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1.  A bit about photons

Photoelectric effect - Einstein 1905

WheV  

BUT …

Modern interpretation:  resonance with the 
atomic transition frequency.

We can describe the phenomenon 
quantitatively by a model in which the 
matter is described quantum mechanically 
but the light is described classically.

Photons?



Single-photon (?) interference - G. I. Taylor 1909

Light source Smoked glass screens Screen with two slits

Photographic 
plate

Longest exposure - three months

“According to Sir J. J. Thompson, this sets a limit on the size of the 
indivisible units.”



Single photons (?) Hanbury-Brown and Twiss
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Blackbody light g(2)(0) = 2

Laser light             g(2)(0) = 1

Single photon g(2)(0) = 0   !!!

violation of Cauchy-Swartz 
inequality



Single photon source - Aspect 1986

Detection of the first 
photon acts as a herald 
for the second.

Second photon available for Hanbury-Brown 
and Twiss measurement or interference 
measurement.

Found  g(2)(0) ~ 0 (single photons) and
fringe visibility = 98%



Two-photon interference - Hong, Ou and Mandel 1987

“Each photon then interferes only with itself.  Interference between different 
photons never occurs” Dirac

Two photons in 
overlapping 
modes

50/50 beam splitter R=T=1/2

P = R T 2 = 1/2

Boson “clumping”.  If one photon is 
present then it is easier to add a 
second.
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Two-photon interference - Hong, Ou and Mandel 1987

“Each photon then interferes only with itself.  Interference between different 
photons never occurs” Dirac

Two photons in 
overlapping 
modes

50/50 beam splitter R=T=1/2

P = 0  !!!

Destructive quantum interference 
between the amplitudes for two 

reflections and two transmissions.
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Maxwell’s equations in an isotropic dielectric medium take the form:
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E, B and k are mutually orthogonal

For plane waves (and lab. beams that are 
not too tightly focussed) this means that 
the E and B fields are constrained to lie in 
the plane perpendicular to the direction of 
propagation.
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Consider a plane EM wave of the form
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If E0 and B0 are constant and real then the wave is said to be linearly polarised.
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Polarisation is defined by an axis 
rather than by a direction:



If the electric field for the plane wave can be written in the form

 )(exp)(0 tkziiE  jiE

Then the wave is said to be circularly polarised.
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For right-circular polarisation, an observer 
would see the fields rotating clockwise as 
the light approached.



The Jones representation

We can write the x and y components of the complex electric field amplitude 
in the form of a column vector:
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The size of the total field tells us nothing about the polarisation so we can 
conveniently normalise the vector:
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One advantage of this method is that it allows us to describe the effects of optical 
elements by matrix multiplication:

Linear polariser
(oriented to horizontal):
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(fast axis to horizontal):
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We refer to two polarisations as orthogonal if 
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This has a simple and suggestive form when expressed in terms of the Jones 
vectors:
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There is a clear and simple 
mathematical analogy between 
the Jones vectors and our 
description of a qubit.



Poincaré Sphere
Optical polarization

Bloch Sphere
Electron spin

Spin and polarisation Qubits
Poincaré and Bloch Spheres

Two state quantum system



We can realise a qubit as the state of single-photon polarisation
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Probability operator measures

Our generalised formula for measurement probabilities is

The set probability operators describing a measurement is 
called a probability operator measure (POM) or a positive
operator-valued measure (POVM).

The probability operators can be defined by the properties 
that they satisfy:

  ˆˆTr)( iiP 



Properties of probability operators

I.  They are Hermitian Observable

II.  They are positive                                          Probabilities

III.  They are complete                                         Probabilities

IV.  Orthonormal                                                     ??
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Generalised measurements as comparisons

S A

S A

S + A

Prepare an ancillary system in
a known state:

Perform a selected unitary 
transformation to couple the system
and ancilla:

Perform a von Neumann measurement
on both the system and ancilla:
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The probability for outcome i is

The probability operators 
act only on the system 
state-space.
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POM rules:
I.  Hermiticity:

II.  Positivity:

III.  Completeness follows 
from:
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Generalised measurements as comparisons

We can rewrite the detection probability as

is a projector onto correlated (entangled) states of the system 
and ancilla.  The generalised measurement is a von Neumann 
measurement in which the system and ancilla are compared.
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Simultaneous measurement of position and momentum

The simultaneous perfect measurement of x and p would violate
complementarity.

x

p Position measurement gives no
momentum information and 
depends on the position probability
distribution.



Simultaneous measurement of position and momentum

The simultaneous perfect measurement of x and p would violate
complementarity.

x

p

Momentum measurement gives no
position information and 
depends on the momentum probability
distribution.



Simultaneous measurement of position and momentum

The simultaneous perfect measurement of x and p would violate
complementarity.

x

p Joint position and  measurement 
gives partial information on both 
the position and the momentum.

Position-momentum minimum
uncertainty state.



POM description of joint measurements

Probability density:
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This leads us to the POM elements:
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Increased uncertainty is the price we pay for measuring x and p.
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The communications problem

‘Alice’ prepares a quantum system in one of a set of N possible
signal states and sends it to ‘Bob’

Bob is more interested in 

 ijijP  ˆˆTr)|( 

 
)ˆˆ(Tr

ˆˆTr
)|(




j

iij p
jiP 

Preparation
device

i selected.

prob.  ip

i̂ Measurement

result j

Measurement
device



In general, signal states will be non-orthogonal.  No measurement 
can distinguish perfectly between such states.

Were it possible then there would exist a POM with

Completeness, positivity and 

What is the best we can do? Depends on what we mean by ‘best’.
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Minimum-error discrimination

We can associate each measurement operator      with a signal
state      .  This leads to an error probability

Any POM that satisfies the conditions 

will minimise the probability of error.
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For just two states, we require a von Neumann measurement with
projectors onto the eigenstates of                         with positive (1) 
and negative (2) eigenvalues:

Consider for example the two pure qubit-states
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The minimum error is achieved by measuring in 
the orthonormal basis spanned by the states       
and       .

We associate       with        and         with        :

The minimum error is the Helstrom bound
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 + 

P = ||2

P = ||2

A single photon only gives one “click”

But this is all we need to discriminate between our two states 
with minimum error.



A more challenging example is the ‘trine ensemble’ of three
equiprobable states:

It is straightforward to confirm that the minimum-error conditions
are satisfied by the three probability operators

 
 

3
1

33

3
1

22
1

2

3
1

12
1

1

0

130

130







p

p

p







iii  3
2ˆ 



Simple example - the trine states

Three symmetric states of photon polarisation
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Minimum error probability
is 1/3.

This corresponds to a POM
with elements
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How can we do a polarisation
measurement with these three
possible results?



Polarisation interferometer - Sasaki et al, Clarke et al.
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Unambiguous discrimination

The existence of a minimum error does not mean that error-free
or unambiguous state discrimination is impossible.  A von Neumann
measurement with 

will give unambiguous identification of         :

result                                 error-free

result                                  inconclusive
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There is a more symmetrical approach with 
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How can we understand the IDP measurement?

Consider an extension into a 3D state-space

a

ba 

b 









Unambiguous state discrimination - Huttner et al, Clarke et al.
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A similar device 
allows minimum 
error discrimination
for the trine states.



Maximum confidence measurements seek to maximise the
conditional probabilities 

for each state.  
For unambiguous discrimination these are all 1.

Bayes’ theorem tells us that

so the largest values of those give us maximum confidence.
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The solution we find is

where
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Croke et al Phys. Rev. Lett. 96, 070401 (2006)



Example

• 3 states in a 2-
dimensional 
space

• Maximum Confidence Measurement:

• Inconclusive outcome needed



Optimum probabilities

• Probability of correctly 
determining state 
maximised for minimum 
error measurement

• Probability that result 
obtained is correct 
maximised by maximum 
confidence measurement:





Results:

Minimum error

Maximum confidence



• Photons have played a central role in the development of 
quantum theory and the quantum theory of light continues to 
provide surprises.

• True single photons are hard to make but are, perhaps, the ideal 
carriers of quantum information. 

• It is now possible to demonstrate a variety of measurement 
strategies which realise optimised POMs

• The subject of quantum optics also embraces atoms, ions 
molecules and solids ...

Conclusions


