
Linear-algebraic λ-calculus:

higher-order, encodings and confluence.

Pablo Arrighi
Université de Grenoble and IMAG Laboratories,

46 Avenue Félix Viallet, 38031 Grenoble Cedex, France.
Pablo.Arrighi@imag.fr

Gilles Dowek

École polytechnique and INRIA,
LIX, 91128 Palaiseau Cedex, France.
Gilles.Dowek@polytechnique.edu

December 22, 2006

Abstract

We introduce a minimal language combining both higher-order com-
putation and linear algebra. Roughly, this is nothing else than the λ-
calculus together with the possibility to make linear combinations of terms
α.t + β.u. We describe how to “execute” this language in terms of a few
rewrite rules, and justify them through the two fundamental requirements
that the language be a language of linear operators, and that it be higher-
order. We mention the perspectives of this work in field of quantum
computation, which we show can be easily encoded in the calculus, as
well as in other domains such as the interpretation of linear logic. Finally
we prove the confluence of the calculus, this is our main result.

1 Motivations

Quantum computation & computability in vector spaces. Over the last two
decades, the discovery of several great algorithmic results [8, 20, 11] has raised
important expectations in the field of quantum computation. Somewhat sur-
prisingly however these results have been expressed in the primitive model of
quantum circuits – a situation which is akin to that of classical computation
in the 1950s. Over the last few years a number of researchers have sought to
develop quantum programming languages as a consequence. Without aiming
to be exhaustive and in order to understand where this work comes in, it helps
to classify these proposals according to “how classical” versus “how quantum”
they are [19].

There are two ways a quantum mechanical system may evolve: according to a
unitary transformation or under a measurement. The former is often thought
of as “purely quantum”: it is deterministic and will typically be used to ob-
tain quantum superpositions of base vectors. The latter is probabilistic in the
classical sense, and will typically be used to obtain some classical information
about a quantum mechanical system, whilst collapsing the system to a mere
base vector.
Note that these are only typical uses: it is well-known that one can simulate any
unitary transformation by series of measures on the one hand, and reduce all
measures to a mere projection upon the canonical basis at the end of a computa-
tion on the other hand. It remains morally true nonetheless that measurement-
based models of quantum computation tend to hide quantum superpositions
behind a classical interface, whilst the unitary-based models of quantum com-
putation tend to consider quantum superpositions as legitimate expressions of
the language, and sometimes even seek to generalize their effects to control flow.
Therefore one may say that measurement-based models of quantum computa-
tion – whether reliant upon teleportation[14], state transfer [16] or more aston-
ishingly graph states [17] – lie on one extreme, as they keep the “quantumness”
to a minimum.
A more balanced approach is to allow for both unitary transformations and
quantum measurements. Such models can be said to formalize the existing al-
gorithm description methods to a strong extent: they exhibit quantum registers
upon which quantum circuits may be applied, together with classical registers
and programming structures in order to store measurements results and con-
trol the computation [18]. For this reason they are the more practical route
to quantum programming. Whilst this juxtaposition of “quantum data, clas-
sical control” has appeared ad-hoc and heterogeneous at first, functional-style
approaches together with linear type systems [19] have ended up producing el-
egant quantum programming languages.
Finally we may evacuate measures altogether – leaving them till the end of
the computation and outside the formalism. This was the case for instance in
[21, 22], but here the control structure remained classical. In our view this be-
comes interesting only once we have also overcome the need for any additional
classical registers and programming structures, and aim to draw the full con-
sequence of quantum mechanics: “quantum data, quantum control”. Quantum
Turing Machines [4], for instance, lie on this other extreme, since the entire ma-
chine can be in a superposition of base vectors. Unfortunately they are rather
oblivious as a mean to describe an algorithm. Functional-style control struc-
ture, on the other hand, seem to merge with quantum evolution descriptions in
a unifying manner. The functional language we describe is “purely quantum”:
there is no classical register, no classical control structure, no measurements, it
allows arbitrary quantum superpositions of base vectors.
The language we provide is a language of “computable linear operators” in a
wide sense, in particular these are not restricted to being unitary. It is well-
known that quantum computable function are unitary operators, but our view
is that the unitarity constraint need not be wired in the language, i.e. it may

2

also be enforced by an a posteriori static analysis of the program – exactly like
typability is not wired in the pure λ-calculus, but may be enforced a posteriori.
Therefore this work may serve as a basis for studying wider notions computabil-
ity upon abstract vector spaces.
The functions expressed in our language are linear operators upon the space
constituted by its terms. It is strongly inspired from [3] where terms clearly
form a vector space. However because it is higher-order, as functions may be
passed as arguments to other functions, we get forms of infinity coming into
the game. Thus, the underlying algebraic structure is not as obvious as in [3].
In this paper we provide the rules for executing the language in a consistent
fashion (confluence), but we leave open the precise nature of the model which
lies beneath.

Type theory & logics. In this article linearity is understood in the sense of
linear algebra, but a further aim to this research is to investigate connections
with linear logic, where propositions stand for resources [10]. Specifications
expressed in linear logic may be seen as types for programs expressed in linear
λ-calculus. In the linear λ-calculus one distinguishes linear resources, which may
not be duplicated nor discarded, from nonlinear resources, which are denoted
by the “bang” ! and whose fate is not subjected to particular restrictions. The
linear-algebraic λ-calculus we describe bears strong resemblances with the linear
λ-calculus, as well as some crucial, strongly motivated differences. Duplication
of a term t is again treated cautiously, but in a finer way: only terms expressing
base vectors can be duplicated, which is compatible with linear algebra. As we
shall see, terms of the form λx u are always base vectors. As a consequence,
even when a term t cannot be duplicated the term λx t can. Since the term
λx t is a function building the term t, it can be thought of as a description
of t. This suggests some connections between the abstraction λx, the ! (bang)
operator of linear lambda-calculus and the ′ (quote) operator that transforms a
term into a description of it as used for instance in LISP.
The paper may also be viewed as part of a wave of probabilistic extensions of
calculi, e.g. [12, 5]. Type theories for probabilistic extensions of the λ-calculus
such as ours or the recent [9] may lead to interesting forms of quantitative logics.

Confluence and the unicity of results. A standard way to describe how a pro-
gram is executed is to give a small step operational semantic, i.e. rewrite rules
which gradually transform a program into a value. The main theorem proved in
this paper is the confluence of our language. What this means is that the order
in which those transformations are applied does not affect the end result of the
computation. Confluence results are milestones in the study of programming
languages and more generally in the theory of rewriting. Our proof uses many
of the theoretical tools that have been developed for confluence proofs in a vari-
ety of fields (local confluence and Newman’s lemma; strong confluence and the
Hindley-Rosen lemma) as well as the avatar lemma for parametric rewriting as
introduced in [2]. These are fitted together in an elaborate architecture which
may have its own interest.

Section 2 presents the designing principles of the language, Section 3 formally

3

describes the linear-algebraic λ-calculus and its semantics. In Section 4 we show
that the language is expressive enough for classical and quantum computations.
The confluence of the calculus is proved in full details in Section 5, this is our
main technical result.

2 Main features of the language

Higher-order. In quantum computing many algorithms fall into the category
of “black-box” algorithms. I.e. some mysterious implementation of a function f
is provided to us which we call “oracle” – and we wish to evaluate some property
of f , after a limited number of queries to its oracle. For instance in the Deutsch-
Josza algorithm, f is a function f : {false, true}n −→ {false, true} which is
either constant (i.e. ∃c∀x[f(x) = c]) or balanced (i.e. |{x such that f(x) =
false}| = |{x such that f(x) = true}|), whose corresponding oracle is a unitary
transformation Uf : Hn+1

2 −→ Hn+1
2 such that Uf : x ⊗ b 7→ x ⊗ (b ⊕ f(x)).

Our aim is to determine whether f is constant or balanced, and it turns out we
can do so in one single query to its oracle. The algorithm works by applying
H⊗n+1

upon false⊗
n

⊗ true, then Uf , and then H⊗n+1
again. It is clear that

quantum functional language must be able to express algorithms as a function
of an oracle. E.g. we may want to define

Dj1 ≡ λx ((H ⊗H) (x ((H ⊗H) (false⊗ true)))

so that Dj1 Uf reduces to (H ⊗H) (Uf ((H ⊗H) (false⊗ true))). More impor-
tantly even one must be able to express algorithms, whether they are “black-
box” or not, independent of the size of their input. This is what differentiates
programs from fixed-size circuits, and demonstrates the ability to have control
flow. The way to achieve this in functional languages involves duplicating basic
components of the algorithm an appropriate number of times. E.g. we may
want to define some Dj operator so that (Djn)Uf reduces to the appropriate
(Djn)Uf , where n is a natural number.
More generally higher-order is a desirable feature to have, for expressing recur-
sion, for typing, for high-level programming.

Copying. We seek to design a λ-calculus, i.e. have the possibility to in-
troduce and abstract upon variables, as a mean to express functions of these
variables. In doing so we must allow functions such as λx (x⊗ x), which dupli-
cate their argument. This is necessary for expressivity, for instance in order to
obtain the fixed point operator or any other form of iteration/recursion.
In quantum computing, most quantum programming language proposals consist
in some quantum registers undergoing unitary transforms and measures on the
one hand, together with classical registers and programming structures ensuring
control flow on the other. Because we seek to reach beyond this duality and
obtain a purely quantum programming language, functions such as λx (x ⊗ x)
need be applicable to superpositions also. But quantum mechanics brings its
own constraint: we know that cloning is not allowed [23], i.e. that the operator
which maps any vector ψ onto the vector ψ ⊗ ψ is not linear.

4

Actually this is really just a question of linearity. Faced with the term (λx (x⊗
x)) (false + true), one could either start by substituting false + true for x
and get the normal form (false + true) ⊗ (false + true), or start by us-
ing the fact that all the functions defined in our language must be linear
and get ((λx (x ⊗ x)) false) + ((λx (x ⊗ x)) true) and finally the normal form
(false⊗ false)+(true⊗ true), leading to two different results. More generally,
faced with a term of the form (λx t) (u + v), one could either start by sub-
stituting u + v for x, or start by applying the right-hand-side linearity of the
application, breaking the confluence of the calculus. So that operations remain
linear, it is clear that we must start by developing over the +, until we reach
a base vector. By base vector we mean a term which does not reduce to a
superposition. Therefore we restrict the β-reduction rules to cases where the
argument is a base vector.
With this restriction, we say that our language allows copying but not cloning.
It is clear that copying has all the expressivity required in order to express con-
trol flow, since it behaves exactly like the standard β-reduction so long as the
argument passed is not in a superposition. This is the appropriate linear exten-
sion of the β-reduction, philosophically it comprehends classical computation as
a (non-superposed) sub-case of quantum computation.

Higher-order & copying. The main conceptual difficulty when seeking to
let our calculus be higher-order is to understand how it combines with this
idea of “copying”, i.e. duplicating only base vectors. I.e. terms of the form
(λx (xx)) (λxv) raise the important question of whether the λ-term λxv must
be considered to be a base vector or not. Several arguments apply:

• Consider λxx. This is akin to
∑

i bi �bi, where each bi �bi is some pro-
jector term such that (bi �bi)bj −→∗ δijbi, with (bi)i the computational
basis.

Hence λxx is not a base vector. The problem we then face is that we
no longer know how (λx (xx)) (λxx) reduces. Indeed, in order to favour
copy over cloning we must first develop as

∑
i(λx (xx))bi�bi+ . . ., which

we know how to do only if λx (xx) acts over a finite domain. Since our
terms are infinite and countable, such a design option must be abandoned
or kept for a typed version of the calculus. Moreover this would be rather
difficult to program with, for instance applying some black-box algorithm
which iterates several times the function passed as argument would scatter
this black-box into its component projectors, instead of using it as whole.
For instance applying the function λf ((f false)⊗(f true)) to the identity,
would scatter the identity into two projectors false�false and true�true,
compute the term ((f false)⊗ (f true)) for each of them, yielding the null
vector in both cases and sum the results. We would thus obtain the result
0 instead of the expected vector false⊗ true.

• Consider λxx. This is akin to the string “
∑

i bi � bi”, or rather to
the classical description of a quantum machine which leaves its input un-

5

changed. Hence λxx is a base vector. We favour this option. In this
setting (λf ((f false) ⊗ (f false))) (λxx) must reduce into false ⊗ true,
but there is another dilemma.

– Now consider λx (x + b), with b a base vector. This is akin to
λxx + λxb and hence it is not a base vector. As a consequence
(λx (xx)) (λx (x + b)) must reduce into (λxx) + b, by linearity. In
other words we ask that λx (t + u) −→ λx t + λxu and λxα.t −→
α.λx t, i.e. that the abstraction be a unary linear symbol. In gen-
eral this means that λxv may be a superposition state, and must
be tested for it. This is a rather difficult task if an application
appears in v for instance, and supposing it may create superposi-
tions out of base vectors. Then the danger is that terms such as
(λx (xx))(λx (xx)) cannot reduce further as a consequence, whereas
in order to recover the classical λ-calculus and its expressivity such
terms should loop forever. But actually without any extension such
a design option makes it impossible to create superpositions out of
base vectors. These will always have to preexist somehow in the term,
resulting in a lack of expressivity.

– Consider λx (x + b). This is akin to the string “
∑

i bi � (bi + b)”,
or rather to the classical description of a machine which adds b to
its input. Hence λx (x + b) is a base vector. As a consequence
(λx (xx)) (λx (x + b)) must reduce into (λx (x + b)) + b. In other
words, we ask that abstractions wear an implicit LISP-like quote
operator, i.e. they are classical descriptions of machines performing
some operation, and hence they are always base vectors. The term
(λx (xx))(λx (xx)) loops forever, we recover the classical call by
value λ-calculus as a special case. This choice comes at no cost for
expressivity, since terms such as (λxx) + (λxb) remain allowed, but
have a different interpretation from λx(x + b). They act the same,
but are acted upon differently. We favour this option.

Hence we can now define base vectors as being either abstractions (since we
have taken the view that these are descriptions of machines performing some
operation) or variables (because in the end these will always be substituted for
a base vector).

Base dependence. Therefore it is clear that there is a notion of privileged
basis arising in the calculus, but without us having to a priori choose a canonical
basis (e.g. we do not introduce some arbitrary orthonormal basis {|i〉} all of
a sudden – i.e. we have nowhere specified a basis at the first-order level). A
posteriori, we could have replaced the above full blown discussion by the more
direct argument:
- we need to restrict (λx t)u −→ t[u/x] to “base vectors”;
- we want higher-order in the traditional sense (λx t) (λy t) −→ t[λy t/x];
- therefore abstractions must be the base vectors.

6

The eventual algebraic consequences of this notion of a privileged basis aris-
ing as a consequence of the higher-order level are left as a topic for further
investigations.

Infinities & confluence. It is possible, in our calculus, to define fixed point
operators such as

Y = λy
(
(λx (y + (xx))

)(
λx (y + (xx)))

)
Then, if b is a base state, the term (Y b) reduces to b + (Y b), i.e. the term
reductions generate a computable series of vectors (n.b + (Y b))n whose norm
grows towards infinity. This was expected in the presence of both fixed points
and linear algebra, but the appearance of such infinities entails the appearance
of indefinite forms, which we must handle with great caution. Marrying the full
power of untyped λ-calculus, including fixed point operators etc., with linear-
algebra therefore jeopardizes the confluence of the calculus unless we introduce
some further restrictions.

Example 1
If we took an unrestricted factorization rule α.t + β.t −→ (α + β).t, then the
term (Y b)− (Y b) would reduce to (1 + (−1)).(Y b) and then 0. It would also
be reduce to b + (Y b)− (Y b) and then to b, breaking the confluence.

Thus, exactly like in elementary calculus ∞ − ∞ cannot be simplified to 0,
we need to introduce a restriction to the rule allowing to factor α.t + β.t into
(α+β).t to the cases where t is finite. But, as it is impossible to test in general
if a term t is finite, we restrict further this rule to the case where the term t is
normal. It is fascinating to see how this restriction equates the algebraic notion
of “being normalized” with the rewriting notion of “being normal”. The next
two examples show that this indefinite form may pop up in some other, more
hidden, ways.

Example 2
Consider the term (λx ((x)− (x))) (λy (Y b)) where is any base vector, for
instance false. If the term (x) − (x) reduced to 0 then this term would both
reduce to 0 and also to (Y b)− (Y b), breaking confluence.

Thus, the term t we wish to factor must also be closed.

Example 3
If we took an unrestricted rule (t + u)v −→ (t v) + (uv) the term (λx (x) −
λx (x)) (λy (Y b)) would reduce to (Y b)− (Y b) and also to 0, breaking con-
fluence.

Thus we have to restrict this rule to the case where t + u is normal and closed.

Example 4
If we took an unrestricted rule (α.u)v −→ α.(uv) then the term (α.(x + y)) z
would reduce both to (α.x + α.y) z and to α.((x + y) z), breaking confluence.

7

Thus we have to restrict this rule to the case where u is normal and closed.
This discussion motivates each of the restrictions (∗)−(∗∗∗∗) in the rules below.
It may come as a surprise that we are able to tame infinities with this small
added set of restrictions, and without any need for context-sensitive conditions,
as we shall prove in Section 5.

3 The Language

We consider a first-order language, called the language of scalars, containing at
least constants 0 and 1 and binary function symbols + and ×. The language of
vectors is a two-sorted language, with one sort for the vectors and one sort for
the scalars, described by the following term grammar:

t ::= x | λx t | (t t) | 0 | α.t | t + t

where α is has the sort of scalars.
In this paper we consider only semi-open terms, i.e. terms containing vector
variables but no scalar variables. In particular all scalar terms will be closed.
As usual we write (t u1 ...un) for (...(t u1) ...un). Vectors appear in bold.

Definition 1 (The system S – scalar rewrite system) A scalar rewrite sys-
tem S is an arbitrary rewrite system defined on scalar terms and such that

• S is terminating and confluent on closed terms,

• for all closed terms α, β and γ, the pair of terms

– 0 + α and α,

– 0× α and 0,

– 1× α and α,

– α× (β + γ) and (α× β) + (α× γ),
– (α+ β) + γ and α+ (β + γ),

– α+ β and β + α,

– (α× β)× γ and α× (β × γ),
– α× β and β × α

have the same normal forms,

• 0 and 1 are normal terms.

Definition 2 (The relation −→XAC) Let X be a rewrite system, we define
the relation −→XAC as follows t −→XAC u if there exists a term t′ such that
t =AC t′, an occurrence p in t′, a rewrite rule l −→ r in X and a substitution
σ such that t′|p = σl and u =AC t′[p← σr]).

8

Definition 3 (The system L – vector spaces) We consider a system called
L formed with the rules of S and the union of four groups of rules E, F , A and
B

• Group E – elementary rules

u + 0 −→ u

0.u −→ 0

1.u −→ u

α.0 −→ 0

α.(β.u) −→ (α× β).u

α.(u + v) −→ α.u + α.v

• Group F – factorisation

α.u + β.u −→ (α+ β).u (∗)

α.u + u −→ (α+ 1).u (∗)

u + u −→ (1 + 1).u (∗)

• Group A – application

(u + v) w −→ (u w) + (v w) (∗∗)

w (u + v) −→ (w u) + (w v) (∗∗)

(α.u) v −→ α.(u v) (∗ ∗ ∗)

v (α.u) −→ α.(v u) (∗ ∗ ∗)

0 u −→ 0

u 0 −→ 0

• Group B – beta reduction

(λx t) b −→ t[b/x] (∗ ∗ ∗∗)

where + is an AC symbol.
(∗) the rules apply only if u is a closed L-normal term.
(∗∗) the rules apply only if u + v is a closed L-normal term.
(∗ ∗ ∗) the rules apply only if u is a closed L-normal term.
(∗ ∗ ∗∗) the rule apply only when b is a “base vector” term, i.e. an abstraction
or a variable.

9

Notice that the restriction (∗), (∗∗) and (∗ ∗ ∗) are well-defined as the terms to
which the restrictions apply are smaller than the left-hand side of the rule.
Notice that the restrictions (∗), (∗∗) and (∗ ∗ ∗) are stable by substitution.
Hence these conditional rules could be replaced by an infinite number of non
conditional rules, i.e. by replacing the restricted variables by all the closed
normal terms verifying the conditions.

Normal forms. We have explained why abstractions ought to be consid-
ered as “base vectors” in our calculus. We have highlighted the presence of
non-terminating terms and infinities, which make it impossible to interpret the
calculus in your usual vector space structure. The following two results show
that terminating closed terms on the other hand can really be viewed as super-
position of abstractions.

Proposition 1 An L-closed normal form that is not a sum, a product by a
scalar, or the null vector is an abstraction.

Proof. By induction over term structure. Let t be a closed normal term that
is not a sum, a product by a scalar, or the null vector. The term t is not a
variable because it is closed, hence it is either an abstraction in which case we
are done, or an application. In this case it has the form (uv1 . . . vn) where
u,v1, . . .vn are normal and closed and n is different from 0. Neither u nor v1

is a sum, a product by a scalar, or the null vector since the term being normal
we then could apply rules of group A. Thus by induction hypothesis both terms
are abstractions. Hence the term is not normal because of rule B.

Proposition 2 (Form of closed normal forms) A L-closed normal form is
either the null vector or of the form∑

i

αi.λx ti +
∑

i

λxui

Proof. If the term is not the null vector it can be written as a sum of terms that
are neither 0 nor sums. We partition these terms in order to group those which
are weighted by a scalar. Hence we obtain a term of the form∑

α′i.t
′
i +
∑

u′
i

where the terms u′
i are neither null, nor sums, nor weighted by a scalar. Hence

by Proposition 1 they are abstractions. Because the whole term is normal the
terms t′i are themselves neither null, nor sums, nor weighted by a scalar since
we could apply rules of group E. Hence Proposition 1 also applies.

4 Encoding classical and quantum computation

The restrictions we have placed upon our language are still more permissive
than those of the call-by-value λ-calculus, hence any classical computation can

10

expressed in the linear-algebraic λ-calculus just as it can in can in the call-
by-value λ-calculus. For expressing quantum computation we need a specific
language of scalars together with its scalar rewrite system. This is not difficult,
as was shown in [3]. It then suffices to express the three universal quantum
gates H,Phase,Cnot, which we will do next.
Encoding booleans. We encode the booleans as the first and second projections,
as usual in the classical λ-calculus.

true ≡ λxλy x

false ≡ λxλy y

Here is a standard example on how to use them:

Not ≡ λy
(
y false true

)
.

Encoding unary quantum gates. For the Phase gate the naive encoding will not
work, i.e.

Phase 6≡ λy
(
y (ei π

4 .true) false
)

since by bilinearity this would give Phase false −→∗ ei π
4 .false, whereas the

Phase gate is supposed to place an ei π
4 only on true. The trick is to use

abstraction in order to retain the ei π
4 phase on true only.

Phase ≡ λy
((

y λx (ei π
4 .true)λx false

))
where is any base vector, for instance false.

Now Phase true yields

λy
((

y λx (ei π
4 .true)λx false

))
true(

trueλx (ei π
4 .true)λx false

)
(
(λxλy x)λx (ei π

4 .true)λx false
)

(λx (ei π
4 .true))

ei π
4 .true

whereas Phase false yields

λy
((

y λx (ei π
4 .true)λx false

))
false(

falseλx (ei π
4 .true)λx false

)
(
(λxλy y)λx (ei π

4 .true)λx false
)

(λx false)
false

11

This idea of using the abstraction to restrict linearity can be generalized with
the following construct:

[t] ≡ λx t

whose effect is to associate a base vector [t] to any state, and its converse

{t} ≡ t

Where is any base vector, for instance false. We then have the derived rule

{[t]} −→ t

thus {.} is a “left-inverse” of [.], but not a ”right inverse”, just like eval and
′ (quote) in LISP. Note that these hooks do not add anymore power to the
calculus, in particular they do not enable cloning. We cannot clone a given state
α.t+β.u, but we can copy its classical description [α.t+β.u]. For instance the
function λx [x] will never “canonize” anything else than a base vector, because
of restriction (∗ ∗ ∗∗). The phase gate can then be written

Phase ≡ λy
{
(y [ei π

4 .true]) [false]
}

For the Hadamard gate the game is just the same:

H ≡ λy
((

y λx (
√

2
2
.(false− true))λx (

√
2

2
.(false + true))

))
≡ λy

{
y [
√

2
2
.(false + true)] [

√
2

2
.(false− true)]

}
where is any base vector, for instance false.

Encoding tensors. In quantum mechanics, vectors are put together via the
bilinear symbol ⊗. But because in our calculus application is bilinear, the usual
encoding of tuples does just what is needed.

⊗ ≡ λxλy λf
(
f x y

)
π1 ≡ λxλy x

π2 ≡ λxλy y⊗
≡ λf λg λx

(
⊗
(
f (π1 x)

) (
g (π2 x)

))
E.g. H⊗2 ≡

(⊗
HH

)
From there on the infix notation for tensors will be used, i.e.

t⊗ u ≡ ⊗ t u

t
⊗

u ≡
⊗

t u.

12

Encoding the Cnot gate. This binary gate is essentially a classical gate, its
encoding is standard.

Cnot ≡ λx

(
(π1 x)⊗

((
(π1 x)

(
Not (π2 x)

))
(π2 x)

))

Expressing the Deutsch-Josza algorithm parametrically. We can now express al-
gorithms parametrically. Here is the well-known simple example of the Deutsch
algorithm.

Dj1 ≡ λx

(
H⊗2

(
x
(
H⊗2

(
false⊗ true

))))

But we can also express control structure and use them to express the depen-
dence of the Deutsch-Josza algorithm with respect to the size of the input. En-
coding the natural number n as the Church numeral n ≡ λxλf (fn x) the term
(n H λy (H

⊗
y)) reduces to H⊗n+1

and similarly the term (n true λy (false⊗
y)) reduces to false⊗

n

⊗ true. Thus the expression of the Deutsch-Josza algo-
rithm term of the introduction is now straightforward.

Dj ≡ λnλx

(
(n H λy (H

⊗
y))
(
x
(
(n H λy (H

⊗
y))
(
n true λy (false⊗ y)

))))

5 Confluence

The main theorem of this paper is the confluence of the system L.
We shall proceed in two steps and prove first the confluence of the system
R = S ∪ E ∪ F ∪A, i.e. the system L minus the rule B.
To prove the confluence of R we prove its termination and local confluence. To
be able to use a critical pair lemma, we shall use a well-known technique, de-
tailed in the Section 5.1, and introduce an extension Rext = S ∪E ∪Fext ∪A of
the system R as well as a more restricted form of AC-rewriting. This proof will
proceed step by step as we shall prove first the local confluence of the system
S ∪ E (Section 5.2) then that of S ∪ E ∪ Fext (Section 5.3) and finally that of
S ∪ E ∪ Fext ∪ A (Section 5.4). To prove the local confluence of the system
S ∪E we shall prove that of the system S0 ∪E where S0 is a small avatar of S.
Then we use a novel proof technique in order to extend from S0 to S, hereby
obtaining the confluence of S ∪ E. As the system R does not deal at all with
lambda abstractions and bound variables, we have, throughout this first part
of the proof, considered λx as a unary function symbol and the bound occur-
rences of x as constants. This way we can safely apply known theorems about
first-order rewriting.
The last step towards our main goal is to show that the B‖ rule is strongly con-
fluent on the term algebra, and commutes with R∗, hence giving the confluence
of L (Section 5.5).

13

5.1 Extensions and the critical pairs lemma

The term ((a+b)+a)+c is AC-equivalent to ((a+a)+b)+c and thus reduces
to ((1 + 1).a+b) + c. However, no subterm of ((a+b) + a) + c matches u+u.
Thus we cannot restrict the application of a rewrite rule to a subterm of the
term to be reduced, and we have to consider all the AC-equivalents of this term
first. This problem has been solved by [15, 13] that consider a simpler form of
application (denoted −→X,AC) and an extra rule (u+u) +x −→ (1 + 1).u+x.
Notice that now the term ((a + b) + a) + c has a subterm (a + b) + a that is
AC-equivalent to an instance of the left-hand-side of the new rewrite rule.

Definition 4 (The relation −→X,AC) Let X be a rewrite system, we define
the relation −→X,AC as follows t −→X,AC u if there exists an occurrence p in
t, a rewrite rule l −→ r in X and a substitution σ such that t|p =AC σl and
u =AC t[p← σr].

Definition 5 (The extension rules)

(α.u + β.u) + x −→ (α+ β).u + x (∗)

(α.u + u) + x −→ (α+ 1).u + x (∗)
(u + u) + x −→ (1 + 1).u + x (∗)

We call Fext the system formed by the rules of F and these three rules and Rext

the system S ∪ E ∪ Fext ∪A.

As we shall see the confluence of−→R AC is a consequence of that of−→(Rext),AC .
As usual we write t −→∗ u if and only if t = u or t −→ . . . −→ u. We also
write t −→? u if and only if t = u or t −→ u.

Definition 6 (confluence) A relation X is said to be confluent if whenever
t −→∗

X u and t −→∗
X v, there exists a term w such that u −→∗

X w and v −→∗
X w.

Definition 7 (local confluence) A relation X is said to be locally confluent
if whenever t −→X u and t −→X v, there exists a term w such that u −→∗

X w
and v −→∗

X w.

Definition 8 (Critical pair) Let l −→ r and l′ −→ r′ two rewrite rules of
an AC-rewrite system X, let p be an occurrence in l such that l|p is not a free
variable. Let σ be a AC-unifier for l|p and l′, the pair

(
σr, σ(l[p ← r′])

)
is a

critical pair of the the rewrite system X.

Proposition 3 (Critical pair lemma) The relation −→X,AC is locally con-
fluent if for each critical pair (t, u) there exists a term w such that t −→∗

X,AC w
u −→∗

X,AC w.

Proposition 4 If −→Rext,AC is locally confluent and −→R AC terminates then
−→R AC is confluent.

Proof. From the general Theorems 8.9, 9.3 and 10.5 of [15]. Thus to prove the
confluence of −→R AC we shall prove its termination and the local confluence
of −→Rext,AC .

14

5.2 Local confluence of S ∪ E

Definition 9 (The rewrite system S0) The system S0 is formed by the rules

0 + α −→ α

0× α −→ 0

1× α −→ α

α× (β + γ) −→ (α× β) + (α× γ)

where + and × are AC symbols.

Proposition 5 The system S0 ∪ E is locally confluent.

Proof. We check that all the critical pair close using Proposition 3. This can be
automatically done using, for instance, the system CIME [6].

Definition 10 (Subsumption) A terminating and confluent relation S sub-
sumes a relation S0 if whenever t −→S0 u, t and u have the same S-normal
form.

Definition 11 (Commuting relations) Two relations X and Y are said to
be commuting if whenever t −→X u and t −→Y v, there exists a term w such
that u −→Y w and v −→X w.

Proposition 6 (The avatar lemma) Let E, S and S0 be three relations de-
fined on a set such that:
-S is terminating and confluent;
-S subsumes S0;
-S0 ∪ E is locally confluent;
-E commutes with S∗.
Then, the relation S ∪ E is locally confluent.

Proof. [E can be simulated by E;S ↓].
If t −→E u and t −→S↓ v, then there exists w such that u −→S↓ w and
v −→E;S↓ w. Indeed by commutation of E and S∗ there exists a such that
u −→S∗ a and v −→E a. Normalizing a under S yields the w.
[S0 ∪ E can be simulated by (E;S ↓)?].
If t −→S0∪E u and t −→S↓ v, then there exists w such that u −→S↓ w and
v −→?

E;S↓ w. Indeed if t −→S0 u this is just subsumption, else the first point of
this proof applies.
[S ∪ E can be simulated by (E;S ↓)?].
If t −→S∪E u and t −→S↓ v, then there exists w such that u −→S↓ w and
v −→?

E;S↓ w. Indeed if t −→S u this is just the normalization of S, else the first
point of this proof applies.
[E;S ↓ is locally confluent].
If t −→E;S↓ u and t −→E;S↓ v, then there exists w such that u −→∗

E;S↓ w and

15

v −→∗
E;S↓ w. Indeed if t −→E a −→S↓ u and t −→E b −→S↓ v we know from

the local confluence of S0 ∪ E that there exists c such that a −→∗
S0∪E c and

b −→∗
S0∪E c. Normalizing c under S yields the w. This is because by the second

point of the proof u −→∗
E;S↓ w and v −→∗

E;S↓ w.
[S ∪ E is locally confluent].
If t −→S∪E u and t −→S∪E v, then there exists w such that u −→∗

S∪E w and
v −→∗

S∪E w. Indeed call t↓, u↓, v↓ the S normalized version of t, u, v. By the
third point of our proof we have t↓ −→?

E;S↓ u
↓ and t↓ −→?

E;S↓ v
↓. By the fourth

point of our proof there exists w such that u↓ −→∗
E;S↓ w and v↓ −→∗

E;S↓ w.

Proposition 7 For any scalar rewrite system S the system S ∪ E is locally
confluent.

Proof. The system S is confluent and terminating because it is a scalar rewrite
system. The system S subsumes S0 because S is a scalar rewrite system. From
Proposition 5, the system S0 ∪E is locally confluent. Finally, we check that the
system E commutes with S∗. Indeed, we check this for each rule of E, using
the fact that in the left member of a rule, each subterms of sort scalar is either
a variables or 0 or 1, which are normal forms. We conclude with Proposition 6.

5.3 Local confluence of S ∪ E ∪ Fext

Proposition 8 The system S ∪ E ∪ Fext is locally confluent.

Proof. This system is made of two subsystems : S ∪ E and Fext. To prove
that it is locally confluent, we prove that all critical pairs close. We used an
AC-unification algorithm to compute these critical pairs. If both rules used are
rules of the system S ∪ E, then the critical pair closes by Proposition 5. We
check the 43 other critical pairs by hand.

Pair 1
0←− 0 + 0 −→ (1 + 1).0

This critical pair closes on 0.

Pair 2
α.(β.u) + α.(β′.u)←− α.(β.u + β′.u) −→ α.((β + β′).u)

The term u is closed and normal thus the left-hand-side reduces to (α ×
β + α × β′).u and the right-and-side reduces to (α × (β + β′).u. Since S
is a scalar rewrite system these two terms have a common reduct.

Pair 3

α.β.u + α.(β′.u + x)←− α.(β.u + β′.u + x) −→ α.(((β + β′).u) + x)

The left-hand-side reduces to α.(β.u)+α.(β′.u)+α.x and the right-hand-
side reduces to α.((β + β′).u) + α.x hence the situation is analogous to
that of Pair 2.

16

Pair 4

α.(β.u+x)+α.(β′.u+y)←− α.(β.u+β′.u+x+y) −→ α.(((β+β′).u)+x+y)

Analogous to Pair 2.

Pair 5
α.(β.u) + α.u←− α.(β.u + u) −→ α.((β + 1).u)

Analogous to Pair 2.

Pair 6
α.u + α.(β.u + x)←− α.(β.u + u + x) −→ α.(((1 + β).u) + x)

Analogous to Pair 2.

Pair 7

α.(β.u) + α.(u + x)←− α.(β.u + u + x) −→ α.(((β + 1).u) + x)

Analogous to Pair 2.

Pair 8

α.(u+x)+α.(β.u+y)←− α.(u+β.u+x+y) −→ α.(((1+β).u)+x+y)

Analogous to Pair 2.

Pair 9
α.u + α.u←− α.(u + u) −→ α.((1 + 1).u)

Analogous to Pair 2.

Pair 10
α.u + α.(u + x)←− α.(u + u + x) −→ α.(((1 + 1).u) + x)

Analogous to Pair 2.

Pair 11

α.(u + x) + α.(u + y)←− α.(u + u + x + y) −→ α.(((1 + 1).u) + x + y)

Analogous to Pair 2.

Pair 12
(α+ α).u←− α.u + α.u −→ (1 + 1).(α.u)

The term right-hand-side reduces to ((1 + 1) × α).u. Since S is a scalar
rewrite system the two terms have a common reduct.

Pair 13
(α+ α).u + x←− α.u + α.u + x −→ (1 + 1).(α.u) + x

Analogous to Pair 12.

17

Pair 14
(α+ β).u + γ.u←− α.u + β.u + γ.u −→ (α+ γ).u + β.u

This critical pair closes on (α+ β + γ).u.

Pair 15

(α+ β).u + γ.u + x←− α.u + β.u + γ.u + x −→ (α+ γ).u + β.u + x

Analogous to Pair 14.

Pair 16
(α+ β).u + u←− α.u + β.u + u −→ (α+ 1).u + β.u

Analogous to Pair 14.

Pair 17

(α+ β).u + u + x←− α.u + β.u + u + x −→ (α+ 1).u + β.u + x

Analogous to Pair 14.

Pair 18
(1 + 1).(α.u) + β.u←− α.u + α.u + β.u −→ (α+ β).u + α.u

The terms u is closed and normal thus the left-hand-side reduces to (α×
(1 + 1) + β).u and the right-hand-side reduces to (α+ α+ β).u. Since S
is a scalar rewrite system these two terms have a common reduct.

Pair 19

(1 + 1).(α.u) + β.u + x←− α.u + α.u + β.u + x −→ (α+ β).u + α.u + x

Analogous to Pair 18.

Pair 20
(1 + 1).(α.u) + u←− α.u + α.u + u −→ (α+ 1).u + α.u

Analogous to Pair 18.

Pair 21

(1 + 1).(α.u) + u + x←− α.u + α.u + u + x −→ (α+ 1).u + α.u + x

Analogous to Pair 18.

Pair 22
(α+ 1).u + u←− α.u + u + u −→ (1 + 1).u + α.u

Analogous to Pair 14.

Pair 23
(α+ 1).u + u + x←− α.u + u + u + x −→ (1 + 1).u + α.u + x

Analogous to Pair 14.

18

Pair 24
0 + α.u←− 0.u + α.u −→ (0 + α).u

This critical pair closes on α.u.

Pair 25
0 + α.u + x←− 0.u + α.u + x −→ (0 + α).u + x

Analogous to Pair 24.

Pair 26
0 + u←− 0.u + u −→ (0 + 1).u

Analogous to Pair 24.

Pair 27
0 + u + x←− 0.u + u + x −→ (0 + 1).u + x

Analogous to Pair 24.

Pair 28
α.u + u←− α.u + 1.u −→ (α+ 1).u

The terms u is closed and normal thus the left-hand-side reduces to the
right-hand-side.

Pair 29
α.u + u + x←− α.u + 1.u + x −→ (α+ 1).u + x

Analogous to Pair 28.

Pair 30
u + u←− 1.u + u −→ (1 + 1).u

Analogous to Pair 28.

Pair 31
u + u + x←− 1.u + u + x −→ (1 + 1).u + x

Analogous to Pair 28.

Pair 32
0 + 0←− 0 + α.0 −→ (1 + α).0

This critical pair closes on 0.

Pair 33
0 + 0 + x←− 0 + α.0 + x −→ (1 + α).0 + x

Analogous to Pair 32.

Pair 34
0 + β.0←− α.0 + β.0 −→ (α+ β).0

Analogous to Pair 28.

19

Pair 35
0 + β.0 + x←− α.0 + β.0 + x −→ (α+ β).0 + x

Analogous to Pair 28.

Pair 36
(α× γ).u + β.γ.u←− α.γ.u + β.γ.u −→ (α+ β).γ.u

The terms u is closed and normal thus the left-hand-side reduces to (α×
γ + β × γ).u and the right-hand-side reduces to ((α+ β)× γ).u. Since S
is a scalar rewrite system the two terms have a common reduct.

Pair 37

(α× γ).u + β.γ.u + x←− α.γ.u + β.γ.u + x −→ (α+ β).γ.u + x

Analogous to Pair 36.

Pair 38
β.u + (α× β).u←− β.u + α.β.u −→ (1 + α).β.u

Analogous to Pair 36.

Pair 39
β.u + (α× β).u + x←− β.u + α.β.u + x −→ (1 + α).β.u + x

Analogous to Pair 36.

Pair 40

α.u + α.v + β.(u + v)←− α.(u + v) + β.(u + v) −→ (α+ β).(u + v)

The terms u+v is closed and normal and hence so are u and v. Thus the
left-hand-side reduces to α.u+α.v+β.u+β.v and then (α+β).u+(α+β).v
the right-hand-side reduces to this same term.

Pair 41

α.u+α.v+β.(u+v)+x←− α.(u+v)+β.(u+v)+x −→ (α+β).(u+v)+x

Analogous to Pair 40.

Pair 42

(u + v) + α.u + α.v←− (u + v) + α.(u + v) −→ (α+ 1).(u + v)

Analogous to Pair 40.

Pair 43

(u+v)+α.u+α.v+x←− (u+v)+α.(u+v)+x −→ (α+1).(u+v)+x

Analogous to Pair 40.

20

5.4 Local confluence and confluence of R

Proposition 9 The system R = S ∪ E ∪ Fext ∪A is locally confluent.

Proof. This system is made of two subsystems: S ∪ E ∪ Fext and A. To
prove that it is locally confluent, we prove that all critical pairs close. If both
rules used are rules of the system S ∪ E ∪ Fext, then the critical pair closes by
Proposition 8. It is not possible that the top-level rule is in S ∪ E ∪ Fext and
the other in A since the rules of S ∪ E ∪ Fext do not contain any application.
Thus the top-level rule must be in A and the (S ∪E ∪ Fext)-reduction must be
performed in a non-toplevel non-variable subterm of the left-hand-side of a rule
of A. By inspection of the left-hand-sides of rules S ∪ E ∪ Fext the subterm
must be of the form u + v, α.u or 0. But this subterm cannot be of the form
u + v, because, by restriction (**), the term itself would not be A-reducible. It
cannot be 0 since this is normal. Thus it is of the form α.u. As there are five
rules reducing a term of this form, there are 10 critical pairs to check.

Pair 1
0v←− (0.u)v −→ 0.(uv)

This critical pair closes on 0.

Pair 2
uv←− (1.u)v −→ 1.(uv)

This critical pair closes on uv.

Pair 3
0v←− (α.0)v −→ α.(0v)

This critical pair closes on 0.

Pair 4
((α× β).u)v←− (α.(β.u))v −→ α.((β.u)v)

The term u is closed and normal by (∗ ∗ ∗). Hence, the critical pair closes
on (α× β).(uv).

Pair 5
(α.u + α.v)w←− (α.(u + v))w −→ α.((u + v)w)

The term u + v is closed and normal. Hence, by proposition 2 it is of the
form

∑
i βi.ai +

∑
i bi. Therefore the left-hand-side reduces to (

∑
i(α ×

βi) ↓ .ai +
∑

i α.bi)w, where ↓ denotes normalization by S. We treat only
the case where the terms (l × βi) ↓ are neither 0 nor 1, the other cases
being similar. Hence, we can apply rules of group A yielding

∑
i(α×βi) ↓

.(ai w) +
∑

i α.(bi w). It is routine to check that the right-hand-side also
reduces to this term.

The five next critical pairs are the symmetrical cases, permuting the left
and right-hand-sides of the application.

21

Now, when both rules are in the group A, there are nine critical pairs to check.

Pair 11

u(w + x) + v(w + x)←− (u + v)(w + x) −→ (u + v)w + (u + v)x

As u + v and w + x are normal and closed, so are u, v, w and x. Hence
the critical pair closes on uw + ux + vw + vx.

Pair 12
u(α.w) + v(α.w)←− (u + v)(α.w) −→ α.((u + v).w)

As, by (∗∗) and (∗ ∗ ∗), u + v and w are closed normal terms , so are
u and v. Thus the left-hand-side reduces to α.(uw) + α.(vw) and the
right-hand-side reduces to α.((uw) + (vw)) and both term reduce to
α.(uw) + α.(vw).

Pair 13
0←− (u + v)0 −→ (u0) + (v0)

This critical pair closes on 0.

Pair 14
α.(u(v + w))←− (α.u)(v + w) −→ (α.u)v + (α.u)w

The terms u and v+w are closed normal. Thus, the left-hand-side reduces
to α.(uv + uw) and the right-hand-side to α.(uv) + α.(uw). Hence the
critical pair closes on α.(uv) + α.(uw).

Pair 15
α.(u(β.v))←− (α.u)(β.v) −→ β.((α.u)v)

As u and v are closed normal, the first term reduces to α.(β.(uv)) and
the second to β.(α.(uv)) and both terms reduce to (α× β).(uv).

Pair 16
α.(u0)←− (α.u)0 −→ 0

This critical pair closes on 0.

Pair 17
0←− 0(u + v) −→ (0u) + (0v)

This critical pair closes on 0.

Pair 18
0←− 0(α.u) −→ α.(0u)

This critical pair closes on 0.

Pair 19
0←− 00 −→ 0

This critical pair closes on 0.

22

Proposition 10 The system R terminates.

Proof. [The system E ∪ F ∪A terminates]
Consider the following interpretation (compatible with AC)

|(u v)| = (3|u|+ 2)(3|v|+ 2)

|u + v| = 2 + |u|+ |v|

|α.u| = 1 + 2|u|

|0| = 0

Each time a term t rewrites to a term t′ we have |t| > |t′|. Hence, the system
terminates.
[The system R terminates]
The system R is S∪E∪F ∪A. It is formed of two subsystems S and E∪F ∪A.
By definition of the function | |, if a term t S-reduces to a term t′ then |t| = |t′|.
Consider a R-reduction sequence. At each E∪F ∪A-reduction step, the measure
of the term strictly decreases and at each S-reduction step it remains the same.
Thus there are only a finite number of E∪F ∪A-reduction steps in the sequence
and, as S terminates, the sequence is finite.

Proposition 11 The system R is confluent.

Proof. The relation −→Rext,AC is locally confluent, and −→R AC terminates,
hence −→R AC is confluent by proposition 4.

5.5 The system L

We now want to prove that the system L is confluent. With the introduction
of the rule B, we lose termination, hence we cannot use Newman’s lemma any-
more. Thus we shall use for this last part techniques coming from the proof of
confluence of the λ-calculus and prove that the relation −→‖

B is strongly con-
fluent. In our case as we have to mix the rule B with R we shall also prove that
it commutes with −→∗

R.

Definition 12 (Strong confluence) A relation X is said to be strongly con-
fluent if whenever t −→X u and t −→X v, there exists a term w such that
u −→X w and v −→X w.

Definition 13 (The relation −→‖
B) The relation −→‖

B is the smallest reflex-
ive congruence such that if t −→‖

B t′ and u −→‖
B u′ then

(λx t) u −→‖
B t′[u′/x]

Proposition 12 If v1 −→∗
R w1 then v1[v2/x] −→∗

R w1[v2/x].

23

Proof. We need to check is that if the reduction of v1 to w1 involves an applica-
tion of a conditional rule, then the condition is preserved on v1[v2/x]. Indeed
substituting some term in a closed normal term yields the same term.

Proposition 13 If v2 −→∗
R w2 then v1[v2/x] −→∗

R v1[w2/x].

Proof. The reduction is a congruence.

Proposition 14 If t = u or t −→R u and if t −→‖
B v then there exists w such

that u −→‖
B w and v −→∗

R w.

Proof. By induction on the structure of t. If t = u we just take w = v. Thus
we focus in the rest of the proof to the case where t −→R u.

If the B‖-reduction takes place at toplevel, then t = (λx t1) t2, t2 is a base
vector and there exists terms v1 and v2 such that t1 −→‖

B v1, t2 −→‖
B v2 and

v = v1[v2/x]. Neither λx t1 nor t2 is a sum, a product by a scalar or the null
vector, hence the R-reduction is just an application of the congruence thus there
exists terms u1 and u2 such that and t1 −→?

R u1 and t2 −→?
R u2. Since t2 is a

base vector, u2 is also a base vector. By induction hypothesis, there exist terms
w1 and w2 such that u1 −→‖

B w1, v1 −→∗
R w1, u2 −→‖

B w2 and v2 −→∗
R w2.

We take w = w1[w2/x]. We have (λxu1) u2 −→‖
B w and by Proposition 12

and 13 we also have v1[v2/x] −→∗
R w.

If the R-reduction takes place at toplevel, we have to distinguish several
cases according to the rule used for this reduction.

• If t = t1 +0 and u = t1, then there exists a term v1 such that t1 −→‖
B v1

and v = v1 + 0. We take w = v1.

• If t = 0.t1 and u = 0, then there exists a term v1 such that t1 −→‖
B v1

and v = 0.v1. We take w = 0.

• If t = 1.t1 and u = t1, then there exists a term v1 such that t1 −→‖
B v1

and v = 1.v1. We take w = v1.

• If t = α.0 and u = 0, then v = t. We take w = 0.

• If t = α.(β.t1) and u = (α× β).t1, then there exists a term v1 such that
t1 −→‖

B v1 and v = α.(β.v1). We take w = (α× β).v1.

• If t = α.(t1 + t2) and u = α.t1 + α.t2, then there exist terms v1 and
v2 such that t1 −→‖

B v1, t2 −→‖
B v2 and v = α.(v1 + v2). We take

w = α.v1 + α.v2.

• If t = α.t1 + β.t1 and u = (α + β).t1, then by (∗) t1 is L-normal, thus
v = t. We take w = u.

The cases of the two other factorisation rules are similar.

24

• If t = (t1 +t2) t3 and u = t1 t3 +t2 t3, then by (∗∗) the term t1 +t2 is L-
normal. There exists a term v3 such that t3 −→‖

B v3 and v = (t1+t2) v3.
We take w = t1 v3 + t2 v3.

• If t = (α.t1) t2 and u = α.(t1 t2), then by (∗ ∗ ∗) t1 is L-normal. There
exists a term v2 such that t2 −→‖

B v2 and v = (α.t1) v2. We take
w = α.(t1 v2).

• If t = 0 t2 and u = 0, then there exists a term v2 such that t2 −→‖
B v2

and v = 0 v2. We take w = 0.

The three other cases where a rule of group A is applied are symmetric.

Finally if both reductions are just applications of the congruence we apply
the induction hypothesis to the subterms.

Proposition 15 (−→∗
R commutes with −→‖

B)
If t −→∗

R u and t −→‖
B v then there exists w such that u −→‖

B w and
v −→∗

R w.

Proof. By induction on the length of the −→∗
R derivation. If t = u then we

take w = v. Otherwise there exists a term t1 such that t −→R t1 −→∗
R u

with a shorter reduction from t1 to u. Using proposition 14, there exists a
term w1 such that t1 −→‖

B w1 and v −→∗
R w1. By induction hypothesis, there

exists a term w such that u −→‖
B w and w1 −→∗

R w. We have u −→‖
B w and

v −→∗
R w.

Proposition 16 (Substitution for B‖)
If t −→‖

B t′ and v −→‖
B v′ then t[v/x] −→‖

B t′[v′/x].

Proof. By induction on the structure of t.

• If t = x then t′ = x and hence t[v/x] = v −→‖
B v′ = t′[v′/x].

• If t = y then t′ = y and hence t[v/x] = y = t′[v′/x].

• If t = λy t1 the B‖-reduction is just an application of the congruence. We
have t′ = λy .t′1 with t1 −→‖

B t′1 and the induction hypothesis tells us that
t1[v/x] −→‖

B t′1[v′/x]. Hence t[v/x] = λy t1[v/x] −→‖
B λy t′1[v′/x] =

t′[v′/x].

• If t = (t1 t2) then we consider two cases.

– We have t1 = λy t3, t2 a base state, and t′ = t′3[t′2/x], i.e. a B-
reduction occurs at top-level. By induction hypothesis we know that
t3[v/x] −→‖

B t′3[v′/x] and t2[v/x] −→‖
B t′2[v′/x]. Hence t[v/x] =

(λy t3[v/x])t2[v/x] −→‖
B t′3[v′/x][t′2[v′/x]/y] = t′3[t′2/y][v′/x] =

t′[v′/x].

25

– If t′ = (t′1 t′2) with t1 −→‖
B t′1, t2 −→‖

B t′2, then by induction
hypothesis we know that t1[v/x] −→‖

B t′1[v′/x] and t2[v/x] −→‖
B

t′2[v′/x]. Hence t[v/x] = (t1[v/x] t2[v/x]) −→‖
B (t′1[v′/x] t′2[v′/x]) =

t′[v′/x].

• If t = 0 then t′ = 0 and hence t[v/x] = 0 = t′[v′/x].

• If t is a sum the B‖-reduction is just an application of the congruence.
Therefore t is AC equivalent to t1 + t2 and t′ is AC equivalent to t′1 + t′2
with t1 −→‖

B t′1, t2 −→‖
B t′2. Then by induction hypothesis we know

that t1[v/x] −→‖
B t′1[v′/x] and t2[v/x] −→‖

B t′2[v′/x]. Hence t[v/x] =
t1[v/x] + t2[v/x] −→‖

B t′1[v′/x] + t′2[v′/x] = t′[v′/x].

• If t = α.t1 the B‖-reduction is just an application of the congruence. We
have t′ = α.t′1 with t1 −→‖

B t′1 and the induction hypothesis tells us
that t1[v/x] −→‖

B t′1[v′/x]. Hence t[v/x] = α.t1[v/x] −→‖
B α.t′1[v′/x] =

t′[v′/x].

Proposition 17 (Strong confluence of B‖)
If t −→‖

B u and t −→‖
B v then there exists w such that u −→‖

B w and v −→‖
B

w.

Proof. By induction on the structure of t.

• If t is a variable then u = t and v = t. We take w = t.

• If t = 0 then u = 0 and v = 0. We take w = 0.

• If t = λx t1 then u = λx u1 with t1 −→‖
B u1 and v = λx v1 with t1 −→‖

B

v1. By induction hypothesis, there exists a w1 such that u1 −→‖
B w1 and

v1 −→‖
B w1. We take w = λx w1.

• If t = (t1 t2) then we consider two cases.

– If the term t1 has the form λx t3 and t2 is a base vector. We
consider three subcases, according to the form of the B‖-reductions.
Either v = (v1 v2) with t1 −→‖

B v1, t2 −→‖
B v2, and u = (u1 u2)

with t1 −→‖
B u1, t2 −→‖

B u2. By induction hypothesis, there exists
terms w1 and w2 such that u1 −→‖

B w1, v1 −→‖
B w1, u2 −→‖

B w2,
v2 −→‖

B w2. We take w = (w1 w2).

Or v = v3[v2/x] with t3 −→‖
B v3, t2 −→‖

B v2, and u = ((λx u3) u2)
with t3 −→‖

B u3, t2 −→‖
B u2. Since t2 is a base vector, u2 is also a

base vector. By induction hypothesis, there exist terms w3 and w2

such that u3 −→‖
B w3, v3 −→‖

B w3, u2 −→‖
B w2, v2 −→‖

B w2. We
take w = w3[w2/x]. We have (λxu3) u2 −→‖

B w3[w2/x] by defini-
tion of B‖. And by Proposition 16 we also have v3[v2/x]B‖w3[w2/x].

26

Or v = v3[v2/x] with t3 −→‖
B v3, t2 −→‖

B v2, and u == u3[u2/x]
with t3 −→‖

B u3, t2 −→‖
B u2. Since t2 is a base vector, u2 and v2

are base vectors also. By induction hypothesis, there exist terms w3

and w2 such that u3 −→‖
B w3, v3 −→‖

B w3, u2 −→‖
B w2, v2 −→‖

B

w2. We take w = w3[w2/x]. By Proposition 16 we have both
u3[u2/x]B‖w3[w2/x] and v3[v2/x]B‖w3[w2/x].

– Otherwise the B‖-reduction is just an application of the congruence,
i.e. v = (v1 v2) with t1 −→‖

B v1, t2 −→‖
B v2, and u = (u1 u2)

with t1 −→‖
B u1, t2 −→‖

B u2. By induction hypothesis, there exists
terms w1 and w2 such that u1 −→‖

B w1, v1 −→‖
B w1, u2 −→‖

B w2,
v2 −→‖

B w2. We take w = (w1 w2).

• If t is a sum then the B‖-reduction is just an application of the congruence.
The term t is AC-equivalent to a sum t1 +t2, the term u is AC-equivalent
to a sum u1 + u2 with t1 −→‖

B u1, t2 −→‖
B u2, and the term v is AC-

equivalent to a sum v1 + v2 such that t1 −→‖
B v1 and t2 −→‖

B v2. By
induction hypothesis, there exist terms w1 and w2 such that u1 −→‖

B w1,
v1 −→‖

B w1, u2 −→‖
B w2, v2 −→‖

B w2. We take w = w1 + w2.

• If finally, t = α.t1 then the B‖-reduction is just an application of the
congruence. We have u = α.u1 with t1 −→‖

B u1, and v = αv1 with
t1 −→‖

B v1. By induction hypothesis, there exists a term w1 such that
u1 −→‖

B w1, v1 −→‖
B w1. We take w = α.w1.

Proposition 18 (Hindley-Rosen lemma) If the relations X and Y are strongly
confluent and commute then the relation X ∪ Y is confluent.

Theorem 1 The system L is confluent.

Proof. By Proposition 11, the relation −→R is confluent, hence −→∗
R is

strongly confluent. By Proposition 17, the relation −→‖
B is is strongly conflu-

ent. By Proposition 15, the relations −→∗
R and −→‖

B commute. Hence, by
proposition 18 the relation −→∗

R ∪ −→
‖
B is confluent. Hence, the relation −→L

is confluent.

6 Conclusion

Summary. When merging the untyped λ-calculus with linear algebra one faces
two different problems. First of all simple-minded duplication of a vector is a
non-linear operation (“cloning”) unless it is restricted to base vectors and later
extended linearly (“copying”). Second of all because we can express computable
but nonetheless infinite series of vectors, hence yielding some infinities and the
troublesome indefinite forms. Here again this is fixed by restricting the evalua-
tion of these indefinite forms, this time to normal vectors. Both problems show

27

up when looking at the confluence of the linear-algebraic λ-calculus.
The architecture of the proof of confluence seems therefore very well-suited to
any non-trivial rewrite systems having both some linear algebra and some in-
finities as its key ingredients. The rationale is as follows:

• There is only a very limited set of techniques available for proving the
confluence of non-terminating rewrite systems (mainly the notions of par-
allel reductions and strong confluence). Hence we must distinguish the
non-terminating rules, which generate the infinities (e.g. in our case the
B rule), from the others (e.g. in our case the R rules) and show that they
are confluent on their own;

• The other rules being terminating, the critical pairs lemma applies. The
critical pairs can be checked automatically for the non-conditional rules,
but due to the presence of infinities in the algebra it is likely that many
rules will be conditional, and there is no such tool available for conditional
rewriting. Hence we must distinguish the non-conditional rules (e.g. E),
from the others (e.g. the F and A rules), whose corresponding pairs will
have to be checked by hands;

• We then must show that the terminating rules and the non-terminating
rules commute, so that their union is confluent. (e.g. in our case the con-
ditions on B,F,A were key to obtaining the commutation, without them
both subsets are confluent but not the whole.);

• If seeking to parametrize on scalars some version of the avatar’s lemma is
likely to be needed.

Perspectives. The linear-algebraic λ-calculus merges higher-order computa-
tion with linear algebra in a minimalistic manner. Such a foundational approach
is also taking place in [1] via some categorical formulations of quantum theory,
exhibiting some advantages (composition laws and normalization theorems for
quantum information like processes, well-handled measures) and disadvantages
(states only expressed as the processes constructing them, no fixed point nor
the possibility to replicate gate descriptions). As for [1] although we have shown
that quantum computation can be encoded in our language, the linear-algebraic
λ-calculus remains some way apart from a model of quantum computation, be-
cause it allows evolutions which are not unitary. Future work will implying
typing the calculus, with a view towards obtaining these unitarity constraints.
But this generality leaves open the way to other fields of application, for in-
stance the same typing may lead to interesting connections with linear logic or
give rise to some novel, quantitative logics.
We leave as an entirely open problem the search for a model of the linear-
algebraic λ-calculus. Due to the uncountability of the models of the λ-calculus

28

we suspect this might have to do with a C*-algebra endowed with some added
higher-order structure – perhaps having a mathematical interest of its own?

Acknowledgements

Both authors would like to thank Evelyne Contejean, Jean-Pierre Jouaunnaud,
Philippe Jorrand, Claude Marché and Simon Perdrix for some enlightening dis-
cussions.

References

[1] S. Abramsky, B. Coecke, A categorical semantics of quantum protocols
LICS, IEEE Computer Society, 415-425, (2004).

[2] P. Arrighi, G. Dowek, A computational definition of the notion of vectorial
space, ENTCS 117, 249-261, (2005).

[3] P. Arrighi, G. Dowek, Linear-algebraic lambda-calculus, in P. Selinger (Ed.),
International workshop on quantum programming languages, Turku Centre
for Computer Science General Publication, 33, 21-38, (2004).

[4] E. Bernstein, U. Vazirani, Quantum Complexity Theory, Annual ACM sym-
posium on Theory of Computing, 25, (1993).

[5] O. Bournez, M. Hoyrup, Rewriting Logic and Probabilities, Rewriting Tech-
niques and Applications, LNCS 2706, (2003).

[6] http://cime.lri.fr/

[7] N. Dershowitz, J.-P. Jouannaud, Rewrite systems, Handbook of theoretical
computer science, Vol. B: formal models and semantics, MIT press, (1991).

[8] D. Deutsch, R. Josza, Rapid solution of problems by quantum computation.
Proc. of the Roy. Soc. of London A, 439, 553-558, (1992).

[9] A. Di Pierro, C. Hankin, H. Wiklicky, Probabilistic λ-calculus and quan-
titative program analysis, J. of Logic and Computation, 15(2), 159-179,
(2005).

[10] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50, 1-102, (1987).

[11] L. K. Grover, Quantum Mechanics Helps in Searching for a Needle in a
Haystack, Phys. Rev. Lett., 79(2), 325–328, (1997).

[12] O. M. Herescu, C. Palamidessi, Probabilistic asynchronous pi-calculus,
ETAPS, LNCS 1784, 146-160, (2000).

[13] J.-P. Jouannaud, H. Kirchner, Completion of a Set of Rules Modulo a Set
of Equations, SIAM J. of Computing, 15(14), 1155-1194.

29

[14] M. A. Nielsen, Universal quantum computation using only projective mea-
surement, quantum memory, and preparation of the 0 state, Phys. Rev. A,
308, 96-100, (2003).

[15] G. E. Peterson, M. E. Stickel, Complete Sets of Reductions for Some Equa-
tional Theories, J. ACM, 28(2), 233-264, (1981).

[16] S. Perdrix, State transfer instead of teleportation in measurement-based
quantum computation, Int. J. of Quantum Information , 1(1), 219-223,
(2005).

[17] R. Raussendorf, D.E. Browne, H.J. Briegel, The one-way quantum com-
puter - a non-network model of quantum computation, Journal of Modern
Optics, 49, p. 1299, (2002).

[18] P. Selinger, Towards a quantum programming language, Math. Struc. in
Computer Science, 14(4), 527-586, (2004).

[19] P. Selinger, B. Valiron, A lambda calculus for quantum computation with
classical control, Math. Struc. in Computer Science, 16(3), 527-552, (2006).

[20] P.W. Shor, Polynomial-Time Algorithms for Prime Factorization and Dis-
crete Logarithms on a Quantum Computer, SIAM J. on Computing, 26,
1484-1509, (1997).

[21] A. Van Tonder, A Lambda Calculus for Quantum Computation, july 2003,
arXiv:quant-ph/0307150.

[22] A. Van Tonder, Quantum Computation, Categorical Semantics and Linear
Logic, december 2003, arXiv:quant-ph/0312174.

[23] W. K. Wooters, W. H. Zurek, A single quantum cannot be cloned, Nature
299, 802-803, (1982).

30

