idp) ;Apg . A and Ap are usually called currying and

application.

A x-aultonomous category is a symmetric monoidal closed category C with a dualising
object, i.e. an object L such that for every object A of C, the morphism A(symmy 4, ;
Apy):A— (A — 1) —o L isan isomorphism. The functor (=)' : C°° — C is then
defined by A+ f 4 1, and is an equivalence between C and C°P. It also follows
that A - B2~ (A® BJ-)J'.

Defining a bifunctor » by de Morgan duality, i.e. Ax B def

(At ® BJ‘)J'7 specifies
another symmetric monoidal structure on C with » as the monoidal operation, L as
unit, and the structural morphisms also defined by duality. So, for example, parunitl 4
is defined by parunitl 4 def (unitl;lll)J' : 1 A— A. Because L is a dualising object, it

also follows that (I — 1) = 1. Furthermore, A — B = Al 5 B.

A x-autonomous category has sufficient structure to interpret the multiplicative frag-
ment of classical linear logic. For the additives, finite products and coproducts are
also required. Using linear logic notation rather than standard categorical notation,
binary product is denoted by & and a terminal object by T. Because of the duality,
a #-autonomous category with finite products also has finite coproducts, defined by

As B (AL & BL)" and 0 & T,

34 Chapter 2. Background

A compact closed category (in Barr’s terminology, a compact category) is a x-auton-
omous category in which the functors ® and » are naturally isomorphic. Stating this
formally requires first of all that there is an isomorphism a : L = I. This allows a

natural transformation mix: ® — » to be defined by

A
mix4 B ~
Ax B

where fap: (A® B)® (A — L) — B is defined by

N Ap, | @ids
(AB)@(A—1) > (A—-1)gA)B —2" ", | B
faB a@idp
B - I®B

The term linear category has been used [See87, MOM91] for a x-autonomous category
with finite products and coproducts, but in this thesis the term is reserved for a

category which also has the structure needed to interpret the exponentials ! and 7.

A linear category is a #-autonomous category C with finite products and coproducts
and a comonad (!,e,d), satisfying certain extra properties. For each A there should
be a cocommutative comonoid structure

n K

1 T'A A TA

on !A, such that the additional isomorphisms

(A& B) = !A®!B} 2.1)

1T = 1

hold. The functor 7 is defined by de Morgan duality: ? A def (! (AJ-))J'.

For (1A, n, 1) to be a cocommutative comonoid, the diagrams

-1 id
1Ae (A0 1A) 22 (A 1ayeta b vug1a
id @ p I
TA® 1A rA

2.3. Linear Calegories 35
n®id id®n

I A—TAQ!A—— 1A®I

unitl ! unitr—!

symm

1A 1A AR A
1A

The morphisms 1 and g from the cocommutative comonoid structure interpret weaken-

must commute.

ing and contraction; the morphism e of the comonad structure interprets dereliction;
and if f : 'A — B then the promoted morphism f' : 'A4 — !B is defined by
f! def S 'f

=0;!f.

If objects X and Y of C have cocommutative comonoid structures, a cocommutative

comonoid morphism f: X — Y is a morphism such that the diagrams

f fer

X Y XX tvyoy
1 1
n Ui
I X Y
/

commute. Com(C) is the category of cocommutative comonoids in C with these mor-
phisms. If the forgetful functor U : Com(C) — C has a right adjoint, i.e. a cofree
functor from C to Com(C), then the comonad (!,e,68) can be defined from this ad-
junction [Mac71]. In this case the functor !, being a right adjoint, preserves limits, so
the product of A and B in C (i.e. A & B) is mapped to the product of !4 and !B
in Com(C) (which, it turns out, is ! A @ ! B). Similarly, the terminal object T in C is
mapped to the terminal object in Com(C), which is I. Thus the isomorphisms (2.1)

hold for quite general reasons.

Specifying that ! can be obtained as a right adjoint is quite a strong requirement, which
is by no means satisfied by all models of linear logic. But in some of the situations

considered in this thesis, it is possible to use Barr’s construction [Bar91] of cofree

36 Chapter 2. Background

cocommutative comonoids as symmetric algebras. This construction applies when
the functors @ and »p are isomorphic (in this situation, C is compact closed or simply
compact) and C has countable biproducts, i.e. countable products and coproducts which
are isomorphic. From now on, the binary biproduct will be written ¢. The nullary
case gives a zero object 0. Hence for each pair A, B of objects, there is a morphism
04_5:A — B defined by 04_5 df 40— B, using the fact that 0 is initial and

terminal.
The first step in the construction of ! is to define, for each n > 0, the symmetric tensor
power functor ®7. For each permutation ¢ € 5,, there is a canonical isomorphism

Po i @"A — @"A
constructed from symm. The object ®7 A is defined by the simultaneous equaliser
diagram

in which all the p, are equalised, if this equaliser exists in C. If f: A — B then
®sf:®;A— @B
is defined as follows. For any o € 5, there are canonical automorphisms p, and ¢, on
®"A and ®" B respectively. By naturality, (®"f); ¢, = p, ; ®" f and so
€a; 0" f 04— R®"B
has equal composites with all of the ¢,. Using the equaliser property, ®7 f is defined
to be the unique morphism @7 A — ®7 B such that
gra —A gy O gnp
®sf

Qs B
commutes. It is easy to verify, using the uniqueness of a morphism satisfying the
equaliser property, that ®7 preserves identities and composition. Finally, the functor
! is defined on objects by

A 50074

and similarly on morphisms. The rest of the construction also requires that for every

Aandn >0, ey ;ejl =idgna.

For the cocommutative comonoid structure on 'A, n: 'A — I is defined by 75 def 0,

where the 7; are projections from a countable biproduct, using the fact that %4 = I.

2.4. Discussion 37

To define p : 'A — 1A ® A, the first step is to use distributivity of @ over @ to
write 'A® 'A 2 &, ,[(®7A) ® (®7A)]. This means that given, for each r, m and
n, a morphism i, ., @ @A — (Q7TA) ® (87 A), p can be defined from the product
and coproduct properties of &. If m 4+ n # r, then i, 5 def O0gr A—(@mA)@ (27 A)- If

m+ n = r then y, ,, , is defined by this diagram.
€ ~
@A — @A — (@A) ® (" A)

eJ‘®eJ‘

Hrm,n
(®574) © (©7A)
It is straightforward to verify that (!A,n,) is a cocommutative comonoid.

The adjunction specifying cofreeness requires a choice of natural bijection
C(UA, B) = Com(C)(A, ! B)

for each A € Com(C) and B € C. Given h : A — !B, h: UA — B is defined by
=) : m1, using the fact that @B = B. Given g : UA — B, § : A — !B is
defined via a collection of morphisms g, : A — @7 B. To define g,, first note that the
cocommutative comonoid structure of A gives a canonical morphism a : A — ®"A and
that a has equal composites with all the p, : " A — ®"A. Hence a; ®"¢ has equal
composites with all the ¢, : ®* B — ®"B, and so §, can be taken as the morphism
defined by the equaliser property of @7 B. By lengthy manipulation of diagrams arising
from the definitions, it can be verified that § is a cocommutative comonoid morphism,
;}:g,andfﬁzzh.

When the comonad structure of ! is defined from this adjunction, e4 : ' A — Ais given

by €4 def id14 (so concretely e4 = mp),and 64 : 'A — ! Ais given by 84 def id/;l.

2.4 Discussion

The purpose of this chapter has been to gather together the prerequisites for the next
chapter. The definitions relating to process calculus have been included in order to
establish the framework in which subsequent work takes place. Now that the abstract
structure of linear categories has been described, in Chapters 3 and 5 it will be suffi-
cient to define concrete realisations of this structure in the particular categories under
consideration. Of course, the main subject of this thesis is interaction categories rather
than merely linear categories. Later chapters contain several examples of interaction
categories, first defining their structure in concrete terms and then working towards

an abstract definition.

38

Chapter 2. Background

Interaction Categories

3.1 Introduction

The philosophy of interaction categories is that composition is a dynamic process of
interaction rather than a static composition of functions. This will be seen clearly
throughout this chapter, and it means that interaction categories have a very different
flavour from many of the categories familiar from traditional mathematics. Two in-
teraction categories, both due to Abramsky, are defined in this chapter: the category
SProc of synchronous processes, and the category ASProc of asynchronous processes.
SProc comes first, because historically it was the first to be discovered and also because
it is a little simpler than ASProc. Following a similar sequence of definitions to that
in Abramsky’s papers [Abr93b, Abr94b], the structure of SProc as a linear category is
defined. After this comes the definition of the additional structure which makes SProc
an interaction category. This is followed by a description of an unsuccessful attempt to
construct a category of asynchronous processes by applying delay operators to certain
synchronous morphisms, and finally by the definition of ASProc, in which all processes
are asynchronous. This thesis uses the “full” version of ASProc rather than the sim-
plified version which has appeared previously [Abr94al; furthermore, the full version is
presented in a slightly different way which makes the key differences from SProc more
apparent. Once the categories have been defined, the relationships between them and
their different presentations are discussed. Although ASProc does not arise from a gen-
eral construction of asynchronous processes in terms of SProc, the two categories are
not completely unrelated: there is an embedding of ASProc into SProc. A comparison
is also made between the presentation of ASProc used in this thesis and Abramsky’s

presentation.

Although the name “interaction categories” was introduced only at the time of the
discovery of SProc, there are other categories which, with hindsight, can also be seen
as examples. These are the categories of games used by Abramsky and Jagadeesan
to model linear logic [AJ94], Berry and Curien’s category of concrete data structures
and sequential algorithms [Cur93], and Abramsky and Jagadeesan’s “geometry of in-
teraction” categories [AJ92]. These examples are not discussed in this thesis, but the

reader who is familiar with any of them may find it interesting to compare them with

39

40 Chapter 3. Interaction Calegories

SProc and ASProc.

There is one question which has not yet been addressed: what is an interaction cate-
gory, other than one of a collection of examples? At the time of writing, there is no
abstract definition which both encompasses all of the examples, and specifies enough
structure to support all of the desired constructions in particular categories. The fi-
nal section of this chapter discusses possible axioms. It is convenient to distinguish
between synchronous and asynchronous interaction categories; Chapter 6 uses one ab-
stract definition of a synchronous interaction category to give a semantics to a typed
calculus of synchronous processes. One of the aims of this thesis is to use interac-
tion categories to analyse a variety of examples, and thus accumulate experience of
which aspects of the structure are the most important and should be captured by an

axiomatisation.

3.2 The Category SProc

3.2.1 Processes

The first step in the definition of SProc as a category of processes is a suitable definition
of a process. Rather than working with strong bisimulation equivalence classes of
labelled transition systems, it is convenient to use synchronisation trees as canonical
representations of the equivalence classes. The most obvious way to formalise the
notion of a synchronisation tree is to define the class STy, of synchronisation trees with

label-set L by the recursive equation
STy, = ®(LxSTyp). (3.1)

With this definition, a synchronisation tree consists of the set of transitions to its
descendants: P = {(a,Q) | P 2. (@}. The simplest way of solving the isomorphism
(3.1) is to use Aczel’s theory of non-well-founded sets [Acz88]. In this theory, STy, is
the final coalgebra of the functor X — ©(Lx X). The final coalgebra property supports
non-well-founded recursive definitions of elements of STy, and provides a principle of
coinduction. A detailed development of non-well-founded set theory, and a description

of its application to processes, can be found in Aczel’s book.

The processes in the synchronisation tree
P
q, b Q
nil c

nil

3.2. The Category SProc 41

are represented by the sets

P = {(a7ni|)7(b7Q)}
Q X {(c,ni)}

nil = .

In this thesis, processes will usually be defined either by SCCS (or, when asynchronous
processes are considered, CCS) prefixing and summation notation, or by transition

rules. For example,

P fef a:nil+b:0Q

Q il
or
. b .
P -2 il P—qQ Q—C>n||.
These processes have only finite behaviours, but infinite processes can be defined by

recursive equations or transition rules. For example,

p a:Q

Q “ p.p
is typical of the kind of non-well-founded recursive definition which Aczel’s theory

supports.

3.2.2 SProc as a Category

An object of SProc is a pair A = (¥4, 54) in which X4 is an alphabet (sort) of actions
(labels) and §4 Crerref Y% is a safely specificalion, i.e. a non-empty prefix-closed subset
of ¥%. If A is an object of SProc, a process of type A is a process P with sort ¥4
such that traces(P) C S4. Considering P as a labelled transition system, traces(P) is
the set of sequences labelling finite paths from the root. The set of sequences labelling
finite and infinite paths is alltraces(P) and the set of sequences labelling infinite paths

is inftraces(P). The following coinductive definition is equivalent to

this description.

alltraces(P) = {c}U{ao | P - Q, 0 € alltraces(Q)}
traces(P) = {o € alltraces(P) | o is finite}
inftraces(P) ef {0 € alltraces(P) | o is infinite}.

The fact that P is a process of type A is expressed by the notation P : A. This use of

“:” should not cause any confusion with the synchronous prefix operation.

42 Chapter 3. Interaction Calegories

The most convenient way of defining the morphisms of SProc is first to define a
x-autonomous structure on objects, and then say that the morphisms from A to B
are processes of the internal hom type A — B. This style of definition is typical of in-
teraction categories; definitions of categories of games [AJ94] follow the same pattern.
Given objects A and B, the object A ® B has

def
EA@B = EAXEB

Ss0B def {0 € Xygp | fst"(0) € S4,snd™(0) € Sp}.

4 1. This means that at the level of types, SProc

The duality is trivial on objects: A+
makes no distinction between input and output. Because communication in SProc
consists of synchronisation rather than value-passing, processes do not distinguish

between input and output either.

The definition of ® makes clear the extent to which processes in SProc are synchronous.
An action performed by a process of type A ® B consists of a pair of actions, one from
the alphabet of A and one from that of B. Thinking of A and B as two ports of the
process, synchrony means that at every time step a process must perform an action in

every one of its ports.

~J

In a *-autonomous category in which A+ = A, it follows that A®@ B = A B and
hence the category is compact closed. Furthermore, A — B = A ® B. In SProc, the
objects A and A+ are not just isomorphic but are actually defined to be equal, and
so the multiplicative connectives coincide up to equality: A B=A —o B = A® B.
However, preserving the notational distinction between the connectives will make it
clear that in many parts of this thesis a less degenerate category than SProc could be
used. There will also be times when the compact closed structure of SProc is crucial for
certain applications. Not all interaction categories are compact closed, but in general
those that are support more process constructions than those that are not. This will

become clearer in Chapters 4 and 5.

A morphism p : A — B of SProc is a process p of type A — B (so p has to satisfy a
certain safety specification). Since A — B = A® B in SProc, this amounts to saying
that a morphism from A to B is a process of type A @ B. The reason for giving
the definition in terms of — is that it sets the pattern for all interaction category

definitions, including cases in which there is less degeneracy.

If p: A— B and g : B — C then the composite p; g : A — C' is defined by labelled

transitions. (a,b) (b,c)
a, ¢
p R — p/ q q/

(a,c)
pig—=p;q
At each step, the actions in the common type B have to match. The processes being

composed constrain each other’s behaviour, selecting the possibilities which agree in

3.2. The Category SProc 43

B. For example, if p and ¢ are as shown:

then p ;¢ is this tree.

This ongoing communication is the “interaction” of interaction categories. If the pro-
cesses in the definition terminated after a single step, so that each could be considered
simply as a set of pairs, then the labelled transition rule would reduce to precisely
the definition of relational composition. This observation leads to the SProc slogan:

processes are relations extended in time.

The identity morphisms are synchronous buffers: whatever is received by idg : A — A
in the left copy of A is instantaneously transmitted to the right copy (and vice versa—
there is no real directionality). This is exactly the Proofs as Processes interpretation
of an identity axiom. The following auxiliary definition helps to define the identity
processes. If P is a process with sort ¥ and § C"?"f ¥* then the process P[S§, also

with sort X, is defined by the transition rule

P—a>Q a€S

PIS —+ QI(5/a)

where S/a def {o | ac € S}. Note that the condition ¢ € S in the transition rule

refers to the singleton sequence a rather than the action a. In this thesis, there is no
notational distinction between these uses of a.

The identity morphism id4 : A — A is defined by id4 def id[S4_04 where the process

id with sort X4 is defined by the transition rule
a € Xy
id 2% id.

Proposition 3.1 SProc is a category.

Proof: The first step is to prove that if f: A — B and g : B — (', then
fi9:A—C.
This requires traces(f;g) C S4—oc. Firstly, traces(f) C S4_op implies

{fst*(s) | s € traces(f)} C S4,

44 Chapter 3. Interaction Calegories

and similarly traces(g) C Sp_oc implies
{snd*(s) | s € traces(g)} C Sc.

If s € traces(f ; g) then fst*(s) = fst*(¢) for some ¢ € traces(f), and snd*(s) = snd*(¢)

for some 1’ € traces(g). Hence s € S4_¢.

The proof that composition is associative is by coinduction. We wish to prove that for
any f:A—= B,g:B—=Cand h:C —= D, f;(g;h)=(f;9);h. Define a relation R
on STy, , by

def
R= {(u) (U) w)v (u) ?J)) w) |u€ STEA%BWU € STEB_ocvw € STEC%D}‘
The aim is to show that R is a bisimulation, and hence is contained in strong bisimu-
lation; since strong bisimulation is equality, this completes the proof.

Ifu;(v;w) —2+ 2 then from the transition rule defining composition, a = (a,d) and

. ,b b,d . .
there is some b such that u {eb) u and v w {bd) y, with = «’;y. Again from the defi-

(bye) (c,d)

oy o, . 12 12 .
nition of composition, there is some ¢ such that v — v’ and w — w', with y = v';w’.

) (e.d) u' (v ;w'). Similarly (u;v);w 9 (u';0") 5 0.

So overall we have u;(v;w
And from the definition of R, (u'; (v';w’),(u';v");w') € R. A symmetrical argument
shows that u;(v;w) can make the same transitions as (u;v);w, and that the subsequent

states are related by R. Hence R is a bisimulation.

The proof that f;idg = f when f: A — B is slightly less direct. If id is the process
defined as before but with sort Xg, a coinduction argument similar to the one above
establishes that f;id = f, using the relation S on STy, . defined by

S Y {(usid,u) | uwe STy,).
Because the behaviour of f in B satisfies the safety specification Sg, f;(id[Ss—onB) =

fi;id= fandso f;idg = f. O

3.2.3 SProc as a x-Autonomous Category

The definitions of @ and (—)* can now be extended to morphisms, making them into
functors. If p: A— Cand¢: B — Dthenp@q: A®B — C®@D and pt : C+ — A+

are defined by transition rules.

(a,c) (b,d) (ae)

p—p qg—+q p——>p
((a,b),(c,d)) (Cva)
pRg—""%p g pt —— pt

The tensor unit I is defined by

3.2. The Category SProc 45

The following notation provides a useful way of defining the structural morphisms
needed to specify the rest of the x-autonomous structure. If P is a process with sort
Y, and f: Y — Y is a partial function, then P[f] is the process with sort ¥’ defined
by

P2.Q a € dom(f)

pi L g,

The canonical isomorphisms unitly : 7 ® A =2 A, unitry : AQ I = A, assocy o :
AR (B C)=Z(A® B)®C and symmy g :A® B — B® A are defined by

unitl 4 def idal(a,a) — ((x,a),a)]
unitr4 def idal(a,a) — ((a,%),a)]
assocapc = idagmac)((a,(b,0),(a,(b,c)) — ((a,(b,¢)),((a,b),c))]

symmy g E idagsl((a,0), (0,0) ~ ((a,0), (b,a))]
If f:A@ B — C then A(f): A — (B — () is defined by

AS) = fl((a,b),¢) = (a, (b,c))].

The evaluation morphism Apy g : (A — B) ® A — B is defined by

Apas & idaonl((a,b),(a,b)) — (((a,b),a),b)].

All of the structural morphisms are essentially formed from identities, and the only
difference between f and A(f) is a reshuffling of ports. In each of the above uses of
relabelling, the partial function on sorts is defined by means of a pattern-matching

notation.

If P is a process of type A then Pla — (%,a)] is a morphism I — A which can be
identified with P. This agrees with the view of global elements (morphisms from I, in

a #-autonomous category) as inhabitants of types.

Proposition 3.2 SProc is a compact closed category.

Proof: Verifying the coherence conditions for ® is straightforward, given the nature
of the canonical isomorphisms as relabelled identities. The properties required of A and
Ap are equally easy to check. Since (—)J‘ is trivial, it is automatically an involution.
This gives the *-autonomous structure; compact closure follows from the coincidence

of ® and . O

3.2.4 Safety Specifications, Isomorphisms and Minimal Types

So far, the safety specifications in the objects of SProc have not been very prominent.

This will change in the next section, when they become essential for the definition

46 Chapter 3. Interaction Calegories

of products and coproducts, but now is a good time to illustrate some of their other

implications.

In Rel, the category of sets and relations, two objects are isomorphic precisely when
they are isomorphic as sets, i.e. when there is a bijection between them. But in
SProc, isomorphism is not determined by such a simple relationship between sorts.
For example, let objects A and B be defined by X4 def {a}, S4 def {a" | n < w},
np {a,b} and Sp def {0" | n < w}. Then the morphisms f: A — Band g: B — A
defined by f = (a,b) : f and ¢ = (b,a) : ¢ are mutual inverses. The point is that
because Sp does not allow the action a to appear, B effectively has a singleton sort
and so “looks like” A. Conversely, objects with the same sort need not be isomorphic.
Suppose Y4 Ll pp & {a}, Sa def {¢,a} and Spg def {€,a,aa}. Because all traces in
5S4 have length < 1, any morphism into or out of A only has traces of length < 1. If
f:A— Band g: B — A then g; [also has no traces of length > 1, but idg has the

trace (a, a)(a,a) of length 2, and so ¢; f # idp.

Because satisfaction of a type A by a process P is determined by a simple subset
relationship (traces(P) C S4), if P has type A then it also has any type with a larger
safety specification. Defining sort(P) to be the set of actions which P can actually do,
the minimal type satisfied by P is (sort(P),traces(P)). Then for any object B with
sort(P) C ¥p and traces(P) C Sp, P : B. There are a few places later in the thesis

where it will be very convenient to make use of this feature.

3.2.5 Products and Coproducts

Being a x-autonomous category, SProc is a model of multiplicative linear logic. It
also has the structure needed to interpret the additives, namely finite products and

coproducts. The binary coproduct functor ¢ is defined on objects by

def
YaeB = Ya+Y¥B

Siss = {inl*(s)|s € Sa}
U A{inr*(s) | s € Sg}.

Ifp:A—-Candg:B— Dthenp®qg: Ad B — C P D is defined by
def . .
pdqg = p[(av C) = (ml(a)v ml(C))]
U ql(b,d) — (inr(b),inr(d))].

The insertions inly p: A — A@ B and inry g : B — A® B are defined by

inly.B def idA[(a,a)H(a,inKa))]

inrap < idg[(b,b) — (b,inr(h))]

3.2. The Category SProc 47

and, forp: A—=C,q: B—=C,[p,q): A® B — (C'is

[p.a] < pl(a,e) — (inl(a), ¢)]

In these definitions, the operation U on processes means union of the representations

as sets, i.e. non-deterministic sum of synchronisation trees.

Proposition 3.3 The above definitions make A @ B a coproduct of A and B.

Proof: Suppose p: A — C and ¢: B — C. It is easy to check that inl;[p,q] = p,
because the inl(a) actions of inl can only match the inl(a) actions of [p, ¢|, and these

come from p. Thus the result of the composition is the same as id4 ; p, i.e. p. Similarly
inr; [p,q] = q.

Now suppose that h : A @ B — C with inl ;A = p and inr; h = ¢q. The first action
of h must be either (inl(a), c) or (inr(b),c). In the first case, h (inl(a).c)

we know that inl ——*% inl’, it must also be true that p o) p’. Furthermore, the

k' and because

definition of composition means that inl" ; A’ = p’. Now, because Sagp = S4 + SB
and the first action of A was (inl(a), ¢), any subsequent behaviour of A (which means
any behaviour of A') must involve actions in the A component rather than the B
component. So composing A’ with inl’ does not restrict the behaviour of 2/, and we
have h' = p'[(z,z) — (inl(z), 2)]. The same is true of the first step, and so h contains
pl(z, z) — (inl(z), z)]. Similarly, ~ contains ¢[(y, z) — (inr(y), z)]. Since these are the
only two possibilities, according to the two possibilities for the first action of h, it
follows that h = [p, q]. O

The proof of uniqueness of the source tupling morphism relies crucially on the safety
specification of A @ B. To see this, consider objects A, B and C' with ¥4 = {a},
Yp = {b} and ¢ = {c}. Define morphisms p: A — C and ¢ : B — C by

p & (a,c):nil

q

def (b,c) il

so that
[p,q] = (inl(a),c):nil+ (inr(b),c) : nil.

If objects have no safety specifications, there is a morphism r : A@ B — (' defined by

po & [p,q] + (inl(a),c) : (inr(b),c) : nil.

Then inl ;7 = p and inr;r = ¢, violating uniqueness of [p, ¢]. This is the first point

at which safety specifications have been necessary—everything up to now would have

48 Chapter 3. Interaction Calegories

worked just as well if objects consisted only of alphabets. But without safety spec-
ifications, there would only be a weak coproduct, which means that the source tu-
pling morphism is not uniquely defined by the requirement that inl; [f,¢] = f and
inr; [f.g] = g.

Since @ is a coproduct, its dual is a product; because all objects of SProc are self-dual,
this means that A @ B is itself also a product of A and B—so, in fact, a biproduct.
There is also a zero object 0 which has g % and §o & {e}.

Proposition 3.4 The object 0 is initial and terminal in SProc.

Proof: The only safe trace for 0 is the empty trace, so a morphism A — 0 cannot

make any transitions and must be nil. Similarly for a morphism 0 — A. O

The binary biproducts and zero object just defined also give SProc all finite biproducts.
The definitions can be extended to countably infinite biproducts in the obvious way,

by taking a countable disjoint union of sorts and safety specifications.

Proposition 3.5 SProc has all countable biproducts.

From now on, any mention of biproducts in SProc refers to the specified biproducts

defined in this section.

When a category has biproducts and a zero object, it is possible to define a commuta-
tive monoid structure on each homset [Mac71]. If p,¢g: A — B then p+¢: A — B is
defined by

where A4 def (id4,id4) is the diagonal and Vg def [idg,idp] the codiagonal. The unit

is defined by 04_.p5 40— B

In SProc, this construction yields the non-deterministic sum of CCS (when strong
bisimulation is taken as the notion of equivalence). The proof of Proposition 3.4 shows
that the unique morphisms into and out of 0 are nil processes, and so 04 is also nil.
To unravel the definition of 4, consider the composition (p, ¢); V. Pairing creates a
union of the behaviours of p and ¢, but with disjointly labelled copies of B. Composing
with Vg removes the difference between the two copies. Hence in terms of the concrete
set representations of processes, p+ ¢ = pUg. A choice can be made between p and ¢
at the first step, but then the behaviour continues as behaviour of p or behaviour of
g. This is precisely the natural representation in terms of synchronisation trees of the

non-deterministic sum in CCS.

3.2. The Category SProc 49

Because for each A the functors A ® — and — ® A have right adjoints, they preserve
colimits, and in particular @. Hence ® distributes over countable biproducts, and
A®0 = 0. This extends to the commutative monoid operation +: for any morphisms
p:A— Bandgq,r:C— D, p@(q+r) = (p@q)+(p@r) and (p+q)@1 = (p@q)+(p@7).
Also p® nil = nil = nil ® p.

3.2.6 SProc as a Linear Category

If SProc is to be considered as a model of full classical linear logic, it must also have
structure to interpret the exponentials ! and ?. It is sufficient to define ! and its
properties; 7 is then given by de Morgan duality. Since SProc is self-dual, 7 will be

the same as !.

It turns out that SProc models the exponentials in the very strong sense described in
Section 2.3. So in principle, it is only necessary to define ®7 and show that it has
the required equaliser property. However, it is more useful to concretely define all the
structure associated with !, because there is a certain amount of work involved in

decoding the general construction.

The object @7 A is defined by

def
E@gA - Mn(EA)

def *
Sgrna = {@n(s)]s € Sgna}

where M,,(X) is the set of multisets of size n on X, and ¢, : X¥gng — Ygn 4 is defined
by
vo(*) = D
enlar, ..., a,) def {lay,...,a,[} n>0.
The equaliser morphism e : @7 A — ®"A is defined by

e ¥ idgnal(@,a) — (n(a),a)]

where a = (aq,...,a,).

Proposition 3.6 Denoting by p, the canonical automorphism of @™ A corresponding to

the permutation o, the morphism e : ®7 A — ®"A is the equaliser of all the p,.

Proof: All the composites € ; p, are equal, because e maps any permutation of
(ai,...,a,) on the right to the multiset {ay,...,a,[} on the left. If ¢: X — ®"A also
has equal composites with all the p,, then a morphism h: X — ®7 A is required such
that ;e = ¢. Now, h;e = ¢q implies h;e; et = ¢;et, and since e ; el = idgna
this means h = ¢ ; et. Concretely, this defines h by A def ql(z,a) — (z,pn(a))]; the

argument also proves uniqueness of h. O

50 Chapter 3. Interaction Calegories

With this concrete definition of ®7, the general constructions of Section 2.3 can be
translated into SProc. For the functorial action of ®7,if g: A — B then

9t K (©"9)(a,0) — (2a(@), ou(D))]-

For the cocommutative comonoid structure

weak 4

I~ 'A

contr 4

'A® A

it is straightforward to define weak4 def idz[(*%,%) — (*,{[})]. The comultiplication
contry is defined via morphisms contr’;”™" : @TA — (@7 A) @ (®7A). If r # m +n

def . . . ey
then contr’;™" = nil, and if 7 = m + n then contr’;™" is defined by transition rules.

)

. a,a) .
Id®§A —>(|d®CA’

contrg’m’n) (B contr%}m’n)

16l = m; |yl =n,pUy =a

For the comonad structure, the counit dery : ! A — A is defined by
def .
dery = idu[(a,a)— ({af},a)].

Rather than defining the comultiplication, it is easier to define promotion directly
(effectively using Manes’ streamlined presentation of monads [Man76]). If f: 'A — B
then f':!A — !B is defined via morphisms f, : ! A — ®7 B, where

fn d:ef (®?f)[({|{Iallv'''7alm1|}7'''7{|an17'''7anmn|}|}7{|b17'"7bn|})'_>
Hai1, -5 anm, [}, b1, - -, bul})]-

It follows from the general construction that this really defines the cofree cocommu-
tative comonoid and a comonad; this can also be verified directly from the concrete

definitions.

To understand how the operations on ! A work, it is useful to think of them as demand-
driven. The morphism contry : 'A — A ® ! A has two “clients”, the two copies of
!' A on the right hand side of the arrow. Each client specifies the number of copies it
requires, by operating in the appropriate component of the biproduct making up ! A.
The contr 4 morphism adds the two numbers together and passes this requirement to
the left. The morphisms dery : 'A — A and weaky : ' A — [specify one copy and

zero copies respectively, by only operating in the corresponding component of ! A.

3.2.7 Time

So far, none of the constructions in SProc have made use of the fact that morphisms

are processes with dynamic behaviour. Everything that has been discussed applies

3.2. The Category SProc 51

equally well to the category of sets and relations. The next step is to justify the claim
that SProc looks like “relations extended in time” by defining some structure which

allows the temporal aspects of the category to be manipulated.

The basic construction dealing with time is the unit delay functor o. It is defined on
objects by

Soa & L+ 3Ig

Soq & {e}U{xc| o€ S4}.

It is notationally convenient to write x instead of inl(x), assuming that * ¢ ¥ 4. Given
f:A— B,of:0A — oB is defined by the single transition o f (x) f.

It is straightforward to check that o is indeed a functor. In fact it is a strict monoidal

functor.

Proposition 3.7 There are isomorphisms monyg g : (0 A) ® (0 B) — o(A ® B) (natural

in A and B) and monunit: [— o [.

Proof: monunit: I = o[is defined by
(o%)

monunit — idy

where X7 = {e}. mongp : (0 A)® (0 B) = o(A® B) is defined by

*,k),%) .
mony B ul idagB.

In both cases the inverse is obtained by considering the process as a morphism in the
opposite direction. It is easy to check that these are isomorphisms and that mon is

natural. O

It will often be sufficient to consider o not as a strict monoidal functor but just as a
monoidal functor, which means just using monunit and mon, not their inverses. It is
probably better to leave strictness out of an axiomatisation of o; this will be discussed
later in this chapter, but one reason is that there are interaction categories in which

o is not strict.

A novel feature of o is that it has the unique fixed point property, defined as follows.
Let F': C — C be an endofunctor. F' has the unique fixed point property (UFPP) if
forall f:A— FAand g: FB — B thereis a unique h: A — B such that

a—T L pa
h F(h)
B FB

52 Chapter 3. Interaction Calegories

commutes.

It is worth spending a little time illustrating how the UFPP works, as it is a funda-
mental property of o and one which will be important later. Suppose f: A — o A is

the synchronisation tree

and g : o B — B is the synchronisation tree

(*,b)
(b,0)
nil

so that the possible behaviours of f and g are described by the transitions

e TR L R R G B L AT
Ry
Now the aim is to define h: A — B so that the UFPP diagram commutes.
A ! oA
h oh
B oB
g

Using the definition of composition by transition rules, the transition o h L) h and

the desired equation h = f;oh; g, the following transitions can be deduced:

a,b . a’b
f;oh;g(—lml;h;gl f;oh;g(—lfl;h;gl-
Hence

B L2 il Rl h g,

Using the definition of composition again, and these transitions, gives

a,b . .
f1§h§!]1L—ln”;(fl?h?gl);ml

(a,b)

i.e. fi;h;g1 —— nil. If h is the synchronisation tree

(a,b (a’,b)

nil (a,0)

nil

3.2. The Category SProc 53

then the UFPP diagram commutes; furthermore, h was completely determined by the

requirement that this diagram commute, and hence is the unique such morphism.

More interesting examples of the UFPP in use appear when f and ¢ have infinite
behaviours. In that case, the UFPP says something about the existence of processes
satisfying guarded recursive definitions (guarded in the usual process calculus sense
that recursive calls only occur under prefixes). Consider a simple guarded recursive
definition, for example p = a : p in SCCS notation, and suppose that its intended
interpretation is as a definition of a process of type A where ¥4 = {a,b} and 5S4
contains all traces over 4. This means constructing a morphism p : I — A whose
behaviour in A is a stream of a actions. To do this, let f : oA — A be the process
defined by f def {((*,a),id4)}, and apply the UFPP to f and monunit: I — ol. Then
there is a unique p: I — A such that

monunit

— > 0

P °p

A oA

S

commutes. The behaviour of p is determined by the same feedback argument as before.
At the first step monunit does (e, %), op does (%, *) and f does (*,a), the result being
that p does (e,a). At the next step, op does the action performed by p at the first
step, namely (e, a), and f can do (a,a). This gives a second step action for p of (e, a).
Continuing in this way, the nth action of p is generated by the (n — 1)th action of p

being delayed by o and copied by f, and in the end p = (e, a) : p.

Proposition 3.8 o has the UFPP.

Proof: Given f: A — oA and g:0oB — B, any h : A — B making the UFPP
diagram commute satisfies a certain guarded recursive equation. Since guarded recur-
sive equations over synchronisation trees have unique solutions [Mil89], h exists and is

unique. O

Many other functors, constructed from o, also have the UFPP. The connection with
guarded recursive definitions, hinted at above, shows which functors do have the UFPP.
In general, any guarded recursive definition has some pattern of prefix actions appear-
ing before the recursive call. For any such definition there is a functor with the same
pattern of unit delays. For example, corresponding to the definition P = a : b : P is
the functor oo; corresponding to the definition P = a : b : P+ ¢ : P is the functor
ooo. All such functors have the UFPP. At the end of this chapter there is some

discussion of how to be more formal about which functors should have the UFPP.

54 Chapter 3. Interaction Calegories

Abramsky [Abr94b] proves that if a functor F' has the UFPP then an invariant object
(i.e. X such that FX 2 X) must be unique if it exists. In SProc, I is the unique

invariant object of o, but this need not happen in other interaction categories.

Apart from o there are two other delay functors: the initial delay § and the propagated
delay A. These are the same as the operators used by Milner [Mil83, Mil89] to construct
CCS from SCCS, and they can also be used to construct asynchronous processes in

the synchronous framework of SProc.

The functors § and A are defined on objects by

Yoa o143y,

Ssa = {0 | (n<w)A(o€ Sq)}

Saa o143y,

Saa def {e}U{ar ¥ ag«™ az...| (n; <w) A (arazas... € 54)}

and on morphisms by transition rules.

a,b a,b
f(_).f’ f(_).f’
s sy 57ty INE-—-¥IV

It is straightforward to check that § and A really are functors, because a transition of
(6 f);(8g) is either a transition of f;g¢ or is a delay step resulting from delays by both

J and g. § can be defined in terms of o, since
SAZ AGoAGI A D1
but it does not seem possible to do the same for A. The observation that
A(0A)ZofAA

comes close and describes the operation of A, but it is not a definition since not every

object is of the form o A.

The delay functors § and A have the structure of monads. Consider first the monad
structure of §. The unit 74 is the same process as id4, but with the type A — § A
instead of A — A. The multiplication g4 : §§ A — § A converts both idle actions on
the left into the single idle action on the right. Writing g4 : §1 62 4 — § A allows the

definition to be made by these rules.

(*17*) (*27*) 1

HA — [A HA — [y
id, (2% p

(*2,%) (a,a)
pa >y g P

3.2. The Category SProc 55

A possible trace of p4 is shown in the table.

162A|6A
%1 *
%1 *
%9 *
a a

The monad structure of A is defined similarly, but acting on propagated delays instead

of just initial delays.
Proposition 3.9 (6,1, 1) and (A, 7, 1') are monads.

Proof: ~ This is a straightforward verification; the monad structure operates on se-
quences of * actions in a way corresponding to the monoid structure of the natural

numbers with addition. O

The combined delay functor é¢A is also a monad by virtue of the fact that there is a
distributive law, i.e. a natural transformation dist : Aéd — 6A. Writing *5 and *, for

the delay actions, dist4 : A6 A — §A A is defined by transition rules.

idy —» P

(*65%s5)
E——

(*A7*(5)
B

dist 4 dist 4 dist 4 dist 4 disty —» P

A typical trace is as shown.

AbA| A A
*s *s
*A *s
*A *s
*s *s
*A *s
*A *s
*s *s
a a
*A *A

The unit delay functor o is not a monad. Proving this is an application of the UFPP.

56 Chapter 3. Interaction Calegories

Proposition 3.10 Let C be any category, (7,7,) a monad on C, and suppose that T’
has the UFPP. Then C has a terminal object 1, and T is naturally isomorphic to the

constant functor valued at 1.

Proof: For any objects A and B, applying the UFPP to the morphisms g : A — T A
and pp : T?B — T B gives a unique morphism f : A — T'B such that

A— M g
J Tf
TB T?B

KB

commutes. But for any g : A —=TB, na;Tg;pus = ¢;nre ;s = ¢ by naturality and
the monad laws, so the UFPP implies that there is a unique morphism from A to T B.

Since this is true for any A and B, T'B must be a terminal object as claimed. O

Corollary 3.11 o is not a monad.

Proof: In SProc, there is a terminal object 0 with ¥o = @. But because |¥, 4| > 1
and * € 95 4 for any object A, o A cannot be isomorphic to 0. O

3.3 Asynchrony via Kleisli Categories

The delay operators § and A are functorial versions of the operators used to construct
the asynchronous calculus CCS on top of the synchronous calculus SCCS. It would
be very satisfying if the same construction could be carried out over SProc to yield
a category of asynchronous processes. Since §, A and the combination § A are all

monads, an obvious approach is to construct the Kleisli category of one of the monads.

Let C be a category and (7', 7,) a monad on C. The Kleisli category Cr is constructed
as follows. The objects are objects TA of C. A morphism f from A to B in Cr is a
morphism f: A — TB in C. Composition of f: A — TB and ¢g: B — TC is defined
by f;7Tg;pc. The identity on Ais ny : A — TA.

Now consider the Kleisli category SProcy of the monad A over SProc. The interpre-
tation of a process of type A in this category should be a morphism I — A, which
means a morphism I — A A in SProc. Such a morphism represents a process with a
certain amount of asynchronous behaviour—it can delay in a pattern specified by A.
Another possibility would be to use the monad éA to introduce processes which can

delay at any point.

3.83. Asynchrony via Kleisli Calegories 57

This idea seems simple enough, but applying it leads to several technical problems—
and in fact, these problems seem to be insuperable. The asynchronous category
(SProcy, for the sake of argument) should be an interaction category, so it certainly
needs a x-autonomous structure. Jacobs [Jac94] describes a number of results about
monads and comonads on symmetric monoidal closed categories, and discusses the
possibility of lifting a monoidal structure on a category to one on a Kleisli category.
Such a lifting of structure requires a strong monad, which means that there should
be a natural transformation whose components are Tqp : A® A B — A(A® B). In
SProc, the intention was that 74 g should retime the behaviour in A so that the same

pattern of delays occurs in both A and B. A typical trace of 74, g would look like this.

A AB|AA ® B)
ay by ai by
as * *

as * *

ag by as by
as b3 as b3

The first problem is that the 74 g are not components of a natural transformation. To

see this, let f: A — C be defined by f def (a,c) :nil and consider a naturality square.

A9AB 25, A4 B)
@ Aidg A(f @ idp)

CR®AB—— A(C®B)
TC,B

Round the left and bottom of the square, f@ A idg can do ((a,b), (¢,b)) and become nil,
for some b € ¥, and 7¢ g can do ((¢,b),(¢,b)). So the composite does ((a,b),(c,b))
at the first step and then must become nil. Going round the top and right of the
square, the same actions can happen at the first step, but at the second step there is
a difference. 74 p can do ((a,*),*) for any a € X4, and of course A(f ® idg) can do
(*,%). So the composite has a possible action ((a, *),*) at the second step, and hence

is not equal to the other direction round the square.

Even apart from the fact that 7 is not natural, the possible definitions of a monoidal
structure on SProc, make liberal use of the strength, and this tends to have the effect
of bringing processes into synchronisation with each other when they should really be

independently timed.

Rather than going into more details, it is sufficient to say that although several at-

tempts were made to construct an asynchronous category using these ideas, nothing

58 Chapter 3. Interaction Calegories

came of them; fortunately, Abramsky discovered a direct construction of an asyn-
chronous category which could be used instead. This construction is described in the

next section.

3.4 The Category ASProc

3.4.1 Asynchronous Processes

ASProc, the category of asynchronous processes, is based on equivalence classes of
synchronisation trees modulo observation equivalence. The silent action for the obser-
vation equivalence is specified as part of the sort of a process. If P is a process whose
silent action is 7, then (as synchronisation trees) P ~ 7.P and this means that as
processes, P = 7.P. Equivalently, any process P has the transition P —_» P. This is
a very useful way to think about observation equivalence classes, and emphasises the
point that a process can always delay by doing silent actions—this is what asynchrony
means in this thesis. In all discussion of ASProc, observation equivalence is denoted by
P = (). Note that this is different from the standard CCS notation in which equality

means observation congruence.

In most of the discussion of ASProc in this chapter, the distinction between synchro-
nisation trees and observation equivalence classes is blurred slightly. Any mention
of processes refers to equivalence classes; but when operations such as composition
are defined by transition rules, these rules define synchronisation trees and it is then

necessary to prove that the operation are well-defined on processes.

3.4.2 ASProc as a Category

The following sequence of definitions is similar to that in [Abr94al, although that
paper takes a simpler view and treats a process as a set of traces. Furthermore, the
explicit appearance of a 7 action in each alphabet is a novel feature of this presentation

as compared to Abramsky’s original (unpublished) presentation of the full version of

ASProc.

An object of ASProc is a triple A = (X¥4,74,54), in which X4 is a set of actions,
T4 € Y4 is the silent action, S4 C"?"f ObAct(A)* is a safety specification, and
ObAct(A) L {74} is the set of observable actions of A.

A process with sort ¥ and silent action T € ¥ is an observation equivalence class of

synchronisation trees with label set 3.

A process P of type A, written P : A, is a process P with sort X4 and silent action 74

3.4. The Category ASProc 59

such that obtraces(P) C 54, where (again using a coinductive definition)

allobtraces(P) e {e} U {ao | P=%Q, 0 € allobtraces(Q)}
obtraces(P) def {o € allobtraces(P) | ¢ is finite}
infobtraces(P) def {o € allobtraces(P) | ¢ is infinite}

As before the morphisms are defined via the object part of the x-autonomous structure.
Given objects A and B, the object A ® B has

def
YagB = Ya X XB
def
TA®B = (TA7 TB)
Sios = {0 c ObAct(Saup)* | olA € Sa,0]B € Sp}

where, for a € ObAct(X408),

alA { fst(a) if fst(a) # 74

€ otherwise

and for o € ObAct(X458)*, 0[A is obtained by concatenating the individual a[A. The

projection o|B is defined similarly.

The duality is trivial on objects: At def 4.

A morphism p: A — B of ASProc is a process p such that p: A — B.

Composition is defined as in SProc. If p: A — B and ¢ : B — C, then the composite
p;q:A— Cis defined by labelled transitions.

(a,b) (b,c)
p—p g5

(a,c)
piq——p;q

In this rule, any of the actions a, b, ¢ can be T.

It is necessary to prove that composition is well-defined on observation equivalence

classes.

Proposition 3.12 If p,g: A — B with px¢,and r: B — C, thenp;rxgq;r.

(a,c) !

b
Proof: Suppose p;r —— p' ;7. (@8)

Then by the definition of composition, p — p

—

b b . .
and 7 {8e) r’ for some b € Y. Because p ~ ¢, q(a:>)q’ with ¢’ ~ p’. Now, r is able to

match any (74, 78) actions of ¢ with (78, 7¢) actions of its own, and each one results in

(avc)q/

a (T4, 7c) action of ¢;r. Thus ¢ ; r=>¢’ ; 7/, and “inductively” ¢’ ;7'

~ p';r'. Similarly

the other way round, and hence p;r =~ ¢ ;r. O

60 Chapter 3. Interaction Calegories

Proposition 3.13 If p: A — B and ¢ : B — C then the following are derived transition

rules for p;q.

(avTB) / (TBvC) /
(a,7¢) (Ta,c)
pig—=>piq pig——+pq

Proof: This follows from the fact that any process can make a 7 transition without

changing state. O

As in SProc, it is straightforward to prove that if f: A — B and g: B — C, then [;g

satisfies the safety specification necessary to be a morphism A — C.

Although ASProc is a category of asynchronous processes, the identity morphisms are
still synchronous buffers. As a candidate identity morphism, a synchronous buffer
seems likely to work, given the definition of composition; of course, once it has been
shown to be an identity, no other choice is possible.

The identity morphism id4 : A — A is defined as in SProc: id4 def i [S4_0oa Where the

process id with sort X 4 is defined by
a € Xy
id 2% id.
Just as in SProc, if P is a process with sort ¥ and § C"?"¢ ¥* then the process P|S,

also with sort X, is defined by the transition rule

P—a>Q a€s

PIS == QI(5/a).
3.4.3 ASProc as a x-Autonomous Category

Ifp:A—Candg: B - Dthenp®q: A® B — C ® D and pt : C+ — Al are

defined by transition rules.

(ac) (b,d) (ac)

p—=p qg-—q p—>p
((a,b),(c,d)) (Cva)
pRqg—"%pad pt ——p't

As with composition there are two derived transitions for p ® ¢, which make clear the

sense in which ® is an asynchronous parallel composition.

Proposition 3.1 If p: A — C and ¢ : B — D then the following are derived transition
rules for p ® q.

(a,c) (b,d)
p——p ¢g—dq

p® q ((a,7B),(¢,7D)) p/ ® q p® q ((ra,b),(1c,d)) p® q/

3.4. The Category ASProc 61

The tensor llllit I iS deﬁned by
def def
EI = {71} SI = {5}

The morphisms expressing the symmetric monoidal closed structure are defined as in

SProc, by combining identities.

Proposition 3.15 ASProc is a compact closed category.

3.4.4 Products and Coproducts

The functor @ can be defined in ASProc but it only gives weak biproducts. However, by
making a choice of pairing operation it is possible to carry out some of the constructions

which were done for biproducts in SProc. On objects, & is defined by

YAeB def ObAct(A)+ ObAct(B) + {l,r} + TagB

Sien = {linl*(s) | s € 54}
U {rinr*(s) | s € Sg}.

Ifp:A—-Candg:B — Dthenp®qg: ADB — C P D is defined by
p&q = {((LD).pla,c) = (inl(a),ink(e))])}
U {((r,7),4l(b, d) — (inr(b), inr(d))])}

. def . def
where inl and inr are considered to act on silent actions by inl(14) = inr(18) = TaaB.

The coproduct insertions inly g : A — A® B, inry p: B — A @ B are defined by

inlys = {((7a,0),ida[(a, 0) = (a,inl(a))])}
intap = {((75,7),idg[(b,b) — (b,inr(b))])}

and, forp: A—Cand ¢: B— C,[p,q]: A® B — C is defined by

p.a] = {((I,70),pl(a,¢) — (inl(a),c)])}

Proposition 3.16 inlg g ;[p,q] = p and inr4 B ; [p, q] = ¢.

Proof:
inlap[p,q] = (Ta,70)p
= p by observation equivalence.

The other case is similar. O

62 Chapter 3. Interaction Calegories

To see why A @ B is not a coproduct of A and B, consider the morphisms p: A — C
and ¢ : B — C defined by

p (T4, c¢).nil ¢ (1B, ¢).nil
so that

p,q] = (I, 7¢)(TagB, c).nilU (7, 7¢).(TaeB,).nil.
Now define h: A B — C by

b (1, e)milU (r, e).nil.
It is easy to check that inl4 g;h = (74,¢).nil = p and inr4 g;h = ¢. But since h # [p, q],

the uniqueness part of the definition of a coproduct has been violated.

For p,q: A — B, p+ qis defined as in SProc, as if @& were a genuine biproduct. With
this definition, + turns out to be the internal choice M of CSP; strictly, since + is
not associative, it is an implementation of M. In terms of CCS, the operation which
has been defined is 7.p + 7.¢. This is no surprise, because the genuine CCS + is not
well-defined on observation equivalence classes. One way to get CCS + might be to
construct a variation of ASProc in which processes are observation congruence classes

of synchronisation trees, an interesting possibility which has not yet been investigated.

3.4.5 ASProc as a Linear Category

Defining exponentials in ASProc is more difficult than in SProc and in fact, at the
time of writing, a satisfactory definition has not been worked out. There are two
obvious approaches to try. One is to use the symmetric algebra construction as in
SProc, but although it is possible to define the equaliser e : @7 A — ®"A the lack of
genuine biproducts means that the rest of the construction cannot be carried through.
The other approach is to follow the example of the construction of exponentials in
categories of games [AJM94]; this construction is based on viewing ! A as the infinite
tensor power ®“A, quotiented by an equivalence relation to remove the distinction

between different components. This has not yet been investigated.

3.4.6 Time

In ASProc, the delay monads § and A are less meaningful than in SProc, since delay
is built into all the definitions. But the unit delay functor o is still important. On
objects it is defined by

Soa L {1+ 3Ig

3.5. An Alternative Presentation of ASProc 63
def
ToA = TA

Soa X {e}U{s0 |0 € 54}

If f:A— Bthenof:0A — oB is defined by the transition o f (36,%) 1.

Proposition 3.17 o is a functor, and has the UFPP.

Proof: As in SProc. O
In ASProc as in SProc, o has a unique invariant object, but this is J defined by

def

Y def {x, 75} Sy = {+"|n<w}

rather than I. Hence o is not a strict monoidal functor on ASProc. The other part of
strictness, namely that o(A ® B) = (0 A) ® (o B), also fails. There is an inclusion of
behaviours: for any trace in o(A @ B) there is a corresponding trace in (0 A) ® (o B)
with the initial * replaced by (*,*). However, there are traces in (0 A) ® (o B) which

do not begin with (x,*), and these traces have no analogue in o(A ® B).

3.5 An Alternative Presentation of ASProc

The presentation of ASProc used in the preceding sections is designed to highlight
the crucial difference from SProc, i.e. the use of observation equivalence. Abramsky’s
original presentation does not mention 7 actions explicitly, but uses the empty set as
the silent action in every type. To ensure that the action @ is available in each type,
the actions in a type A are taken to be subsets of ¥ 4. The definition of ® is also
different: ¥ 4gp is ¥4 + X g instead of ¥4 x ¥ p. This means that the actions available
in A® B include {a}, {b} and {a,b} for « € ¥4 and b € ¥ . These actions correspond,

in the presentation used here, to (a,b), (¢, 75) and (74, b) respectively.

One advantage of the original presentation is that it makes the connection with CCS

clearer. The transition rules for ® become

m /
p—pP 4——¢

muUn /
PRG—p Xq
if the inl and inr tags are omitted. The first two rules are essentially the same as the

rules for CCS parallel composition; only the third rule, allowing simultaneous actions,

64 Chapter 3. Interaction Calegories

does not correspond to anything in CCS. In fact, the presence of the third rule means
that this is the parallel composition of ASCCS [Mil83].

The presentation with explicit 7 actions was originally formulated in the hope that
it might facilitate the transfer of the construction of ! from SProc to ASProc. As it
turned out, it didn’t make it any easier to define ! in ASProc, but it did make the
relationship between SProc and ASProc clearer. In the original presentation of ASProc,
the use of sets of labels as actions seemed slightly mysterious, but as soon as 7 actions
are explicitly introduced it is easy to see that observation equivalence is the only
real difference between the two categories. Furthermore, the new presentation allows

composition and ® to be defined by exactly the same transition rules as in SProc.

3.6 Axioms for Interaction Categories

The question “What is an interaction category?” has not yet been answered, although
both SProc and ASProc have been claimed as examples. The theory of interaction
categories should include an abstract definition. Ideally, an interaction category should
at least be a linear category, which is a well-understood concept. However, taking the
linear structure as the starting point means that ASProc must be excluded, because
no definition of ! has been established. On the other hand, this is the only piece of
structure which is missing from ASProc, and one can certainly hope that in the future
it will be filled in. In any case, the most interesting part of the axiomatisation question
concerns the delay operators and in particular the unit delay functor. For this reason
it is useful to keep ASProc in consideration, as it is the fundamental example of an
asynchronous interaction category, and interesting issues arise from the relationship

between asynchrony and delays. This will become clear later in this section.

The most important property of the unit delay functor seems to be the UFPP; more
generally, the UFPP is an essential property not just of o but of other guarded functors.
An obvious approach to axiomatisation is to define guardedness in terms of some easily
specified categorical structure, and then require that every guarded functor does indeed
have the UFPP.

3.6.1 Guardedness in SProc

The intuitive idea of guardedness is that if G is a guarded functor then for any mor-
phisms f and g, Gf and Gg do the same thing at the first step. This idea can be
captured quite neatly in SProc, as follows; in fact, it is convenient to work in the most

general possible categorical structure.

3.6. Azioms for Interaction Categories 65

Let C be a symmetric monoidal category with finite biproducts. Suppose that C has
a strict monoidal endofunctor o such that o(nil) # nil, where nil is the unit of the
commutative monoid structure induced on a homset by the biproducts. For each A
and B, define a function firststep on C(A, B) by

A T LoIgA
firststep(f) o(nil) ® f
B ~ _oI®B

Now say that an endofunctor G on C is guarded if for any A, B and f,g : A — B,
firststep(G(f)) = firststep(G(g)).

In SProc, the operation firststep gives the possible actions which a process may do
initially. Any nil process is an empty synchronisation tree, and so o(nil) does only a
single action (*,*). The synchronous nature of @ means that o(nil) @ f is also a tree
of depth one. Finally, in the definition of firststep(f) the x actions are removed by
canonical isomorphisms to give a process of depth one whose possible actions are the
possible first actions of f. The argument that o on SProc has the UFPP also shows

that SProc satisfies the guarded functor aziom:
e every guarded functor has the UFPP.

The requirement that o(nil) # nil may seem curious, but it is necessary to avoid
degeneracy. If o(nil) = nil, then firststep(f) = nil for all f, and so in this case all
functors would be guarded. Imposing the guarded functor axiom would then force all
functors to have the UFPP, in particular the identity functor. Then for any A and B

there would be a unique morphism p: A — B making the diagram

id4

A A

P P

B - B
idp

commute, i.e. all homsets would be singletons. There is an analogy here with fixed
points of continuous functions on the w-cpo (A“,C) of traces over a set A with the
prefix order. If f is continuous and f(¢) 1 ¢ then f has a unique fixed point, but
demanding that every continuous function had a unique fixed point would force A to

consist of just a bottom element.

66 Chapter 3. Interaction Calegories

There are some natural closure conditions on the class of guarded functors, which are

satisfied in SProc and can also be shown to hold in the abstract situation.

Proposition 5.18

1. Any constant functor is guarded.
2. o is guarded.
3. If G is guarded and F is any functor then G'F is guarded.

4. A countable biproduct of guarded functors is guarded.
Proof:

1. If K is the constant functor at some object A, then K f = id4 for every morphism

f. So for any f and g, firststep(K f) = firststep(K ¢g) = firststep(id4).
2. For any f, firststep(o(f)) = firststep(o(nil)).

3. If G is guarded then for any morphisms f and g, firststep(G(f)) = firststep(G(g)).
Hence firststep(G(F(f))) = firststep(G(F(g))).

4. Follows from the fact that firststep(f & ¢g) = firststep(f) @ firststep(g), which in

turn follows from distributivity of ® over @. O

The guarded functor axiom is not enough to ensure that a category really consists of
processes, i.e. entities with temporal behaviour. Consider the category Rel of sets and
relations, and take o to be the constant functor at I = {*}. Then firststep(f) = f for
all f, and so a functor G is guarded iff for all f and g, G(f) = G(g). This means that
for every A and B thereis G4p : GA — GB such that for all f: A — B, G(f) = G4B.
The UFPP for G becomes: for any f: A — GA and g : GB — B there is a unique
h: A — B such that

R GA
h G(h) = Gap
B GB

g

commutes. This is satisfied because the square defines h uniquely by composition. So
Rel satisfies the guarded functor axiom. It can be excluded from the class of interaction

categories by imposing a simple extra condition which is satisfied by SProc but not by

Rel: that o be faithful.

3.6. Azioms for Interaction Categories 67

Chapter 6 requires the functor !@,50 0™ on SProc to have the UFPP. It is convenient

to prove this now.

Lemma 3.19 For any object A of SProc, @7(0 A) 2 o @7 A.

Proof: ~ We have

Ygnoa)y = Mu(Sa+{x})
Senoa) = 1¢n(s)]s € Sgn(oay}
Yogna = Mu(X4)+ {+}
Sogna = {*pn(s)]s€ Sgna}
and so
Serea) = 1on(x - x)en(t) [T € Sgna}

= {{x - oxlen@) |t € Sgnat

Thus an isomorphism can be constructed by prefixing a translation between * and

{#,...,%[} onto idgn 4. -
Proposition 3.20 The functor !@,~q 0" on SProc has the UFPP.

Proof: Forn >0,

H"A) = @mzo @5 (0" A)
= Dpso(o" @5 A)
Now,
'$ns00" A = !&ps00" A
= ®n>0(' o" A)
= On>o(Bmxo(0” @A)

= (Bmx0(0 @A) @ (Brmpo(0’ ®TA)© -

which, when multiplied out, results in a coproduct of terms of the form o(---). Thus
the functor ! ®,»0 0™ can be expressed as a coproduct of guarded functors, and is itself
guarded. All guarded functors on SProc have the UFPP, hence the result. O

3.6.2 Guardedness in ASProc

The definition of firststep in the previous section relies crucially on the fact that nil® f =

nil for any morphism f. In ASProc this is not true, so that definition of firststep cannot

68 Chapter 3. Interaction Calegories

be used. It is possible to define firststep in ASProc, using the concrete representation
of processes as synchronisation trees, but at the time of writing there does not seem
to be any suitable abstract definition of firststep which also works for ASProc. An
alternative is to use a syntactic description of guarded functors, based on the closure

conditions of the previous section.

Let C be a symmetric monoidal category with finite (possibly weak) biproducts and a
monoidal endofunctor o, such that for every morphism f, o(f) # nil. Define GF to be

the smallest collection of endofunctors satisfying:

o K € GF if K is a constant functor.
e o € GF.
o For G,G' ¢ GF, G G' € GF.

e For G € GF and any endofunctor F', GF € GF.
The guarded functor axiom becomes
e Every functor in GF has the UFPP.

Now it can be shown that ASProc satisfies this axiom. For f : A — B, define
firststep(f) : A — B by the following transition rule.

=7

- o F TA—oB
firststep(f) — nil

So firststep(f) either consists of the possible first observable actions of f, or is nil if

f =nil.
Lemma 3.21 If G € GF then for any f,¢g: A — B, firststep(G(f)) = firststep(G(g)).

Proof: By induction on the definition of GF. Suppose f,g : A — B. If K is the
constant functor at A, then firststep(f) = firststep(g) = firststep(id4). For the unit
delay functor, firststep(o f) = firststep(og) = (*,#).nil. If G has the desired property
and F' is any endofunctor, then firststep(GF(f)) = firststep(GF(g)) and so GF also
has the property. If G and G’ are any endofunctors, then

firststeP(G(f) S, G/(f)) — ﬁl‘StStep(G(g) & G/(g))
= (L, 0).nil 4 (r, 7).nil

3.6. Azioms for Interaction Categories 69

Lemma 3.22 If GG is an endofunctor on ASProc such that for any f,¢ : A — B,
firststep(G(f)) = firststep(G/(g)), then G has the UFPP.

Proof: By the same argument that o has the UFPP. O

These lemmas establish

Proposition 3.23 ASProc satisfies the guarded functor axiom.

Actually, in ASProc the class of guarded functors satisfies slightly stronger closure
conditions: in the clause for @, G and G’ could be any endofunctors, not just elements

of GF. This can be seen from the proof of Lemma 3.21.

3.6.3 Guardedness in Other Categories

In Chapter 5 another interaction category is defined: SProcp, the category of deadlock-
free processes. It is based on SProc, but the formulation of the guarded functor axiom
in terms of the structure of SProc is not appropriate for it. Without going into too
many details at this stage, SProcp has distinct products and coproducts, and although
each homset has the 4+ operation, there are no nil morphisms. This suggests a new
formulation of the guarded functor axiom, along the lines of the one which worked for
ASProc, but without assuming biproducts in the definition of GF. GF should be the

smallest collection of endofunctors satisfying:

o K € GF if K is a constant functor.
e 0 € GF.
e For G,G' e GF, G G' € GF and G & G' € GF.

e For G € GF and any endofunctor F, GF € GF.

3.6.4 Synchronous and Asynchronous Categories

The definition of firststep in terms of abstract categorical properties requires the
monoidal functor o to be strict. The fact that o is strict in SProc but not in ASProc is
connected with the distinction between synchronous and asynchronous processes—it is
the synchronous nature of @ in SProc which allows mon to be inverted. Once firststep
has been used to define guardedness, proving that the collection of guarded functors
is closed under @ requires @ to be a biproduct rather than a weak biproduct. More
generally, if products and coproducts are distinct, @ preserves coproducts and so the

collection of guarded functors is closed under & (but not &).

70 Chapter 3. Interaction Calegories

There seem to be properties which hold only for synchronous interaction categories, but
none which hold only for asynchronous interaction categories. This means that rather
than defining two varieties of category, the approach to an axiomatisation should be to
define interaction categories and then pick out the synchronous ones. In a synchronous
interaction category, other characterisations of certain structure become possible: the
guarded functors can be defined via firststep, and if biproducts exist they can be used

to define the + operation.

3.6.5 Other Forms of the UFPP

This chapter has discussed the UFPP in a simple form, but it is possible to state
more general versions. One which will be useful in Chapter 6 is the multiple UFPP.
A functor F has the multiple unique fized point property if for any n > 1, objects
Ay,...,A,, By,..., B, and morphisms f; : A, — FA;, g; : FB; — B;, there is a

unique collection of morphisms h; : A; — B; such that this diagram commutes.

A1®...®AnMFA1®...®FAn
hi® @ hy, (Fhi) ® -+ @ (Fhy,)
B, ®---® B, rb,@---Q FbB,

91 Q@ gn

In both SProc and ASProc, guarded functors have the multiple UFPP. This can be
proved using a similar argument to that of the proof that o has the UFPP.

3.6.6 Azxioms

In the light of the observations made in the last few sections, the following definition
seems reasonable. An interaction category should be a *-autonomous category (not
necessarily compact closed; in SProcp, ® and »p are distinct). It should have finite
products and coproducts, possibly only weak; these do not have to coincide. There
should be a commutative operation + on each homset; in some categories this may
have a unit nil. There should be a monoidal endofunctor o such that for all morphisms
f, o f # nil (when nil exists), allowing a class of guarded endofunctors to be defined as
in the previous section. Finally, the category should satisfy some form of the guarded

functor axiom.

A synchronous interaction category should be defined as one in which the functor o
is strict, and there are products and coproducts. If there are biproducts, then the +

operation specified as part of the interaction category structure should coincide with

3.7. Discussion 71

the one definable from the biproducts. Also, the inductively-defined class of guarded
functors should be the same as the class arising from the definition of guardedness in

terms of firststep.

3.7 Discussion

The two basic examples of interaction categories, SProc and ASProc, have been de-
fined in this chapter. The definition of SProc closely follows Abramsky’s presentation
[Abr93b, Abr94b], but ASProc is presented in an alternative style which emphasises

the role of observation equivalence as the key difference between ASProc and SProc.

It does not seem possible to construct a category of asynchronous processes from SProc
by categorical means, but there is a connection between asynchrony and synchrony in
the form of a functor which embeds ASProc into SProc and preserves the monoidal

structure.

There are not yet very many different examples of interaction categories, which makes
it difficult to be sure that any proposed axioms are sufficiently general. Furthermore,
SProc and ASProc are both rather degenerate in the sense that there is no distinction
between the objects A and At. Nevertheless, some axioms for interaction categories
have been suggested in this chapter. These axioms do not rely on the degeneracy of
SProc and ASProc; this should maximise the chance that they will be more widely appli-
cable, and indeed when the less degenerate category SProcp of synchronous deadlock-
free processes is defined in Chapter 5, it will turn out to satisfy them. The proposed
axioms specify #-autonomous structure in order to capture the static, configurational
aspects of interaction categories; the axioms addressing the dynamic aspects hinge on
the requirement that a certain class of guarded functors should have the unique fixed
point property. In general this class is defined inductively, but there is also a proposed
definition of a synchronous interaction category which has slightly more structure. In
a synchronous category, it becomes possible to define guardedness abstractly; the def-
inition of the class of guarded functors then becomes a theorem describing its closure

properties.

72

Chapter 3. Interaction Calegories

Synchronous Dataflow

4.1 Introduction

Dataflow is a model of computation in which a program is expressed as a network of
computing agents which communicate with each other by sending data tokens along
fixed links. It is natural to view the nodes of the network as independent processes,
which means that dataflow is one possible way of organising concurrent computation.
The theme of this chapter is the use of SProc to describe the construction and operation
of dataflow networks. In fact, since the existence of a global clock is a fundamental
assumption of SProc, dataflow computation is also assumed to be synchronous. This
is not an arbitrary or artificial assumption, as a number of synchronous dataflow
languages (for example LusTrE [HCRP91] and SiGNAL [GGBMO1]) have been used

successfully for applications such as digital signal processing and real-time control.

The main results of this chapter relate to the semantics of synchronous dataflow at a
high level of abstraction, but they are also applied to the specific language LUSTRE.
Section 4.2 introduces LUSTRE, and also serves as an illustration of the operation of
dataflow networks. That section also reviews the standard Kahn semantics of dataflow
[Kah74], in which nodes are assumed to compute continuous functions of their input
streams, and its application to LUSTRE. Section 4.3 shows how the structure of a
compact closed category provides all the operations necessary for the construction of
dataflow networks, and in Section 4.4 this result is applied to define a semantics of

LUusTRE in the particular compact closed category SProc.

Having described the Kahn semantics of LUSTRE and also a semantics in SProc, the
aim is to establish that they agree with each other in the sense of predicting the same
behaviour for a given network. In Section 4.5, a version of the Kahn semantics is
defined for networks whose nodes compute functions which are not only continuous
but synchronous; a synchronous function on streams is one which always produces
additional output when additional data arrives simultaneously at all of its inputs.
Such networks are given a semantics in SProc in Section 4.6. This allows a comparison
to be made between the two semantics at a very general level, and this is done in

Section 4.7. Agreement is established, subject to some very natural restrictions on the

73

74 Chapter 4. Synchronous Dataflow

‘th'enD—) fork =X

pre|

Figure 4.1: A Network in LUSTRE

formation of feedback loops. Finally, in Section 4.8 this result is applied to LUSTRE.

4.2 The Language LUSTRE

The network shown in Figure 4.1 can serve as an introduction both to the general
nature of dataflow computation and to some of the specific features of LusTRE. Data
tokens, which in this case are natural numbers, flow in the direction of the arrows.
The nodes 1 and 0 produce streams of 1s and 0s respectively; they are the sources of
data which drive the whole network. The fork node is a signal-splitter: each of its two
outputs carries the same sequence of tokens as its input. The + node, as expected, adds
together the numbers appearing at its inputs, and outputs the result. The different
shapes of the nodes in Figure 4.1 have no special significance; they are just a LUSTRE

convention which allows different operators to be easily identified in a diagram.

The synchronous nature of LUSTRE has an important effect on the way data moves in
the network. At every tick of the global clock each node receives tokens from all of
its inputs and simultaneously produces an output token. This answers any questions
about what happens if, for example, the + node receives one input before the other:

the situation simply doesn’t arise.

The node then (the name then is an alternative to the name -> which is the official
LusTRE syntax) works by copying one of its input tokens to the output at the first
step, and thereafter copying tokens from the other input to the output. If the sequence

of tokens appearing at the top input of a then node is
(.’Eo, L1y T2y)
and the sequence appearing at the left input is

(y07 Yi1,Y2,- -)

then the output sequence is

($07y17 Y2, - -)

4.2. The Language LUSTRE 75

In the example network, the top input of then is connected to the 0 node, so the first
output of then is 0 and subsequent outputs are copied from the output of the + node.
Thus although the 0 node continues to produce tokens, none but the first are ever

used.

The final node in the example, pre, is a single-step delay. At the first step, it outputs
the token | which is an undefined value present in every data type. Subsequently the
output at each step is the token which was input at the previous step. Introducing the
1 token means that the definition of addition must be extended to cover inputs of L.

The appropriate modification is to specify that for all z, z+1L=1.

The behaviour of the example network is determined by these definitions. At the first
step, the pre node outputs L. The 4+ node receives this L, together with a 1 from the
1 node, and outputs L. This L is ignored by the then node, which outputs the 0 it
receives on its other input. The 0 token output by then is copied by the fork node,
one copy being emitted as the first output from the network and the other copy being
received by the pre node as input. At this first step, it is irrelevant which token is
received by pre; it outputs L regardless. This is what allows the above calculation of

the network’s output to get off the ground.

At the second step, pre outputs the token which it received at the first step, namely
0. This means that the output of + is 1, as another 1 token is emitted by the 1 node.
The output of + is passed straight through then, and copied by fork. This results
in an output of 1 from the network, and an input of 1 to the pre node. At every
subsequent step the calculation is essentially the same as at the second; the output
from the previous step comes out of pre, is added to 1, and sent to fork. The result is
that the network outputs the sequence 01234 ... consisting of the natural numbers in

order.

So far, LUSTRE has been described as a dataflow language, and the above analysis of
the example program is based on thinking about a picture of a network. But there is
also a concrete syntax for LUSTRE, in which data sequences are defined by recursive
expressions constructed from the operators. A LUSTRE program takes a declarative
form, as a collection of such definitions. The program corresponding to the natural

numbers network is

X = 0then (pre(X)+1)
or, to use the official syntax,
X =0->(pre(X)+1).

In such programs, the fork node does not appear; it is just a way of graphically repre-
senting multiple occurrences of variables. For the rest of this chapter, it will be most

convenient to continue with the graphical view.

76 Chapter 4. Synchronous Dataflow

One important feature of LUSTRE is missing from the example. According to the
synchrony hypothesis, data tokens are always produced and consumed in time with
the ticks of the global clock; but what happens if a node does not produce output at
the same rate at which it consumes input? There really has to be a way of representing
delays or gaps in sequences of data. The full story is that LusTRE does not work with
sequences of tokens but with data streams, which contain timing information as well
as tokens. A stream consists of a sequence of data values together with a clock which
indicates when the data values actually appear. As a first approximation, the clock
can be thought of as a sequence of boolean values, one for each instant of global time,
in which ¢ means that a data value appears at the corresponding time and f means
that there is a gap. Thus if an integer stream has data values 12345... and clock
tfftiftf .. ., the data actually appears as in the table.

Global time |0 | 1|2 |34 |5|6]|7
Clock t{flfIt]|t
Data 1 213 4

In fact, the situation is slightly more subtle than this. A clock is not a boolean sequence
but a boolean stream, and so has a clock of its own. Clocks may be nested in this way
to any finite depth, until ultimately the global clock (also known as the basic clock)

appears.

The simplest LUSTRE operators are the data operators. These act purely on sequences
of values, and do not affect clocks. They are just the sequence extensions of functions
on data values. Without being specific about exactly which data types exist, the data
operators include arithmetic functions on integers, boolean operations, conditionals,

and other common functions.

Apart from the data operators, there are four sequence operators. The first two, then
and pre, have already been described, and the clocks of their output streams are the
same as the clocks of their input streams. In contrast, the final two operators produce
outputs whose clocks differ from the clocks of their inputs. If F is a stream and B is
a boolean stream, F when B produces a stream whose clock is B, by discarding the
values of £ which appear when B is false. The table shows the effect of when and also
current, which removes one level of clock from a stream. The clock of current(X') is the
clock of the clock of X; in the table, Y has the same clock as B. In terms of clocks,

current inverts the effect of when, but it cannot recover the data values which when

discards.
FE €o e1 | es es €4 €s
B t flf t f
X = Fwhen B | 29 = eg T1 = €3 L9 = €5
Y = current(X) €o eo | eo e3 e3 es

4.2. The Language LUSTRE 77

The streams to which a data operator are applied must all have the same clock; sim-
ilarly, the two input streams of a then node must have the same clock. In addition,
current can only be applied to a stream whose clock is not the basic clock. Clocks
other than the basic clock are introduced by the when operator, which converts a
boolean sequence into a clock. Thus equality of clocks is not statically decidable, and
so the definition of LUSTRE uses an approximation to clock equality based on syntactic

identity of the identifiers representing clocks.

4.2.1 The Semantics of LUSTRE

There is a very elegant and simple semantics of dataflow due to Kahn [Kah74], which
is based on the assumption that the output sequences of each node are continuous
functions (with respect to the prefix order) of the input sequences. For simplicity,
suppose that all data items come from some set A, so that continuity relates to the w-
cpo (A%, C). It is straightforward to extend the analysis to allow different data types.
A node with m inputs and n outputsis a tuple (f,..., f,) with each f; : (A¥)™ — A% a
continuous function. A network is constructed by making connections between outputs
and inputs of nodes. An output can only be connected to a single input, and each input
to a single output; an explicit node fork = (id, id) is used to split signals where necessary.
The behaviour of a compound network, i.e. the sequences appearing at every point as
a result of some given input sequences, is given by the least solution (constructed as
the least fixpoint of an appropriate continuous function) of the simultaneous equations
obtained from the functional relationships between the sequences. Since fix is itself a

continuous function, the network can be encapsulated as a node in its own right.

This style of semantics can be applied to LUSTRE, but the presence of clocks means that
some extra analysis is needed. Because clocks cannot always be statically determined,
a clock calculation phase is an essential part of the compilation procedure [HCRP91]
and also of the semantics. The purpose of this phase is to determine whether or not
streams which should have the same clock actually do. If they do not, the program
is deemed incorrect. One approach to the semantics of LUSTRE is to assume that a
correct program is given, flatten all the streams by inserting delay tokens (represent-
ing the absence of data) whenever the clock is false, and then use the Kahn semantics
of the resulting network. This is the approach taken in this chapter, and the result-
ing semantics of LUSTRE is compared with the SProc semantics. Jensen [Jen94] has
recently taken another approach: his semantics is again based on Kahn’s, but clock
calculation is also represented by a process of taking least fixed points. The result
is a semantics of both correct and incorrect programs, which offers the prospect of a
semantic characterisation of clock consistency. It remains to be seen exactly how this

semantics is related to the version of the Kahn semantics used in this chapter, and to

78 Chapter 4. Synchronous Dataflow

the SProc semantics.

4.8 Dataflow in a Compact Closed Category

The structure of a compact closed category of processes supports the construction of
dataflow networks, in a very general way. This is the basis for the definition of a

semantics of LUSTRE in the particular compact closed category SProc.

A general dataflow network is constructed from several nodes, each of which has a
number of inputs and outputs, and which can be linked together by connecting outputs
toinputs. A node works by receiving data tokens on its inputs and emitting tokens from
its outputs. The following facts provide an informal inductive definition of networks.
Note that they distinguish between connections which involve feedback (the formation
of loops) and those which don’t; this distinction is quite important when discussing

semantics.

o A single node is a network.

A network can be regarded as a node.

Connecting two networks by plugging some outputs of one into some inputs of

the other produces a network.

Placing two networks side by side without connection produces a network.

Adding a feedback loop from an output of a network to an input of the network

produces a network.

Suppose that for each data type A, there is an object (also called A) in the category
which is suitable for modelling that type. Exactly what this means depends on the
actual category; when the model in SProc is defined in Section 4.6, the object A will

have a sort containing the values in the type A. A node

A —=

P =

B—=

is modelled by a morphism P : A® B — C. Another node () can be connected to P

to form a simple network.

A —=

P — F
B —= Q
D —= F

4.3. Dataflow in a Compact Closed Calegory 79

The node @ is modelled by a morphism @ : C ® D — FE @ F, and the morphism

modelling the network is
(PRidp);Q:A@B®D — E® F.

This shows categorical composition in use as the operation corresponding to plugging
an output into an input. Now consider the formation of a cyclic connection, or feed-
back loop, in a network. The general situation is that a network has already been
constructed, and can be modelled by a morphism P: A® B — C' ® B.

A —= > ¢

P

B—= —= B

The loop is to be formed by connecting the B output to the B input, resulting in
a process P. In order to do this, it is essential that the category be compact closed
rather than simply *-autonomous. This can best be illustrated by not making use of

the isomorphism between ® and » until absolutely necessary.

Starting with the morphism P, monoidal closure can be used to form A(P) : A —
(B — (C @ B)). The following calculation corresponds to forming the cycle, and

defines the morphism P.

AP ~ ~J
A4().B_O(C®B)—»BL@(C®B)—*»BL®(C®B)

P ~

Aps.c

C (B—oC)®B<N—(BL§C)®B<:—BL®(C®B)

Here, the arrows marked by * are the isomorphisms between ® and . This calculation
can also be carried out by replacing one instance of the ® — » isomorphism with the

isomorphism, present in any compact closed category, between L and 1.

AP ~ ~
A2 g coB) e Bl (CoB) B e (Co B)
P ~

~ ~ A ® id
C I1®C 1®l PoL "¢ (B— e B)aC

In general, even if the method of performing this calculation is fixed, there are still

many ways of constructing the same network. For example,

P

Q

80 Chapter 4. Synchronous Dataflow

can be constructed by attaching a feedback loop to either of these networks:

—> —=

P 0 0 P

Even a straightforward connection between two nodes

—= Pp Q =

can be viewed as a feedback by first placing the nodes in parallel to form a network,

then making the cyclic connection.

The coherence theorem for compact closed categories [KL80] guarantees that however

a network is constructed from certain components, the result is the same morphism.

Some additional justification is needed for the use of Ap to form cycles; it produces
morphisms of the correct types, but this does not necessarily guarantee the correct
behaviour. In SProc, the definition of Ap forces the two ports being connected to have
the same behaviour. More general, but heuristic, arguments are that in the acyclic
case, using Ap results in plain composition and is thus doing the desired job of making
a connection between two ports; and that Ap should be dual to an identity morphism,
which suggests that it should simply transfer information from one place to another.
A rigorous argument is the proof of agreement between the SProc and Kahn semantics

of synchronous dataflow, to appear later in this chapter.

Note that compact closure is essential for the calculation involving a cyclic connection—
this approach would not work if types could not be considered to be formed just with

® rather than with combinations of ® and .

4.4 LUSTRE in SProc

The next step is to use the scheme described in the previous section to define a se-
mantics of LUSTRE in the particular category SProc. The specific inputs to the general
construction are suitable objects of SProc to model the data types of LUSTRE, and
morphisms which capture the behaviour of the LUSTRE operators. If A is a datatype
(really, just a set) such as integer or boolean, there is an SProc object A whose sort con-

sists of the given data values, and whose safety specification allows all traces over the

4.4. LUSTRE in SProc 81

sort. LUSTRE requires an element L in each datatype, and so for each corresponding
SProc object A, L€ Y 4.

The combined delay monad §A is used to represent nested clocks. A stream with n
levels of nested clock can be flattened by inserting #; at each point of delay arising
from the ¢th clock. The resulting sequence is a trace in the SProc type (6A)"A, if ; is
the delay action belonging to the ith iteration of éA. An output from a LUSTRE node,
of datatype A and with n clock levels, becomes an output of type (§A)"A in SProc.
This type can be conveniently abbreviated to A,

Considering types as constraints on application of operators to arguments, the com-
ments in the previous section about arguments being required to have suitable clocks
suggest that in the SProc model a type should incorporate a clock. An SProc type
could be defined with the alphabet of (§A)"A and a safety specification which allowed
only data sequences with some particular clock. However, this would mean that types
could not be statically assigned to LUSTRE operators or programs. It is only possible
to use types which embody some approximation to clocks—in this case, the depth of
nesting. This allows the SProc representation of current to have a type which forces its
argument to have a non-basic clock, by requiring that it has at least one level of clock

nesting.

The processes modelling the various operators can now be defined. These processes
assume that their input streams not only have the same depth of clock nesting, but
also genuinely have the same clock. First, the data operators. If f: Ay x---xA,, — B
is a function, the stream extension f“: Ay x --- X A% — BY is a data operator. The

SProc process f: A1 ® ---® A, — B is defined by

a; € EA{

w (@1,enam,f(at,...,am w
f (()) i

and then the process f(") def (6A)™f~ A — B can take account of n levels of

clock. Thus for each data operator there is a whole series of processes, indexed by the
depth of clock nesting. All inputs to f() have the same amount of clock nesting; since
the language stipulates that all inputs to a data operator must actually have the same
clock, this does not impose an unwanted constraint on network construction. The signal

copier fork of type A is a data operator, formed from the function copy : A — A x A
defined by copy(z) def (z,).

The sequence operators also come in different versions, indexed by the clock depth of
the input. Because the input and output of a pre node have the same clock, it can

be modelled by the process pre(®) def (6A)"pre where pre : A — A is a process which

82 Chapter 4. Synchronous Dataflow

works on inputs having the basic clock. The definition of pre is

a € Xy a,b € Xy
L b
pre (o) pre, pre, () pre;.

At the first step, any input action is accompanied by an output of L; this is the meaning
of the first transition rule. Subsequently the second rule, defining the auxiliary process
pre,, takes over. The parameter of the auxiliary process functions as a memory of the

previous input; according to the second transition rule, it is updated at each step.

Similarly, a then node whose inputs and output have n clock levels is modelled by the

process then (™) def (6A)"then, where then : A® A — A is defined by

a,b e Xy a,b e Xy
then M then; then; M then;.

At the first step, the first input is copied to the output; subsequently, the auxiliary

process thenq takes over and repeatedly copies the second input to the output.

Because when and current nodes change the clocks of their inputs, the corresponding
processes have to be defined directly for each clock depth. The definition of the process
when(™ : A(W) @ B(M) — A+ where B is a boolean datatype, has two cases according

to whether the second input is ¢t or f.

a€dy a € Xy
when(?) M when(?) when (") M when ("),

A current node whose input has n clock levels (where n > 1) is modelled by the process

current(® : A — A(=1) A parameter is used to record the last non-delay token

received.
a € X yn-1)
current™ {aa) current((ln) current(™ (e L) current(™
beX
bb s
current(”) (B4) currentl()n) current (") (ens2) current("),

This completes the definition of the semantics of LUSTRE in SProc. The next few

sections take a more abstract view of dataflow; LUusTRE will reappear in Section 4.8.

4.5 The Kahn Semantics of Synchronous Dataflow

In this section, the Kahn semantics is adapted to synchronous dataflow networks, and

in the next section a general semantics of synchronous dataflow in SProc is defined.

4.5. The Kahn Semantics of Synchronous Dataflow 83

fork

Figure 4.2: A Small Dataflow Network

T

fork

Figure 4.3: A Non-trivial Network

These two semantics are compared in Section 4.7, but before setting up the necessary

machinery it is interesting to have a look at the main difference between them.

The least fixpoint approach of the Kahn semantics always gives a unique behaviour
for a network, even if that behaviour consists only of empty sequences. For example,
the network in Figure 4.2 outputs the empty sequence because nothing in the loop
spontaneously produces data. Formally, the output x is defined by the equation x = x,
and the least solution of this equation is = . A network with feedback can only
produce non-trivial output if it involves a node which produces output data without
receiving any input. The simplest example is a node (f) with function f: AY — A¥
defined by f(¢) = ao for some fixed a. In the network of Figure 4.3, the node 1
produces the sequence 111...and the function f is defined by f(o) = 0c. The output
z is defined by z = 111...4 f(z), and the least solution of this equation (i.e. the least
fixed point of Az.111...4 0z) is ¢ = 1234.... This is closely related to the LUSTRE
network of Figure 4.1. As already suggested, it is feedback which can cause differences
between the SProc semantics of dataflow and the Kahn semantics. In fact, as will
become clear, the examples in Figures 4.2 and 4.3 illustrate the two cases at the heart

of this issue.

Kahn’s semantics does not assume a synchronous or asynchronous view of concurrency.

Its treatment of dataflow nodes as continuous stream functions abstracts away from

84 Chapter 4. Synchronous Dataflow

considerations of timing. In SProc, on the other hand, processes are fundamentally
synchronous and any asynchrony has to be explicitly represented by delays. However,
the intended application of an SProc semantics of dataflow is to synchronous languages,
and it is possible to take advantage of this fact to make the definition and analysis of
the SProc model much simpler. A synchronous dataflow node has the property that
tokens arrive simultaneously at all its inputs, and this causes tokens to be produced
simultaneously at all its outputs. Considering each output sequence to be a continuous
function of the input sequences, each such function has the property that if all its
inputs increase then so does its output. A convenient way to state this is to say that
the output sequence is always at least as long as the input sequences. So, a continuous

function f:(A“)" — A¥ is synchronous if
(Vilength(z;) > m) = length(f(z1,...,2,)) > m.

The SProc semantics of synchronous dataflow defined in the next section assumes that
nodes are specified by synchronous functions. This assumption is only valid if it makes
sense to consider Kahn semantics with synchronous functions, so this needs to be
checked. There is no problem with the case of simple connections between distinct

networks.

Proposition 4.1 If f:(A¥)™ — A¥ and ¢ : (A¥)" — A¥ are synchronous then so is
the function h : (A¥)™*T"~1 — A% defined by

h($1, E '7xm—|—n—1) = f(g(*rh H '7$n)7$n+17 . '7$m+n—1)-

Proof: Straightforward. O

For feedback loops, more care is needed. If f : (A¥)"*1 — A then the network in
Figure 4.4, formed by adding a feedback loop to a node described by f, is described
by the function g : (A¥)" — A% where

g(wlv T xn) d:ef fIX(Ayf(yv L1yeeey wn))

Expanding the fix expression gives

9(z) = U(f(gvf)vf(f(gvi)v'%)v o)

If f(e,z) = e, which is certainly possible even for a synchronous f, then ¢g(z) = ¢ for
all z and g is not synchronous. It has already become clear that agreement between
the Kahn semantics and an SProc semantics can only be expected if there is some
additional condition on the functions describing nodes which are involved in feedback
loops. Roughly speaking, the condition is that some output should be produced before

any input is received. Formally, a synchronous function f:(A¥)" — A¥ is a source if

(Vi.length(z;) > m) = length(f(z1,...,2,)) > m + 1.

4.6. An SProc Semantics of Synchronous Dataflow 85

% / fork _‘

—= —=

Figure 4.4: A Feedback Loop

Proposition 4.2 If f : (A¥)"*!1 — AY¥ is a source then the function g : (A%)" —
A% describing the network formed by connecting the output of f to an input, as in

Figure 4.4, and defined by ¢(z1...z,) def fix(Ay.f(y,21,...,%,)), is a source.

Proof: Define a series y, of sequences by

Yo = ¢

Y41 = f(y'rv'%)

Then ¢(z) = L,50 ¥ Suppose length(z;) > m for each i. Because [is a source,
length(y,) > r for each r < m. Hence length(g(z)) > length(f(ym,z)) > m + 1. a

This proposition is only stated for a function f with at least two inputs. If f has
just one input, so that forming the loop produces a network with no inputs, then
the output is fix(f). In the case of continuous functions on sequences with the prefix
order, f being strictly monotonic means that fix(f) is either ¢ or an infinite sequence,

depending on whether f(¢) =¢ or f(e) # e.

4.6 An SProc Semantics of Synchronous Dataflow

Restricting attention to dataflow networks in which all the functions are synchronous
takes a step towards SProc, but SProc is even more synchronous than that. It is based
on a global clock, and every process must perform an action in every one of its ports at
each time step. If processes model dataflow nodes, then at each time step every node
must receive data at all of its inputs and produce data on all of its outputs. This means
that the operation of the “natural numbers” network in Figure 4.3 can no longer be
described by saying that the f node produces the first token which initiates an iteration
towards the least fixed point. Rather, the definition of composition in SProc means
that a feedback loop generates all possible streams which satisfy the constraints. The
effect of this is that the network in Figure 4.2 generates all possible output streams:
the only constraint on its behaviour is that the input to the fork node is the same as
one of the outputs, and this is a defining property of fork. The problem is thus to find
conditions on places at which feedback loops can be formed, which are sufficient to
exclude instances of this phenomenon. In the synchronous dataflow language LLUSTRE,

a requirement for correct programs is that every loop must contain a pre node, which

86 Chapter 4. Synchronous Dataflow

outputs some irrelevant value at the first step, and thereafter outputs the value which
was received at the previous step. When LUSTRE is modelled in SProc, this condition is
certainly enough to ensure that feedback behaves well; however, the aim of this section
is to work more abstractly and talk about properties of nodes as processes rather than

particular nodes arising from concrete languages.

In general, composition in SProc does not preserve determinism, where determinism
means that the action performed by a process in some state determines the next state.

For example, the processes p: A — B and ¢ : B — C defined by

p = (a,b):p +(a,b):p"
g = (bye):q +(V,c):q"

are both deterministic in this sense, but
pig=(a.c):(p';q)+ (a,¢): (p";4")

may not be. However, the processes modelling dataflow nodes are deterministic, and
are combined to form processes which also model dataflow nodes and hence should
also be deterministic. Clearly there must be some property of the processes modelling
nodes, which is preserved by composition and which implies determinism. This prop-
erty will be identified in the next section, when a comparison is made between the

SProc semantics and the Kahn semantics.

Now to define the SProc semantics of synchronous dataflow. Suppose again that all
tokens come from the same datatype A. There is an SProc object A with Y;=Aand

S5;= 21*4. A node with m inputs and n outputs becomes a morphism

The first step is to formalise the sense in which a process used to model a node should
capture its behaviour. A process p: Ay ® ---® A,, — A compules the continuous
function f: AY x ---x AY, — A% if

Vo ¢ traces(p), 7, .1(0) C f(ni(o),..., 7 (0))
Vo € inftraces(p), 7, (o) = f(7{(0),..., 7 (0))
Vre AY X ---x AY, 3o € traces(p).(n},..., 7)) = T.

The first of these requirements can be seen as a safety condition, the second as a
liveness condition, and the third as a totalily condition. A process ¢: A; ®@---®A,, —

AA®---® A, computes the family of continuous functions (f,..., f,) where each

4.6. An SProc Semantics of Synchronous Dataflow 87

—=> fork A S

X

—=> fork g —=

Figure 4.5: Modelling a Node

fi 1 (A¥)™ — A% if for each 1 <7 < n, the process p;T; : A®-@A, — A computes
fi, where 7; : /11 R ® fln — A is defined by

A1y eyl € X5

A yeneyQim, A5
ﬂ',L (geeeybm,y 1) ﬂ'i,

A process models a node if it computes the family of functions forming the node.

The idea behind this definition is that a process computes a function if for any finite
input it never produces more output than the function would, for any infinite input it
produces exactly what the function would, and it can respond to all inputs which the

function can.

The process modelling a node (fi,..., f,) is defined by first defining processes [f]
which compute the f;, and then combining them as in Figure 4.5 (which illustrates the
case of a node with two inputs and two outputs). The process fork : A— A Ais

defined by
a € X i

fork (ea,2) fork.
Let f : (A¥)™ — A“ be a synchronous function. The process [f] : A™ — A which
computes it is defined by

A1y eyl € N5
a1, @m,hd(f(a1,...,am .
) Ll el [\, o) tail(f(@104, -)
Because f is synchronous, f(ay,...,a,) # ¢ and so hd(f(a1,...,ay)) is always well-
defined; furthermore, A(oy,...,0.,).tail(f(a101,...,am0.,)) is also synchronous.

It is worth mentioning a common special case. If the function f is the stream extension
of a function f': A™ — A, then the definition of [f] reduces to

A1y ..yl €A

a1yeens@m, f (@1, @m
N etml) (),

It is now possible to prove that [f] computes the function f. For notational simplic-
ity, consider the case of a single input; the multiple-input case is a straightforward

generalisation.

88 Chapter 4. Synchronous Dataflow

Lemma 4.3 If [f] performs the actions (ay, b1)(az, b2) .. .(@y,b,) then the resulting pro-

cess is [g] where

flay...a,0) =b1...bug(0).

Proof: By induction on n. If n = 1 then, by the definition of [f], the first action
(a1, b1) leads to state [Ao.tail(f(@10))]. Also from the definition, b; = hd(f(ay1)), so for

all o, f(ay0) = bitail(f(a10)), which is the required equation.

Now assume the result for action traces of length < n, and all functions. As before,
the first action (a1, b1) leads to state [Ao.tail(f(a10))]. By the induction hypothesis,
the next n—1 steps lead to a state [g] such that tail(f(ay ...a,0)) = by...b,g(0). Also
by = hd(f(ay...a,0)),s0 f(ay...a,0) =by...b,g(0) as required. a

Proposition 4.4 [f] computes f.

Proof: Yor safety, suppose (ai,b1)...(an,b,) is a trace of [f]. By Lemma 4.3,
flay...an,0) = by...byg(0) for any o, where [g] is the state of the process after n

steps. Setting o = ¢ gives f(ay...a,) = b1...b,g(¢) and hence by ...b, C f(ay...a,).

For liveness, suppose 7 is an infinite trace of [f]; let a and g be its first and second

projections, and let (a;) and (8;) be chains of finite prefixes of a and 3. So a = | |; o4
and 8 = |; ;. By continuity f(a) = f(;(a;)) = L; f(a;), and each f(a;) C B. So
fle) EB.

Also, 8; C f(a;) for each 7 (by safety), hence | |;(8;) C |; f(a;), i.e. 3 C f(e). Thus
8= fla).

Finally, totality follows from the fact that in the definition of [f] the input action at
the first step can be anything. O

A process is uniquely determined by the property of computing f. It is also notationally

simpler to prove this for a single input.

Proposition 4.5 If p computes f then p = [f].

Proof: ~ Suppose the first step of pis (a,b). By safety, b C f(a) and so b = hd(f(a)).
Hence the first action of p is the same as that of [f]. If the next state of p is ¢, it suffices
to show that ¢ computes Ao.tail(f(ao)). A bisimulation argument then completes the

proof.

For safety: if o is a trace of ¢, (a,b)o is a trace of p. So

bsnd*(c) C f(afst™(0))
btail(f(afst*(o)))

4.7. Comparison of the Semantics 89

and so snd*(o) C (Ar.tail(f(a1)))(fst*(0)).
A similar argument establishes liveness, and totality follows from totality of p. O

Given a node N, the process [N] intended to model it is defined by using fork as

indicated previously.

Proposition 4.6 The process [N] models the node N.

Proof: Straightforward from the definition of [N], the fact that any function f is
computed by the process [f], and the definition of fork. O

Again, there is a uniqueness result.

Proposition 4.7 [N] is the unique process modelling N.

Proof: Follows from the result for functions. O

Given a network W, the process [W] is defined from the processes modelling the
individual nodes by using the compact-closed structure of SProc as described in the

previous section.

4.7 Comparison of the Semantics

Establishing agreement between the Kahn semantics and the SProc semantics means
proving that when a network W is viewed as a node W by means of the Kahn semantics,
the process [W] models that node. This is the same as proving that [W] = [W]. The
restriction on forming feedback loops is that when connecting output ¢ of a network
V to some input, the function f; in the node V encapsulating V should be a source.
The next proposition gives some sufficient conditions, expressed syntactically (that is,

in the graphical “syntax” of networks), that outputs are produced by sources.

Proposition 4.8 Suppose W and V are networks and output 7 of W is a source. Then

1. In the network obtained by connecting some outputs of V to inputs of W, output

7 18 a source.

2. If V has only one input and one output, then in the network obtained by con-
necting output ¢ of W to the input of V, the output of V is a source. More

generally, connecting sources to all inputs of a function results in a source.

3. In the network obtained by connecting some output j # ¢ of W to an input of

W, where j is a source, output ¢ is a source.

90 Chapter 4. Synchronous Dataflow
Proof: Let the function in W producing output ¢ be f, and suppose W has n inputs.

1. Suppose V has r inputs and functions g;. In the new network, output 7 is

produced by function h where

h(xlv s '7-T7°-I-n) = f(gl(xla s '7-T7°)7 . '7g7°(x17 c '7$7“)7xr+17 c '7~r7°—|—n)-

If length(z;) > p for each j, then length(gx(z1,...,2,)) > p for each k, because

gk is synchronous. Hence length(h(z1,...,2,)) > p+ 1 because f is a source.

2. If f1,..., f, are sources and ¢ has n inputs, suppose that length(z;) > p for each
1 < 7 < m. Then for each k, length(fi(z1,...,2,)) = p+ 1 because fi is a
source. Hence length(g(fi(z1,...,%m),..., fu(Z1,...,2m))) = p+ 1 because ¢ is

synchronous.

3. If output j is produced by function ¢, then (for example in the case of two
inputs) the output of the new network for input z is y where y = f(z,2) and
z = g(z,z). If length(z) > n then length(z) > n by the argument of the proof of
Proposition 4.2. Hence length(y) > n + 1 because f is a source. O

To go with the condition that an output of a network is produced by a source, there is
a property of processes. If a node has a source as one of its functions and the process
modelling it receives some input, then the token produced at the output which is the
source should depend only on the state of the process and not on the input tokens. A

process p: A1 ® ---® A, — B is initially independent of input ¢ if

(21,95 4eees@m,b) (a1,-0sl5eeyan,b’)

Vay,...,a,,a, b0 .[(p q)A(p)=b=10"

A process p is independent of input ¢ if all its derivatives are initially independent of
input ¢. A process ¢ : A1 ®---® A, — B1® ---® B,, has output j independent of

input 1 if the process ¢ ; 7; is independent of input <.

Proposition 4.9 If N = (f1,..., fn) is a node in which f; is a source, then the process

[N] has output ¢ independent of all inputs.

Proof: It is enough to prove that the process [f;] has output independent of all in-
puts. If f; is a source, then for any input tokens a4, ..., a,, we have fi(aq,...,a,) = bo
for some ¢ and some token b. From the definition of [f;], the first output is b
regardless of the values of the inputs. Hence the output is initially independent
of all inputs. The next state of [f] is [A(o1,...,0n).tall(fi(a101,...,an0,))], and
Aoty ..., 0n)taill(fi(@r01,...,a,04)) is also a source. Thus all derivatives have out-

put independent of all inputs. O

4.7. Comparison of the Semantics 91

It should be noted that the set P of all processes (of a certain type) which have output
independent of all inputs, is defined as the greatest fixed point of the function which
takes a set of processes and prefixes them all by initial actions in which the output
does not depend on the inputs. The proof that if f is a source then [f] has output
independent of all inputs is a (rather informal) proof by coinduction [MT91] that
{[f]1] f is a source} C P.

The main result comparing the SProc semantics to the Kahn semantics is the following

theorem.

Theorem 4.10 Let W be a network constructed according to the restriction that feed-
back loops are only formed from outputs which are produced by sources. Let W be the

node obtained by encapsulating the Kahn semantics of W into a collection of functions.

Then [W] models W.
Proof: ~ The proof is by induction on the structure of W.

o If W is a single node N, there is nothing to prove, because it has already been
established that [N] models N.

o If W is formed from networks U and V by connecting some outputs of U to
inputs of V, assume for simplicity that U and V each have a single input and
a single output. It is sufficient to show that for functions f and g, the process

[f];[g] computes g f; or, alternatively, that [f]; [¢] = [¢f]-

Suppose [f] receives an input a at the first step. The output is b = hd(f(a)).
With this input, [¢g] outputs ¢ = hd(g(b)). The process [f];[g] thus inputs «
and outputs ¢. On the other hand, [¢f] inputs @ and outputs hd(gf(a)) =
hd(g(b)) = c¢. The next state of [f] is [Ao.tail(f(a0))], that of [¢] is [A7.tail(g(bT))],
and that of [gf] is [Ao.tail(gf(ac))]. But the composite of Ao.tail(f(ao)) and
AT.tail(g(b7)) is Ao.tail(g(btail(f(ao)))) = Ao.tail(g f(ac)). Hence a bisimulation

argument establishes the result.

o If W is formed by juxtaposition of U and V then [W] = [U] @ [V], and the result
follows easily from the fact that [U] and [V] model U and V.

e Suppose W is formed from V, which has two inputs and two outputs, by con-

necting an output to an input.

Lo—

—= —=

92

Chapter 4. Synchronous Dataflow

Encapsulating the Kahn semantics of V gives a node V with functions f and
g (say), and by the induction hypothesis [V] models V. Suppose it is the f
output which has been connected to the first input. Then according to the
Kahn semantics, the function in V is h defined by h(z) = g(fix(s;),z) where
sgz(u) = f(u,z). It remains to show that [W] computes h.

For safety, consider a finite trace of [W]. It comes from a finite trace of [V]
in which the f output is the same as the first input. Let @ = ay...a, be the
projection of the trace onto the f output (so a is the trace in the loop), § =
by ...b, the trace on the second input, and v = ¢; ...¢, the trace on the g output.
Think of [V] as containing [f] and [g]. By safety of [f], a1 = hd(f(a1,b1)) and this
is equal to hd(f(e,¢)) because fis a source. Hence ay C f(e,¢) C f(e,) = sg(e).
Similarly a; = hd(tail(f(a1az,b1b2))) = hd(tail(f(a1,b1))) as f is a source. So
ajag € f(a1,01) C f(sp(e),b1) E f(sp(e), 8) = si(e). Proceeding in this way
gives a C si(e) C fix(sg). By safety of [g], v C g(e, 8) E g(fix(sg), 8) = h(B).

For liveness, we consider traces and their projections as before, but now a, 8 and
v are infinite sequences. By liveness of [f], @ = f(a,), and so fix(sg) C a.
We now argue that fix(sg) is infinite. Because f is a source, sg(e¢) = f(e,3) 2
f(e,e) O e. So sg(e) has length > 1. Hence f(sg(e),b1) has length > 2, and so
does sg(sg(e)) = f(ss(e), 8) 2 [(sp(€),b1). Similarly si(e) has length > n + 1.
Hence fix(sg) is infinite, and so it is actually the unique fixed point of sg. Thus

a = fix(sg). Liveness of [g] means that v = ¢(fix(sg), 3) = h(f).

Finally, for totality we use the fact that the output of [f] is independent of all
inputs. This means that at each step the next token added to the stream in the
loop is determined independently of the tokens added to the inputs. Totality of
[f] and [¢g] means that the new token in the loop can always be accepted as an

input token, and also any token can be received at the other input. O

This theorem will be used in the next section to check that the SProc semantics of

LusTRrE, which has already been defined directly rather than in terms of processes

modelling continuous functions, agrees with the Kahn semantics. As a sideline, it is

possible to identify the property of the processes used in the SProc semantics which

causes them to remain deterministic when composed.

A process p is nitially deterministic if

!/

Va(p —) A (p— ¢)] = q=1¢.

A process p is deterministic if all its derivatives are initially deterministic. A process
p:A®---® A — B is initially functional if

Var, ... a0, 0,0 [(p 0 gy (p Lt gy g =y

4.7. Comparison of the Semantics 93

A process p is functional if all its derivatives are initially functional.

Lemma 4.11 If N is a node, then [N] is functional and deterministic.

Proof: Tt follows from the definitions that [N] is initially functional and initially
deterministic. Also, any derivative of [N] models a node and is thus initially functional

and initially deterministic. Hence [N] is functional and deterministic. O

Although determinism is not necessarily preserved by composition, the combination of

functionality and determinism is preserved.

Lemma .12 Ifp: A1 ®---®A, - B;and ¢: B1 ® ---® By, — C are functional and

deterministic, then
d@ - @dp@id®@---@id:B1® - Bi1 @A ® @A @Bij1 ® @ By — C

is functional and deterministic.

Proof: For notational simplicity consider the case m = n = 1,sothat p: A — B and

¢ : B — C and the aim is to establish functionality and determinism of p;¢: A — C.

Suppose p;q —* r; then r = py ;¢ with p —=* py and ¢ —=* ¢1. If p1; @1 (o) s and
. ,b b, .
¢ o) s’ then is b such that p; {eb) P2, 1 UL g2, S = P2 ; g2 and similarly '

b’ b’ . .
such that py L] Ph, @1 #) ¢, 8" = ph ;¢4 By functionality of p, b = b" and so by

determinism of p, p2 = p}. By determinism of ¢, ¢; = ¢5. Hence s = pa;q2 = pli¢h = &'
and so p; ¢ is deterministic.

(a,c) (a,b) (bye)

If pi;¢q o) s and p; ;q —— s then there is b such that p; —— pa, ¢1 —> qo,
. b’ b ! . .
s = p;qz and there is b’ such that p; L] Phy q1 (GAL] q3, ' = ply;q,. By functionality

of p, b = b’ and so by functionality of ¢, ¢ = ¢’. Hence p ; ¢ is functional. O

Lemma .13 Ifp: A1 ®---® A, —Candq: By ®---® B, — D are functional and

deterministic, then so is p ® g¢.

Proof: Projecting either output of p ® ¢ gives a process whose functionality and

determinism follows directly from that of p or g. O

Lemma 4.14 fP: Ai® - -®A,®C — B1®---®B,®C is functional and deterministic,
and the C output is independent of all inputs, then the process P : 4, @ ---® A,, —
By ® ---® B, obtained from P by connecting the C' output to the C' input, is also

functional and deterministic.

Proof: For simplicity consider the case m = n =1, s0 P: A C — B® C. To
show that P is functional, suppose that P {ab) Q and P L] Q'. This means that

94 Chapter 4. Synchronous Dataflow

p el prand p Q' (and then @ and Q' are obtained from @ and Q' by

forming feedback loops). Because the C' output is independent of all inputs, ¢ = ¢'.
b b’ -
Hence P 12" pr ang p L2 Q'. Functionality of P implies that & = b’. So P is

(a,c’,b’,c")
—_—

initially functional. The same argument applies at subsequent steps to show that all
derivatives of P are initially functional, and hence P is functional.

- C e . " b)) A - b)) A
To show that P is deterministic, suppose that P L) @ and P {eb) @)'. By the same
(a,c,b,c) (a,c,b,c)

Q and P % @)'. By determinism of P, Q = Q'

and so Q = Q’. Hence P is initially deterministic; as before, the same argument as

argument as before, P

subsequent steps establishes determinism. O

4.8 Application to LUSTRE

There is now a semantics of LUSTRE in SProc, defined directly from the properties
of the LUSTRE operators, and also a general semantics of synchronous dataflow in
SProc. The general SProc semantics agrees with the Kahn semantics, provided that
the restriction on formation of feedback loops is obeyed. The LUSTRE operators define
synchronous functions on data sequences, so in order to show that the SProc semantics
of LUSTRE agrees with the Kahn semantics it is necessary to check that the SProc
processes computing these synchronous functions are the same as the processes defined

directly from the LUSTRE operators.

The first and simplest case is that of the data operators. Suppose that f: A™ — A is
a function of m arguments on some data type (it wouldn’t make any difference to what
follows if the arguments were not all of the same type). The function f: (A¥)™ — A¥
is defined as follows. For the case in which all the arguments of f are finite sequences

of the same length n, then

fleizg . ooy 2120 .00 20) def fler,..,20)f(a, ooy z2) oo f(@n, ooy 20).

If the arguments have different lengths but are not all infinite sequences, then

F@,y, . 2) = f(T1e Ty Yl Ynye vy 21 e e 2n)

where n is the minimum of the lengths of the arguments. If all the arguments are
infinite sequences, then f is defined by continuity. Now, f is synchronous, and it also
produces the output expected of a LUSTRE data operator implementing the function

f. The process [f] which computes f is defined by

A1y ey p € N5

= (a1yee08m,hd(f(atyeenam))) [

[/]

Moty ..o om)tail(flaroy, ..., am0m))].

4.8. Application to LUSTRE 95
Since hd(f(a1,...,a,)) = f(ai,...,a,) and XNoy,...,0,) ail(f(a101,...,0n0)) =

f, this reduces to
A1y ey € N5

= (a1,.c,am,f(a1,...,am =
n! i) (),

If all streams were on the basic clock, so that delays never entered the picture, this
would be exactly the process used in the direct SProc semantics of LUSTRE. But in
fact, (8A)"[f] was used, and should be compared with the process computing a stream
function which can accept delay tokens as inputs. Writing (6A)"A for AU{x1,...,%,},

define a partial function fsa : ((6A)"A)™ — (6A)")A by

fsalar,....an) = flar,...,an) a; # *.

The function fsa is not defined if its inputs are delays from different clock levels,
but this doesn’t matter because in a valid LUSTRE program all the inputs to a data
operator have to be on the same clock. A sequence function fsa can be defined as
before, and there is a corresponding SProc process [fsa]. What has to be checked is
that (6A)"[f] = [fsa]. This is easy because, intuitively, both are just f with a trivial

action on *; tokens added.

Since the then operator behaves as one data operator (which copies the first argument
to the output) at the first step, and subsequently as another data operator (which
copies the second argument to the output), essentially the same argument can be used

to show that the correct process was used to model it in the SProc semantics.
For the pre operator, there is a synchronous function pre : AY — A% defined by

pre(o) e

So the modelling process is defined by

(IEEA
a,hd(pre(a

e Ao tail(pre(ao))]

which is equivalent to
a € X i

prel L [Aotail(pre(ac))].

The direct definition of the SProc semantics of LUSTRE used a process pre which could
do (a, L) at the first step and then become pre,, using a parameter to store the token

being delayed. The definition of [Ao.tail(pre(ac))] is

be EA
(b,hd((Mo tail(pFe(ac)))b))

[Ao.tail(pre(ao))] [AT.tail((Ao.tail(pre(ao)))(bT))]

96 Chapter 4. Synchronous Dataflow

which is equivalent to

bEEA

o tail(pre(ao))] L2 [Ar tail(pre(br))]

and so [Ao.tail(pre(ac))] = pre, because they satisfy the same recursive definition. As

was the case for the data operators, the delays can easily be inserted.

The case of when is similar to that of the data operators, except that the delay actions

are incorporated from the beginning. There is a function
when : (6A)"A x (8A)"B — (6A)" 1A

defined by

when(a, t) L

when(a, f) def k1

and the synchronous function computed by a when node is the stream extension of
when. It is straightforward to check that the process used to model when is the same

as the process computing this synchronous function.

For each a € (6A)("~1 A there is a synchronous function
current, : ((6A)"A)Y — ((6A)=1 Ay

defined by
def

c
[

current,(¢)

def

current,(*,0) acurrent, (o)

current, (bo) def beurrenty(o) (b # *,,).
The operation of a current node is described by the function current; . It is straightfor-
ward to check that the process computing current | is the same as the process which

was used to model a current node.

This chapter has shown that to obtain agreement between the Kahn semantics and the
SProc semantics of a network, it is necessary to restrict the formation of feedback loops
to cases in which the output is a source. When dataflow nodes can potentially contain
any function whatsoever, this is a non-trivial restriction. But in the case of LUSTRE,
the only node whose output is not strict in the inputs is pre, and indeed the output of
pre is a source. Any feedback loop from a port which is not the output of a pre node is
forced by the Kahn semantics to contain the empty stream. Thus any such feedback
loop can be replaced by a node which produces no output. So any LUSTRE network
is equivalent to one in which every feedback loop involves a source, and hence there
is a normal form for LUSTRE networks such that the SProc semantics of a normalised

network agrees with the Kahn semantics.

4.9. Discussion 97

4.9 Discussion

In this chapter, interaction categories have been applied to the analysis of dataflow
computation, with a number of interesting results. First of all, the structure of a
compact closed category supports the construction of arbitrary networks, and compact
closure is essential for the formation of loops. This demonstrates that the coincidence
of ® and » in SProc, which is an undesirable degeneracy if one is interested purely in
models of linear logic, can be extremely useful. If processes exist which capture the
behaviour of dataflow nodes, then this construction can be used to give a semantics of
a dataflow language in a compact closed category. In this way, SProc can be used to
define the semantics of the dataflow language LusTRE [HCRP91]. The delay operators
of SProc allow LUSTRE streams, which may have a complex structure of nested clocks,

to be flattened into simple sequences of tokens without losing any timing information.

The classical semantics of dataflow is Kahn’s model [Kah74], in which nodes are as-
sumed to compute continuous functions of their input streams. A version of this
semantics, tailored for synchronous dataflow lanaguages, has been introduced in this
chapter. The new notion of a synchronous stream function is defined, in order to cap-
ture the fact that a synchronous node produces additional output whenever it receives
additional input. A general semantics of synchronous networks is defined in SProc.
This gives an interesting view of feedback loops: the relational nature of composition
in SProc means that the semantics generates all the possible behaviours which are
compatible with the constraints imposed by the loop. This is in contrast to the view
of the Kahn semantics, in which the behaviour of a network with loops is reached by
a process of iteration. However, it is shown that the SProc semantics and the Kahn
semantics predict the same behaviour for all networks in which the formation of feed-
back loops is restricted to points at which output is being produced independently of

the input.

This condition on the formation of cycles is related to Wadge’s work on deadlock
detection in dataflow networks [Wad81]. What he means by deadlock is precisely the
phenomenon of a feedback loop in which no data is generated, resulting in a network
which produces no output. The use of the term “deadlock” corresponds to the idea that
such a network cannot produce output until it has received that very output as input.
Wadge’s approach to detection or prevention of deadlock is to assign a numerical link
between each output of a node and each input, to represent the extent to which the
output depends on the current, previous or future values of the input. For example, in
a LUSTRE pre node the link is 1 because the first output depends only on the second
input. In a node corresponding to a LUSTRE data operator all links are 0, because

input is required immediately to produce output. The language Lucip [AWS85] has

98 Chapter 4. Synchronous Dataflow

a node called next, whose first output token is the second input token; this node has
a link of —1. Once these links have been defined, the cycle sum test can be used
to determine whether or not a given network can deadlock. In each cycle, there is a
closed path passing from an input to an output of each node, and from an output of
one node to an input of the next node. Summing the numerical links along this path
yields an integer, the cycle sum. The condition for deadlocks to be excluded is that
every cycle sum is strictly positive. It is essential to add the links around the entire
cycle, because for example the negative link arising from the presence of a next node
cancels the positive effect of a pre node. Wadge then relates this notion to the stream
functions corresponding to the nodes, by observing that a function corresponding to a
link of +1 always outputs a stream one token longer than its input, and so on. In the
synchronous networks considered in this chapter, negative links cannot occur because
a node must always produce another output token when another input token arrives.
This means that to avoid deadlock, it is sufficient to have at least one positive link in
every cycle; in LUSTRE, the only node with a positive link is pre, hence the condition
that every cycle must contain a pre node. In terms of the stream functions, every
positive link corresponds to a source; because there are no negative links, the actual
positive value is irrelevant. To summarise the connection with Wadge’s theory, the
results of this chapter establish the equivalence of the Kahn and SProc semantics for
non-deadlocking networks; the synchronous model allows the condition for absence of

deadlock to be simplified to the inclusion of a source in every cycle.

The observation that LUSTRE streams can be flattened by means of the SProc de-
lay operators allows the Kahn semantics of synchronous dataflow to be applied to
it, assuming that a clock consistency check has already been carried out. Defining
synchronous functions for the various LUSTRE nodes and then applying the SProc se-
mantics of synchronous dataflow results in an alternative definition of an SProc process
for each LUSTRE node, but it turns out that these processes are the same as those which
were defined directly when giving the first model of LUSTRE in SProc. The end result
is that LUSTRE has a semantics in SProc, and this agrees with the Kahn semantics as
long as every feedback loop contains a pre node; this requirement is already a condition

for correctness of LUSTRE programs.

LusTRE is not the only language which can be analysed in this way—an SProc seman-
tics of SiGNAL [GGBMY1] has also been defined [GN93]. Because of the additional
complexities of the clock structure of SIGNAL, a detailed comparison of its SProc and

Kahn semantics awaits further work.

Verification

5.1 Introduction

In Chapter 1 it was claimed that one of the benefits of the interaction categories
approach to concurrency is the ability to use types to specify complex properties of
processes and then use type-checking techniques to verify such properties. In this
chapter, that claim will be justified. Two kinds of property are considered: safety and
deadlock-freedom. The categories SProc and ASProc have safety specifications built
into their types, but it turns out that some additional work is needed to make use of

them. This is described in Section 5.2.

For properties other than safety, there is a general method for systematically enrich-
ing the types of a given category by the addition of extra constraints: Abramsky’s
notion of specification structure, which he originally applied to deadlock-freedom of
synchronous processes. The general construction is described in Section 5.3; the spe-
cific details relating to deadlock-freedom are presented in Section 5.4 and applied to
dataflow networks. The result of this construction is a category of synchronous pro-
cesses in which types guarantee freedom from deadlock, and hence the typed process
combinators yield compositional proof rules for deadlock-freedom. In fact there are
two different specification structures for deadlock-freedom, which turn out to define

the same category.

In Section 5.5 the ideas behind the construction of the synchronous deadlock-free
category are adapted and applied to asynchronous processes. A new category FProc
is defined, in which all processes are fair, and a specification structure for deadlock-
freedom is constructed over this category. The result is another category in which
compositional reasoning about deadlock-freedom is supported. The use of this category

is illustrated by an analysis of the dining philosophers problem.

In both the synchronous and asynchronous cases, the deadlock-free category is *-auton-
omous but not compact closed, so cyclic process configurations cannot always be
formed. Because it is important to be able to construct cycles in many examples,

proof rules are established which embody sufficient conditions for cycles to be allow-

able.

99

100 Chapter 5. Verification

5.2 Safety

The categories SProc and ASProc have safety properties built into their types, but it is
not completely straightforward to use them to express interesting safety properties of
processes. If P is a process of type A, then P has a certain safety property defined by
the type A. But this safety property may not be the one of interest for the verification
of P, especially if A has been constructed from simpler types. For example, suppose
the types B and C' in ASProc each have a single observable action: say g def {b,78}
and Yo def {¢, 7¢}. Defining a process P by P = (b, 7¢).(7B, ¢).P, it easily follows that
P : B®C. Now in fact, P satisfies a much stronger safety specification which requires
that the actions b and c alternate, but Spgc imposes no restriction on when b and ¢
actions occur in relation to each other. It would be difficult to specify that P should
do b and c alternately, because there is no way to choose Sp and S¢ so that Spgc

expresses the desired safety property.

The obvious solution is to define a type T with the same alphabet as B @ C' but a
more restricted safety specification, and prove that P also has type T. However, the
typing P : B® C contains the information that P has two ports of types B and C, and
this information is lost when P is given the type T. A way to express the fact that P
satisfies the stronger specification represented by the type T, without forgetting what
the interface looks like, is to define a “safety morphism” s : B® C' — B ® C such
that P satisfies the specification in 7" iff P = P ;s (in this composition, P is viewed
as a morphism [— B @ C'). Taking s to be the identity morphism id7 considered as
a morphism B ® C' — B ® C, first note that traces(P ;s) C traces(P) because s acts

as a buffer. Now

P=P;s = traces(P) = traces(P ;s)
= traces(P) C traces(P; s)
= traces(P) C St because traces(P ;s) C St

and
traces(P) C St = P has type T

= P;s=P because s = idy.
Hence P = P;s <= traces(P) C S7. This allows safety conditions to be stated

equationally, without necessarily constructing types with appropriate safety specifica-

tions.

A suitable example with which to illustrate this idea is the specification of a cyclic

scheduler [Mil89].

5.2. Safety 101

5.2.1 The Scheduler

Suppose there are n tasks, or client processes, which can be started by signals a1, ..., a,
and which indicate completion by signals by,...,b,. The aim is to control the clients

in such a way that

1. the clients are started in cyclic order, beginning with number 1;

2. for each i, the initiation a; and the completion b; must alternate.

This should be done by implementing a scheduler process which connects to the n
clients and ensures that they start and stop in the correct order. Following Milner, the
scheduler is implemented as a ring of n cells, each controlling one of n client processes
and talking to its two neighbours in the ring. This means that the implementation is
independent of the actual number of clients; once the basic cell has been implemented,
any number can be linked up to form a scheduler. Initially, a cell can be in one of
two states, depending on whether it is going to communicate first with its client or
with a neighbour. These two states are represented by the processes cell and dcell

respectively. In CCS, the definitions are

cell = a.c.(b.d.cell + d.b.cell)
dcell = d.cell

and the two states of a cell can be represented by the pictures

b b

c c
O O
d d
cell dcell

in which the ringed ports are the ones ready to fire. The arrangement of cells in the

scheduler is:
bl a

a b2

b, as

an bs

In CCS, the ¢th cell is constructed by relabelling a,b,c,din cell or dcell to a;,b;,¢;,¢;_1.

Parallel composition and restriction are then used to form the private connections

102 Chapter 5. Verification

between the cells. The relabelling is necessary to ensure that the correct ports become

connected; when using interaction categories, such relabelling is not needed.

According to the pattern of ringed ports in this picture, one cell is in the cell state
and the rest are in the dcell state. If the cycle is completed with dcell processes,
then this is the initial state of the complete scheduler. The way in which the scheduler
works is that the a; action happens first, starting client 1. Then the first cell sends a
signal to its neighbour, by means of the ¢ action, telling it that client 2 can be started.
Because the ¢ port of cell 1is connected to the d port of cell 2, the second cell (which
started in the dcell state) moves to the cell state and is ready to start client 2.
Meanwhile, cell 1 has entered a state in which it is waiting for either a stop signal from
its client, or a message that client n has been started. When both of these messages

have been received, in either order, client 1 can be started again.

The aim now is to construct the scheduler as a process in ASProc. The same type X
can be used for each port, with Xx def {e,7x} and Sx def {o" | n < w}. The type
of cell and dcell will be X+ (X ® X1) X, which it is sometimes convenient
to write as Xj- % (X, ® XbJ-) 5 X to show which port corresponds to which action
in the CCS definition. The copies of X with (—)J‘ applied correspond to the ports
which are thought of as inputs, and the unadorned copies of X are output ports. This
choice is arbitrary; all that matters is that two ports to be connected have types dual
to each other. In ASProc, of course, this is no constraint, but as mentioned several

times before, it is clearer to keep track of such logical distinctions.

The type X1 (X ® X1)% X has fifteen observable actions (such as (e, 7x,7x,)) but
only four of them are needed for the definition of a cell: (o, 7x,7x,7x), (Tx,®,7x,Tx),
(7x,7x,9,7x) and (7x,Tx,7x,e). These actions can be abbreviated to d, a, b and ¢
respectively in accordance with the notation used for actions in the description of the
scheduler. The processes cell and dcell can be built from these actions, and because
the safety specification of X is so simple, it is easy to see that they have the desired
type. The next step is to connect the cells together to form the scheduler process,
called sched. Using the categorical calculation from Section 4.3 (corresponding to the
Cut rule of Chapter 6), n — 1 cells can be connected in a line, the ¢ port of each one
being attached to the d port of the next. An application of the Cycle rule (again,
a calculation from Section 4.3) then results in the cyclic process sched with type
(X ® X1)m - (X ® X1) in which 2n copies of X appear. For this example, a
simplified adaptation of the typed process calculus notation which will be introduced
in Chapter 6 is useful, so that the line of cells is cell - dcell -...-dcell and the
complete system is sched = (cell-dcell-...-dcell)\, . The notation P-() indicates
a connection between two processes; in general it is essential to specify which ports

are involved, but for this example the diagram suffices. The notation P\, indicates

5.2. Safely 103

a connection between the ¢ and d ports of P, forming a cycle.

In the above typing of the cell, the a and b ports appear as X ® X+ rather than X X+,
This is so that a cell can be connected to a client whose type is X+ » X, which is
the natural type for a process with two ports. Again, in ASProc these distinctions are

unimportant, but are included here for a clearer exposition.

5.2.2 Verifying the Scheduler

In this section, the original specification of the scheduler is interpreted as a safety
specification. This means that the goal is merely to show that nothing undesirable
happens, and not to prove anything about desirable properties of the infinite behaviour
of the scheduler. Specifically, a safe scheduler should never start clients in the wrong
order or attempt to restart a client before it has stopped, but it could stop after a

finite time and fail to do any further scheduling.

This safety property defines a safety morphism
schedsafety: (X @ X 1) - (X @ X)) = (X @ X) g - (X @ X1),

As indicated by the previous general remarks, schedsafety is the identity morphism
on (X ® X1t) - (X ® X1) restricted to the behaviours allowed by the safety

specification.

Proving that the scheduler satisfies its specification means proving that
sched = sched ; schedsafety.

The problem can be broken down by taking advantage of the fact that the scheduler
is implemented as a ring of cells, and defining a safety specification for a cell such that

safety of all the cells implies safety of the scheduler. Safety for a cell means that

e a and b happen alternately, starting with a
e ¢ and d happen alternately

e ¢ happens between d and ¢, and only then.

The first clause specifies alternation of start and stop signals for a client; clearly if
this is true of each cell then it is true for each client when the cells are connected up,
because connecting processes together makes a selection from each of their behaviours
but cannot introduce any new ones. The other clauses ensure that a cell’s interactions
with its neighbours are correctly sequenced in relation to its own start and stop signals.

The d action tells a cell that the previous cell has started its client, and the ¢ action

104 Chapter 5. Verification

is used to tell the next cell that the current client has been started. Thus the third
clause ensures that in between these two actions, a cell actually does issue a start
signal. Furthermore, once ¢ has been done, a does not happen again until the signal d
has been received. The last two clauses between them guarantee that the start signals

are issued in the correct cyclic order by the scheduler.

This almost allows the safety specification of the scheduler to be recovered, but to
ensure that client 1 is started first, the difference between a cell and a dcell must
be taken into account. The specification of a cell is the above plus the requirement
that @ happens first, and the specification of a dcell is the above plus the requirement

that d happens first.

This defines two safety morphisms:
cellsafety,dcellsafety: X1 (X @ X) X — Xt (X © X1) 5 X,

and it is clear from the definitions of the processes that cell = cell;cellsafety and

dcell = dcell;dcellsafety. The definition of the scheduler can be rewritten as

sched = (cell-dcell-...-dcell)\.q
= cell; cellsafety) (dcell;dcellsafety)"
y y
... (dcell;dcellsafety)) \cq -

An alternative, perhaps clearer, pictorial view is that each cell;cellsafety or dcell;

dcellsafety looks like this.

a b
|
d
d
a b
d T~ ¢

The circle is a cell or dcell, with a,b,c and d ports, and the square is a safety mor-

phism with two copies of each port. The scheduler, according to the above calculation,

is a ring formed from these processes.

5.2. Safely 105

Because cellsafety and dcellsafety are identity morphisms (considered to be in
larger types), cell = cell ; cellsafety and dcell = dcell ; dcellsafety, this

arrangement of processes is equivalent to the following alternative arrangement.

It is not clear whether this calculation can be justified on the basis of interaction
category axioms, but it is easy to see why it holds in ASProc for this example, by
thinking about information flow: in the first arrangement, output from the ¢ and d
ports of a cell is made to satisfy the specification by passing through cellsafety,
but since it has already been established that cell satisfies its specification, the cells
can be connected directly together as in the second arrangement; it then makes no

difference if the cellsafety processes are also connected together. Thus

sched = ((cell-dcell-...-dcell)\.q);
((cellsafety-dcellsafety ... dcellsafety)\.q).

The equational way of stating that safety of all the cells implies safety of the scheduler

1S

(cellsafety dcellsafety ... dcellsafety)\.q4
= ((cellsafety-dcellsafety-...-dcellsafety)\.q);schedsafety
and so
sched = ((cell-dcell-...-dcell)\.q);
((cellsafety-dcellsafety-... dcellsafety)\.q); schedsafety.

Working backwards through the previous equations gives

sched = (((cell;cellsafety) (dcell;dcellsafety)-
... (dcell;dcellsafety))\;q) ; schedsafety
= ((cell-dcell-...-dcell)\.q);schedsafety

= sched;schedsafety

which is the desired conclusion. This calculation is an example of a general scheme for

structuring correctness proofs of processes which are built from subcomponents.

106 Chapter 5. Verification

5.8 Specification Structures

A specification structure S over a category C allows the construction of a new category
Cs in which the objects of C have been enriched by the addition of extra properties. In
terms of types, the result is that a type carries more information and it is correspond-
ingly more difficult for a term to inhabit it. The structure of C (in the case of SProc
or ASProc, the structure of an interaction category) can be lifted to Cg, and there is
a faithful functor Cs — C which forgets the additional properties in the types. The
fact that Cg is a category gives compositional proof rules for programs satisfying the
additional specifications, which can be used no matter how the necessary properties
of the programs were established. A typical starting point might be a collection of
processes and their types in C. In some cases it will be possible, for quite general
reasons, to assign a type in Cg to a process which has a type in C. For other processes
it will be necessary to use traditional verification methods to prove that they have
certain properties and can thus be typed in Cg. But once this has been done, any of
the processes can be combined according to the available rules in Cg, yielding processes
which again have types in Cs. Thus some (or, ideally, much) of the work of verification
can be packaged up into appropriate types which incorporate properties preserved by

composition.

Formally, a specification structure S over a category C is defined by the following data.

o For each object A of C, a set PsA of predicates or properties over A.

e For each pair A, B of objects of C, a relation S4 5 C C(A, B) x PsA x PsB.

SaB(f,0,¢) will be written 8{f}¢. This relation is required to satisfy the following

conditions.

e For each object A of C and each 6 € PsA, 6{id4}6.

e For all objects A, B, C' of C, morphisms f: A — B, g: B — (', and properties
6 € PsA, p € PsB, v € PsC, if 8{f}¢ and @{g}¢ then 0{f; g}v.

If S is a specification structure on C, then an object of Cg is a pair (A,0) with A an
object of C and 6 € PgA, and a morphism f : (A,0) — (B,) is a morphism f: A — B
in C such that 6{f}¢.

Proposition 5.1 Cg is a category, and there is a faithful functor Cs — C defined by
(A,0)— A and f+— f.

5.3. Specification Structures 107

Proof: ~ The conditions on the relation S4 p are precisely those necessary to ensure
that the identity morphisms of C are also the identities in Cg, and that composition in
Cgs can be defined. The forgetful functor from Cg to C is obviously faithful. |

In general, there isn’t a corresponding free functor from C to Cg, because unless the
sets of properties have more structure there is no canonical way to choose a property

over each object.

If C has a type structure specified by various functors and natural transformations, it
can be lifted to Cg by giving each functor an action on properties and verifying that the
components of the natural transformations satisfy the conditions necessary for them
to be morphisms in Cg. For example, if C has a tensor product @ : C? — C it can be

lifted to C'g by defining
®4,B PsA X PsB — Ps(A & B)

satisfying
0{ /e, 09}’ = 000 {fogle® ¢

and then defining ® on Cg by
(A,H) ® (Bv@) d:ef (A ® B,H ®A,B 99)

If assoc is the associativity natural isomorphism in C, it lifts to Cg provided that for
all objects A, B, C of C and properties 8 € PsA, ¢ € PsB, ¥ € PsC',

(0 ® @) @ Pfassocs B0} & (¢ @ V).

Examples of specification structures include the following.

o The specification structure P over Setl defined by taking the set of properties over
any set X to be X itself (so that a property over X is just an element of X, when
X isnon-empty). Ifz € X,y € Yand f: X — Y then z{f}y &f f(z) =y. Then
Setp is the category of pointed sets and point-preserving functions. This example
shows that Cg may have fewer objects than C: the set @ has no properties and
so there is no corresponding object in Setp. The product structure of Set can
be lifted to Setp by taking x4 : PPA x PpB — Pp(A X B) to be the identity
function on A x B. For X to be a functor on Selp requires, for f: A — C and
g:B—D,

a{ fe,b{g}d = (a,b){f % g}(e.d)

which is clearly true. The rest of the product structure on Setp can be checked

similarly—for example, 7 : A X B — C satisfies (a,b){7}a for any « € A, b € B.

108 Chapter 5. Verification

e The specification structure S over Set defined by taking a property over a set X
to be a partial order on X . If < and C are partial orders on X and Y respectively,
then <{f}C when Va,b € X.[a < b= f(a) T f(b)]. Then Setg is the category

Pos of partially ordered sets and monotonic functions.

¢ A combination of the two previous examples: the specification structure S over
Setp defined by taking a property over (X, z) to be a partial order on X in which
x is the least element. If < and C are partial orders on X and Y respectively,
and z, y are the least elements, then <{f}C when f(z) =y and Va,b € X.[a <
b= f(a) C f(b)]. Then (Setp)s is the category of partially ordered sets with

bottom, and strict monotonic functions.

As suggested by the examples, a specification structure is essentially the same as a

faithful functor. If ¥ : D — C is faithful, define a specification structure S over C by

PsA Y (X cobD | FX = A}

andif f:A— BinC and X € PsA,Y € PsB,

x{fy ¥ 37X - v in D with F(f) = f.
It is easy to check that S satisfies the specification structure conditions. An object
of Cs is a pair (A, X) with FX = A, i.e. essentially just an object X of D, and a
morphism (A,X) — (B,Y) is a morphism f : A — B of C such that f = F(f)
for some (necessarily unique) morphism f : X — Y of D. Thus f can be taken as
the morphism in Cg, and this recovers D. Conversely, starting with a specification
structure S over C and constructing Cg, the forgetful functor U : Cs — C can be used

to recover S.

5.4 Synchronous Deadlock-Freedom

In this chapter, deadlock means termination. A more refined treatment might consider
unsuccessful termination as deadlock; the view taken here is that all termination is
unsuccesful. A process may have both terminating and non-terminating behaviours,
but a deadlock-free process is one which has no maximal finite behaviours. For example,
the process a.b.nil can deadlock; the process P defined by P = a.P + b.nil can deadlock
although it can also generate the infinite trace a“; the process @ defined by) = a.b.Q)

is deadlock-free.

Deadlock-freedom is not preserved by composition: two processes may individually

be deadlock-free, but when forced to communicate they could deadlock each other by

5.4. Synchronous Deadlock-Freedom 109

being unable to agree on a sequence of actions to perform. For example, if the CCS
processes P and () are defined by P = a.b.P and) = a.c.) then composing them
means forming the process (P | @)\{a, b, c}. In this process, P and) can communicate
for a single step, but then deadlock occurs because P must do b next while ¢) can only

do c.

In order to construct a category of deadlock-free processes which are guaranteed to
remain deadlock-free when composed with each other, more information is needed than
just the fact that a process runs forever. The rest of this section describes two different
approaches to building suitable extra information into the types, by constructing a
specification structure over SProc. Both of these approaches are due to Abramsky. It

will then turn out that they are equivalent.

5.4.1 Sets of Processes

The first construction of a specification structure for deadlock-freedom takes a property
over a type to be a set of processes of that type. This is clearly the most general notion
of property, and has no inherent connection with deadlocks. For these properties to
say anything about deadlock-freedom, the sets of processes must be carefully chosen

in a way which will now be described.

First, say that a process P of type A converges, written P |, if whenever P —%* ()
there is @ € Y4 and a process R such that @ . R. Convergence means deadlock-
freedom; the reason for the choice of terminology is an analogy with proofs of strong

normalisation in Classical Linear Logic [Gir87, Abr93a).

Given processes P and @) of type A, the process P () of type A is defined by

PP Q- q

POQ 2 Pnq.
For each type A, the orthogonality relation on the set of processes of type A is defined
by

P19 ¥ (Pn@)|.

If P and @ are orthogonal, they can communicate without deadlocking: any common
trace can be extended by an action which is available to both processes.

Because only deadlock-free processes are of interest in this section, it is convenient
to restrict attention to those types of SProc whose safety specifications do not force

termination. Such types are called progressive: A is progressive if

Vs € S4.da € Y 4.50 € 54.

110 Chapter 5. Verification

The full subcategory of SProc consisting of just the progressive objects is denoted
by SProc,,; this is the category over which the specification structure for deadlock-
freedom will be defined. SProc,, inherits all the structure of SProc, apart from the

zero object.

For each object A of SProc,,, let Proc(A) be the set of convergent processes of type
A. The orthogonality relation is extended to sets of processes by defining, for U,V C
Proc(A) and P : A,

PLU ¥ woecuprLQ

viv & vpevprLv.

Ty

Orthogonality then generates an operation of negation on sets of processes, defined by
Ut X (P eProc(A)| P LU}

The next lemma is true quite generally of any operation (—)J‘ defined in this way from

a symmetric orthogonality relation.

Lemma 5.2 For all U,V C Proc(A),

UCcv = vitcut

U C LrJ_J_

gt - pliidl
The specification structure D for deadlock-freedom over SProc,, can now be defined.
A property over a type A is a non-empty, L1l invariant set of convergent processes of

type A:
PpA X {U CProc(A) | (U £ @) A (U = T)).

Also associated with the definition of (—)* is a closure operator: for any U C Proc(A),

ULt is the smallest +1-invariant set of processes containing U.

It will be essential to know that when U € PpA, U+ € PpA. It is always true that
U+ is t1-invariant, so all that is needed is that U1 # @. To establish this, consider

the process maxy of type A defined by

a € Sy

a
max4 — maxy/q.

This definition applies to any object A; if A is progressive then maxy |. For any process
P of type A, PMmaxy = P, and so if P| then P 1 maxy. Hence whenever U € PpA,
maxy € Ut and so UL # @.

5.4. Synchronous Deadlock-Freedom 111

The relation U{f}V is defined via a satisfaction relation between processes and prop-

erties, written P |= U. In this case, the definition is very simple:

rev ¥ pPeru
but satisfaction in the next specification structure is more complex so it is useful to
set the pattern of definitions now. When the linear operations have been defined on

properties, the definition

UL 8 JEU—V
can be used to specify the morphisms of the deadlock-free category. This category
will be called SProcp; its definition in terms of a satisfaction relation follows the same

pattern as the original definition of SProc.

The (—)J‘ operation on sets of processes has already been defined. The multiplicative

operations are defined in terms of ®:

veVv ¥ (PgQ|PeU,QeVvitt
U o % d:ef (UJ_ ® ‘/J_)J-

U—-v ¥ wevh

In order to prove that D satisfies the specification structure axioms, a few lemmas are

needed.
Lemma 5.3 If U CV C Proc(A) thenidg € U — V.

Proof: ~ We need id4 € (U ® VJ‘)J'. Now,

Uevht = {(PeQ|PcU,QeViy™

= {PoQ|PecUQ EVL}L

so it is enough to show idy L {PQQ | P € U,Q € V*}. Let Pc U and Q € V*.
U CV implies V+ C U, s0 Q € Ut and hence P L (. For any common trace s of
idg and P®Q, fst™(s) is a trace of P and snd™(s) is a trace of @), and fst*(s) = snd™(s).
So there is an action a such that fst*(s)a is a trace of P and snd*(s)a is a trace of Q).

Hence (@, a)is an action such that s(a, a) is a trace of both id4 and P ® Q. This means

that (idaN(P®Q))|,and soidg L P® Q. a

For the next two lemmas, a slight abuse of notation is useful. If f: A — B and P : A,
there is a process P ; f of type B obtained by regarding P as a morphism I — A,
composing with f, and then regarding the resulting morphism I — B as a process of
type B. Similarly, if Q : Bt there is a process f ;@ of type A.

112 Chapter 5. Verification

Lemma 5.4 If f: A — B, U € PpbA,V € PpB, f € U — V and P € U, then
P;feV.

Proof: Wehave f L {P®Q|PcU,Q¢cV=+} and need to prove, for any Q € V+,
(P;f) L Q. Let @ € VL and let s be a common trace of P; f and (. The definition
of composition means that there is a trace ¢ of f such that fst*(¢) is a trace of P and
snd*(¢) = s. Because f L (P ® (), there is an action (a,b) such that ¢(a,b) is a trace
of f, fst*(t)a is a trace of P and snd*(¢)b is a trace of). Then sb is a common trace

of P; fand Q,so ((P;f)N1Q)] as required. O

The proof of the next lemma is similar.

Lemma 5.5 1f f: A — B, U € PpA,V € PpB, f € U — V and Q € V*, then
[iQeUt.

Proposition 5.6 D is a specification structure over SProc,,.

Proof: ~ The first requirement is that if A is any object of SProc,, and U € PpA,
U{id4}U. This follows from Lemma 5.3.

Next, suppose that A, B, C are objects of SProc,, and U € PpA, V € PpB and
W e PpC. If f: A — Band g: B — C with U{f}V and V{g}W, we need
U{f;g}W. Thus the goal is to prove that

f;9 L {POR|PcURecW}.

Suppose that P € U and R € W. By Lemmas 5.4 and 5.5, P; f € V and g ; R € V*.
Hence (P;f) L (g;R),i.e. ((P;f)M(g;R))]|. It follows that ((f;¢9)N(R®S5))], as
can easily be checked. O

It is now legitimate to talk about the category SProcp of deadlock-free processes. Next,
the definition of the *-autonomous structure on SProcp can be completed. There is
only one property over I, namely the set { P} where P is the unique convergent process
of type I. Concretely, P = x : P. Clearly PP = P,so P L P and {P}J‘ = {P}.
Also, of course, P = max;. This means that Ip = Lp. For ® to be a functor on
SProcp requires that for morphisms f: A — C and g : B — D of SProc and sets
UePpA, Ve PpbB,We PpC,Z e PpD with U{f}W and V{g}Z,

UaV{f@glW® Z.

The monoidal structure of SProc lifts to SProcp provided that, for all properties U,

5.4. Synchronous Deadlock-Freedom 113

V., W over appropriate objects, the following hold.

U (Ve W){assocapcHUR V)2 W
(U@ V){symm, g}(V @ U)
(ID & U){unitlA}U
(U @ Ip){unitr4 }U.

The closed structure requires that whenever (U @ V){f}W, U{A(f)}(V — W); and
that

(U - V)@ U){Apsp}V.

Linear negation is functorial if whenever U{f}V, V{fL}U"L. It is straightforward to

verify all of these conditions. For example, consider the case of symm.

Proposition 5.7 If U € PpA and V € PpB, then (U ® V){symm, g }(V @ U).

Proof: ~ We need symme (U@ V) - (VaU),ie.symme (UaV)a (Ve U)L)L7
or equivalently symm L {P®Q |Pc U V,Q e (Vo U)*}.

First, suppose that Q € (V@ U)- ={R® S| ReV,5 e U}, ie.
QL{RGS|ReV,SeU).

Defining Q' def Q[(b,a) — (a,b)], it is clear that Q' L{S® R| S € U,R € V} and so
Qe (UaV)

Now suppose that P € U®V and Q € (V@ U)J‘, and s is a common trace of symm
and P ® Q. The definition of symm means that fst*(s) = snd*(s)[(b, @) — (a,b)]. Also,
fst*(s) is a trace of P and snd™(s)[(b,a) — (a,b)] is a trace of Q. Because P L @',
there is an action (a,b) available to both P and @'. So @ can do (b,a), and P ® @
can do ((a,b),(b,a)). This action is also available to symm. Hence symm L P @ @, as
required. O

The rest of the structure of SProc will soon be defined on SProcp, but first it is useful
to have a supply of properties over each type. For any object A, the process maxy of

type A has already been defined. Now define My as a synonym for Proc(A).
Proposition 5.8 For every object A of SProc,,, {max4}*" = M4 and M} = {max,}.
Proof: ~ For any P € Proc(A), P L maxs. Hence My L {max4}. This means that
{maxA}J‘ D My; also, {maxA}J‘ C My. This gives {maxA}J‘ = Mjy.

For the second part, we already have {maxs} C Mi. Now suppose that P # maxu.
There is a process P’, a trace s and an action a € ¥4 such that sa € S4 and P —>* P’

but P’ cannot do a. Define) to be the same process as P, except that the node P’ is

114 Chapter 5. Verification

replaced by Q' where Q' = a : max,/s,- Then P M Q does not converge, so P [M.
g

Corollary 5.9 {maxs}*" = {maxs} and ML+ = My.

This means that for every type A, there are at least two constructions of properties

over A, leading to M 4 and {max4}. However, these properties are not always distinct.

Proposition 5.10 If the object A is such that s € §4 = dla € ¥ 4.5a € 5S4 then maxy

is the only process of type A, and conversely.

In this situation, {max4} = My; in fact, it must also be the case that A = I.

It is easy to calculate ® and » of these properties.

Proposition 5.11 For any objects A and B of SProc,,, {max4} ®{maxg} = {maxsgp}.

Proof: ~ This follows from the fact that maxs ® maxg = maxsgs. O
Corollary 5.12 Ma s Mp = MagB.
Proposition 5.13 For any objects A and B of SProc,,, My @ Mp = MagB.

Proof: Since My@Mp ={P® Q| P € Ms,Q €]WB}J‘J‘, it is enough to prove that
{(PRQ|PeMyQe Mgy = {maxygp}. Clearly

maxaps L{P@Q | P e Ms,Q c Mg}

Suppose that R € Proc(A ® B) and R # maxsgp. At some point in the tree of R,
there is an action (@,b) which is unavailable. For simplicity, say that R cannot do

(a,b). Then if P = a:maxy;, and @ = b:maxg;, (P® Q) } R. O
Corollary 5.14 {max4} » {maxg} = {maxaop5}.

Properties of the form M4 and {max4} can be used to show that SProcp is not compact
closed. Consider the types A and B with ¥4 = {a,b}, ¥ = {c,d} and unrestricted

safety specifications. Then

My @ {maxg} = {P®maxg| P € JVIA}J‘J‘
Myp{maxg} = ({max4}® MB)J‘
= {maxy, ®Q | Q € LMB}J‘.

5.4. Synchronous Deadlock-Freedom 115

Defining processes X and Y of type A ® B by

X = (bo): X+(a,d): X
Y = (a,¢):Y +(b,d):Y
it is easy to see that X € {P @ maxg | P € My} and Y € {max, ® Q | Q € Mp}*.

But X /Y, which means that X ¢ {P @ maxg | P € M4}*+. Hence M4 ® {maxg} #
My 5 {maxg}.

Loss of compact closure is to be expected, as in general the arbitrary formation of
cycles is likely to lead to deadlock. SProcp does, however, validate the Mix rule; this

will be proved later.

It is clear that if the objects A and B are progressive, so is A @ B. Thus SProc,, has

non-empty coproducts, and hence also products. These can be lifted to SProcp.

Ueav def ({P[a|—>in|(a)]|P€U}U{Q[b'_)inr(b)]|Q€‘/})J‘J-

vev ¥ (wtgviy

The requirements for these to define products and coproducts on SProcp are that for
any progressive objects A, B of SProc and U € Pp(A), V € Pp(B):

(U & V){m}U
(U & V){r}V
U{inl}(U @ V)
V{inr}(U & V).

The definitions extend to countable products and coproducts in the obvious way. The

zero object of SProc is not progressive, because it has an empty sort, and so it cannot

be lifted to SProcp.

Not only do ® and »p become distinct in SProcp, but so too do @ and &. To see this,
consider the types A and B defined by ¥4 = {a}, ¥p = {b} and with unrestricted

safety specifications. Then

Ms@® Mg = ({maxA}U{maXB})J_J_
= {maxs,maxg}’t
Mja Mg = (Ms® Mp):

L
= {maxy,maxg},
omitting inl and inr for clarity. Now, {maxs, maxg}* = {maxs + maxg}, but

{maxy + maxB}J‘ D {max4 + maxg, max4, maxg}

116 Chapter 5. Verification

and so M4 @& Mp is strictly larger than M4 & Mp.

Although SProcp does not have biproducts, the non-deterministic + operation still
makes sense. If U € PpA, P,Q € U and R € U™+, then P+ @ L R. This means
P+Q € UL = U. The nil processes, however, do not exist in SProcp as they are not
convergent. So each homset of SProcp has a commutative and associative + operation

but this operation has no unit.

The delay functors are lifted to SProcp by means of the following definitions.

olU def {oP|P€U}J'J'
sU ¥ sp|PpeUtt
AU ¥ (AP|PecU}t.

In the case of o the application of (—)J‘J‘ is unnecessary, as {o P | P € U} is already

L1 invariant. The conditions required for o, § and A to be functors on SProcp are

oU{of}oV
sU{6fI6V
AU{A f}IAV

when f: A — B in SProc, U € PpA,V € PpB and U{f}V. The conditions for the
monad (4,7, 1) to lift to SProcp are

U{n}éU
§6U{uteU
and similarly for A. The functor o on SProcp has the UFPP provided that whenever
f:A—oAand g:0B — B satisfy U{f}oU and o V{g}V, the morphism h: A — B
defined by the UFPP in SProc satisfies U{h}V .

All of these conditions are satisfied, so the entire temporal structure of SProc lifts to

SProcp.

The lack of biproducts means that the construction of ! as a cofree cocommutative
comonoid cannot be used in SProcp. But it is sufficient to define ! on sets of processes

and check that the structural morphisms lift from SProc to SProcp.

w pipemtt

L
v (ot
The conditions required of the structural morphisms are

'U{weak}Ip
'W{contr}'U @ 'U
'U{der}U

5.4. Synchronous Deadlock-Freedom 117
and, if f: 1A — B with 1U{f}V,

u{f'y!v.

Proposition 5.15 SProcp is a x-autonomous category with countable (non-empty) prod-
ucts and coproducts, exponentials, unit delay functor and delay monads. The forgetful

functor U : SProcp — SProc preserves all of this structure.

5.4.2 Ready Specifications

The specification structure presented in the previous section results in a category which
supports compositional verification of deadlock-freedom, but there is perhaps a lack
of intuition about the use of sets of processes. There is an alternative specification
structure for deadlock-freedom, which was in fact the first to be discovered, and which
may be more easily motivated. Surprisingly, it turns out to be equivalent to the sets

of processes approach.

As mentioned before, the reason why deadlock-freedom is not generally preserved by
composition is that two deadlock-free processes may, when forced to communicate,
reach states from which no further communication is possible even though both pro-
cesses have more actions available. This observation leads to the idea that if a type is
to guarantee compositional deadlock-freedom, it must specify something about which
actions a process must be prepared to perform in certain states. The way in which

this information is captured is via the notions of ready pair and ready specification.

A ready pair over an SProc object A = (X 4,54) is a pair (s, X) in which s € S4 and
@ # X C X4, such that Vo € X.saz € S4. The set X is the ready set of the ready pair.
The set of ready pairs over an object A is denoted by RP(A). If P is a process of type
A, then

initials(P) %' {2 € %,]3Q.P - Q}

readies(P) %' {(s,X)| (P —=* Q) A (X = initials(Q))}.
For any process P, readies(P) is the set of pairs (s, X) representing the actions (those
in X') which P is ready to engage in after performing a sequence s of actions. Note
that readies(P) does not necessarily consist entirely of ready pairs; it can contain pairs
(s,9). P is deadlock-free if and only if there is no trace s such that (s,) € readies(P).

For example,

readies(a.b.nil + a.c.nil) = {(¢, {a}), (a, {b}), (@, {c}), (ab, D), (ac, D)}

and if P = a.P,
readies(P) = {(a",{a} | n < w)}.

118 Chapter 5. Verification

The idea of a ready pair, and the related notions of failures and refusals, appear in
the process algebra literature [BW90, BHR84, Hoa85]. There, however, they are used
to define semantic alternatives to bisimulation; the use made of ready pairs in this

chapter is very different.

As before, the specification structure hinges on an orthogonality relation. The relation

1 on RP(A) is defined by
(5, X)L (1Y) ¥ (s=0)=XnY £02).

The idea is that if (s, X') and (¢,Y") are ready pairs of two processes which are supposed
to be communicating, (s, X) L (¢,Y) means that if they have been communicating so
far (s = ¢) there is some action which they are both prepared to do next (X NY # @)

and thus continue the communication.

The properties needed for the specification structure are ready specifications. A ready

specification over an object A is a non-empty set R of ready pairs over A, satisfying

o (s,X)eR)AN(z e X)=>TY.(sz,Y)eR

o (sz,Y)e R=3X.[(s,X)e RNz € X].

The set of ready specifications over A is denoted by RS(A). Not all objects have ready
specifications: RS(A) # @ if and only if A is progressive. Again, the specification

structure is defined over SProc,,.

In the standard way, the orthogonality relation is extended to ready specifications and
used to define an operation of linear negation. The set Pp:A of properties over an
object A of SProc,, is the set of ready specifications 6 over A such that §++ = 4. The
relation 6{f}y is again defined via a satisfaction relation between processes of any

type A and ready specifications over A. Satisfaction is defined by

P8 & readies(P) C 4.
Because 6 contains no pairs with empty ready sets, P |= @ implies that P is deadlock-
free. The next step is to define a x-autonomous structure on the objects of SProcp,

which enables the definition 6{f}¢ & f |E @ — ¢ to be made.

Recall that an object of SProcp: is a pair (A, #) in which A is an object of SProc,,
and @ € RS(A) is a ready specification such that §1+ = 6. Linear negation is defined
on objects by (A,H)J‘ def (AL, 61) = (A,61). Tt is easier to define 5 before ©; the

definition is

(4,0)% (B,o) € (A B,05¢)

5.4. Synchronous Deadlock-Freedom 119

where

0o X {(s,Ux V)| (fst*(s),U) € 6+, (snd*(s), V) € o1}

This looks like a definition by de Morgan duality; the reason is that, since R++L =

Linvariant ready

R for any ready specification R, the easiest way to construct a +
specification is by making it S+ for some S. The corresponding ® is then defined by

de Morgan duality from .

Before proving that D’ is a specification structure, it is interesting to consider some
example calculations with ready specifications. Let A and B be objects of SProc,,
with X4 def {a,b}, ¥p def {¢,d} and unrestricted safety specifications. Define a ready
specification @ over A by 6 def {(s,{a,b})| s € ¥%}. For the rest of this example, since
the safety specifications in these types impose no constraint, the traces can be omitted
from ready pairs, leaving just the ready sets. So 6 is the set {{a,b}} containing a single

ready set. The definition of orthogonality gives
6+ {{a}, {6}, {a,b}}
o+t = {{a,b}}

so that 1+ = @ and hence § € PpA. For an example of a ready specification which is

not +1-invariant, take def {{a}}, so that

ot = {{a},{a,b}}
att HHa}; {a, b3}

Then att # a (although at is, of course, 1-invariant).

Defining a ready specification ¢ over B by ¢ def {{c},{d},{c,d}}, analogy with @+

gives

et = {{ed}}
et = e

It is now possible to calculate 85 ¢ and 8 ® ¢, using a simplified form of the definition

of » which results from omitting traces from ready pairs.

bop = {UxV|U€co, Vet
= {{(a,¢),(a,d)},{(b,c),(b,d)},{(a,c),(a,d),(b,c),(b,d)}}*
= {X[XNn{(a;0),(a,d)} # 2, X N{(b,¢),(b,d)} # T}
= {{(a,c),(a,d),(b,c),(b,d)},{(a,c),(a,d), (b, c)},{(a,c),(a,d),(b,d)},
{(a,c), (b,¢),(b,d)},{(a,d),(b,c),(b,d)},
{(a,c), (b, c)},{(a,¢), (b, d)}, {(a,d), (b, c)},{(a,d), (b, d)} }.

120 Chapter 5. Verification

boe = (04 o)

= {UxV|Ue€bVeptt

= {{(a,0),(b,0)},{(a,d),(b,d)}, {(a;), (a,d), (b,c), (b, d)} }*

= {X| X n{(a,0),(b,0)} # @, X N {(a,d),(b,d)} # 2}

= {{(a,0),(b,¢),(a,d),(b,d)},{(a,c),(b,c),(a,d)},{(a,c),(b,c), (b,d)},
{(a,c),(a,d),(b,d)},{(b,c), (a,d),(b,d)},
{(a,¢), (a,d)}, {(a,), (b, d)}, {(b,), (a,d)}, {(b,), (b,)} }

= {{(a,¢),(b,¢),(a,d),(b,d)},{(b,c),(a,d),(b,d)},{(a,c),(a,d),(bd)},
{(a,c), (b, ¢), (b, d)},{(a,c), (b,c),(a,d)},
{(a,c), (b, c)},{(a,d),(b,d)}}.

These calculations show that 6 9 ¢ # 0 @ ¢, because the sets {(a,c),(b,d)} and
{(a,d),(b,c)}arein 65 ¢ but not §@ . Thus SProcp: is not compact closed. However,
the Mix rule is valid in SProcp:, and this will be proved after establishing that D’ is a

specification structure and SProcp: is *-autonomous.

Lemma 5.16 If A is an object of SProc,, and o, € PprA with o C 3, then a{id4}S.

Proof: We need id4 |= at » 3. This means
readies(id4) C at = 3
or equivalently
readies(id) C {(s,U x V) | (fst*(s), U) € a, (snd*(s), V) € B4}
i.e.
readies(id4) L {(s,U x V) | (fst*(s),U) € a, (snd*(s),V) € 5+}.

If (s,X) € readies(id4), (fst*(s),U) € a and (snd*(s),V) € B+, the requirement is
XN (UxV)#0.

a C B3 = Bt Cal,so(snd*(s),V) € at. Hence (fst*(s),U) L (snd*(s),V). Also,
(s,X) € readies(idy) = fst™(s) = snd*(s) and so UNV # @. If a € UNV then
(a,a) € U x V and it only remains to show that (a,a) € X.

Because (fst*(s), U) is a ready pair and a € U, fst*(s)a € 54 and so s(a,a) € 541,54
This means that after the trace s, id4 must be able to do (@, a), and thus (a,a) € X

as required. O

Proposition 5.17 D' is a specification structure over SProc,,.

5.4. Synchronous Deadlock-Freedom 121

Proof: Firstly, if A is any object of SProc,, and 8 € Pp/A, we need to check that
6{id4}6. This is a special case of Lemma 5.16.

Secondly, suppose that A, B, C' are objects of SProc,, and 8 € Pp/A, ¢ € PpB,
v € PpC. If f: A— Band g: B — C with 8{f}¢ and ¢{g}¥, we need to check
that 6{f;g}®. The statement that 6{f}¢ and @{g}4 is equivalent to f = 8+ 5 ¢ and
g = ot % 1, so we have

(s,X) € readies(f) = (s, X)L {(s,Ux V)| (fst*(s),U) € 0, (snd*(5),V) € o}
(1,Y) € readies(g) = (4,Y) L {(t,V x W) | (fst*(1),V) € @, (snd*(1), W) € ¢*}.

To deduce 8{f; g} we need f ;g |= 8+ 5 ¢, which means checking that

(u,Z) € readies(f ; g) =
(u, Z) L {(u, U x W) | (fst*(u),U) € 6, (snd*(u), W) € ¢*}.

Suppose (u, Z) € readies(f;g). The definition of composition in SProc implies that there
are (s, X) € readies(f) and (¢,Y) € readies(g) with fst*(s) = fst*(u), snd*(¢) = snd*(u),
snd*(s) = fst™(¢) and

Z =A(a,c) € X¥aoc | b€ Xp.((a,b) € X A(b,c) €Y)}.

For any W with (snd*(¢),W) € ¢, define K def {beX¥p|deeWlc)eY}. For
any V with (fst*(¢),V) € ¢, we have Y N (V x W) # @ by the orthogonality condition
on readies(g). So there is (b,c) € Y with b € V and ¢ € W. This means that b € K,
and so K NV # @. Hence (fst*(¢), K) € p*.

Finally, for any U with (fst"(s),U) € 6, the orthogonality condition on readies(f)
means that X N (U x K) # @. So there is (a,b) € X with « € U and b € K. Because
b € K there is ¢ € W with (b,¢) € Y. Hence (a,c¢) € Z; also a € U and ¢ € W, and so
ZN(U x W) # @ as required. a

This proposition yields another category of deadlock-free processes, SProcp:. The
structure of an interaction category can be defined on it, as before. Here, the definitions
of the various operations on ready specifications are listed, and the conditions which

they must satisfy are the same as in the previous section.

Ip = (=" {+)) [n<w)

Lpr d:ef ID’
Bap € ({(inl(s),inl(X)) | (s,X) € 8-} U {(inr*(1),inr(Y)) | (1,Y) € p*})"
boe X (ptaph)
08 ' ({(e, {XhIU{(xs, X) [(5, X) €81}
560 X (" U X) | (6, X) € 05, n > 0 U{(+"s, X) | (s, X) € 6+))"

122 Chapter 5. Verification

Al = ({(e,X)|(e,X)€ OL} U{(s, {xJUX)| (s]X4,X)€ HL,S[EA # g})L
$7(0) % {(@n(s), on(X1 % - x X)) | Vil(w(s), X;) € 04}

n def n L
@5(0) = pi(6h)
'0 d:ef &n}O ®ZO
10 X (1ehyt

The Mix rule is valid in SProcp:. What this means is that for any objects A, B of
SProc and ready specifications a € Pp/A, 8 € Pp' B, the identity morphism idgp lifts
to a morphism (A® B,a®) — (A® B,a»x) in SProcp:. It is possible to check this

by considering inclusions of ready specifications.

Lemma 5.18 If A, B are objects of SProc and a € Pp/A, 3 € P B, then a®8 C agf.

Proof: This is equivalent to

{(s,U x V)| (fst*(s),U) € a, (snd*(s),V) € g}** C
{(5,U x V)| (fst*(s), U) € a*, (snd*(s), V) € g}

or

{(5,U x V)| (fst*(s),U) € a*, (snd*(s),V) € g1} C
{(s,Ux V)| (fst*(s),U) € e, (snd*(s), V) € 5}*.

If (fst*(s),U) € at, (snd*(s),V) € B+, (fst*(s),X) € a and (snd*(s),Y) € B then
therearea e UNX and be VNY,s0 (a,b)e (UxV)N(X XY). a

Lemmas 5.16 and 5.18 together imply

Proposition 5.19 SProcp: validates the Mix rule.

Just as for SProcp, there are a few results which allow some types to be assigned

automatically in SProcp:.

Proposition 5.20 For any object A of SProc,,, the following hold.

1. RP(A) is a ready specification
2. RP(A)** = RP(A)

3. RP(A): = {(s,{z € T4 |sx e Sa})|s€ b4}

Proof:

5.4.

Synchronous Deadlock-Freedom 123

. Because A is progressive, there is a € ¥ 4 such that ¢ € S4. Hence (¢,{a}) is a

ready pair and so RP(A) # @. If (s,X) € RP(A) and @ € X, then sa € 54. Let
Y ={2 € X |sax € S4}. Because A is progressive, Y # &, s0 (sa,Y) € RP(A).
If (sa,Y) € RP(A) then (s,{a}) € RP(A). Thus RP(A) satisfies the conditions

necessary to be a ready specification.

. RP(A)** is a set of ready pairs, so RP(A4)+ C RP(A). Also RP(4) C RP(A)**

for general reasons.

. It is clear that {(s,{z € X4 | sz € S4}) | s € S4} L RP(A). Conversely,

suppose that (s, X) L RP(A). Because (s,{z}) € RP(A) for every = € X4 such
that sz € 54, the definition of orthogonality means that z € X for each such z.

Hence X ={z € ¥4 | sz € S4} as claimed.

O

Corollary 5.21 If A is an object of SProc,,, and is such that for each s € §4 thereis a
unique z € ¥4 such that sz € Sy, then RP(A)" = RP(A). The converse is also true.

Lemma 5.22 For any A and B,

RP(A) g RP(B)
RP(A)* 5 RP(B)*

[
o 0
2 2
NN
& o
==
'_

Proof: For the first part,

RP(

A) 5 RP(B)
{(s,U x V)| (fst*(s), U) € RP(A)*, (snd*(s), V) € RP(B)*}"
{(s,UxV)|U={aeXy|fst(s)ae S4},V={beXp|snd*(s)be Sp}}"
{(s,{(a,b) € Saon | s(a,b) € Sagn}) |5 € Sagn}™
RP(Ap B)**
RP(A B).

For the second part,

RP(A)* » RP(B)*
= {(5,Ux V)| (fst*(s),U) € RP(A), (snd*(s),V) € RP(B)}".

For each a € ¥4 and b € Xp such that fst*(s)a € S4 and snd*(s)b € Sp, we have
(fst*(s),{a}) € RP(A) and (snd"(s),{b}) € RP(B). So for every such a and b,

(s,{(a,0)}) € {(s,U x V) | (fst*(s),U) € RP(A),(snd*(s),V) € RP(B)}.

The only ready pair with trace s and orthogonal to all of these is (s,{(a,b) | s(a,b) €
SA@B})- O

124 Chapter 5. Verification

Corollary 5.23 For any A and B,

RP(A)5 RP(B) = RP(A)® RP(B)
RP(A)* 5 RP(B)* = RP(A): @ RP(B)*.

Proposition 5.24 If P : Ay -+ A, in SProc, the A; are progressive and P |, then
P:(A1,RP(Ay))s -9 (A,,RP(A,)) in SProcp.

Proof: It is immediate that if P : A in SProc, A is progressive and P is deadlock-
free, then P : (A,RP(A)) in SProcp:. By Lemma 5.22, the result can be obtained by
applying this observation to the type Ay % - x5 A,. O

This result means that any deadlock-free process in SProc can be given a type in
SProcp:. But this does not mean that any two deadlock-free processes which are
composable in SProc are also composable in SProcp:. For example, consider SProc
objects A, B, C with ¥4 = {a}, ¥ = {b,b'}, ¥¢ = {c¢} and unrestricted safety
specifications. Define processes f : A — B and g : B — C by f = (a,b) : f and
g = (V,c):g. The automatically generated SProcps typings are

[(A,RP(A4))% (B,RP(B))
g:(B,RP(B)) (C,RP(C))

which in terms of morphisms give

f:(A,RP(A))* — (B,RP(B))
g : (B,RP(B))* — (C,RP(C)).

But of course these morphisms are not composable, because RP(B)* # RP(B). In
fact, in this example, RP(B) = {(s,{b,b'}), (s, {b}), (s, {V'}) | s € S} and RP(B)* =
{(s,{b,b'}) | s € Sg}. The only case in which this automatic assignment of types
can be used effectively is when RP(B)J‘ = RP(B), which happens precisely in the

circumstances described by Corollary 5.21.

5.4.8 Equivalence of D and D'

As indicated earlier, the specification structures D and D’ are equivalent, despite their
apparently rather different approaches to specifying deadlock-freedom. Equivalence is
meant in the strongest possible sense: for each object A of SProc,, there is a bijection
between PpA and PprA, and this bijection preserves all the operations on properties

exactly.

The first lemma shows that the two specification structures are based on the same idea

of when processes can communicate. Here and subsequently there are two versions of

5.4. Synchronous Deadlock-Freedom 125

orthgonality and all operations on properties, for which the same notation is used;
this should not cause confusion because of the convention of using @, ¢, ... for ready

specifications and U, V... for sets of processes.

Lemma 5.25 If P,Q € Proc(A), then P L Q <= readies(P) L readies(()).

Proof: Suppose P L @, (s,X) € readies(P) and (s,Y) € readies(()). So P —=*
P and @ —=* @', and orthogonality of P and @ implies that there is an action a
such that P’ —— P" and Q' —— Q”. This means that a € initials(P’) = X and
a € initials(Q') = Y, so (s, X) L (s,Y).

Conversely suppose readies(P) L readies(Q)), P —=* P’ and @ —>* @'. Then
(s, initials(P")) € readies(P) and (s, initials(Q’)) € readies(Q), and this implies

initials(P’) N initials(Q") # @.

Thus there is an action @ such that P’ —+ P" and Q' 2. Q",s0o P 1L Q. O
Now define, for U € PpA and 0 € Pp A,

F(0) def {P € Proc(A) | readies(P) C 6}

G(U) def | [{readies(P) | P € U}.
This gives a correspondence between properties in the two specification structures.

There is also a connection between the two satisfaction relations, which is very easy
to establish.

Lemma 5.26

readies(P) C 0 <+ P e F(0)
PeU = readies(P) C G(U).

The other half of the second implication will follow later. First, it is essential to prove

that F and G are mutually inverse.

Proposition 5.27 If § € Pp/A then GF(0) = 6.

Proof: If (s,X) € GF(0) there is P € F(f) with (s, X) € readies(P). This means
that (s, X) € 0, because P € F(8) = readies(P) C §. Hence GF(6) C 6.

If (s, X) € 6 then establishing (s, X) € GF(0) requires P € F(6) such that (s, X) €
readies(P). This means finding P with readies(P) C # and (s, X') € readies(P). Because
6 =0+ (t,{a € 4 | ta € Sa}) € 0 for any trace t € S4. So a suitable P is the

process constructed from maxy by only allowing the actions in X after the trace s. O

126 Chapter 5. Verification
Proposition 5.28 If U € PpA then FG(U)=U.

Proof: If P € U then readies(P) C G(U),so P € FG(U). Hence U C FG(U).

If P € FG(U) then readies(P) C G(U). So for any (s, X) € readies(P) there is Q) € U
such that (s, X) € readies(Q). If R € UL and (¢,Y) € readies(R), this means that
(s,X) L (t,Y). Hence P L R,i.e. P UL =U. Thus FG(U) C U. O

Corollary 5.29 readies(P) CG(U)= P e U.

Proof: If readies(P) C G(U) then P € FG(U) =U. a

So far, it has not been proved that F(6) and G(U) are **-invariant. This can be done
at the same time as proving that F and G' commute with (—)*. First of all, it is clear

that for any and U, F(61) L F(#) and G(UL) L G(U). This proves
Lemma 5.30 F(8+) C F(6)* and G(U*) C G(U)*.
The reverse inclusions require more work.

Lemma 5.31 If 8 € Pp: A, there are processes Py, ..., P, such that

readies(P;) U . ..U readies(P,) = 4.

Proof: Define a labelled transition system whose states are the ready pairs in 6, with

transitions defined by
aeX

(5, X) — (sa,Y).
Because 8 = 0+1) (s,{z € S4 | sa € S4}) € 6 for each s € S4. So for any pair
(sa,Y) € @ there is the transition (s,{z € S4 | sa € S4}) —= (sa,Y), which means
that every state is reachable from (¢,{a € ¥4 | @ € S4}), except for any (g, X) with
X #{a € ¥4 | a € S4}. Furthermore, because each transition increases the length
of the trace, there are no cycles except possibly in the case of two distinct transitions
between the same two states. In this latter case, the target state can be separated into

two states. Overall, this means that the states (¢, X) can be taken as the processes
Py,..., P, O

Proposition 5.32 F(81) = F(8)*.

Proof: It is enough to prove F(§)* C F(8L). If P € F(0)" then P L F(8). Let
Q1,...,Qn be such that readies(Q1) U ... Ureadies(Q),) = 0, so that P L @); for each i
implies readies(P) L 6 and hence readies(P) C #+. Thus P € F(8"). a

5.4. Synchronous Deadlock-Freedom 127
Proposition 5.33 G(UY) = G(U)*.

Proof: To establish G(U)* C G(U*'), which is sufficient, suppose that (s,X) €
G(U)*. For every (1,Y) € G(U), (s,X) L (t,Y). So whenever P € U and (t,Y) €
readies(P), (s, X) L (¢,Y). It is possible to find @ € UL such that (s, X) € readies(Q),
for example by starting with maxy and removing transitions from a state reached by
a trace of s to obtain a ready set of X at that point. Hence (s, X) € G(U?). a

Corollary 5.34 F(8) = F(8)** and G(U) = G(U)*.

Finally, it can be proved that F' and G preserve @ and .

Proposition 5.35 If § € Pp/A and ¢ € Pp/B then F(0 9 @) = F(0) 9 F(p).
Proof: 1Tt is enough to show that F(8+ 5 ¢1) = F(64) % F(¢1). Now,

F(0Y) g F(pt) = F(0)" 5 F(o)*
(F(0) @ F())*

SO

F[{(s, A x B) | (fst*(s), A) € 8, (snd*(s), B) € o} '] =
{PRQ|PecF0),Qc Flo)}*

is sufficient. If
R e F[{(s,A x B)| (fst*(s), A) € 6, (snd*(s), B) € ©}7]

then
readies(R) L {(s,Ax B) | (fst*(s), A) € 8,(snd™(s), B) € ¢}.

For any s, A, B with (fst"(s), A) € 6 and (snd*(s), B) € ¢, (s, X) € readies(R) implies
that thereis (a,b) € X with a € A and b € B. So if readies(P) € 0 and readies(Q)) € ¢,
R1(P®Q).

For the converse, the same argument can be run backwards. O
Corollary 5.36 F(0 ® ¢) = F(0) ® F(p).

Proof: ~ This follows from the fact that F' preserves » and (—)J‘, and duality of ®
and . O

Corollary 5.37 G(U»» V)=G(U)» G(V)and GIU @ V)=GU)® G(V).

128 Chapter 5. Verification

Proof:
GWU»V) = GFGU)» FGV))
= GF(GU)» G(V))
= G(U)»G(V).
Again, G(U ® V) = G(U) ® G(V) follows easily. O

The results of this section show that the specification structures D and D’ are two
different ways of looking at the same category of deadlock-free processes. The final
observation, allowing all of the examples to be translated between the two views, is
that for any object A, F(RP(A)) = M4. The calculations showing that SProcp and
SProcp: are not compact closed are based on exactly the same example but represented
in two different ways. The proof that SProcp: validates Mix could be formulated in
terms of sets of processes, but is probably simpler with ready specifications. On the
other hand, the definitions of the delay functors and the exponentials are rather simpler
for sets of processes. Similarly, the proof that & and & do not coincide can be given
for D'. The next example which will be presented, an analysis of deadlock-freedom of
dataflow networks, is very naturally expressed in terms of ready specifications because

the key property of receptivity fits the idea of a maximal ready set.

It is possible that readies(P) = readies(Q)) with P # (), and in this case the processes
P and (@) satisfy exactly the same ready specifications. However, it is not possible for
distinct processes to be contained in exactly the same sets of processes. The resolution
of this apparent conflict is the use of only L1-invariant sets of processes as properties

in the specification structure D.

Proposition 5.38 If P € U and readies(P) = readies(Q)) then Q € U+L.

Proof: If R € U™ then readies(R) L readies(P). So readies(R) L readies()), which
means that Q € U++. O

Defining two processes to be ready-equivalent if they have the same readies, this result

L1l invariant set of processes must be the union of a collection of ready-

fJ_J_

says that a
equivalence classes. So membership o -invariant sets cannot distinguish processes

more finely than ready-equivalence.

5.4.4 Fzample: Dataflow

The view being promoted in this section is that SProcp: gives a type system for com-
positional verification of deadlock-freedom. This type system is used by starting with
processes which have composable types in SProc, and trying to construct ready spec-

ifications for those types which allow the processes to be typed in SProcp:. If the

5.4. Synchronous Deadlock-Freedom 129

processes and the ready specifications are suitable, the types in SProcp: should be
composable, showing that the processes can be connected together without causing
deadlocks. An interesting example of the use of SProcp, can be found by returning to
synchronous dataflow networks. Clearly deadlock-freedom is a property which might
be of interest when discussing dataflow. Forgetting about types for deadlock-freedom
for a moment, consider the sort of argument which might be used to show that a
network built in SProc does not deadlock. For non-cyclic networks, it is possible to
argue that because each node is always prepared to accept any input, deadlocks cannot
occur if an output is always connected to an input (never to another output). For-
malising this observation, say that a morphism f: A — B in SProc is receptive if for
any ¢ such that f —%* g and any @ € X4 such that sa € Sy4, there is b € Y g and
a process h such that g L) h. It follows that if A is progressive and f: A — B is
receptive then f is deadlock-free. It is also easy to show that receptivity is preserved
by composition, and identity morphisms are receptive. Thus there is a subcategory of
SProc consisting of progressive types and receptive morphisms, and this subcategory
is a crude approximation to an interaction category of deadlock-free processes. It is
only an approximation for several reasons. Receptivity, although natural for dataflow
nodes, is a very strong condition to impose on processes in general, and there are
many more varieties of non-deadlocking behaviour than can be described in terms of
receptivity alone. Furthermore, the receptive subcategory is not #-autonomous: the
receptivity condition applies only to input ports, so if input and output are inter-
changed by (—)J‘, the condition is not preserved. However, it does seem that as far as
dataflow networks are concerned, a useful amount of work can be carried out inside
the receptive subcategory. This does not extend to forming arbitrary feedback loops;
as seen in Chapter 4, extra conditions on the precise form of a loop are necessary. This

point will be discussed later.

This special case of compositional reasoning about deadlock-freedom is subsumed by

the general specification structure approach. Working in SProcp/, consider just two of
the possible ready specifications over each object X of SProc: RP(X) and RP(X)'.
The key result relating the receptive subcategory of SProc to SProcp: is the following.

Proposition 5.39 Suppose X and Y are progressive objects of SProc, and f: X — Y
is receptive. Then f: (X,RP(X))— (Y,RP(Y)) in SProcp:.

Proof: ~ We need to check that RP(X){f}RP(Y), i.e. that
readies(f) C RP(X)* 5 RP(Y)
or equivalently that

readies(f) L {(s,U x V)| (fst*(s), U) € RP(X), (snd"(s),V) € RP(Y)"}.

130 Chapter 5. Verification

Receptivity of f means that if (s, A) € readies(f) then for any z € Xy such that
fst*(s)z € Sx, there is y € Xy with (z,y) € A. So for any U, V with (fst™(s),U) €
RP(X) and (snd*(s),V) € RP(Y)* (which means U C {z € Xy | fst*(s)z € Sx} and
V ={y € Xy | snd*(s)y € Sy}) there is (z,y) € A such that (z,y) € U x V. Hence
(s,A) L (s, U x V). a

This result can also be applied to the case of two or more inputs. If f: A® B — C in
SProc (which is the form of morphism used in Chapter 4 for a node with two inputs)
then f : (A® B,RP(A® B)) — (C,RP(C)) in SProcp. Equivalently, since SProc
is compact closed, f : (A B,RP(A% B)) — (C,RP(C)). Because RP(A % B) =
RP(A) RP(B) = RP(A) ® RP(B), this can also be written as

f:(A,RP(A)) ® (B,RP(B)) — (C,RP(C)).

All receptive dataflow nodes can now be typed in SProcp: just by using ready specifica-
tions of the form RP(X) and RP(X)*. This means that all the non-cyclic connections
between nodes which were supported in SProc can also be made in SProcp:. What
about cycles? Arbitrary cyclic connections cannot be made without causing deadlocks.
Given a network with an input of type X and an output of type X (and other inputs
and outputs as well), what might happen if the cycle is completed? The undesirable
case is that in which the output on X is always different from the input received on
X at the same instant, because then no behaviour of the network is able to satisfy
the constraint that the X input stream and the X output stream are the same. The
analysis of dataflow in Chapter 4 introduced the condition that cycles can only be
formed if the output at any step depends not on the input received at that step but
only on the current state. It is now possible to formulate a slightly different condition
which ensures that there is always an action in which the input and the output are the
same; and, in fact, this condition can be expressed more easily in terms of ready sets

than sets of processes.

Suppose that P : T » X »9 X1 in SProc. There is a process P : I' in SProc which is
obtained by connecting the X and X+ ports of P together. If P : (I',U)» (X,V)x%
(XL, VL) in SProcp,or P : (I,0)5(X, p)s(XL,¢1) in SProcp:, then P may not have
a type in SProcp or SProcp:. What is required is a sufficient condition for P : (T, U) in
SProcp. Clearly a necessary condition is that connecting the X and X ports should
not cause P to deadlock. Defining P: X Xtby

P (a,z,y) Q

this condition can be expressed as

5.4. Synchronous Deadlock-Freedom 131

in the sets of processes framework. It guarantees that P is always able to perform
actions in which the X and X' components are the same, but says nothing about
whether P can do this while still satis{ying the constraint expressed by the specification

U or 0. The following condition is enough to guarantee that P : (', 6) in SProcp:.

o For every (s, A) € readies(P) such that 7% (s) = 7% .(s), and for every action

(a,z,y) € A, there must be z € ¥x such that (a, z,2) € A.

If this condition is written cycle(P) then the following proof rule summarises the pre-

ceeding discussion.
P:(T,0)% (X,¢)s (X1 0h) cycle(P)
P:(T,6)

In the dataflow example, it is natural to impose the condition formulated in Chapter 4

on the formation of cycles. If P is a network in which the X1 port is an output whose
possible actions do not depend on the actions performed in the X and I' ports, then
because the input X is receptive and can accept any action, it can always accept the
action which the X1 port outputs at the same instant. This means that the condition

for the formation of P is satisfied.

Another approach might be to use a ready specification 6 over X with the property
that @ 6+ = 0 @ #+. Then the type of P could be converted into a type suitable for
connection with the application morphism Apx x1, and there would be no need to use
a separate proof rule. But this approach is less general. It is difficult to construct such
a @ without choosing in advance a particular action which will always be available in

both ports. For example, consider the object X with ¥x = {a,b} and an unrestricted

11

safety specification. There are four possibilities for a ——-invariant ready specification 6

over X (in the following discussion, traces are omitted and only ready sets are shown;

also ab is written for (a,b)).
¢ 6 =RP(X) = {{a,b},{a},{0}}
o 6 =RP(X)' = {{a,b}}
e =10+ ={{a,b},{a}}
o =0+ ={{a,b},{b}}.
In the first case,
050 = {{aa,ab,ba,bb},{aa,ba},{ab,bb}}+
= {{aa,ab,ba,bb},

{aa,ab,ba},{aa,ab,bb}, {aa,ba,bb},{ab,ba,bb},
{aa, ab}, {aa,bb}, {ba, ab}, {ba, bb}}

132

Chapter 5. Verification

006t = 0L gb"

= {{aa,ab,ba,bb},{aa,ab},{ba,bb}}**

= {{aa,ab,ba,bb},
{aa,ab,ba},{aa,ab,bb},{aa,ba,bb},{ab,ba,bb},
{aa,ba},{aa,bb}, {ab,ba}, {ab,bb}}*

= {{aa,ab,ba,bb},
{aa,ab,ba},{aa,ab,bb},{aa,ba,bb},{ab,ba,bb},
{aa,ab},{ba,bb}}

and these ready specifications are different. The appearance of the ready set {ba, ab}

in 8 6+ clearly shows that a process may satisfy this ready specification but still

deadlock when the X ports are connected together. The second case is similar.

In the third case,

650t =

oot =

650
{{aa,ab,ba,bb},{aa,ba},{aa,ab}, {aa}}*
{{aa, ab,ba,bb},
{aa,ab,ba},{aa,ab,bb},{aa,ba,bb},
{aa,ab},{aa,ba},{aa,bb},{aa}}

9L o 6"

056+

{{aa, ab,ba,bb},
{aa,ab,ba},{aa,ab,bb},{aa,ba,bb},
{aa,ab},{aa,ba},{aa,bb},{aa}}
65 0.

This choice of 8 would give a suitable type for cycle-formation, but to satisfy it a

process must always be able to do the (a,a) action. The fourth case is symmetrical,

requiring a process always to offer (b,b). There are of course many processes which

could be cyclically connected without deadlock but which do not satisfy these types.

5.5 Asynchronous Deadlock-Freedom

The category of synchronous deadlock-free processes allows some synchronous problems

to be analysed, but there are also asynchronous examples such as the scheduler for

5.5. Asynchronous Deadlock-Freedom 133

which deadlock-freedom is of equal interest. The obvious approach to reasoning about
asynchronous deadlock-freedom is to use the delay operators of SProcp to represent
asynchrony, and then proceed as before. However, when this is done the only deadlock-
free behaviours which the types can guarantee to exist are those in which all the
processes in the system delay. Producing a meaningful analysis of deadlock-freedom
for asynchronous processes requires a version of the specification structure D over
ASProc. Since there are two formulations of the specification structure over SProc,
there is a choice of approach in the asynchronous case. It turns out that the definitions
in terms of sets of processes are easier to adapt. Before starting to do this, there are

two technical problems which need to be addressed.

The first is to do with divergence, or livelock. Suppose there are morphisms f: A — B
and g : B — (', each of which runs forever but only does actions in B. Then even if f
and ¢ do not deadlock each other, the result of composing them is a morphism which
does no observable actions at all—under observation equivalence this is the same as
the nil process, which is deadlocked. This shows that when dealing with asynchronous
processes, it is insuflicient simply to guarantee that processes can always communicate
with each other when composed. The second technical problem is that because con-
vergence of a process will mean the ability to continue performing observable actions,
there are no convergent processes of type [in ASProc, and hence no properties over I.
This means that the asynchronous deadlock-free category will have no tensor unit; in
order to retain the ability to use the x-autonomous structure in calculations, a different

object will have to be used instead.

The first problem can be solved by making use of Hoare’s solution of a similar problem
[Hoa85]. He considers processes with one input and one output, which can be connected
together in sequence. This is actually quite close to the categorical view in some ways:
these processes have the “shape” of morphisms and can be composed, although there
are no identity processes. More to the point, he is interested in conditions on processes
which ensure that connecting them together does not lead to divergence. Recasting
the question into the categorical framework, if f : A — B and g : B — (', what is
the condition that f ;¢ does not diverge? Hoare’s solution is to specify that f should
be lefi-guarded or g right-guarded. Left-guardedness means that every infinite trace of
J should contain infinitely many observable actions in Aj; similarly, right-guardedness
means that every infinite trace of ¢ should contain infinitely many observable actions
in C'. If f is left-guarded it has no infinite behaviours which only involve actions in B,
so no matter what g does there can be no divergent behaviour of f;¢g. Symmetrically,
if g is right-guarded then f ;g does not diverge. If a process is to be a morphism
in a category, it must be composable both on the left and on the right; this means

that it needs to be both left-guarded and right-guarded. Requiring that a morphism

134 Chapter 5. Verification

be both left- and right-guarded, i.e. that every infinite trace must contain infinitely
many observable actions in both ports, amounts to a specification of fairness. What is
needed for deadlock-freedom is a category in which all the morphisms are fair in this
sense. This issue only arises in the asynchronous case, since in a synchronous category
it is impossible for an infinite trace of a process to have anything other than an infinite

sequence of actions in each port.

5.5.1 The Category FProc

The category FProc (fair processes) has objects A = (X 4,74, 54, F4a). The first three
components of an object are exactly as in ASProc. The fourth, F4, is a subset of
ObAct(A)“ such that all finite prefixes of any trace in F4 are in S4. The interaction

category operations on objects are defined as in ASProc, with the addition that

def
Fao = Fy

Fags % {sc ObAct(A® B)” |s|A € Fu,s|B € Fg}
Fagn % {linl*(s)| s € Fa} U {rine(t) | t € Fp}
Fou o {xs|s € Fa}.

A process in FProc is almost the same as a process in ASProc, except that there now
has to be a way of specifying which of the infinite traces of a synchronisation tree are
to be considered as actual infinite behaviours of the process. This is done by working
with pairs (P,7p) in which P is an ASProc process and @ # Tp C infobtraces(P).
Only the infinite traces in Tp are viewed as behaviours of P, even though the tree P
may have many other infinite traces. There is a condition for this specification of valid

infinite traces to be compatible with transitions: if P==@Q then Tp = {as| s € Tp}.

A process of type A in FProc is a pair (P,Tp) as above, in which P is a process of
type (¥4,74,94) in ASProc, and Tp C Fy4. Equivalence of processes is defined by

(P.Tp)=(@.To) ¥ (P=Q)A(Tr=Ty).
As usual, a morphism from A to B is a process of type A — B. The identity morphism
on A in FProc is (ida, F4—oa) where idy4 is the identity on (X4,74,54) in ASProc. It
will often be convenient to refer to FProc processes by their first components, and just
consider the second components as extra information when necessary; thus the process
(P,Tp) may simply be written P.

For composition, if (f,Tf) : A — B and (¢,7;) : B — C then (f,T%); (9,1,) def

(f:19,Tf,y) where

Ts.q def {s € infobtraces(f;¢)| 3t € Ts,u € T,.[t|A = s[A,t[|B = u[B,u|C = s[C]}.

5.5. Asynchronous Deadlock-Freedom 135

It is straightforward to check that if 7y C F4_op and T, C Fg_oc then T4, C Fu_oc.

The functorial action of @ is defined by (f,T5) ® (g,1,) def (f® g,T¢gy) where, for

fiA—=Candg:B— D,
Tigg def {s € infobtraces(f @ g) | s[(A,C) € Ts,s[(B,D) € T,,s € FagB—caD }-

This definition discards the infinite behaviours of f ® ¢ which correspond to unfair

interleavings.

FProc inherits the x-autonomous structure of ASProc, because all the structural mor-
phisms, being essentially identities, are fair and the abstraction operation does not
affect fairness. The exception to this is that there is no tensor unit: ObAct(/) = @, so

it is not possible to define F7.

Proposition 5.40 FProc is a compact closed category without units, which has count-

able (non-empty) biproducts and a unit delay endofunctor.

The specification structure for deadlock-freedom can now be defined over the progres-
sive subcategory FProc,, of FProc, which now consists of those objects for which every
safe trace can be extended to a valid infinite trace. The definitions are very similar to
those for SProc. The essential difference is that convergence of a process means the
ability to keep doing observable actions. Furthermore, the choice of next action should
not commit the process to a branch of behaviour which can lead only to a disallowed
infinite trace. If P € Proc(A) then P | means

e whenever P==(Q) there is @ € ObAct(A) and a process R such that Q== R, and
there is ¢ € infobtraces(R) such that sat € Tp.

The definition of equivalence of FProc processes P and @, requiring P =~ ¢ and
Tp =1Tg, permits the possibility that although P and () are not observation equivalent
it is only the presence of branches corresponding to invalid infinite traces which causes
observation equivalence to fail. However, if a process is convergent then there is no
branch along which all infinite traces are invalid, so this situation does not arise.
In the specification structure for deadlock-freedom over FProc, a property is a set
of convergent processes and satisfaction is membership, just as in the synchronous
case. This means that all the deadlock-free processes considered are convergent, and
the equivalence behaves well for them. It is not, however, possible to require that
FProc should consist only of convergent processes, because convergence in itself is not
preserved by composition. It is only when convergence is combined with satisfaction

of suitable deadlock-free types that composition works.

136 Chapter 5. Verification

Given P and @ of type A in ASProc, P () is defined exactly as in SProc:

PP Q-1 q

PNQ 2 P nq'.
If P and) have type A in FProc and Tp N Ty # @, then P M () can be converted

into an FProc process of type A by defining Tpng def Tp NTg. Orthogonality is now
defined by

P1LQ ¥ TpnTyp#oand (PNQ)| .
It is extended to sets of processes exactly as in the synchronous case. For each object A,
Pp A is again the set of “L-invariant sets of convergent processes of type A. Satisfaction

is membership, and all of the operations on properties are defined exactly as before.

In the asynchronous situation, it is harder to prove that D satisfies the composition
axiom. As should be expected, fairness is crucial. Before embarking on the proof, note
thatif f: A — B and g: B — C in FProc, communication between f and g when f;g
is formed can include periods in which the common action in B is 7g. The definition
of orthogonality of processes takes this into account, as it only requires an observable

action to be available at some time in the future.

Lemma 5.41 Suppose f: A — B, U € PpbA,V € PpB and f € U — V. Then for any
PeU,P;feV,andforany Q e VL, f:Q € UL,

Proof: ~ We prove that P ; f € V: the other part is similar. For @ € V<1 the
requirement is that ((P; f)M Q) |. Given traces s of f, ¢ of P and u of Q) with s|A =1
and s[B = u, there must be b # 75 such that P ; f can do b after s|B and @) can do b
after w. It must also be possible to extend the resulting behaviours of P ; f and @ to
valid infinite traces.

Now, f € U — V means [€ (U®VJ‘)J', ie. fe{R®S|RE U,SEVJ‘}J'J'J'

and hence f L {R® S | R € U,5 € V1}. This gives (fM(P®Q)) |, so there is
(a,b) # (74, 7B) such that f can do (a,b) after s, P can do a after { and @ can do
b after u; furthermore, these behaviours can be extended to valid infinite traces of f
and P® Q. If b # 7 then the proof is complete. If the only possibility is b = 75 then
consider the traces s(a,7g) of f, (s|A)a of P and s[B of (), and repeat the argument.
We have to be sure that the case b = 75 does not keep arising forever. But if it
did, there would be an infinite trace of f in which all the actions from some point on
were of the form (a,7g). This would contradict the fact that f satisfies the fairness
specification F4_,p, as this specification requires that any infinite trace of f must have

infinite (and fair) projections in A and B. a

5.5. Asynchronous Deadlock-Freedom 137

Proposition 5.42 If f: A — Bandg: B — C,and U € PpA,V € PpbB, W € PpC
with fe U oV andgeV — W, then f;9€ U — W.

Proof: Given P € U and Q € W+, we need to show that (f;g) L (P ®Q), i.e. that
(f;9)1(P®Q))]. By thelemma, P; feVand g;Q € V1,50 (P;f) L(g;Q).

If there are traces s of f and ¢ of g with s[B = ¢| B, and traces u of P and v of () with
u=s[Aand v =t[C, we need (a,c) # (74, 7c) such that f;g and P® @ can do (a,c)
after these traces. Convergence of (P; f)M(g;()) implies that there is b # 75 such that
P:f LN P:f and g;Q LN g’ ; @', abusing notation by writing P ; f LN Py
for the transition made by P ; f after the traces u of P and s of f. The transition of

P ; [means that one of the three following cases applies.

1. P2+ Pland f {eb) J with a # 74.
9. ;i g

3. There is a sequence of @ transitions by P and (a,) transitions by f, followed

by case 1 or 2.

Similarly, the transition of g ; ¢) means that one of three cases applies.

1. Q — @ andgmg' with ¢ # 7¢.

(b,7)
2. g —+¢'.

3. There is a sequence of ¢ transitions by @ and (7g,c) transitions by g, followed

by case 1 or 2.

Thus there are nine cases in all. Each one leads to the desired transition (a,c) of f;g
and P ® @, except for the case (2,2). This case gives a (74, 7¢) transition and leads
back to the beginning of the argument. The only undesirable possibility is that the

case (2,2) keeps occurring, but this cannot actually arise because f and g are fair.

As for the need to extend the common behaviour of f;¢ and P ® () to a valid infinite
trace for both processes, first note that convergence of (P ; f)M (g ;@) means that the
behaviours of P, f, g and () can all be extended to valid infinite traces. Hence the
corresponding behaviours of f; g and P ® () can be extended, as long as the extension
of the behaviour of [; g is a valid trace of P ® @, i.e. a fair interleaving of the traces

of P and). This is guaranteed by fairness of f ;g. O

The proof that identity morphisms satisfy the correct properties is the same as in the

SyIlChI‘OIlOllS case. Hence

Proposition 5.43 D is a specification structure over FProc,,.

138 Chapter 5. Verification

The asynchronous deadlock-free category is called FProcp. As in SProcp there are two
obvious properties over each type A, namely M4 and {max4}, if the ASProc process
maxy which can always do any action is converted into an FProc process by setting
Trnax, def F4. The condition for them to be equal is that there is a unique observable
action extending each trace in S4. The first result on combining these properties is

still true.
Proposition 5.44 {maxa} ® {maxg} = {maxagp} and My p Mp = Mygs.

However, it is no longer the case that M4 ® Mp = Magp. For example, take an object
A with ¥4 = {a, 74} so that maxq = a.maxy and M4 = {max4s}. Now,

MyoMy = {PRQ|P,Qe Myt

= {maxs ® maxy}*t

O Mg ® Mg = Maga <= {maxq ® maxA}J‘ = {maxsga}. T R: A® A is
defined by R = (a,74).(74,a).R then R L (maxq ® max4) but B # maxgga, so
{max4 ® max4}* # {maxsg4}. This negative result slightly reduces the possibilities
for using the properties M4 and {max4} in examples, but the most important fact is
that M4 9 Mg = Maxgp. This gives

Proposition 5.45 If P : Ay -+ A, in FProc and P |, then in FProcp,

P:(A1,Ma,)9 (An, My,).

As in the synchronous case, it is this result which is most useful in examples.

5.5.2 Adding a Tensor Unit

Throughout this thesis, processes have been uniformly regarded as morphisms. The
units are essential for this view, as a process with just one port has to become a
morphism from /. But it now turns out that FProcp, a category which is intended to

be used in the same way, does not have units. What can be done about this problem?

One possible approach is to abandon the view of processes as morphisms, and just
work with typed processes. All the necessary operations can be defined directly on
typed processes, in much the same way as they are presently defined on morphisms.
This is rather unsatisfactory, as it means dropping a significant part of the theory and

losing the connection with interaction categories (although retaining the ideas about
types).
Another approach is to add a new object I to FProcp, together with new morphisms

making it into a tensor unit, to give a new category which is genuinely *-autonomous.

5.5. Asynchronous Deadlock-Freedom 139

In the new category, a morphism I — A would be a process of type A (so the construc-
tion would begin not just with FProcp but with a collection of processes of each type)
and composition of such morphisms would be defined in terms of the underlying Cut
operation on typed processes. So this approach is essentially the same as the previous
one, with the addition of a (probably rather complex) syntactic construction of a free

category.

The solution which will now be described is to use a different object J, with care, as

if it were a tensor unit. J is defined by

EJ = {.7TJ}

def n
Sy = A" |n<w}
Fy € fey

J looks rather like the tensor unit of SProc and indeed, o J 2 J in FProcp. In a port
of type J, nothing interesting happens; there is just a sequence of e actions marking
time. But for each process P of type A, there is now a morphism P:J— A, defined

by transition rules:

P2, p
p) pr p et p

. def
and with T = {s € Fjoa | s[A € Tp}.

In this definition, P is considered as a synchronisation tree, and P is defined as a
synchronisation tree; the final morphism is then the observation equivalence class of
this tree. The second clause of the definition ensures that the * operation is well-defined

on observation equivalence classes.

There is an obvious condition which should be satisfied by the * operation. If P is a
process of type A and () : A — B, then there is a process P-@ of type B, and it should
be the case that ﬂ) = P;Q:J — B. It is easy to check, using the transition rules,
that this is true.

If J is to be used as a tensor unit, it should be possible to eliminate it from an expression
involving @. This requires morphisms unitl : J® A — A and unitr : A®J — A. It seems
reasonable to require that A(unitl) = @ where id 4 is considered as a process of type

(o74,74) unitl and unitl M unitl

A — A. This defines unitl: its transitions are unitl
for any @ € 54, with the usual restriction to safe and fair traces. Reversing the
direction gives unitl” : A — J ®@ A, and unitl™ ; unitl = id4 but unitl ; unitl™ # idjg4.

The definitions of unitr and unitr® are symmetrical.

The interpretation of the Cut rule in a *-autonomous category uses unitlf1 = IR,

and of course unitlf1 = unitr;l. But now, unitl’; # unitr’, so it is not clear which

140 Chapter 5. Verification

morphism J — J ® J should be used. The answer is a new morphism A:J — J® J,
defined by the transitions A (20 A ang A 2727 A, with T def infobtraces(A).
As a check that this leads to the correct interpretation of Cut, the following diagram
commutes for any p: A — Band ¢: B — C.

A A(unitl ; A(unitl ;
J J®J (Unl 7p)® (unl 7q) (AJ_?B)®(BJ_>?C)
Alp;q) regroup
At o C < At (B BY)sC

idys1 5 Ap g ide
5.5.3 Fzample: The Dining Philosophers

The problem of the dining philosophers [Hoa85] provides a good example of working
with the category of asynchronous deadlock-free processes. This is a very well-known
example in the concurrency literature, but it is worth reviewing the scenario here before
plunging into an analysis. In a college there are five philosophers, who spend their lives
seated around a table. In the middle of the table is a large bowl of spaghetti; also
on the table are five forks, one between each pair of philosophers. Each philosopher
spends most of his time thinking, but occasionally becomes hungry and wants to eat.
In order to eat, he has to pick up the two nearest forks; when he has finished eating,
he puts the forks down again. The problem consists of defining a concurrent system
which models this situation; there are then various questions which can be asked about
its behaviour. One is about deadlock-freedom: is it possible for the system to reach a
state in which nothing further can happen, for example because the forks have been
picked up in an unsuitable way? Another is about fairness: do all the philosophers get
a chance to eat, or is it possible for one of them to be excluded forever? The reason for
looking at the dining philosphers example in this chapter is to illustrate techniques for
reasoning about deadlock-freedom, but because of the way in which the asynchronous

deadlock-free category has been constructed, fairness has to be considered as well.

A philosopher can be modelled as a process with five possible actions: eating, picking
up the left fork, putting down the left fork, picking up the right fork, and putting down
the right fork. Calling these actions e, lu, ld, ru, rd respectively, a CCS definition of
a philosopher could be P = lu.ru.e.ld.rd.P. There is no action corresponding to
thinking: a philosopher is deemed to be thinking at all times, unless actually doing
something else. In ASProc a philosopher has three ports: one for the eating action
and one each for the left and right forks. The type of the fork ports is X, defined by
Mx def {u,d, 7x} and with Sx requiring « and d to alternate, starting with . The

type of the eating port is Y defined by Yy def {e, 7y} and with Sy allowing all traces.

5.5. Asynchronous Deadlock-Freedom 141

Figure 5.1: Process Configuration for the Dining Philosophers

The philosopher process can be typed as P: X+ oY o X.

A fork has four actions, lu, ld, ru and rd. For the usage of these names by the fork to
match their usage by the philosophers, the necessary convention is that if a fork does
the action lu, it has been picked up from the right. A possible definition of a fork is
F = luld.F 4 ru.rd.F and it can be typed as F : X+ » X.

Five philosophers and five forks can be connected together in the desired configuration,
illustrated in Figure 5.1, by using the compact closed structure of ASProc, as usual.

The next step is to transfer everything to FProc and then to FProcp.

To construct the P and F processes in FProc, fairness specifications must be added
to the types X and Y, and the acceptable infinite behaviours of P and F must be
specified. This will be done in such a way that P and F satisfy the appropriate
fairness specifications. For both X and Y the fairness specification can simply be
all infinite traces. This means that there is no fairness requirement on the actions
within a port, but only between ports. For the types of the philosopher and the fork,
Fx 1,0y,ox consists of the infinite traces whose projections into the three ports are all

infinite, and similarly Fy.1ox.

To convert the ASProc process P into an FProc process, it is sufficient to take Tp =
infobtraces(P). It is then clear that Tp C Fx 1,0y,ox because the behaviour of P sim-
ply cycles around all the available actions. Also, P is convergent because its behaviour
consists of just one infinite branch. However, F’ has unfair infinite behaviours—for
example, there is an infinite trace in which the ru and rd actions never appear. Thus

Tr must be defined in such a way as to eliminate these undesirable infinite traces,

142 Chapter 5. Verification

and this can easily be done by taking Tr = Fxiox. Then F is convergent, because
any of its finite behaviours can be extended to a fair infinite behaviour by choosing
a suitable interleaving from that point on. This approach means that this section is
not addressing the issue of how fairness can be achieved in the dining philosophers
problem—to do that, the implementation of a fair scheduler would have to be con-
sidered. As already stated, this problem has only been introduced as an example of
compositional reasoning about deadlock-freedom; fairness only appears in the minimal

possible way needed for the categorical approach to be applicable.

Typing the philosopher and fork processes in FProcp requires suitable properties over
the types X and Y. For Y, My can be used. Because Y has only one observable
action, My = Mj+. Similarly for X, the set My can be used, and because the safety
specification of X is such that in each state there is only one action available, Mx =
ZW)J(‘. Because F : X1 X in FProc and F is convergent, ' |= My Mx and so
F:(X,Mx)" s (X, Mx) in FProcp. Similarly, P : (X, Mx)" = (Y, My) s (X, Mx)
in FProcp. These typings mean that any number of philosophers and forks can be
connected together in a line, and the resulting process is guaranteed to be deadlock-free.
Interestingly, this applies not only to the “correct” configuration in which philosophers
and forks alternate, but also to other possibilities such as a sequence of forks with no

philosophers.

The interesting step of the construction consists of completing the cycle by connecting
the X and X+ ports at opposite ends of a chain in which forks and philosophers
alternate. FProcp is not compact closed, so just as in the synchronous case there is
a condition which a process must satisfy before two of its ports can be connected to

form a cycle.

Suppose in general that P : (I, U) s (X,V) s (X1,V1) in FProcp. As before there
is an obvious condition that forming P by connecting the X and X+ ports should not
cause a deadlock: that every trace s of P with s| X = s[X ' can be extended by an
action (a,z,z) of P. The action & could be Tx, as it is permissible for the sequence of
communications between the X and X+ ports to pause, or the action tuple @ could be
1, but not both. Again, to obtain P : (I',U) in FProcp it is also necessary to ensure

that the specification U can still be satisfied while the communication is taking place.

The possibility of divergence does not have to be considered separately. It is conceivable
that P could have a non-deadlocking infinite behaviour in which no observable actions
occur in I', but the corresponding behaviour of P would be unfair because it would
neglect the ports in I'. Thus it is sufficient to state a condition which guarantees that
forcing X and X' to communicate does not affect the actions available in the other

ports. Just as was the case in SProc, this condition can be expressed in terms of ready

5.5. Asynchronous Deadlock-Freedom 143

pairs. The definition of readies(P) for an FProc process P of type A is

initials(P) % {a € ObActA4 | 3Q.P=%Q}

readies(P) %' {(s,X)] 3Q.[(P=3Q) A (X = initials(Q))]}.

The condition cycle(P) is now

e For every (s, A) € readies(P) such that s| X = s| X+, and every action (a,z,y) €
A, there is z € Xy such that Trox,ox1 # (@, 2,2) € A
As before, this leads to a proof rule for cycle formation.

P:(T,U)g (X,V)e (X1, V) cycle(P)
P:(T,U)

These ideas can now be applied to the dining philosophers problem. First of all, some
traditional analysis based on reasoning about the state of the system is useful. For the
moment, the e actions can be ignored as they do not have any impact on deadlocks in

this system. The following cases cover all possibilities for a state.

1. If there is P; such that both adjacent forks are down, it can pick up the left fork.

2. If there is P; whose right fork is up and whose left fork is down, it can either put
down the right fork (if it has just put down the left fork) or pick up the left fork
(if its neighbour has the right fork).

3. If all forks are up and some P; has both its forks, it can put down the left fork.

4. If all forks are up and every P; has just one fork, they all have their left forks,

and there is a deadlock.

The last case is the classic deadlocking possibility for the dining philosophers—each
philosopher in turn picks up the left fork, and then they are stuck. In terms of ready
sets, there is a state in which every possible next action has non-matching projections

in the two X ports.

In Hoare’s formulation of the dining philosophers problem [Hoa85] the philosophers
are not normally seated, but have to sit down before attempting to pick up their forks.
This means that the possibility of deadlock can be removed by adding a footman,
who controls when the philosophers sit down. The footman ensures that at most four
philosophers are seated at any one time, which means that there is always a philosopher
with an available fork on both sides; in this way, the deadlocked situation is avoided.
However, implementing this solution involves a major change to the system: there is

a new process representing the footman, the philosopher processes have extra ports

144 Chapter 5. Verification

on which they interact with the footman, and consequently their types need to be

re-examined. It is more convenient to use an alternative approach, which will now be

described.

One of the philosophers is replaced by a variant, P’, which picks up the forks in the
opposite order. So P’ = ru.lu.e.rd.ld.P' in CCS notation. Intuitively, this prevents
the deadlocking case from arising, because even if the four Ps each pick up their left
fork, P’ is still trying to pick up its right fork (which is already in use) and so one
of the Ps has a chance to pick up its right fork as well. The check that there are no

deadlocks takes the form of a case analysis, as before.

1. If all the forks are up and some philosopher has both its forks, it can put one of
them down, whether it is P or P’.

2. If all the forks are up and every philosopher has just one, either they all have
their left fork or all the right. If they all have their left fork, then P’ can put
down its left fork. If they all have their right fork, then any P can put down its
right fork.

3. If two adjacent forks are down, then the philosopher in between them can pick

one of them up, whether it is P or P’.
4. Otherwise there is the configuration v — phil, — d — phil, — u — phil,.

e If phil, is P and has its right fork, it can put down the right fork.
e If phil, is P and doesn’t have its right fork, it can pick up the left fork.
e If phil, is P’ and has its right fork, it can pick up the left fork.

e If phil, is P’ and doesn’t have its right fork, then phil, must be P and has
its left fork. Then if phil,’s right fork is down, phil, can pick it up. If the
right fork is up and phil; has it, it can put down the left fork. Otherwise,
phil, is P and has its left fork. Continuing this argument for each phil,
with ¢ > 4 leads eventually to either a possible action, or cyclically back to
¢ = 1 and the deduction that phil; has its left fork. In the latter case, since
phil, is P, it can pick up its right fork.

To recast this argument in terms of checking the condition on the final cyclic connec-
tion, suppose that the final connection is between the P’ process and the fork on its
right. Each case of the argument either produces a communication between P’ and
this fork, or produces a communication elsewhere in the cycle, which means that there
is an action of the system in which the two ports to be connected both delay. This

shows that the cycle condition is satisfied, and the proof rule can be applied.

5.6. Discussion 145

5.6 Discussion

This chapter has shown that the interaction categories paradigm is a framework in
which verification can be carried out. The first section demonstrates that the safety
specifications built into the objects of SProc and ASProc are not there just for technical
reasons, but can be used to support equational reasoning about safety properties of

processes. The analysis of the cyclic scheduler shows this scheme in operation.

The rest of the chapter substantiates the claim of Chapter 1 that if behavioural proper-
ties can be encapsulated as types, then type-checking methods can be used for compo-
sitional verification of those properties. The notion of specification structure provides
a systematic way of extending the types of an interaction category by the addition of
extra properties, so that the structure of the category is preserved and the categorical
operations can be used as compositional proof rules. As an example, a specification
structure for deadlock-freedom is defined over SProc, to give the category SProcp. Its
details are complex, but several results are proved which allow many processes which
have types in SProc to be assigned types in SProcp with a minimum of effort. This is
illustrated by using type-checking to verify deadlock-freedom of certain dataflow net-
works. Because SProcp is not compact closed, additional conditions must be satisfied
before a cyclic connection can be made. If a process has two ports which could be
connected together in SProc, a sufficient condition is established for that connection

to be valid in SProcp; this condition is also formulated as a simple proof rule.

In order to be able to discuss more interesting examples, the theory of types for
deadlock-freedom is extended to include asynchronous processes. This turns out to
be more difficult. Instead of ASProc, the starting point is a new category FProc of
asynchronous and fair processes; fairness has to be introduced to deal with problems
of divergence. A specification structure similar to the previous one is defined, using the
sets of processes approach, yielding the category FProcp of asynchronous deadlock-
free processes. Before this category can be put to use, one further technical problem
has to be solved: the tensor unit I of ASProc does not lift to FProcp, so a different
object J has to be used with care as a tensor unit. Once this has been done, some
results allowing typed processes to be lifted from FProc to FProcp are established.
Just as with SProcp, there is a proof rule for cycle formation. Finally, the dining
philosophers problem is analysed in order to demonstrate lifting of types from FProc
to FProcp, combination of typed processes, and the use of the proof rule to form a

cyclic connection.

146 Chapter 5. Verification

Typed Process Calculus

6.1 Introduction

The aim of this chapter is to develop a typed calculus of synchronous processes based
on the structure of interaction categories. Its syntax is inspired by existing process
calculi, especially SCCS [Mil83], and also by Abramsky’s linear realisability algebras
(LRAs) [Abr94c, Abr91, AJ92]. The calculus is presented by means of a collection
of rules for deriving typed terms; the form of a typed term is based on a one-sided
classical linear logic sequent as in Proofs as Processes. The definition of the calculus
is parameterised with respect to a process signature, which specifies ground types and
prefix actions; the declaration of a ground type must be accompanied by a statement

of which actions are available in it.

The calculus has an operational semantics, which yields a notion of typed bisimulation.
Instead of the usual Subject Reduction theorems which state that types are unchanged
by transitions, there are two results: Dynamic Subject Reduction, which states that
transitions cause types to evolve in predictable ways, and Static Subject Reduction,
which states that an approximation to the type of a term (its number of ports) is

preserved.

There is also a categorical semantics, which interprets a typed term as a morphism
in a synchronous interaction category. A suitable abstract definition of the required
categorical structure is given, in the style of Chapter 3. One suitable category is SProc;
it has objects capable of interpreting any collection of ground types and prefix actions,
so the calculus can always be given a semantics there. The operational semantics
associates a synchronisation tree with each typed process; the categorical semantics in
SProc also assigns a synchronisation tree to each process, and these trees are the same
up to a trivial relabelling. Furthermore, denotational equality in SProc is sound with

respect to typed bisimulation.

There are several ways in which the theory presented in this chapter could be extended.
One is the addition of delay operators, corresponding to the delay functors § and A of
SProc, to allow asynchronous processes to be constructed. This extension is outlined at

the end of the chapter. Another development of the theory would be in the direction of

147

148 Chapter 6. Typed Process Calculus

categorical logic, as described for the typed A-calculus in Chapter 1. The syntax of the
typed process calculus can be used as the basis for an internal language for (a restricted
form of) interaction categories, and the usual correspondences between syntax and
semantics can be proved. Work in this area is not yet sufficiently far advanced to be
reported in detail in this thesis, but a general outline is given. Finally, it is desirable
for the typed calculus to be able to define processes in categories in which types
are more than safety specifications—for example, the deadlock-free category SProcp
of Chapter 5. Some modification of the syntax and term formation rules would be

necessary, and this is discussed at the end of the chapter.

6.2 Syntax

A signature Sg for a process calculus is specified by the following data.

o A collection of ground types. The collection of types is then defined by the
grammar

az=y|la®@alagalat|oa
in which v is any ground type.

e A collection of ground actions. The collection of actions is then defined by the
grammar

Tu=o0|*|(7,7)
in which o is any ground action.

o A collection of ground prefizes, each of which consists of a ground action and
a pair of ground types, written Prefix o : ¥ — 4’. These are subject to the
restriction that if Prefix o : v — 7' and Prefix 0 : ¥ — 7" are ground prefixes

then 7/ = 4".
The prefizes generated by Sg are the expressions Prefix 7 : @ — 3 which can be derived
from the ground prefixes by means of the rules in Figure 6.1. The following lemmas

will be useful later.

Lemma 6.1 If Prefix 7 : @ — 3 and Prefix 7 : @ — v are provable, then § = 7.

Proof: By induction on the derivation of Prefix 7 : a — (. O

L

Lemma 6.2 If Prefix 7 : — 3 and Prefix 7 : ' — 7 are derivable, then v = g+.

6.2. Syntax 149

Prefix m: a — (3

Prefix + :0a — a Prefix 7 : at — g+
Prefix T:a — v Prefix ' : 3 — 6 Prefix r:a — v Prefixn' : 3 —=§
Prefix (1,7"):a® 3 - 7@ Prefix (r,7') g B — 79§

Figure 6.1: Prefixes Generated by a Process Signature

Proof: Given Prefix 7 : o — (3, Prefix 7 : at — % can be derived. Then by the

previous lemma, v = g+. O

The next step is to define the raw processes, which are untyped process terms. Because
there are several process constructions, a number of which bind variables in various
ways, it is convenient to use a metalanguage to define the raw processes. This also
makes it very straightforward to define an operation of substitution (of variables for

variables) on raw processes.

The metalanguage is a simply typed A-calculus in which, to avoid confusion between
the meta level and the object level, the types are called arities. There are two ground

arities: var and proc, so the arities are generated by the grammar
a = var | proc | a = a.

The abbreviation a™ = 3 is used for a = --- = a = § with n occurrences of a, and

as usual the = constructor associates to the right.

The metalanguage has certain constants, which correspond to process construction
rules. The general scheme is that a process is a meta-expression of arity proc, and a
variable (such as will appear in the process calculus) is a metavariable of arity var.
An expression of type var = proc, which will be of the form Az.P, represents a
process term P with a free variable x; there may also be other free variables in P. A
process construction which takes one process, and binds a variable in it, becomes a
constant of arity (var = proc) = proc. If this constant is F, then it can be applied
to an expression of type var = proc, giving F(Az.P). A process construction G
which works like F’ but also introduces a new free variable, becomes a constant of arity
(var = proc) = var = proc. It can be applied to a process and a new variable, for

example G(Az.P,y). The result is a process term in which z is bound and y is free.

The benefit of using a metalanguage in this way is that a single binding construction
in the metalanguage, namely A-abstraction, can be used to describe many different

binding operations in the object language. This greatly simplifies the definition of

150 Chapter 6. Typed Process Calculus

substitution.

The metaconstants needed for the process calculus are:

e nil, of arity var™ = proc, foreach n > 1

e sum of arity proc? = proc

e tensor of arity (var = proc)? = var = proc
e par of arity (var? = proc) = var = proc

e cut of arity (var = proc)? = proc

e prefix . of arity proc = proc, for each action 7
e axiom of arity var? = proc

e mix of arity proc? = proc

e cycle of arity (var? = proc) = proc

o fix'(€) of arity var = proc, for each i > 0 and each collection £ of i recursive

equations (to be defined later).

This data can be used as a signature for a simply typed A-calculus which is the met-
alanguage. Taking a set Var® of variables for each arity a, the (raw) exzpressions are
given by

enx=2a"|clee| Az.e

with z® € Var?® for any arity a, and ¢ any constant. Well formed expressions of arity a
are written e : ¢ and are formed by the usual rules of the simply typed A-calculus with
constants. There are sets Fxp® def {e]| e:a} of well-formed expressions of arity a. As
usual there are notions of free and bound variables, a-equivalence, and substitution of
an expression for free occurrences of a variable in another expression. The set Raw of

raw processes is the set of expressions of type proc up to a-equivalence, i.e.
def
Raw = FEzpPrc/=,.

There is no notational distinction between an expression P € FzpP*¢ and the a-
equivalence class in Raw which it represents. Also, it is convenient to introduce some
syntactic sugar when writing down raw processes. For example, suppose that P, @) €
Raw and that z,y, z are metavariables of arity var. Then tensor(Az.P, \y.Q),z) € Raw,
and this raw process will be written P®7Y(). There are corresponding sugared versions

of the syntax for the other process constructions.

6.2. Syntax 151

The proved processes generated by Sg are the expressions P F z1 @ a1,...,2, @ a,
which can be derived using the rules in Figure 6.2. These rules use the sugared version
of the syntax. The form of a proved process, i.e. P F @1 : ay,..., T, : @, is exactly
as specified by the Proofs as Processes interpretation. In such an expression P is a
raw process, the a; are types, and the x; are variables. The order of the z; : «; is
unimportant. The recommended reading of the expression is “the process P has the
interface z1 : @1,...,%, : @,”. Each variable corresponds to a port of the process, and
each port has a type. Labelling ports in this way means that process constructions are
able to refer to particular ports. A port is a place in which actions can happen; so this

calculus, unlike many others, makes a clear distinction between ports and actions.

There is a possibility of confusion with the usual notation for intuitionistic sequents,
in which an expression I' F A means that A can be proved from the hypotheses I
The present notation for processes originated in the one-sided sequent presentation
of classical linear logic, in which an expression - I' means that I' can be proved; the

process term has been added in the most obvious place, namely on the left.

As in CCS, prefixes can be attached to a process to specify actions to be performed.
The syntax for a process which does the action 7 and becomes P is 7 : P. This syntax
is taken from the synchronous prefix construction of SCCS. The prefixing rule takes
a proved process P F x : 3 and a prefix action 7, and forms 7 : P - z : a, which
involves a change of type. This change is governed by the prefix judgement containing
7, i.e. Prefix 7 : @ — (3. The reason for the change in type caused by prefixing is that
the calculus is intended to be interpreted in an interaction category such as SProc.
Because a type in SProc contains a safety specification, knowing that P has some type
[does not guarantee that 7 : P also has type 8. If P satisfies the safety specification
S then 7 : P satisfies the specification T % {rs| s € 5}U{e}, and in general these
specifications are different. If processes are to be constructed using prefixing, there
must be several types in the signature; semantically, their safety specifications are
related in the same way as 5 and T above, and syntactically this is indicated by the

prefix judgements which form part of a process signature.

The Prefix rule has as its hypothesis a process with just one port. If a process has
several ports, for example P+ z : a,y : 3,z : v, the Par rule can be used to combine
them in pairs, so 92 Y(P)F u: a B,z : v and then (2 ¥Y(P)) F v : (ag)y can
be formed. The prefix combination rules allow prefix actions to be combined similarly.
If there are prefixes Prefix a : @ — ~, Prefix b: 3 — é and a process P+ z : v,y : ¢

then the following derivation allows the combined action (a,b) to be prefixed onto P.
Pra:y,y:é Prefix a : o — v Prefixb: 06 — ¢
SV (P)Fziypd Prefix (a,b):ax 5 — v
(a,8): 52 (P)F 2 a5 b

152 Chapter 6. Typed Process Calculus

Connection Rules

PrT,z2:a QFA,z:at

T Axiom Cut
I.,Fz:a",y: P.QFT,A
PET QFA PrT,z:a,y:at
—— Mix Cycle
P|lQFT,A P\zyFT
Multiplicative Rules
PFT,z:a QFAy:0 PrFT,z:a,y:p
Tensor Par

PRIYQFT,Az:a®p stY(P)FT,z 109 p

Summation Rules

PET QFT
—— Sum - Nil
P+QFT Niloy an (1,0 @) F 21 T 0y, o Ty
Prefixing Rule
Ptax:B Prefixm:a—
Prefix
m:PFua:a
Recursion Rule
Xibtzy:0p -+ Xpba,:a, Xibta1:0n - Xpoba,:a,

Ey(X)Fay oy E.(X)Fz,:a,

fix;i (X =EX))Fazi:o

where the derivations of the F; make each X; sequential and guarded.

Figure 6.2: Proved Processes Generated by a Process Signature

6.2. Syntax 153

Semantically, $%Y(P) F 2z : v ¢ is the same process as Pz : v,y : 6. The difference

is just in how the interface is viewed.

The Tensor rule gives another way of combining two ports into one, but this time
the ports are taken from two different processes. If PF I',z : a and @ - A,y :
then PR3YQ F I',A,z : a ® B is a process which puts P and ¢ in parallel, and
has an interface formed from the interfaces of P and ¢. Combining processes by
Tensor is like putting them in parallel in CCS, except that there is no possibility of
communication between them. The Cut rule connects processes together in such a
way that communication is not only allowed, but required. In CCS terms, it is like a
combination of parallel composition and restriction; this is exactly the interpretation
of Cut put forward in Proofs as Processes, and seen in the definition of composition
in SProc. f PFT,z:aand Q F A,z : at then the z ports of P and @, being of dual
types, could be connected together. In P, @ I') A this connection has been made,

and the processes have to communicate.

The Axiom rule produces the process I, , F z : at,y : a. This process acts as a buffer
or wire, and is useful for rearranging interfaces. For example, it can be used to derive

an inverse to the Par rule.

Iu’zl—u:aL,x:a Iv,yl—v:ﬁL,y:ﬁ
PET,z:ax Iu7x®;"va7yI—z:aL®ﬁL,m:a,y:ﬁ
P, @0 I ,)FT,z:a,y: 8

The Sum rule allows the construction of the non-deterministic combination of two
processes which have the same interface. This operation is intended to have the same
meaning as + in CCS. The Nil rule allows nil processes to be introduced with any

interface; as usual, nil is the unit for +.

In order to illustrate some of the operations which have been described so far, consider
the dataflow network which was used in Chapter 4 as an example of LusTRE. This

network is reproduced in Figure 6.3, annotated with channel names.

Suppose there is a process signature with a single ground type IV, intended to represent
the natural numbers. Forgetting about the ground prefixes for the moment, assume
that proved processes have been constructed which represent the various nodes in the

network. They are listed here with port names matching the annotations in Figure 6.3.
onekFx: N zerob u: N
pluskFz: Nt y: N+, 2: N thenkz: Nt u:NLtv: N
forkFv: Nt w:N,t:N preFt: Nt ,s: N

The following derivation shows the Cut and Cycle rules being used to assemble the

network from the individual nodes. Every step of the construction is an application of

154 Chapter 6. Typed Process Calculus

U
x A thén)i) fork [

]
pre

N

Figure 6.3: An Annotated Network

the Cut rule, except for the very last step which uses Cycle. First, the one, plus, zero

and then processes are connected.

onekz:N plustz:Nt y: Nt 2:N zerobuw:N thenkz: Nt u: Nt v: N

one;plusky:NLt 2: N zero thenF z: Nt v: N

T

one ., plus ; (zero ; then) -y : Nt v : N
Next, the fork and pre processes are added, and finally the loop is formed.

one ; plus ; (zero ; then) Fy: Nt v: N forkkv: Nt w:N,t: N
one ; plus ; (zero ; then) ;fork -y : Nt w: N,t: N preFt: Nt s: N

one ; plus ; (zero ; then) ; fork ;pre -y : Nt w: N,s: N

(one ; plus ; (zero , then) ; fork ; pre)\, s - w: N

Cut is treated as an associative operator: when more than two processes are connected
together, no brackets are used as long as all possible readings of the expression make
sense. For example, brackets appear in the expression plus ; (zero ; then) because
plus ; zero cannot be formed (zero has no port named z). Section 6.3 explains why Cut

and other operators can be treated as associative up to bisimulation.

The Recursion rule will now be described, and illustrated with definitions of some of
the processes used in the example network. The full Recursion rule is rather compli-
cated, because it describes the most general form of a set of mutually recursive process
definitions. It is best explained by considering a sequence of progressively more com-
plex cases. The simplest recursive definition in, say, SCCS constructs a process X
satisfying X = a : X, where = denotes strong bisimulation. Equality for the typed
process calculus has not yet been introduced, but the notation fix(X = a : X) is never-
theless a useful and natural notation for this recursively defined process. If the type of
X is going to be a, the type of a : X should also be «, so a judgement Prefix a : o — «

is needed. This gives the first approximation to the recursion rule.

Prefix 7 1 a — «

fix,(X =7m:X)Fu:a

6.2. Syntax 155

For example, if there is a ground type N and a ground prefix Prefix 1 : N — N, then
the process
fix,(X =1:X)Faz: N

can be constructed. This is the process which was called one - z : IV in the previous

example.

There is no proved process corresponding to the variable X; talking about the type of
X is just an informal way of discovering the correct form of the rule. The next stage
is a definition with more than one prefix, for example X = a : b : X. If the type of X
is a, the type of b: X is 3 (different from « in general), so the required prefixes are

Prefix a : @ — (3 and Prefix b : § — a. As before, X and a : b : X should have the

same type. Generalising to n prefixes gives the next version of the recursion rule.

Prefix 71 : a1 — a3 ... Prefix 7, : a,, — oy

fix,(X=m:...0m,: X)Fu:og

Multiple branches can also be accomodated. The definition X = a : X +b : X is
handled by this rule.

Prefix 7 : a0 — @ Prefix 7’ : o — a

fix,(X=7m: X+7:X)Fu:a

In the running example, this rule can be used to define the plus process. For each
natural number n there should be a ground prefix Prefix n : N — N. It is then posible

to derive Prefix n : Nt — N* for each n, and
Prefix (a,b,¢): Nt g Nt o N = Nt o Nt o N
for each a, b and c. There is a process
fix,(X = (0,0,0): X +(0,1,1): X +--)Fr: Nt g Nt o N

in which the sum has a term for every case of addition; to avoid questions about infinite
summation, a maximum integer can be introduced so that addition only needs to be
defined in finitely many cases. This process is not quite plus, because the interface
consists of a single port of type N+ » N+ N rather than three ports of types N*t,
N+ and N. This can be rectified with the technique mentioned earlier—three Axiom

processes can be combined and used to split up the port. This yields a process
fix, (X = (0,0,0): X 4+) ; (Jue @3 L) @ I,) Fa: Nt y: Nt 2. N

which is plus.

As before, it is straightforward to extend the rule to deal with longer sequences of

prefix actions. The most general recursive definition in a single variable allows a

156 Chapter 6. Typed Process Calculus

process which has already been defined to appear as a branch, asin X =a: X + P.
This is taken care of by adding the hypothesis P z : a to the rule.

Finally, the full recursion rule allows several mutually recursive processes to be defined,

for example

X a: X4+b:Y

Y = ¢:X4+4d:Y.

For such a definition, there is again a condition on the prefixes which are involved.
If the recursive equations are written X; = E;(X) for i = 1...n, this condition can
be expressed by saying that starting with the typed processes X; F z; : «; it must
be possible to derive all the EZ(Y) F vy; : ;. Furthermore, the variables X; should
be sequential and guarded in the E;, in the usual process calculus sense [Mil89]. In
terms of deriving the F; in the typed calculus, this means that only prefixing and
summation can be used, and every X; must be under a prefix. Other proved processes

can be incorporated into the derivations, as long as they appear as terms in a sum.

It is almost possible to define the axiom process recursively. As will be seen later,
the interpretation of the process I, b z : at,y : @ in SProc is essentially the same
synchronous buffer as the identity morphism on the object interpreting the type a.
Suppose there are two prefix actions ¢ and b in «, which do not change the type.
Then Prefix a : @ — « and Prefix b : @ — « must be derivable, and hence so are

Prefix (a,a) : at % a — al p a and Prefix (b,b) : a® 5 a — at x5 a. The process
fix (X = (a,a) : X + (b,0): X)Fu:at pa

should behave as a synchronous buffer in «, as can be checked when the operational
semantics of the typed process calculus is defined. However, there is a crucial difference
between it and the process I, - z : at,y : a. One has two ports whereas the other
has a single port of » type. The only way to convert the port of type at » a into
two ports of types al and a is by using two axioms to derive the inverse of the par
rule, as illustrated earlier, so it is not actually possible to do without axioms and use

recursively defined processes instead.

6.3 Operational Semantics

The typed process calculus has an operational semantics, defined by setting up a
labelled transition system on proved terms. The transition rules are listed in Figures 6.4
and 6.5. The reason for defining transitions of explicitly typed terms is that the type of

a proved term is not unique—this is because the same prefix can exist in many types.

6.3. Operational Semantics 157

For example, if Prefix @ : & — [and Prefix a : v — § then « : nilg(z) F 2 : @ and

a :nilg(z) F 2 : v are both proved terms.

Given the discussion of CCS in Chapter 2 and the definition of SProc in Chapter 3,
the transition rules are what should be expected. In the rules, a stands for a tuple
(a1,...,a,) of actions. The Prefix rule allows a prefixed action to be performed, and is
the base case in the definition of the transition system. The Summation rules allow for
non-deterministic choices, and the Recursion rule works by unwinding the definition.
In the Cut rule, two processes communicate by performing the same action in the port
on which they have been connected, just as in the SProc definition of composition.
The Tensor rule, similarly, is like the SProc definition of tensor on morphisms, and the
Par rule simply regroups the tuple of actions. The Mix rule is similar to the Tensor
rule, except that the two tuples of actions are concatenated with no regrouping. The
Cycle rule is like the Cut rule in that two matching actions disappear. There is no Nil

rule, as nil processes have no transitions.

When studying typed programming languages, it is usual to prove a result, known as
Subject Reduction, which states that the operational semantics does not change types:
if a term M reduces to a term N then M and N have the same type. In the case of
languages based on typed A-calculi, the operational semantics deals with -reduction;
the situation for process calculi is rather different, but Subject Reduction theorems
generally hold in the typed systems which have been described, for example [Hon93]
and [Gay93]. Thus there should be a similar result for the calculus described in this
chapter. However, it turns out that a modified form of Subject Reduction is more

appropriate.

In SProc, types contain safety specifications, which means that if a process P of type A
makes a transition P —— () there is no reason why () should also have type A. In fact,
@) has the type A/a defined in Chapter 3, and in general Saja # Sa. Since the calculus
is intended to be interpretable in SProc, the syntax reflects this aspect of types: the
Prefix judgements express the type changes caused by actions being performed. The
presence of Prefix judgements makes it possible to prove a dynamic Subject Reduction
result, which states precisely how types can change during reduction. This leads to a
general observation about the role of Subject Reduction theorems in the theory of typed
programming languages. The point of having types is that well-typed programs have
some correctness property; if this property is preserved by reductions, then programs
remain correct during evaluation. But because correctness follows from typability
rather than satisfaction of any particular type, the usual Subject Reduction theorems
are stronger than is necessary to deduce that correctness is preserved by evaluation:
it is only necessary to know that a well-typed program still has some type after a

reduction step.

158 Chapter 6. Typed Process Calculus

Prefix

Prefix 7 : a — 3

T:PFz:ia—» PrFz:p

Cut

PI—F,x:aMP’I—F’,x:ﬁ QI—A,x:aJ‘MQ'I—A’,x:ﬁJ‘

P.QFT, A proor 17 A

Axiom

Prefix 7 : a —

Im/l—x:a Y a(—lfzyl—x ﬁL,y 0

Mix

PFT % PET QFA S Q' F A

PIQFT, A prioiT A

Cycle

(aaa)

PrT,z:a,y:at P+ 2:8,y: 6t

P\gy FT S Pgy F T

Par

PI—F,x:a,y:ﬁMP'I—F’,x:a’,y:ﬁ'

STV (P)FL,z a9 p @(ab) TV PYET 2z 9 3

Tensor

PrT,e:a B0 prraca Qray: sl Qraly: g

P®§7yQ|—F7A7Z ®ﬁ a,b,ab)P/ §7yQ/|_F/7A/7Z:a/®ﬁ/

Figure 6.4: Operational Semantics of Typed Process Calculus

6.3. Operational Semantics 159

Summation

PFT e P T OFT 2+ Q'+ 1

P+QFT o P HT P+OFT % Q'F 1Y

Recursion

Elfix (X = B(X))/Xj]F @i 0i — Pba;: 8

fix;i(Y: EX)bFai:o0;—>Pla;:3

Figure 6.5: Operational Semantics of Typed Process Calculus, continued

In general types of process terms are changed by transitions, but there is an aspect
of the type of a term which stays the same—essentially the number of ports and
the connectives with which they are combined. Thus there is also a static Subject

Reduction result which makes this formal.

Proposition 6.3 (Dynamic Subject Reduction)

If
i
Pl_wl:alv"'vxn:an 'Ql_yl:ﬁlv"'vym:ﬁm

then

e m=n

e a=1(ay,...,a,)

o foreachi=1...n, z; =y

o for each ¢ = 1...n, Prefix ¢; : a; — ; is derivable.
Proof: A straightforward induction on the derivation of the transition. |

This result has an interesting consequence for the rules defining the transitions of

process term formed by Cut and Cycle. If
PI—F,x:aMP'I—F’,JC:ﬁ
and)
QF A z:at MQ’I—A’,m:yJ‘

then it must be the case that v = g. This means that if P and ¢ can be connected
together, and they make matching transitions to P’ and @', then P’ and @' must also

have types which allow them to be connected. A similar comment applies to Cycle.

160 Chapter 6. Typed Process Calculus

The statement of the Static Subject Reduction result requires a function 6 which

maps typed interfaces into formal type constructions involving a single ground type *,

as follows.
6(v) def if v is a ground type
Bat) € gla)t
6(oa) def f(a)
bla®ps) = 6a) @ 0(p)
blap) = 0(a)z 0(6)
O(z1 ... 0y ay) def b(ar) g - p B(ay)

Lemma 6.4 If Prefix 7 : o — [is derivable, then 6(a) = 6(5).

Proof: By induction on the derivation of Prefix 7 : @« — (. If it is a ground prefix,
then both a and § are ground types, hence 6(a) = 6(3) = *. If we have Prefix « :

L

oa — a then we immediately have (o a) = 6(a). For Prefix r : at — 1 we have

8(al) = 0(a)" and 0(41+) = 6(3)*, and by the induction hypothesis 8(a) = 6(3). The

remaining cases are similar. O

Proposition 6.5 (Static Subject Reduction) If P+ x1 1 aq,...,2, 1 ay o, @ F I then
I'=21:01,...,2, : B, and for each ¢, 6(5;) = 0(a;).

Proof: Suppose PF zy:ay,...,2,: ay o, @ FT. By the Dynamic Subject Re-
duction result, I' = @1 : f1,...,2, : Bp, @ = (a1,...,a,) and for each 7, Prefix a; : o; —
B; is derivable. By Lemma 6.4, §(o;) = 6(;) for each . a

Once the operational semantics of the calculus has been defined, it is natural to use
strong bisimulation as the notion of equivalence. It is defined as in Chapter 2 and
[MilR9] except that it is parameterised on the type. Let T' range over lists ay,...,a,
in which the a; are types generated by a process signature Sg. A typed bisimulation

over 8g is a collection of relations Rr on the set of proved processes P I I', such that

o if (P,Q) € Rr then whenever PFT "L P'FT there is Q' F T such that
QFT -+ Q'+ I’ and (P',Q") € Rr/; and whenever @ - I' —%+ Q"+ I there

is P' +T" such that P T —— P'+ T and (P',Q’) € Ryp».

The largest typed bisimulation is strong typed bisimulation or just strong bisimulatlion,
and is denoted by ~p. Note that writing P - I' means that I' = 1 : a1,...,2, : a5,

but in a typed bisimulation Rp only the types (not the names) in I' are relevant.

fPET o, PrIMand QT o, Q'+ A then Dynamic Subject Reduction implies
that A = I, so the condition that Q F T 2. Q'+ T" is not a constraint. However,

6.3. Operational Semantics 161

if strong bisimulation were not parameterised on types, the fact that the same action
can occur as a prefix in several types would mean that two processes of different types
could be strongly bisimilar. While this may not necessarily be a bad thing, it would
make it more difficult to establish connections between the operational semantics and

the categorical semantics to be defined in the next section.

If PFHT and @ F I" are proved processes which are bisimilar, it will often be convenient
to indicate this fact by writing P ~ ¢ - I' rather than P ~p @.

The first property of strong bisimulation which needs to be established is that it is
a congruence, i.e. that all the process constructions preserve it. This is essential if
strong bisimulation is to be used as an equivalence with respect to which the process
constructions are well-defined. Proving that strong bisimulation is a congruence is

straightforward, just as it is in CCS.

Proposition 6.6 Strong bisimulation is a congruence.

Proof: The proof has a case for each process construction.

Prefiz Define a relation R by

def

R {(r:PkFz:a)(r:PFa:a)|(Ph~PFaz:3)A(Prefixt:a — §)}.

It is easy to check that R is a bisimulation. Hence if Py ~ P, F x : 3 and Prefix 7 :

a— fthennt:P~7m:PFzx:a.

Cut Define a relation R by

R E {(P1;QiFT,A) (P Q2 I,A))|

(Pr~PyFT,z:0)A(Q1~QaF Ayz:at)).
A transition of Py ;)1 is

P QT A S prop A

where PiF1,z: « &a) PlET z:08 and Q1+ A,z : at ba) Q- A : 31, Be-
cause P ~ Py and ()1 ~ ()2, we have
PQI—F,;E:aMPQ'I—F',x:ﬁ

and)

Q2 F Ayz:at 8 gl AL s gt
with P} ~ P and Q% ~ Q). So

PyiQut T, A% Py A
and hence (P]; Q}, P ; Q%) € R. Thus R is a bisimulation.

162 Chapter 6. Typed Process Calculus

Tensor This case is similar to the case of Cut. The relation is

R % {(PofQiFT,A,2:a008),(RolYQFT,A2: a0 f))

|(Ph~PFTz:a)AN(Q1~Q2F Ayy: §)}.

Par This case is similar to that of Tensor. The relation is

R {(529(P) T2 a0g B), (559 (P) F T, 20005 B)) |

P~P Tz a,y: 3}

Mz This case is again similar to that of Tensor, with the relation
RS (P QuFTA) (P | Qe TLA) (P~ P FT)A(Qu~ @k A)).
Cycle This case is similar to that of Par, with
R Y {(PM\eyFT),(P\ey FT)) | P~ P F T,y at),
Summation For this case, a standard bisimulation argument is used with the relation
def

R = {(PA+01),(P2+Q2)|(Pr~P)AN(Q1~Q2)}.

Recursion Again, the proof involves showing that a suitable relation is a bisimulation:

o
|
I
t|

~
|

SN—

SN—
T

=

£

S

b
—
=

X

—
|
I

E(X)Fzi:)|

O

The names attached to the ports of a process do not change as the process makes
transitions, and so have no impact on its behaviour. They exist to facilitate the
syntactic description of connections between processes. Substitution of names is a
necessary operation on processes, for example to avoid clashes when several instances
of the same process are used in a single system. It follows easily from the definition of

the operational semantics that substitutions do not change strong bisimulation classes.
Proposition 6.7 If P+ T',z : o then P ~p , P[Y].

There is a large collection of instances of strong bisimulation which can easily be
established, and which it is useful to have available when working with processes. These

arise for a number of different reasons. First of all, the syntax of the calculus allows

6.3. Operational Semantics

163

Commutativity of Cut

QFT,z:a REA,z:at
Q:iR~R;QFI,A

Associativity of Tensor

QFL,z:a RFy:B,Au:y SkFv:6,0

Q&Y R)®," 5~ Qa7 (R@," S)F1,2:000,Aw:7®46,0

Associativity of Cut

QFI,z:a Rbaz:at,Ay:p Sty:5,0
(Q:R);S~Q:(R,;S)FI,A,0

Commutativity of Par

Q I—F,x:a,y:ﬁ,'u:”/,v:é
ST (w (@) ~ w2 (@) Tz o fwi g 0

Structural Tensor-Cut

QFTl,z:a RFy:B8,Au:v Sku:~vt0
(QEZYR) i S~ Q&I (RyS)FT,z:0®06,A,0

Structural Par-Tensor

QFlz:a,y:B,u:y RFEAv:6
92(Q) @y R ool (Q @, R)FT Az ap fw:y®6

Structural Par-Cut

QFTl,z:a,y:B,u:y RI—A,u:ny‘
22Y(Q) iy R~ 9t¥(Q i R)F T, Az a9 3

Figure 6.6: Rules for Bisimulation

164 Chapter 6. Typed Process Calculus

Summation

QFT RFT
Q+R~R+QFT

QFI RFD SET QFT
Q+(R+S5)~(Q+R)+S5FT Q+Q~QFT

Tensor Distributivity

QFL,2:a R-Ay:0 SEAy:0
QEI"(R+5)~ (QuI" R)+ Q" §)F 1A,z 00

Par Distributivity

QFT,z:a,y:p0 R-T,z:a,y:p0
97 (Q+R)~7YQ)+ 9 Y (R)FT,2: a3

Cut Distributivity

QFT.z:a RFAz:at SHA,z:at
Qi(R+5)~(Q:R)+(Q:9FT,A

Cut Elimination Equations

QFT,z:a RFAy:p SFO,z:at,y:pt
(QOTYR):97%(5)~Q:(5yR)FT,A0
QFl.z:a
Qilz,y'\“@[y/r]l_r7y:a

Figure 6.7: Rules for Bisimulation, continued

6.4. Calegorical Semantics 165

certain process configurations to be described in several different ways. For example,
this diagram represents the result of taking three processes, forming a connection
between two of them and then using @ to combine a port of the resulting process with

a port of a third process.

P Q R

The final configuration can be described by either of the terms (P ; Q) @%¥ R and
P (Q@w" R),if the ports are suitably named. When a textual syntax is used to rep-
resent two- or three-dimensional structures, such artificial distinctions are inevitably
introduced. Exactly the same problem occurs in linear logic when sequent proofs are
used instead of proof nets. Figure 6.6 lists the bisimulation instances of this form.
They are presented as inference rules, with proved processes as the premises and a
bisimulation instance as the conclusion. The next group of rules relates to the prop-
erties of summation. The + operation is associative, commutative and idempotent;
furthermore, because the calculus is synchronous, sums are preserved by Tensor, Par
and Cut. Figure 6.7 lists the corresponding proof rules. There are two cases of strong
bisimulation in which the processes concerned would be related by cut-elimination
steps, in the Proofs as Processes interpretation. One case is a cut between a Tensor
port and a Par port, and the other is between any process and an identity axiom.
Under the Curry-Howard Isomorphism, cut elimination corresponds to S-reduction in
the A-calculus, but transitions in the process calculus are orthogonal to g-reductions.
Semantically, G-reduction is part of equality in an interaction category; the relational
nature of composition means that arbitrary functional computations can take place
in a single time step. Figure 6.7 also contains the cut elimination instances of strong

bisimulation.

6.4 Categorical Semantics

The typed process calculus can be given a semantics in a suitably structured category.
The structure required is that of a synchronous interaction category, in the sense of
Chapter 3, with some additions. Explicitly, let C be a compact closed linear category
with countable biproducts, such that the functor !(&,+0") has the multiple UFPP.
In C the biproducts yield a commutative monoid structure (+,nil) on each homset,

and + is preserved by ®, (—)J‘ and hence 9. There is also a partial order < on each

166 Chapter 6. Typed Process Calculus

homset, defined by
[<9¥3nrth=y

Lemma 6.8 1. Forany p: A — B, nily .5 < p.
2. If p<gthenforany f, fOp< f®qand p® f < q¢® f.

3. If p< g then for any f, fgp< [rpqand prg [< g /.

4. If p < q then pt < ¢*.

Proof: Straightforward manipulation of the definition of <, together with the fact
that @, » and (—)J‘ all preserve +. O
A structure in C for a process signature Sg is specified by the following data.

e For each ground type 7 of Sg, an object [y] of C. The function [-] is then
extended inductively to all types by

[o'] = o]
[e@8] ¥ [a]o (8]
[as8] = [a]s (8]
[oa] % ofa].
and to lists of named ports by
[o1: Ar,.ozn s An] % (A m .. o9 [AL]

e For each ground prefix Prefix o : ¥ — 4/, a pair of morphisms
[Prefix o : v — '] : o[y'] «— [v] : [Prefix o : v — 4]
such that
[Prefix o : v — 7] ; [Prefix o : v — 7] =idop

and

idp,y = > [Prefix 7 : v — '] ; [Prefix 7 : v — 7'].

Prefix miy—n’

The function [-] is extended to all prefix judgements by

[Prefix : 0o — af def idoog
[Prefix * : o — af def idofa]
def

[Prefix 7 : at — p1] [Prefix 7 : o — B]'*

[Prefix 7 : at — pL]’ def [Prefix 7 : a — G]*

6.4. Calegorical Semantics 167

[Prefix (7, 7"):a @ o' — B ® f] def

mon~" ; ([Prefix 7 : @ — 8] @ [Prefix 7’ : o’ — 3'])
[Prefix (7, 7"):a® o’ — g @ p'] =

([Prefix 7 : a — G]' @ [Prefix 7' : o' — 5]') ; mon
[Prefix (m,7") : a9 o' — B9 f] =

mon™ ; ([Prefix 7 : & — B 5 [Prefix 7' : o' —]
[Prefix (7, 7") : g o' — 35 B'] <

([Prefix 7 : a — B] 9 [Prefix 7’ : o/ — §']'); mon~1".
Proposition 6.9 If Prefix 7 : @« — [is derivable, then
[Prefix 7 : o —] ; [Prefix 7 : o — 5] = idopg
and
[Prefix 7 : o — 5] ; [Prefix 7 : @ — (] < id[,]-
Proof: By induction on the derivation of Prefix 7 : & — [, using the fact that @,
and (—)* preserve <. a

For each proved process P - I' generated by Sg, there is a morphism [P FT'] : I — [I']

in C, defined by induction on the derivation of P - I' as follows.
Aziom [I;,Fz:at,y:a] def A(unitlpyy) - I — [e]* s [o].

Cut HPFT,z:aand QF A,z :at then [P;Q FI',A] is defined by

i 101 L (ry 2 @ (fol* 5 18D)
[P.QFT,A] (] 5 (o] @ [a]) [A]
idpry 7 A‘p 9 idga]
1, Al — " [T 5 [A] — [Tl s L5 A]

For any A, B, C' and D, regroup : (A B)® (C D) — Ax (B® () D) (which
can also be written regroup : (At — B) @ (Ct — D) — A+ — ((B — Ct) — D)) is
a canonical morphism defined by

regroup = A(Aiso; (id @ ((Ap ® id) ; symm ; Ap)) ; Ap))

with iso a canonical isomorphism.

168 Chapter 6. Typed Process Calculus

Miz [P | QF T',A] is defined by

P P U L1 VI N PN

[[P | QF F,A]] iT
[T, A] < - [r] s [A]

Cycle It P+T,2:a,y:at then [P\,, F I] is defined by
[PFT,z:a,y:al]

; [Tl (ol [l*)
idey L iso

[P\ey F 1]] (o] © [o]*)
iy "
[ry - ” [l 1

Tensor [P @IV QFT,z:a® p,A] is defined by
[PET,z:a]®[QF vy:B,A]

I=1a1 (IT] = [o]) ® (18] » [AD)
[P ®f’y Q] regroup
[T.2:a®8,A] - - IT] s (Ta] ® [8]) » [A]

Par [gI¥(P)FT,2z: a5 3] d:ef[[Pl—F,x:a,y:ﬁ]] I — [T] s [e] = [5]-

Summation The Sum rule is interpreted by means of the operation 4+ on the homsets

of C: [P+Q+T]E [PHT]+[QFT].

Prefix [n:PF x:a]is defined by

monunit
I ol

[r:PFa:a] o[PF z:[]

o[A]

lo] [Prefix 7 : a —]

6.4. Calegorical Semantics 169

Recursion The semantics of a fix expression is defined in terms of the UFPP of a
suitable functor. It is worth considering a few simpler forms of the recursion rule first,
in order to see how an appropriate functor is constructed for each use of fix. In the

very simplest case, [fix,(X = 7:X)F u: «a] is defined by this UFPP diagram.

monunit
I ol

[fix,(X =7: X)Fu:a offixy (X =7: X)Fu:a]

[o] o[a]

[Prefix 7 : a — «f

This is exactly the same as the example given in Chapter 3 of how the UFPP can
be used to construct recursively defined processes in SProc. For a definition with two
prefixes in sequence, the UFPP of the functor oo is used. If the process is fix,(X =
m T2 1 X) F u: a then there are morphisms [Prefix 71 : @ — 3] : o[3] — [a] and
[Prefix m3 : 8 — a] : ofa] — [A], and the morphism oofa] — [a] required for the
UFPP diagram is o[[Prefix 73 : § — a] ; [Prefix 71 : @ — S].

In this way, the UFPP of o™ can be used to interpret a recursive definition in a single
variable, with a single sequence of prefix actions guarding the variable. There is also a
trivial case: if P u : o is a proved process, then [fix,(X = P) F u : a] def [PFu:a]:
I — [@]. This case can be handled by the UFPP of the constant functor at I, as

[fix,(X = P) F w: a] is the unique morphism I — [a] such that

I L
[fix, (X = f) Fu:a] idy
lo] [PFu:al

commutes. It is useful to take this view of the trivial recursive definition, as it means

that every recursive definition is covered by an application of the UFPP.

Recursive definitions with several branches combined by + are interpreted via the

UFPP of functors constructed from iterates of o by @. For example, consider
fix,(X =a: X +b:c: X)Fu:a.

As before, there are morphisms f : ofa] — [a] and g : ooa]] — [a] defined from the
interpretations of the prefix judgements. Then [fix,(X =a: X +b:c: X)Fu:a]is

170 Chapter 6. Typed Process Calculus

the unique h such that this UFPP diagram commutes.

monunit ; inl + monunit ; (o monunit) ; inr

ol ool

h oh@ooh

[o] - ofa] & cofa]

[f, 9]

The same construction applies if one of the branches is a constant process; for example,
to interpret fix,(X =a: X + P) F u : a the functor A— I @ o A is used.

The most general case, in which there are several mutually recursive definitions, makes

use of the multiple UFPP and also the linear logic exponentials. Consider the example

X = a:X+0b:Y
Y c: X+4+d:Y

in which the intended type of X is a and that of Y is 8. There are morphisms
[Prefix a : & — a] : ofa] — [a] and [Prefix b: a —] : o8] — [a] and hence

def

R frgstofal@ told] — [a]
where [is defined by

ol & Lo5] L™ ool o 12 tofa] 2T ofap IPrEPaia—al [
and g by

tofa] & o8] 2N 1 g o] & topay 2w opgp Lrx P02 B o

Similarly there is a morphism A’ : !ofa] @ 'o[B] — [3] derived from the ¢ and d
prefixes. Hence there is a morphism & : !ofa] ® !o[8] — [a] ®[3] defined by applying
contraction to !ofa]] and !o[5] and then applying h @ A'. Finally, the multiple UFPP

of o gives unique p: I — [af and ¢ : I — [§] such that this diagram commutes.

I®l lolI® 1ol

PR g lop® log
[[a]]@[[ﬁ]%k— ofa] @ !o[f]

Then p and ¢ are the interpretations offixi(X =a: X+4b:Y,Y=c: X+d:Y)Fu:a
and (X =a: X+b:Y,Y =c: X +d:Y)F u:B. The morphism I — !ol

6.5. Semantics in SProc 171

used in the top row of the diagram is iso™! ;iso' ; ! monunit, where iso : !1 — I is the

isomorphism (2.1) of Chapter 2.

The semantics of the general recursion rule, which may define any number of mutually
recursive processes which use arbitrary depths of prefixing, uses a similar construction
to the above with the functor F’ defined by

FA ¥ 1godAactAg...
instead of o. Given n typed process expressions Fy : aq,...,F, : a, in variables
Xi,...,X,, each E; defines a morphism ! Floy] ® --- ® ! Fla,,] — [a;]. These mor-
phisms are constructed as in the simpler case above, with the addition that projection
from F'is used to select the correct depth of prefixing for each variable. Again using

a similar construction to the one above, there is a morphism
E:V"Flaq] ® - @ Flag] — [er] ® -+ - @ []

The multiple UFPP of ! F' means that there are unique p; : I — [a;] such that

I ---®I '"FI®---® ' FI

P @ Py 'F(p1)® - @ 'F(pn)

[[al]]®---®[[an]]<k— 'Flog] @ -+ @ Fla,]

commutes. Then [fix} (X = E(X)) F z; : o] 4 pi. The morphism I — ! FT is

iso ! ; iso’ ; !(<fn>n>o)

where the f,, : I — o™ I are defined by

def .
fo = idg
def

Jre1 = fr; (0" monunit) (r>0).
6.5 Semantics in SProc

As has been stated before, the typed process calculus is intended to have an interpre-
tation in SProc. There is a structure in SProc for any process signature Sy, defined as

follows.

A process signature Sg defines a labelled transition system whose states are the ground
types of Sg, whose labels are the actions appearing in the ground prefixes, and with

v SN 4" <= Prefix 7 : v — 7. If this labelled transition system is considered as a

172 Chapter 6. Typed Process Calculus

directed graph with labelled edges, there are a number of connected components; for

each component ¢, there is a set Y. of actions consisting of the labels which occur in ¢.

Given a ground type 7, let ¢(v) be the connected component containing v in the

labelled transition system. The object [y] is defined by

def
Xl = e

def S %
Sy = s3>

Given a prefix judgement Prefix 7 : v — ~/, [Prefix 7 : v — '] : o] — [v] is defined
as (*,7) : idpy and [Prefix 7 : v — 4']" : o[y'] — [7] is defined as (7, %) : idp,,}. The

conditions which these morphisms must satisfy are easily checked.

Proposition 6.10 If [-] is the semantics in SProc, then for every proved process P - T,
[PFT] =tree(PFI)[(ay,...,an) — (*,a1,...,a,)].

Proof: By induction on the derivation on P I'. In every case, the transition rules
for P I" are the same as those in the SProc definition of [P + I']. O

Corollary 6.11 If P T is a proved process then traces(tree(P I T')) C Spry.

Corollary 6.12 If [-] is the semantics in SProc, then for all proved processes P F I' and
QrT,

PrQFT < [P]=1Q]

Proof:

ProQFT <= tree(PFHT)~tree(QFT)
<— [PFT]~[QFT] by Propositon 6.10
<— [PFT]=[QFT] as = and ~ coincide in SProc.

O

Corollary 6.11 also contains useful information at a purely syntactic level. It can
be deduced from the Dynamic Subject Reduction result, and thus does not depend
essentially on the SProc semantics. What this means is that setting up the ground
prefixes amounts to defining safety specifications for the ground types, and then the
rules of the calculus only permit the construction of processes which satisfy these

specifications.

To illustrate this point, it is useful to begin with an intended safety specification for
some type a. Suppose that the desired set of safe traces consists of all the traces

generated by the regular expression ((a|b)cd)*, and their prefixes. Introducing the

6.6. FErxtensions 173

additional types § and v means that the safe traces correspond precisely to labelled

paths from « in this graph.

7
The edges of the graph define four ground prefixes:

Prefix a : a — 3
Prefixb:a — 3
Prefix b: 3 — ~v

Prefix ¢ : v — a.
Now, there are a great many processes of type «, for example

a:nilg(z)Fz:a
a:c:nily(z)+b:c:dnily(z)Fz:a
fixy(X =a:c:d: X)Fa:a

but they all satisfy the original safety specification. This example sets the pattern for

uses of the calculus in situations where non-trivial safety specifications are required.

6.6 FExtensions

The typed process calculus defined in this chapter is purely synchronous, and does not
incorporate the delay operations of SCCS or SProc. It would be useful to extend the
calculus by adding § and A so that asynchronous processes can be constructed. This
can be done, although the theory of such an extended calculus has not been worked
out as thoroughly as that of the basic calculus. This section describes, in outline, the

necessary additions to the theory.

The first step is to add § and A as type constructors. In order to make use of the new
types, corresponding term formation rules are needed. The minimum requirement is a

pair of functorial rules, such as:

Delay Functors

Plzi:ay,...,2,: Qp Plazi:ay,...,2,: Qp

§(P)Fay:day,...,zn: 60y, AP)Fai:Aaqg,...,z,: Ay,

174 Chapter 6. Typed Process Calculus

The rule for A allows a synchronous process to be desynchronised by inserting delays
throughout its behaviour. The rule for § is the foundation for an asynchronous prefixing
construction. As in SCCS, the asynchronous prefix a.P can be constructed as a : § P if
suitable prefix judgements can be derived. The way of building asynchronous prefixes is
to start with a process P = A 8 which, having type A 3, can delay at any point after the
first action. The process §(P) F 6 A § can also delay initially, and then a : §(P) - A ais
a process which might also be written a.P - A a. For this construction to be possible,
a prefix judgement Prefix @ : A a — §A (G is needed. This can be derived by means of

a new rule. i
Prefix 7 : a —

Prefix m: Aa — 6A [

It may also turn out that term formation rules corresponding to the monad structure

of the delay operators are useful.

The operational semantics of delayed terms is defined by transition rules corresponding
to the definitions of § and A in SProc.

The main modification of the categorical semantics is to enable the interpretation of
recursive definitions in which asynchronous prefixes are used. At present, the semantics
of a recursive definition uses the UFPP of a functor in which occurrences of o match
the pattern of prefixes in the fix expression. When asynchronous prefixes are used, the
pattern of delays corresponding to a sequence of prefixes is expressed by iterates of
(0§). This means that to interpret the extended calculus, the functor !(P,s0(08)")
must have the multiple UFPP.

The Subject Reduction results still hold for the extended calculus, and when it is inter-
preted in SProc there is the same agreement between the operational and categorical

semantics.

The full development of this extension of the calculus is an area for future work.

6.7 Categorical Logic

As described in Chapter 1, a significant aspect of the Propositions as Types paradigm
for the A-calculus is the close connection between syntax and semantics as formalised
by the construction of syntactic categories and the proof of various correspondence
theorems [LS86, Cro94]. Some progress has been made towards a similar connection
for interaction categories. The idea is to present a process theory as a process signature
together with a collection of azioms, which are expressions of the form P = @ F T’
with P - T'and @ F I' proved processes. There is then a collection of rules for deriving

more equations, which are the theorems of the theory. The process calculus of this

6.8. Deadlock-Freedom 175

chapter could be presented in this style, in which case the rules for deriving instances
of bisimulation would become rules for generating theorems. There is a notion of a
model of a process theory in a suitable category (some form of interaction category),

and in such a model provably equal processes have equal interpretations.

Once a process theory has been set up, it is possible to construct a category in which
an object is a type of the theory, and a morphism from « to 3 is an equivalence class of
proved processes P - x : at,y : 3 under provable equality. There is a canonical model
of the process theory in this category, and this model satisfies a universal property: a
model of the theory in any other category factors as the canonical model followed by
an interaction category functor. Conversely, given any interaction category a process
theory can be extracted from it, and the operations of moving from a theory to a
category and vice versa are inverse to each other. Work in this area is not sufficiently
advanced to be reported fully in this thesis, but so far, the theory has been worked

out for a simplified version of the typed process calculus.

This simplified calculus has no prefixing construction, but the effect of prefixing can
be recovered by means of a functorial rule for o and the provision of process symbols,
which can be interpreted by arbitrary morphisms. Effectively, this means lifting the
semantic interpretation of prefixing described in this chapter to the syntactic level.
The corresponding categorical structure is that of a x-autonomous category with a
monoidal endofunctor o which has the UFPP; no commitment is made to synchrony
or asynchrony. The development of the categorical logic of this simplified situation is
described in [CGN94]; its extension to cover more general categorical structure and a

more realistic process calculus is a topic for future work.

6.8 Deadlock-Freedom

Although the typed process calculus defined in this chapter can be given a semantics
in any category with suitable structure, there is at present only one concrete category
which has this structure, namely SProc. The original intention was that the category
SProcp defined in Chapter 5 should also be able to interpret the calculus; this would
give a syntax for deadlock-free processes. However, the present mechanism for defining
and using prefixes is not subtle enough for this to be possible. In the ready specifica-
tions presentation of the deadlock-free category, suppose that X is an object of SProc
and 6 € RS(X), so that (X,0) is an object of SProcp/, and that there is some syntactic
type a which is interpreted by (X,#) in a model. If the prefix actions a and b are
available in «, then the Prefixing rule allows @ : PF a2 :a and b : P F 2 : a to be
formed. If these terms are to be interpreted as processes of type (X, #), § must contain

the ready pairs (e, {a}) and (e, {b}). This means that #* does not contain (¢,{a}) or

176 Chapter 6. Typed Process Calculus

(¢,{b}), but just (&, {a,b}). So it should not be possible to form either a : Q = : at
orb:QF z:at, although a:Q +b: R+ z: at should be acceptable.

This example shows that if a process calculus is to be interpreted in SProcp, the
same prefixes cannot be made freely available in both a type and its negation. This
has implications for both the prefix derivation rules and the term formation rule of
Prefixing. It seems likely that the syntax and constructions of such a calculus would
have to take ready specifications into account; this may not be too surprising, as
the existing calculus has already been strongly influenced by the presence of safety
specifications. One possibility might be a combined Prefixing and Summation rule,
allowing the formation of sums of prefixed processes in which the actions offered are

compatible with the ready specification of the desired type.

It it perhaps rather unfortunate that the syntax of the calculus should be affected so
much by the intended semantic category. More work is needed to ascertain whether this
is inevitable, or whether there can be situations in which the same syntax is suitable

for a variety of semantic interpretations.

6.9 Discussion

All of the themes of the thesis have been drawn together in this chapter, making it
the culmination of the present exposition of the theory and application of interaction
categories. The typed process calculus extends the original ideas of the Proofs as Pro-
cesses interpretation, by extending the syntax to one in which prefixing and dynamic
behaviour can be defined. The formulation of a syntax for processes, with a type sys-
tem based on linear logic and a categorical semantics, represents a successful transfer
of the Curry-Howard isomorphism to concurrency. In this sense it is truly the high

point of the thesis.

Having said that, there is still plenty of scope for further developments in the area of
typed process calculi based on interaction categories. The syntax of the calculus has
already been through several stages of refinement, and there may be more to come:
designing a syntax which is both easily usable and sufficiently powerful is a difficult
task. One obvious comment is that the present syntax may still contain too many
traces of linear logic. The linear type constructors are acceptable—after all, a type
system for concurrency is bound to introduce some new connectives—but the use of ®
and » as syntactic operations on processes is a big step from the traditional notation
of existing process algebras. The syntax has been designed to be easily adaptable
to situations in which ® and >y are distinct—this is the reason for using both of the

multiplicative connectives even though the presence of the Mix and Cycle rules renders

6.9. Discussion 177

them equivalent. A possible simplification would be to collapse ® and » in the syntax,
thus specialising the calculus to the compact closed case. Mix and Cycle would then
become derived rules. This should lead to a streamlined calculus with the minimal

amount of syntax necessary for describing SProc processes.

There are several reasons for the decision to study a synchronous calculus. One is
that, as seen in Chapter 3, synchronous interaction categories have more structure and
are easier to define and work with. Furthermore, there is not yet a definition of the
exponentials in ASProc, which means that an asynchronous calculus would have no
models unless the form of recursive definitions were restricted to make the use of !
unnecessary. From the syntactic point of view, an asynchronous calculus is likely to be
slightly more complex, as more prefix combination rules would be needed. Nevertheless,
the experience gained from the study of the synchronous calculus means that it should
soon be possible to formulate an asynchronous version. Meanwhile, an extension of
the synchronous calculus by delay operators has been outlined, and this should allow

asynchronous processes to be constructed within the synchronous framework.

The area of categorical logic for process calculi has been briefly introduced, and should
certainly be developed further. It already shows promise, and a categorical logic cor-
respondence for a full-scale typed process calculus would round off the concurrent
Curry-Howard Isomorphism in a very satisfying way. Another issue which has been
raised but has yet to be resolved is that of adapting the calculus in such a way that it

can be interpreted in SProcp and used for the construction of deadlock-free processes.

178 Chapter 6. Typed Process Calculus

Conclusions

7.1 Summary

The starting point of interaction categories as a subject was Abramsky’s discovery of
SProc, a category which could be used to transfer to concurrency the familiar ideas of
the categorical semantics of functional programming languages: types as objects, and
programs as morphisms. SProc and the related category ASProc then provided a base
from which to explore the application of existing type-theoretic ideas to concurrency,
and also stimulated some new ideas concerning the role of types as specifications. This

thesis is the story of some of that exploration.

Once the basic categories have been defined, in Chapter 3, their structure yields a
type structure for processes and the categorical operations become rules for combining
typed processes. This natural match between type structure and semantics is one
of the benefits of the interaction categories approach. It is used to good effect in
Chapter 4, where the compact closed structure of SProc allows a semantics of dataflow
computation to be defined at a high level of abstraction. Because the structure of
interaction categories is so important for the development of the theory, an abstract
axiomatisation is highly desirable. The possibilities for such an axiomatisation are
discussed at the end of Chapter 3, and axioms based on the notion of guarded functor

are proposed for both synchronous and asynchronous interaction categories.

The theme of Chapter 5 is the use of types to express complex behavioural properties of
processes. The approach is to construct a category whose objects specify the desired
properties, so that the typed process constructions corresponding to the categorical
structure become compositional proof rules for those properties. This is illustrated by
the construction of categories, both synchronous and asynchronous, in which the mor-
phisms are deadlock-free processes. Compositional verification of deadlock-freedom of
acyclic process configurations is supported by the categorical operations, and addi-
tional proof rules are formulated for cyclic constructions. The possibility of applying
types to verification in this way is one of the main advantages of interaction categories

over the other approaches to typed concurrency mentioned in Chapter 1.

In Chapter 6 all of these threads are brought together by the definition of a typed

179

180 Chapter 7. Conclusions

calculus of synchronous processes. It has the linear type structure which has been used
throughout the thesis, and the corresponding operations on typed processes become
syntactic constructions. The calculus has a semantics in any synchronous interaction
category, axiomatised along the lines suggested in Chapter 3. It also has an operational
semantics in the usual process calculus style, which leads to a definition of bisimulation
with respect to which the categorical semantics in SProc is sound. Subject Reduction
theorems describe how the type of a term can change as it makes transitions—this
is a point of contact with Ferrari and Montanari’s work [FM94], which starts from
the assumption that transitions alter types. The syntax of the calculus is tailored to
be able to deal with safety specifications, but there is also the prospect of developing
modifications of the syntax allowing other properties such as deadlock-freedom to be

discussed.

The introduction of the typed process calculus achieves the goal, set out in Chapter 1, of
transferring the Curry-Howard isomorphism to concurrency. The fundamental design
principle of the calculus is that the syntax should be derived from the natural structure
of the semantic category, which means that there is a much better match between
syntax and semantics than could be hoped for by adding types to an existing calculus.
This in turn opens up the possibility of constructing initial models of the calculus
as syntactic categories, and establishing the kind of categorical logic correspondences
which already exist for various typed A-calculi [Cro94]. As outlined in Chapter 6, this
possibility has already been partially realised.

7.2 Further Research

There are many possibilities for further investigation of the topics covered by this
thesis. In some cases, more work is required to remedy slight shortcomings of the
present theory. At the moment there is no definition of the exponentials in ASProc;
as mentioned in Chapter 3, it may be possible to approach this problem by adapting
techniques which have been used for categories of games [AJM94]. In Chapter 5, the
absence of a tensor unit in FProcp is rather unsatisfactory, and it may be that further

study could improve the situation.

There are also several possibilities for continuing to pursue directions which have al-
ready been studied. The analysis of LUSTRE in Chapter 4 could be extended to cover
the clock consistency calculations; this would give a more complete semantics to the
language, and should have connections with Jensen’s work [Jen94]. Clock calculation
in the language SIGNAL, which is more complex because clocks can be specified relative
to each other, should also be tackled.

7.2. Further Research 181

Two possibilities for extension of the theory of the typed process calculus of Chapter 6
have already been mentioned—a more detailed development of the categorical logic
correspondences, and the formulation of a syntax for deadlock-free processes. Still
another, more ambitious possibility is the development of a typed calculus of asyn-
chronous processes. Such a calculus would have a semantics in ASProc or, better still,
in a new category based on observation congruence instead of weak bisimulation—but

the existence of this category is still a matter of speculation.

One of the most intriguing areas for further research is the possible connection between
interaction categories and Milner’s work on action structures. There are two levels at
which connections might exist—the semantic level of SProc or ASProc, and the syntac-
tic level of the typed process calculus. An understanding of the relationship between
the interaction categories and action structures theories would be very satisfying, and

this avenue should certainly be explored.

182 Chapter 7. Conclusions

[Abr9l]

[Abr93a]

[Abr93b]

[Abr94a]

[Abr94b]

[Abr94c]

[Acz88]

[AJ92]

[AJ94]

[AJM94]

[AWS5]

Bibliography

S. Abramsky. Proofs as processes. Unpublished Lecture Notes, 1991.

S. Abramsky. Computational Interpretations of Linear Logic. Theoretical
Computer Science, 111:3-57, 1993.

S. Abramsky. Interaction Categories (Extended Abstract). In G. L. Burn,
S.J. Gay, and M. D. Ryan, editors, Theory and Formal Methods 1993: Pro-
ceedings of the Fuirst Imperial College Department of Computing Workshop
on Theory and Formal Methods, pages 57-70. Springer-Verlag Workshops

in Computer Science, 1993.

S. Abramsky. Interaction Categories and communicating sequential pro-
cesses. In A. W. Roscoe, editor, A Classical Mind: FEssays in Honour of
C. A. R. Hoare, pages 1-15. Prentice Hall International, 1994.

S. Abramsky. Interaction Categories I: Synchronous processes. Paper in

preparation, 1994.

S. Abramsky. Proofs as processes. Theoretical Computer Science, 135:5-9,
1994.

P. Aczel. Non-well-founded sets. CSLI Lecture Notes 14. Center for the
Study of Language and Information, 1988.

S. Abramsky and R. Jagadeesan. New foundations for the geometry of
interaction. In Proceedings, Seventh Annual IEEE Symposium on Logic in
Computer Science, pages 211-222. IEEE Computer Society Press, 1992.

S. Abramsky and R. Jagadeesan. Games and full completeness for mul-
tiplicative linear logic. Journal of Symbolic Logic, 59(2):543 — 574, June
1994.

S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for PCF
(extended abstract). In M. Hagiya and J. C. Mitchel, editors, Theoretical
Aspects of Computer Software. International Symposium TACS’94, num-
ber 789 in Lecture Notes in Computer Science, pages 1-15, Sendai, Japan,

April 1994. Springer-Verlag.

E. A. Ashcroft and W. W. Wadge. Lucid, the dala-flow programming
language. Academic Press, New York, 1985.

183

184 Bibliography

[Bar79] M. Barr. x-Autonomous Categories, volume 752 of Lecture Notes in Math-
emalics. Springer-Verlag, 1979.

[Bar91] M. Barr. *-autonomous categories and linear logic. Mathematical Struc-
tures in Computer Science, 1(2):159-178, July 1991.

[BGI91] C. Brown and D. Gurr. Relations and non-commutative linear logic. Tech-
nical Report PB-372, DAIMI, Aarhus University, November 1991. To ap-
pear in the Journal of Pure and Applied Algebra.

[BHR84] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communi-
cating sequential processes. Journal of the ACM, 31:560-599, 1984.

[BS94] G. Bellin and P. J. Scott. On the 7-calculus and linear logic. Theoretical
Computer Science, December 1994. To appear.

[BW90] J. C. M. Baeten and W. P. Weijland. Process Algebra, volume 18 of Tracts
in Theoretical Computer Science. Cambridge Univ. Press, 1990.

[CGN94] R. L. Crole, S. J. Gay, and R. Nagarajan. An internal language for in-
teraction categories. In C. L. Hankin, I. C. Mackie, and R. Nagarajan,
editors, Theory and Formal Methods 1994: Proceedings of the Second Im-
perial College Department of Computing Workshop on Theory and Formal
Methods., 1994. To appear.

[Cro94] R. L. Crole. Categories for Types. Cambridge University Press, 1994.

[Cur93] P.-L. Curien. Categorical Combinators, Sequential Algorithms and
Functional Programming. Progress in Theoretical Computer Science.
Birkhauser, 1993.

[FM94] G. Ferrari and U. Montanari. Typed additive concurrency. Submitted for
publication., 1994.

[Gay93] S. J. Gay. A sort inference algorithm for the polyadic 7-calculus. In Pro-
ceedings, 20th ACM Symposium on Principles of Programming Languages.
ACM Press, 1993.

[GGBM91] P. Guernic, T. Gautier, M. Borgne, and C. Maire. Programming real-
time applications with SIGNAL. Proceedings of the IEEF, 79(9):1305-1320,
September 1991.

[Gir87] J.-Y. Girard. Linear Logic. Theoretical Computer Science, 50(1):1-102,
1987.

Bibliography 185

[GL8T]

[GLTS9]

[GN93]

[HCRP91]

[HdP93]

[Hoa85]

[Hon93]

[HV92]

[Jac94]

[Jen94]

[Kah74]

[KLS0]

J.-Y. Girard and Y. Lafont. Linear Logic and lazy computation. In CFLP
87: Conference on Functional and Logic programming, volume 250 of Lec-

ture Noles in Compuler Science. Springer Verlag, 1987.

J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of
Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, 1989.

S. J. Gay and R. Nagarajan. Modelling SIGNAT in Interaction Categories.
In G. L. Burn, S. J. Gay, and M. D. Ryan, editors, Theory and For-
mal Methods 1993: Proceedings of the First Imperial College Department
of Computing Workshop on Theory and Formal Methods. Springer- Verlag
Workshops in Computer Science, 1993.

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
data flow programming language LUSTRE. Proceedings of the IEFE,
79(9):1305-1320, September 1991.

J. M. E. Hyland and V. C. V. de Paiva. Full intuitionistic linear logic
(extended abstract). Annals of Pure and Applied Logic, 64(3):273-291,
1993.

C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

K. Honda. Types for dyadic interaction. In CONCUR 93, Lecture Notes
in Computer Science. Springer-Verlag, 1993.

K. Honda and V. Vasconcelos. Principal typing scheme for polyadic =-
calculus. Unpublished report., 1992.

B. Jacobs. Semantics of weakening and contraction. Annals of Pure and
Applied Logic, 69:73-106, 1994.

T. P. Jensen. A simple semantics of synchronous dataflow. In C. L. Hankin,
I. C. Mackie, and R. Nagarajan, editors, Proceedings of the Second Impe-
rial College Department of Computing Workshop on Theory and Formal
Methods, 1994. To appear.

G. Kahn. The semantics of a simple language for parallel programming.

In Information Processing 74, 1974.

G. M. Kelly and M. L. Laplaza. Coherence for compact closed categories.
Journal of Pure and Applied Algebra, 19:193-213, 1980.

186 Bibliography

[Laf88] Y. Lafont. The Linear Abstract Machine. Theoretical Computer Science,
59(1,2):157-180, 1988.

[Laf90] Y. Lafont. Interaction nets. In Proceedings of the Seventeenth ACM Sym-
posium on Principles of Programming Languages, pages 95-108. ACM,
ACM Press, January 1990.

[Lam58] J. Lambek. The mathematics of sentence structure. American Mathemat-
tcal Monthly, 65:154-170, 1958.

[L.S86] J. Lambek and P. J. Scott. Introduction to Higher Order Categorical Logic.
Cambridge Studies in Advanced Mathematics Vol. 7. Cambridge Univer-
sity Press, 1986.

[Mac71] S. Mac Lane. Categories for the Working Mathematician. Springer-Verlag,
Berlin, 1971.

[Mac94] 1. Mackie. Lilac : A functional programming language based on linear
logic. Journal of Functional Programming, 4(4):1-39, October 1994.

[Man76] E. Manes. Algebraic Theories, volume 26 of Graduate Texts in Mathemat-
ics. Springer-Verlag, 1976.

[Mil83] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer
Science, 25:267-310, 1983.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[Mil91] R. Milner. The polyadic 7-calculus: A tutorial. Technical Report 91-180,
Laboratory for Foundations of Computer Science, Department of Com-

puter Science, University of Edinburgh, 1991.

[Mil93a] R. Milner. Action structures. Technical Report 92-249, Laboratory for
Foundations of Computer Science, Department of Computer Science, Uni-
versity of Edinburgh, 1993.

[Mil93b] R. Milner. Action structures for the w-calculus. Technical Report 93-264,
Department of Computer Science, University of Edinburgh, 1993.

[Mil93c] R. Milner. An action structure for the synchronous 7-calculus. In Pro-
ceedings of FCT’93, volume 710 of LNCS, pages 87-105. Springer- Verlag,
1993.

[Mil93d] R. Milner. Action calculi and the 7w-calculus. In Proceedings of the NATO
Summer School on Logic and Computation. Springer-Verlag, 1993.

Bibliography 187

[Mil94]

[MMP94]

[MOMO1]

[MPW8]

[MT91]

[PS93]

[See87]

[Tur94]

[Wad81]

[Yet90]

R. Milner. Control structures II: Naming monoids. Draft, June 1994.

A. Mifsud, R. Milner, and J. Power. Control structures I. Draft, June
1994.

N. Marti-Oliet and J. Meseguer. From petri nets to linear logic. Mathe-
matical Structures in Computer Science, 1:69-101, 1991.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes.
Technical report, Laboratory for Foundations of Computer Science, De-

partment of Computer Science, University of Edinburgh, 1989.

R. Milner and M. Tofte. Co-induction in relational semantics. Theoretical
Computer Science, 87:209-220, 1991.

B. Pierce and D. Sangiorgi. Types and subtypes for mobile processes.
In Proceedings, Fighth Annual IFEE Symposium on Logic in Compuler
Science. IEEE Computer Society Press, 1993.

R. Seely. Linear logic, *-autonomous categories and cofree coalgebras. In

Contempory Mathemalics, 1987.

D. N. Turner. Type and Polymorphism in the mw-calculus. PhD thesis, De-
partment of Computer Science, University of Edinburgh, 1994. In prepa-

ration.

W. W. Wadge. An extensional treatment of dataflow deadlock. Theoretical
Computer Science, 13:3—15, 1981.

D. N. Yetter. Quantales and (noncommutative) linear logic. Journal of
Symbolic Logic, 55(1):41-64, March 1990.

