Classical and quantum structures

QNet I \& QDay III - Glasgow

Bob Coecke
EPSRC Advanced Research Fellow
Oxford University Computing Laboratory
se10.comlab.ox.ac.uk: 8080/BobCoecke/Home_en.html

Work with Eric Paquette and Dusko Pavlovic, extending initial work with Samson Abramsky and Selinger's elaboration thereon.

ULTIMATE GOALS

BACKGROUND STRUCTURE
 (Penrose, Joyal-Street, Freyd-Yetter, Turaev, ...)

Symmetric Monoidal Category

$$
\begin{aligned}
& 1_{A} \quad f \quad g \circ f \quad 1_{A} \otimes 1_{B} \quad f \otimes 1_{C} \quad f \otimes g \quad(f \otimes g) \circ h
\end{aligned}
$$

Symmetric Monoidal Category

$$
1_{A} \quad f \quad g \circ f \quad 1_{A} \otimes 1_{B} \quad f \otimes 1_{C} \quad f \otimes g \quad(f \otimes g) \circ h
$$

$$
\psi: \mathrm{I} \rightarrow A \quad \pi: A \rightarrow \mathrm{I} \quad \pi \circ \psi: \mathrm{I} \rightarrow \mathrm{I}
$$

Symmetric Monoidal Category

"ket": $|\psi\rangle$
"bra": $\langle\psi|$
"bra-ket": $\langle\psi \mid \phi\rangle \in \mathbb{C}$
"ket": $|\psi\rangle$
"bra": $\langle\psi|$
"bra-ket": $\langle\psi \mid \phi\rangle \in \mathbb{C}$
"ket-bra": $|\psi\rangle\langle\psi| \quad \bar{c} c \cdot|\psi\rangle\langle\psi|=|c \cdot \psi\rangle\langle c \cdot \psi|$
"ket": $|\psi\rangle$
"bra": $\langle\psi|$
"bra-ket": $\langle\psi \mid \phi\rangle \in \mathbb{C}$
"ket-bra": $|\psi\rangle\langle\psi| \quad \bar{c} c \cdot|\psi\rangle\langle\psi|=|c \cdot \psi\rangle\langle c \cdot \psi|$
"probability": $\langle\phi \mid \psi\rangle\langle\psi \mid \phi\rangle=\left\langle\phi \mid \mathrm{P}_{\psi}(\phi)\right\rangle$
"ket": $|\psi\rangle$
"bra": $\langle\psi|$
"bra-ket": $\langle\psi \mid \phi\rangle \in \mathbb{C}$
"ket-bra": $|\psi\rangle\langle\psi| \quad \bar{c} c \cdot|\psi\rangle\langle\psi|=|c \cdot \psi\rangle\langle c \cdot \psi|$
"probability": $\langle\phi \mid \psi\rangle\langle\psi \mid \phi\rangle=\left\langle\phi \mid \mathrm{P}_{\psi}(\phi)\right\rangle$
"mixed states": $\sum_{i} w_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \neq|\phi\rangle\langle\phi|$
"ket": $|\psi\rangle$
"bra": $\langle\psi|$
"bra-ket": $\langle\psi \mid \phi\rangle \in \mathbb{C}$
"ket-bra": $|\psi\rangle\langle\psi| \quad \bar{c} c \cdot|\psi\rangle\langle\psi|=|c \cdot \psi\rangle\langle c \cdot \psi|$
"probability": $\langle\phi \mid \psi\rangle\langle\psi \mid \phi\rangle=\left\langle\phi \mid \mathrm{P}_{\psi}(\phi)\right\rangle$
"mixed states": $\sum_{i} w_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \neq|\phi\rangle\langle\phi|$
"basis": $\{|0\rangle,|1\rangle, \ldots,|n-1\rangle\} \&|i j\rangle:=|i\rangle \otimes|j\rangle$

PRACTICING PHYSICS

Physical System

Physical Operation

```
PROGRAMMING
    Data Types
    Programs
```

LOGIC \& PROOF THEORY
Propositions
Proofs

Growing, breeding, catching, cutting, mixing, eating

Symmetric Monoidal \dagger-Category

$$
f: A \rightarrow B \quad \longleftrightarrow \quad f^{\dagger}: B \rightarrow A
$$

Symmetric Monoidal \dagger-Category

$$
f: A \rightarrow B \quad \longleftrightarrow \quad f^{\dagger}: B \rightarrow A
$$

Most important non- \dagger-cats can be fitted within a \dagger-cat, e.g. Set into Rel, FStoch into $\mathrm{Mat}_{\mathbb{R}^{+}}, \ldots$

QUANTUM STRUCTURE

(Abramsky-Coecke 2004)

Object with (pure ${ }_{\neg C}$) quantum structure

A pair

$$
(A, \eta: \mathrm{I} \rightarrow A \otimes A)
$$

such that

commutes. (\dagger-compactness)

Object with (pure ${ }_{\neg c}$) quantum structure

Object with (pure ${ }_{\neg C}$) quantum structure

Object with (pure ${ }_{\neg c}$) quantum structure

four-fold duality

four-fold duality

In FdHilb: $f^{*} \sim \operatorname{transposed} \& f_{*} \sim$ conjugated

"Clean" normalization theorem

"Sliding" boxes

"Clean" normalization theorem

"Decorated" normalization theorem

"Decorated" normalization theorem

"Decorated" normalization theorem

Applying "decorated" normalization 1

Applying "decorated" normalization 2

Applying "decorated" normalization 2

Applying "decorated" normalization 3

QUANTUM MIXEDNESS

(Selinger 2005)

Construction of mixed states and CPMs

(incarnates Stinespring theorem)

Construction of mixed states and CPMs

Proposition: SM \dagger-structure carries over.
Thm.: Quantum structure carries over.

Construction of mixed states and CPMs

Construction of mixed states and CPMs

Construction of mixed states and CPMs

Composition of mixed states and CPMs

CLASSICAL STRUCTURE

(Coecke-Paquette-Pavlovic 2006)

Copying?

Quantum Information obeys a No-Cloning theorem.

Copying?

Quantum Information obeys a No-Cloning theorem.

In Linear Logic we drop:

$$
\frac{A, B, B \vdash C}{A, B \vdash C} \quad \text { and } \quad \frac{A \vdash C}{A, B \vdash C}
$$

which is modelled in a $*$-autonomous category.

Copying?

Quantum Information obeys a No-Cloning theorem.

In Linear Logic we drop:

$$
\frac{A, B, B \vdash C}{A, B \vdash C} \quad \text { and } \quad \frac{A \vdash C}{A, B \vdash C}
$$

which is modelled in a $*$-autonomous category.

Our \dagger-compactness specialises this semantics, and yields No-Cloning and No-Deleting Theorems.

Copying?

$\left\{\Delta_{A}: A \rightarrow A \otimes A\right\}_{A}$

No-copying in (Rel, \times)

$$
\begin{gathered}
\left\{\Delta_{X}: x \mapsto(x, x)\right\}_{X} \\
\{*\} \xrightarrow[\{(*, 0),(*, 1)\}]{ }\{0,1\} \\
\{*\} \times\{*\} \frac{1(*, *))\}}{} \operatorname{NO!}\{(0,(0,0)),(1,(1,1))\} \\
\{(*, 0),(*, 1)\} \times\{(*, 0),(*, 1)\} \\
\{0,1\} \times\{0,1\} \\
\{(0,0),(1,1)\} \neq\{0,1\} \times\{0,1\}
\end{gathered}
$$

No-copying of quantum states

$$
\begin{aligned}
& \left\{\Delta_{\mathcal{H}}:|i\rangle \mapsto|i\rangle \otimes|i\rangle\right\}_{\mathcal{H}} \\
& \left|\begin{array}{ll}
\mathbb{C} \longrightarrow \mathbb{C} \oplus \mathbb{C} \\
1 \mapsto 1 \otimes 1 & \text { NO! } \\
& \\
|1-| 0\rangle+|1\rangle \\
|1\rangle \mapsto|1\rangle \otimes|1\rangle
\end{array}\right| \\
& \mathbb{C} \simeq \mathbb{C} \otimes \mathbb{C} \frac{}{1 \otimes 1 \mapsto(|0\rangle+\mid 1) \otimes(|0\rangle+|1\rangle)}(\mathbb{C} \oplus \mathbb{C}) \dot{\otimes}(\mathbb{C} \oplus \mathbb{C})
\end{aligned}
$$

No-copying of quantum states

$$
\begin{aligned}
& \left\{\Delta_{\mathcal{H}}:|i\rangle \mapsto|i\rangle \otimes|i\rangle\right\}_{\mathcal{H}} \\
& \left\lvert\, \begin{array}{ll}
\mathbb{C} \longrightarrow \mathbb{C} \oplus \mathbb{C} \\
1 \mapsto 1 \otimes 1 & \text { NO! } \\
& \left.\begin{array}{l}
1-|0\rangle+|1\rangle \\
|1\rangle \mapsto|0\rangle \otimes|0\rangle \\
|1\rangle \otimes|1\rangle
\end{array} \right\rvert\,
\end{array}\right. \\
& \mathbb{C} \simeq \mathbb{C} \otimes \mathbb{C} \xrightarrow{1 \otimes 1 \mapsto(|0\rangle+\mid 1)) \otimes(|0\rangle+|1\rangle)}(\mathbb{C} \oplus \mathbb{C}) \dot{\otimes}(\mathbb{C} \oplus \mathbb{C}) \\
& |0\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle \neq(|0\rangle+|1\rangle) \otimes(|0\rangle+|1\rangle) \\
& \text { Bell-states cause trouble! }
\end{aligned}
$$

Object with classical structure

A commutative comonoid

$$
(X, \delta: X \rightarrow X \otimes X, \epsilon: X \rightarrow \mathrm{I})
$$

such that

commutes. (\dagger-Frobenius \& speciality)

Object with classical structure

Object with classical structure

Classical structure \Rightarrow quantum structure

Object with classical structure

Object with classical structure

Object with classical structure

Object with classical structure

Notational convention 1:

$$
\begin{gathered}
\underline{\psi=\psi}=\Psi \\
\psi=X
\end{gathered}
$$

Notational convention 1:

Notational convention 2:

"Fusion" of dots:

$$
\psi=\mid \quad\langle \rangle=X \quad \phi=1
$$

"Clean" normalization theorem

Each "connected" network consisting of $\delta, \delta^{\dagger}, \epsilon, \epsilon^{\dagger}$ admits the following normal form through fusion:

(fusions \sim graphical normalising rewriting system)

"Clean" normalization theorem

1.

"Clean" normalization theorem

1.

2.

"Clean" normalization theorem

1.

2.

3.

"Clean" normalization theorem

1.

2.

3.

CLASSICAL STOCHASTICITY FROM CLASSICAL STRUCTURE

Diagonal structure on X is

$$
\Xi_{X}:=\delta_{X} \circ \delta_{X}^{\dagger}: X \otimes X \rightarrow X \otimes X
$$

Diagonal structure on X is

$$
\Xi_{X}:=\delta_{X} \circ \delta_{X}^{\dagger}: X \otimes X \rightarrow X \otimes X
$$

$f: X \otimes X \rightarrow Y \otimes Y$ is diagonal if

$$
f=f \circ \Xi_{X}=\Xi_{Y} \circ f
$$

Diagonal structure on X is

$$
\Xi_{X}:=\delta_{X} \circ \delta_{X}^{\dagger}: X \otimes X \rightarrow X \otimes X
$$

$f: X \otimes X \rightarrow Y \otimes Y$ is diagonal if

$$
f=f \circ \Xi_{X}=\Xi_{Y} \circ f
$$

Define new category $D(C)$ with same objects and
$\mathrm{D}(\mathbf{C})(X, Y):=\{f \in \mathbf{C}(X \otimes X, Y \otimes Y) \mid f$ diagonal $\}$

Proposition. E and R are functors.

Proposition. E and R are functors.

Proposition. E and R realize isomorphism.

Lemma. Diagonal structure is completely positive.

Lemma. Diagonal structure is completely positive.

Lemma. Diagonal structure is completely positive.

Definition. We call $\mathbf{C}_{\gamma} \simeq \operatorname{DM}(\mathbf{C})$ the classical (probability) theory underlying the quantum theory \mathbf{C}.

We call the morphisms of \mathbf{C}_{γ} classical maps. A classical map is a stochastic map if it preserves ϵ i.e.

$$
\epsilon_{B} \circ f=\epsilon_{A}
$$

$$
\varphi=9
$$

A stochastic map of type $p: \mathrm{I} \rightarrow A$ is a classical (stochastic) state. It is a pure if it preserves δ i.e.

$$
\delta_{A} \circ p=(p \otimes p) \circ \lambda_{\mathrm{I}} \quad \stackrel{\square}{\square}=\downarrow
$$

and $\epsilon_{A}^{\dagger}: \mathrm{I} \rightarrow A$ is a maximally mixed state.

Theorem.

Classical theories underlying quantum theories:
... carry no phase information i.e. $f_{*}=f$.
... inherit $\mathrm{SM} \dagger$-structure carries over.
... inherit classical structure.

Theorem.

Classical theories underlying quantum theories:
... carry no phase information i.e. $f_{*}=f$.
... inherit $\mathrm{SM} \dagger$-structure carries over.
... inherit classical structure.

Corollary

No-cloning/No-deleting for classical theories.

CLASSICAL STOCHASTICITY WITHIN QUANTUM THEORY

$\mathbf{C}_{\gamma} \underset{\gamma_{2}}{\stackrel{E}{\longrightarrow} \operatorname{DM}(\mathbf{C}) \longleftarrow \nprec} \operatorname{CPM}(\mathbf{C})$

$\mathbf{C}_{\gamma} \underset{\gamma_{2}}{\stackrel{E}{\longrightarrow} \operatorname{DM}(\mathbf{C}) \longleftarrow \nless \boldsymbol{x} \rightarrow} \operatorname{CPM}(\mathbf{C})$

MORE CLASSICAL SPECIES FROM CLASSICAL STRUCTURE

Partial maps:

1. $f_{*}=f$ and preserve δ i.e. $\delta_{Y} \circ f=(f \otimes f) \circ \delta_{X}$

Total maps:
2. also preserve ϵ i.e. $\epsilon_{Y} \circ f=\epsilon_{X}$

Permutation:
3. also f^{\dagger} is total.

Relation:
4. $f=\delta_{Y}^{\dagger} \circ\left(f \otimes f_{*}\right) \circ \delta_{X}$.

Partial maps:

1. $f_{*}=f$ and preserve δ i.e. $\delta_{Y} \circ f=(f \otimes f) \circ \delta_{X}$

Total maps:
2. also preserve ϵ i.e. $\epsilon_{Y} \circ f=\epsilon_{X}$

Permutation:
3. also f^{\dagger} is total.

Relation:
4. $f=\delta_{Y}^{\dagger} \circ\left(f \otimes f_{*}\right) \circ \delta_{X}$.

Thm. Relations in \mathbf{C} constitute a cartesian bicategory in Carboni and Walter's sense with local partial order:

$$
\begin{gathered}
f \subseteq g \Leftrightarrow f=\delta_{Y}^{\dagger} \circ(f \otimes g) \circ \delta_{X} \\
\delta_{Y} \circ f \subseteq(f \otimes f) \circ \delta_{X} \quad \epsilon_{Y} \circ f \subseteq \epsilon_{X}
\end{gathered}
$$

Partial maps:

1. $f_{*}=f$ and preserve δ i.e. $\delta_{Y} \circ f=(f \otimes f) \circ \delta_{X}$

Total maps:
2. also preserve ϵ i.e. $\epsilon_{Y} \circ f=\epsilon_{X}$

Permutation:
3. also f^{\dagger} is total.

Relation:
4. $f=\delta_{Y}^{\dagger} \circ\left(f \otimes f_{*}\right) \circ \delta_{X}$.

Bistochastic map:
5. both f and f^{\dagger} are stochastic maps.

Weighted map:
6. $g: X \rightarrow Y$ exist such that $\delta_{Y} \circ f=\left(g \otimes g_{*}\right) \circ \delta_{X}$

"Decorated" normalization theorem

Each "connected" network consisting of $\delta, \delta^{\dagger}, \epsilon, \epsilon^{\dagger}$ and weighted maps can be rewritten as:

QUANTUM MEASUREMENT FROM CLASSICAL STRUCTURE

Quantum measurement is an operation of type

$$
A \rightarrow A \otimes X
$$

Quantum measurement is an operation of type

$$
A \rightarrow A \otimes X
$$

Def. A quantum measurement with outcome spectrum X is an Eilenbergh-Moore \dagger-coalgebra for $(X \otimes-)$.

Quantum measurement is an operation of type

$$
A \rightarrow A \otimes X
$$

Def. A quantum measurement with outcome spectrum X is an Eilenbergh-Moore \dagger-coalgebra for $(X \otimes-)$.

Thm. In FdHilb quantum measurement yields usual notion in terms of self-adjoint operators.

Quantum measurement is an operation of type

$$
A \rightarrow A \otimes X
$$

Def. A quantum measurement with outcome spectrum X is an Eilenbergh-Moore \dagger-coalgebra for $(X \otimes-)$.

Thm. In FdHilb quantum measurement yields usual notion in terms of self-adjoint operators.

Thm. We can define POVMs and derive Naimarks's.

Quantum measurement is an operation of type

$$
A \rightarrow A \otimes X
$$

Def. A quantum measurement with outcome spectrum X is an Eilenbergh-Moore \dagger-coalgebra for $(X \otimes-)$.

Thm. In FdHilb quantum measurement yields usual notion in terms of self-adjoint operators.

Thm. We can define POVMs and derive Naimarks's.

Control structure and concepts correspond with morphisms in the Kleisli category for $(X \otimes-): \mathbf{C} \rightarrow \mathbf{C}$

CLASSICAL-QUANTUM INTERACTION FROM CLASSICAL STRUCTURE

i. Purely classical operation if is in the range of

$$
\begin{array}{rl}
\Gamma_{A}: \mathbf{C}_{\gamma} \rightarrow \mathbf{C}_{q+\gamma}::\left\{\begin{array}{l}
X \mapsto(A, X) \\
f \mapsto 1_{A} \otimes f \otimes 1_{A} .
\end{array}\right. \\
A & Y
\end{array}
$$

ii. Purely quantum operation is in the range of
$Q_{X}: \operatorname{CPM}\left(\mathbf{C}_{q}\right) \rightarrow \mathbf{C}_{q+\gamma}::\left\{\begin{array}{l}A \mapsto(A, X) \\ f \mapsto \sigma^{\dagger} \circ\left(1_{X} \otimes f\right) \circ \sigma .\end{array}\right.$

iii. Pure measurement is an operation

$$
\begin{array}{r}
\mathcal{M} \in \mathbf{C}_{q+\gamma}(\mathbf{C})((B \otimes A, Y),(B \otimes A, X \otimes Y)) \\
B \\
\\
B
\end{array}
$$

iv. Control operations are co-Kleisli, ...
v. Operation is non-mixed if it is of the form
$\left(1_{B} \otimes \delta_{Y}^{\dagger} \otimes 1_{B}\right) \circ\left(f \otimes f_{*}\right) \circ\left(1_{A} \otimes \delta_{X} \otimes 1_{A}\right) \in \mathbf{C}_{q+\gamma}$

v. Operation is non-mixed if it is of the form
$\left(1_{B} \otimes \delta_{Y}^{\dagger} \otimes 1_{B}\right) \circ\left(f \otimes f_{*}\right) \circ\left(1_{A} \otimes \delta_{X} \otimes 1_{A}\right) \in \mathbf{C}_{q+\gamma}$

Prop. A purely classical operation $\Gamma_{A} f$ is non-mixing if and only if f is a weighted map.

