Photons and Quantum Information

Stephen M. Barnett

1. A bit about photons
2. Optical polarisation
3. Generalised measurements
4. State discrimination

Minimum error
Unambiguous
Maximum confidence

1. A bit about photons

Photoelectric effect - Einstein 1905

$$
e V=h v-W
$$

BUT ...

Modern interpretation: resonance with the atomic transition frequency.

We can describe the phenomenon quantitatively by a model in which the matter is described quantum mechanically but the light is described classically.

Photons?

Single-photon (?) interference - G. I. Taylor 1909

Light source Smoked glass screens
Screen with two slit
Longest exposure - three months
"According to Sir J. J. Thompson, this sets a limit on the size of the indivisible units."

Single photons (?) Hanbury-Brown and Twiss

$$
P(1,2) \propto\langle R I \times T I\rangle=R T\left\langle I^{2}\right\rangle
$$

$$
P(1) \propto R\langle I\rangle \quad P(2) \propto T\langle I\rangle
$$

$$
g^{(2)}(0)=\frac{\left\langle I^{2}\right\rangle}{\langle I\rangle^{2}} \geq 1
$$

Blackbody light $\quad g^{(2)}(0)=2$
Laser light

$$
g^{(2)}(0)=1
$$

Single photon $g^{(2)}(0)=0 \quad!!!$
violation of Cauchy-Swartz inequality

Single photon source - Aspect 1986

Detection of the first photon acts as a herald for the second.

Second photon available for Hanbury-Brown and Twiss measurement or interference measurement.

Found $g^{(2)}(0) \sim 0$ (single photons) and fringe visibility $=98 \%$

Two-photon interference - Hong, Ou and Mandel 1987

"Each photon then interferes only with itself. Interference between different photons never occurs" Dirac

$50 / 50$ beam splitter $\mathrm{R}=\mathrm{T}=1 / 2$
$P=R T 2=1 / 2$
Boson "clumping". If one photon is present then it is easier to add a second.

Two-photon interference - Hong, Ou and Mandel 1987

"Each photon then interferes only with itself. Interference between different photons never occurs" Dirac

50/50 beam splitter $\mathrm{R}=\mathrm{T}=1 / 2$

Two-photon interference - Hong, Ou and Mandel 1987
"Each photon then interferes only with itself. Interference between different photons never occurs" Dirac

\qquad
$P=0!!!$

Two photons in
overlapping
Destructive quantum interference between the amplitudes for two reflections and two transmissions.

1. A bit about photons
2. Optical polarisation
3. Generalised measurements
4. State discrimination

Minimum error
Unambiguous
Maximum confidence

Maxwell's equations in an isotropic dielectric medium take the form:

$$
\begin{aligned}
& \nabla \cdot \mathbf{E}=0 \\
& \nabla \cdot \mathbf{B}=0 \\
& \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \\
& \nabla \times \mathbf{B}=\frac{\varepsilon}{c^{2}} \frac{\partial \mathbf{E}}{\partial t}
\end{aligned}
$$

E, B and \mathbf{k} are mutually orthogonal

For plane waves (and lab. beams that are not too tightly focussed) this means that the E and B fields are constrained to lie in the plane perpendicular to the direction of propagation.

$$
\mathbf{S}=\mu_{0}^{-1} \mathbf{E} \times \mathbf{B}
$$

Consider a plane EM wave of the form

$$
\begin{aligned}
& \mathbf{E}=\mathbf{E}_{0} \exp [i(k z-\omega t)] \\
& \mathbf{B}=\mathbf{B}_{0} \exp [i(k z-\omega t)]
\end{aligned}
$$

If \mathbf{E}_{0} and \mathbf{B}_{0} are constant and real then the wave is said to be linearly polarised.

Polarisation is defined by an axis rather than by a direction:

B

E

If the electric field for the plane wave can be written in the form

$$
\mathbf{E}=E_{0}(\mathbf{i} \pm \mathbf{i} \mathbf{j}) \exp [i(k z-\omega t)]
$$

Then the wave is said to be circularly polarised.

The Jones representation

We can write the x and y components of the complex electric field amplitude in the form of a column vector:

$$
\left[\begin{array}{l}
E_{0 x} \\
E_{0 y}
\end{array}\right]=\left[\begin{array}{l}
\left|E_{0 x}\right| e^{i \phi_{x}} \\
\left|E_{0 y}\right| e^{i \phi_{y}}
\end{array}\right]
$$

The size of the total field tells us nothing about the polarisation so we can conveniently normalise the vector:

One advantage of this method is that it allows us to describe the effects of optical elements by matrix multiplication:

Linear polariser
(oriented to horizontal):

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] 0^{\circ},\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] 90^{\circ}, \frac{1}{2}\left[\begin{array}{cc}
1 & \pm 1 \\
\pm 1 & 1
\end{array}\right] \pm 45^{\circ}
$$

Quarter-wave plate (fast axis to horizontal):

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right] 0^{\circ}, \quad\left[\begin{array}{cc}
1 & 0 \\
0 & -i
\end{array}\right] 90^{\circ}, \quad \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & \pm i \\
\pm i & 1
\end{array}\right] \pm 45^{\circ}
$$

Half-wave plate
(fast axis horizontal or vertical):

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

$$
\left[\begin{array}{l}
A \\
B
\end{array}\right] \rightarrow\left[\begin{array}{ll}
a_{n} & b_{n} \\
c_{n} & d_{n}
\end{array}\right] \ldots\left[\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right]\left[\begin{array}{l}
A \\
B
\end{array}\right]
$$

We refer to two polarisations as orthogonal if

$$
\mathbf{E}_{2}^{*} \cdot \mathbf{E}_{1}=0
$$

This has a simple and suggestive form when expressed in terms of the Jones vectors:

$$
\begin{aligned}
& {\left[\begin{array}{l}
A_{1} \\
B_{1}
\end{array}\right] \text { is orthogonal to }\left[\begin{array}{l}
A_{2} \\
B_{2}
\end{array}\right] \text { if }} \\
& A_{2}^{*} A_{1}+B_{2}^{*} B_{1}=0 \\
& \Rightarrow\left[\begin{array}{ll}
A_{2}^{*} & B_{2}^{*}
\end{array}\right]\left[\begin{array}{l}
A_{1} \\
B_{1}
\end{array}\right]=0 \\
& \Rightarrow\left[\begin{array}{l}
A_{2} \\
B_{2}
\end{array}\right]^{\dagger}\left[\begin{array}{l}
A_{1} \\
B_{1}
\end{array}\right]=0
\end{aligned}
$$

There is a clear and simple mathematical analogy between the Jones vectors and our description of a qubit.

Spin and polarisation Qubits

Poincaré and Bloch Spheres
Two state quantum system

Bloch Sphere Electron spin

Poincaré Sphere Optical polarization

We can realise a qubit as the state of single-photon polarisation

Horizontal
Vertical

Diagonal up

$$
\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)
$$

Diagonal down

Left circular

$$
\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)
$$

$$
\frac{1}{\sqrt{2}}(|0\rangle+i|1\rangle)
$$

Right circular

$$
\frac{1}{\sqrt{2}}(|0\rangle-i|1\rangle)
$$

1. A bit about photons
2. Optical polarisation
3. Generalised measurements
4. State discrimination

Minimum error
Unambiguous
Maximum confidence

Probability operator measures

Our generalised formula for measurement probabilities is

$$
P(i)=\operatorname{Tr}\left(\hat{\pi}_{i} \hat{\rho}\right)
$$

The set probability operators describing a measurement is called a probability operator measure (POM) or a positive operator-valued measure (POVM).

The probability operators can be defined by the properties that they satisfy:

Properties of probability operators

I. They are Hermitian $\quad \hat{\pi}_{n}^{\dagger}=\hat{\pi}_{n} \quad$ Observable
II. They are positive $\langle\psi| \hat{\pi}_{n}|\psi\rangle \geq 0 \quad \forall|\psi\rangle$ Probabilities
III. They are complete

$$
\sum_{n} \hat{\pi}_{n}=\hat{I}
$$

Probabilities

IV Orthonormol
$\hat{\pi}_{i} \hat{\pi}_{j}-\hat{O}_{i j} \hat{\pi}_{i} \quad ? ?$

Generalised measurements as comparisons

Prepare an ancillary system in a known state:

$$
\left|\psi_{S}\right\rangle \otimes|A\rangle
$$

Perform a selected unitary transformation to couple the system and ancilla:

$$
\hat{U}\left|\psi_{S}\right\rangle \otimes|A\rangle
$$

Perform a von Neumann measurement on both the system and ancilla:

$$
|i\rangle\rangle=\left|\phi_{S}^{i}\right\rangle \otimes\left|A^{i}\right\rangle
$$

The probability for outcome i is

$$
\begin{array}{r}
\left.P(i)=\langle\langle i| \hat{U} \mid A\rangle\left|\psi_{s}\right\rangle\left\langle\psi_{s} \mid\langle A| \hat{U}^{\dagger} \mid i\right\rangle\right\rangle \\
=\left\langle\psi_{s}\right|(\langle\underbrace{\left.\langle A| \hat{U}^{\dagger}|i\rangle\right\rangle\langle\langle\langle | \hat{U} \mid A\rangle\rangle}_{\hat{\pi}_{\boldsymbol{i}}} \mid \psi_{s}\rangle
\end{array}
$$

POM rules:

I. Hermiticity:

$$
\begin{aligned}
& \left.\left.\left\{A\left|\hat{U}^{\dagger}\right| i\right\rangle\right\rangle\langle\langle i| \hat{U} \mid A\rangle\right\}^{\dagger} \\
& \left.=\langle A| \hat{U}^{\dagger}|i\rangle\right\rangle\left\langle\langle i| \hat{U^{2}|A\rangle}\right.
\end{aligned}
$$

II. Positivity:

$$
\left.\langle\psi| \hat{\pi}_{i}|\psi\rangle=\left|\left\langle\langle i| \hat{U} \mid \psi_{S}\right\rangle\right| A\right\rangle\left.\right|^{2} \geq 0
$$

III. Completeness follows from:

$$
\left.\sum_{i}|i\rangle\right\rangle\left\langle\langle i|=\hat{\mathrm{I}}_{A, S}\right.
$$

Generalised measurements as comparisons

We can rewrite the detection probability as

$$
\begin{aligned}
& P(i)=\langle A| \otimes\left\langle\psi_{S}\right| \hat{P}_{i}\left|\psi_{S}\right\rangle \otimes|A\rangle \\
& \left.\hat{P}_{i}=\hat{U}^{\dagger}|i\rangle\right\rangle\langle\langle i| \hat{U}
\end{aligned}
$$

is a projector onto correlated (entangled) states of the system and ancilla. The generalised measurement is a von Neumann measurement in which the system and ancilla are compared.

$$
\begin{aligned}
& \hat{\pi}_{i}=\langle A| \hat{P}_{i}|A\rangle \\
& \hat{\pi}_{n} \hat{\pi}_{m}=\langle A| \hat{P}_{n}|A\rangle\langle A| \hat{P}_{m}|A\rangle \neq 0
\end{aligned}
$$

Simultaneous measurement of position and momentum

The simultaneous perfect measurement of x and p would violate complementarity.

Position measurement gives no momentum information and depends on the position probability distribution.

Simultaneous measurement of position and momentum

The simultaneous perfect measurement of x and p would violate complementarity.

Momentum measurement gives no position information and
p depends on the momentum probability distribution.

Simultaneous measurement of position and momentum

The simultaneous perfect measurement of x and p would violate complementarity.

Joint position and measurement gives partial information on both the position and the momentum.
x
Position-momentum minimum uncertainty state.

POM description of joint measurements

Probability density:

$$
\wp\left(x_{m}, p_{m}\right)=\operatorname{Tr}\left[\hat{\rho} \hat{\pi}\left(x_{m}, p_{m}\right)\right]
$$

Minimum uncertainty states:

$$
\begin{aligned}
& \left.\left|x_{m}, p_{m}\right\rangle=\left(2 \pi \sigma^{2}\right)^{-1 / 4} \int d x \exp \left[-\frac{\left(x-x_{m}\right)^{2}}{4 \sigma^{2}}+i p_{m} x\right] x\right\rangle \\
& \frac{1}{2 \pi \hbar} \iint d x_{m} d p_{m}\left|x_{m}, p_{m}\right\rangle\left\langle x_{m}, p_{m}\right|=\hat{\mathrm{I}}
\end{aligned}
$$

This leads us to the POM elements:

$$
\hat{\pi}\left(x_{m}, p_{m}\right)=\frac{1}{2 \pi \hbar}\left|x_{m}, p_{m}\right\rangle\left\langle x_{m}, p_{m}\right|
$$

The associated position probability distribution is

$$
\begin{aligned}
& \wp\left(x_{m}\right)=\int d x\langle x| \hat{\rho}|x\rangle \exp \left[-\frac{\left(x-x_{m}\right)^{2}}{2 \sigma^{2}}\right] \\
& \Rightarrow \operatorname{Var}\left(x_{m}\right)=\Delta x^{2}+\sigma^{2} \\
& \& \operatorname{Var}\left(p_{m}\right)=\Delta p^{2}+\frac{\hbar^{2}}{4 \sigma^{2}}
\end{aligned}
$$

Increased uncertainty is the price we pay for measuring x and p.

1. A bit about photons
2. Optical polarisation
3. Generalised measurements
4. State discrimination

Minimum error
Unambiguous
Maximum confidence

The communications problem

'Alice' prepares a quantum system in one of a set of N possible signal states and sends it to 'Bob'
i selected.
prob. p_{i}
Preparation
device $\xrightarrow{\hat{\rho}_{i}}$ Measurement
device $\rightarrow \begin{array}{r}\text { Measurement } \\ \text { result } j\end{array}$

$$
P(j \mid i)=\operatorname{Tr}\left(\hat{\pi}_{j} \hat{\rho}_{i}\right)
$$

Bob is more interested in

$$
P(i \mid j)=\frac{\operatorname{Tr}\left(\hat{\pi}_{j} \hat{\rho}_{i}\right) p_{i}}{\operatorname{Tr}\left(\hat{\pi}_{j} \hat{\rho}\right)}
$$

In general, signal states will be non-orthogonal. No measurement can distinguish perfectly between such states.

Were it possible then there would exist a POM with

$$
\begin{aligned}
& \left\langle\psi_{1}\right| \hat{\pi}_{1}\left|\psi_{1}\right\rangle=1=\left\langle\psi_{2}\right| \hat{\pi}_{2}\left|\psi_{2}\right\rangle \\
& \left\langle\psi_{2}\right| \hat{\pi}_{1}\left|\psi_{2}\right\rangle=0=\left\langle\psi_{1}\right| \hat{\pi}_{2}\left|\psi_{1}\right\rangle
\end{aligned}
$$

Completeness, positivity and $\left\langle\psi_{1}\right| \hat{\pi}_{1}\left|\psi_{1}\right\rangle=1$

$$
\Rightarrow \hat{\pi}_{1}=\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|+\hat{A} \quad \hat{A} \text { positive and } \hat{A}\left|\psi_{1}\right\rangle=0
$$

$\Rightarrow\left\langle\psi_{2}\right| \hat{\pi}_{1}\left|\psi_{2}\right\rangle=\left|\left\langle\psi_{1} \mid \psi_{2}\right\rangle\right|^{2}+\left\langle\psi_{2}\right| \hat{A}\left|\psi_{2}\right\rangle \geq\left|\left\langle\psi_{1} \mid \psi_{2}\right\rangle\right|^{2} \neq 0$

What is the best we can do? Depends on what we mean by 'best'.

Minimum-error discrimination

We can associate each measurement operator $\hat{\pi}_{i}$ with a signal state $\hat{\rho}_{i}$. This leads to an error probability

$$
P_{e}=1-\sum_{j=1}^{N} p_{j} \operatorname{Tr}\left(\hat{\pi}_{j} \hat{\rho}_{j}\right)
$$

Any POM that satisfies the conditions

$$
\begin{array}{ll}
\hat{\pi}_{j}\left(p_{j} \hat{\rho}_{j}-p_{k} \hat{\rho}_{k}\right) \hat{\pi}_{k}=0 & \forall j, k \\
\sum_{k=1}^{N} p_{k} \hat{\rho}_{k} \hat{\pi}_{k}-p_{j} \hat{\rho}_{j} \geq 0 & \forall j
\end{array}
$$

will minimise the probability of error.

For just two states, we require a von Neumann measurement with projectors onto the eigenstates of $p_{1} \hat{\rho}_{1}-p_{2} \hat{\rho}_{2}$ with positive (1) and negative (2) eigenvalues:

$$
P_{e}^{\min }=\frac{1}{2}\left(1-\operatorname{Tr}\left|p_{1} \hat{\rho}_{1}-p_{2} \hat{\rho}_{2}\right|\right)
$$

Consider for example the two pure qubit-states

$$
\begin{aligned}
& \left|\psi_{1}\right\rangle=\cos \theta|0\rangle+\sin \theta|1\rangle \\
& \left|\psi_{2}\right\rangle=\cos \theta|0\rangle-\sin \theta|1\rangle
\end{aligned}
$$

The minimum error is achieved by measuring in the orthonormal basis spanned by the states $\left|\phi_{1}\right\rangle$ and $\left|\phi_{2}\right\rangle$.

We associate $\left|\phi_{1}\right\rangle$ with $\left|\psi_{1}\right\rangle$ and $\left|\phi_{2}\right\rangle$ with $\left|\psi_{2}\right\rangle$:

$$
P_{e}=p_{1}\left|\left\langle\psi_{1} \mid \phi_{2}\right\rangle\right|^{2}+p_{2}\left|\left\langle\psi_{2} \mid \phi_{1}\right\rangle\right|^{2}
$$

The minimum error is the Helstrom bound

$$
P_{e}^{\min }=\frac{1}{2}\left[1-\left(1-4 p_{1} p_{2}\left|\left\langle\psi_{1} \mid \psi_{2}\right\rangle\right|^{2}\right)^{1 / 2}\right]
$$

A single photon only gives one "click"

But this is all we need to discriminate between our two states with minimum error.

A more challenging example is the 'trine ensemble' of three equiprobable states:

$$
\begin{array}{ll}
\left|\psi_{1}\right\rangle=-\frac{1}{2}(|0\rangle+\sqrt{3}|1\rangle) & p_{1}=\frac{1}{3} \\
\left|\psi_{2}\right\rangle=-\frac{1}{2}(|0\rangle-\sqrt{3}|1\rangle) & p_{2}=\frac{1}{3} \\
\left|\psi_{3}\right\rangle=|0\rangle & p_{3}=\frac{1}{3}
\end{array}
$$

It is straightforward to confirm that the minimum-error conditions are satisfied by the three probability operators

$$
\hat{\pi}_{i}=\frac{2}{3}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|
$$

Simple example - the trine states

Three symmetric states of photon polarisation
$\longleftrightarrow\left|\psi_{3}\right\rangle=|\leftrightarrow\rangle$

$$
\left|\psi_{2}\right\rangle=\frac{-|\leftrightarrow\rangle+\sqrt{3}|\mathfrak{\downarrow}\rangle}{2}
$$

$$
\left|\psi_{1}\right\rangle=\frac{|\leftrightarrow\rangle+\sqrt{3}|\mathcal{\Psi}\rangle}{2}
$$

Minimum error probability is $1 / 3$.

This corresponds to a POM with elements

$$
\hat{\pi}_{j}=\frac{2}{3}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|
$$

How can we do a polarisation measurement with these three possible results?

Polarisation interferometer - Sasaki et al, Clarke et al.

Unambiguous discrimination

The existence of a minimum error does not mean that error-free or unambiguous state discrimination is impossible. A von Neumann measurement with

$$
\hat{P}_{1}=\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right| \quad \hat{P}_{\overline{1}}=\left|\psi_{1}^{\perp}\right\rangle\left\langle\psi_{1}^{\perp}\right|
$$

will give unambiguous identification of $\left|\psi_{2}\right\rangle$:
result $\overline{1} \Rightarrow 2$ error-free
result $\quad 1 \Rightarrow$? inconclusive

There is a more symmetrical approach with

$$
\begin{aligned}
& \hat{\pi}_{1}=\frac{1}{1+\left|\left\langle\psi_{1} \mid \psi_{2}\right\rangle\right|}\left|\psi_{2}^{\perp}\right\rangle\left\langle\psi_{2}^{\perp}\right| \\
& \hat{\pi}_{2}=\frac{1}{1+\left|\left\langle\psi_{1} \mid \psi_{2}\right\rangle\right|}\left|\psi_{1}^{\perp}\right\rangle\left\langle\psi_{1}^{\perp}\right| \\
& \hat{\pi}_{?}=\hat{\mathrm{I}}-\hat{\pi}_{1}-\hat{\pi}_{2}
\end{aligned}
$$

	Result 1	Result 2	Result?
State $\left\|\psi_{1}\right\rangle$	$1-\left\|\left\langle\psi_{1} \mid \psi_{2}\right\rangle\right\|$	0	$\left\|\left\langle\psi_{1} \mid \psi_{2}\right\rangle\right\|$
State $\left\|\psi_{2}\right\rangle$	0	$1-\left\|\left\langle\psi_{1} \mid \psi_{2}\right\rangle\right\|$	$\left\|\left\langle\psi_{1} \mid \psi_{2}\right\rangle\right\|$

How can we understand the IDP measurement?

Consider an extension into a 3D state-space

Unambiguous state discrimination - Huttner et al, Clarke et al.

Maximum confidence measurements seek to maximise the conditional probabilities

$$
P\left(\psi_{i} \mid \omega_{i}\right)
$$

for each state.
For unambiguous discrimination these are all 1.

Bayes' theorem tells us that

$$
P\left(\psi_{i} \mid \omega_{i}\right)=\frac{p_{i} P\left(\omega_{i} \mid \psi_{i}\right)}{P\left(\omega_{i}\right)}=\frac{p_{i}\left\langle\psi_{i}\right| \hat{\pi}_{i}\left|\psi_{i}\right\rangle}{\sum_{k} p_{k}\left\langle\psi_{k}\right| \hat{\pi}_{i}\left|\psi_{k}\right\rangle}
$$

so the largest values of those give us maximum confidence.

The solution we find is

$$
\hat{\pi}_{i} \propto \hat{\rho}^{-1} \hat{\rho}_{j} \hat{\rho}^{-1}
$$

where

$$
\begin{aligned}
& \hat{\rho}_{j}=\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right| \\
& \hat{\rho}=\sum_{i} p_{i} \hat{\rho}_{i}
\end{aligned}
$$

Croke et al Phys. Rev. Lett. 96, 070401 (2006)

Example

- 3 states in a $2-$ dimensional space

$$
\begin{array}{|l|}
\left|\Psi_{0}\right\rangle=\cos \theta|0\rangle+\sin \theta|1\rangle \\
\left|\Psi_{1}\right\rangle=\cos \theta|0\rangle+e^{2 \pi i / 3} \sin \theta|1\rangle \\
\left|\Psi_{2}\right\rangle=\cos \theta|0\rangle+e^{-2 \pi i / 3} \sin \theta|1\rangle
\end{array}
$$

- Maximum Confidence Measurement:

$$
\hat{\Pi}_{j}=a_{j}\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right| \begin{aligned}
& \left|\phi_{0}\right\rangle=\sin \theta|0\rangle+\cos \theta|1\rangle \\
& \left|\phi_{1}\right\rangle=\sin \theta|0\rangle+e^{2 \pi i / 3} \cos \theta|1\rangle \\
& \left|\phi_{2}\right\rangle=\sin \theta|0\rangle+e^{-2 \pi i / 3} \cos \theta|1\rangle
\end{aligned}
$$

- Inconclusive outcome needed

$$
\hat{\Pi}_{?}=\left(1-\tan ^{2} \theta\right)|0\rangle\langle 0|
$$

Optimum probabilities

- Probability of correctly determining state maximised for minimum

$$
P_{D}=\sum_{j} P\left(\psi_{j}\right) P\left(\omega_{j} \mid \psi_{j}\right)
$$

- Probability that result obtained is correct maximised by maximum confidence measurement:

$$
P\left(\psi_{j} \mid \omega_{j}\right)=\frac{P\left(\psi_{j}\right) P\left(\omega_{j} \mid \psi_{j}\right)}{P\left(\omega_{j}\right)}
$$

Results:

Conclusions

- Photons have played a central role in the development of quantum theory and the quantum theory of light continues to provide surprises.
- True single photons are hard to make but are, perhaps, the ideal carriers of quantum information.
- It is now possible to demonstrate a variety of measurement strategies which realise optimised POMs
- The subject of quantum optics also embraces atoms, ions molecules and solids ...

