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BACKGROUND STRUCTURE

(Penrose, Joyal-Street, Freyd-Yetter, Turaey, ...)
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“Ketbra®s [1) (0] ce- @) (] = e+ ) (e v
“probability”™: (0] (]6) = (8]Py(0))
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PRACTICING PHYSICS
Physical System
Physical Operation

PROGRAMMING
Data Types
Programs

LOGIC & PROOF THEORY
Propositions
Proofs

COOKING

Vegetables, meet, fish, spices, mayonaise

Growing, breeding, catching, cutting, mixing, eating




Symmetric Monoidal 7-Category
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Symmetric Monoidal 7-Category

f:A—-B +— fT:B—>A

Most important non-j-cats can be fitted within a {-cat,
e.g. Set into Rel, FStoch into Maty-, ...



QUANTUM STRUCTURE

(Abramsky-Coecke 2004)



Object with (pure-.) quantum structure

A pair
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commutes. (f-compactness)
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four-fold duality

w- W=

.
™

In FdHilb: " ~ transposed & f, ~ conjugated
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‘“Decorated’” normalization theorem

Proj ector Proj ector
Projector Projector

\—/
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QUANTUM MIXEDNESS

(Selinger 2005)



Construction of mixed states and CPMs
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(incarnates Stinespring theorem)



Construction of mixed states and CPMs

B C B

I
A A

Proposition: SM f-structure carries over.

Thm.: Quantum structure carries over.



Construction of mixed states and CPMs

B C B




Construction of mixed states and CPMs

B C B




Construction of mixed states and CPMs

B C B




Composition of mixed states and CPMs




CLASSICAL STRUCTURE

(Coecke-Paquette-Pavlovic 2006)
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Copying ?

Quantum Information obeys a No-Cloning theorem.

In Linear Logic we drop:
A B,BFC AFC

and

ABFC ABFC

which is modelled in a x-autonomous category.

Our j-compactness specialises this semantics, and
yields No-Cloning and No-Deleting Theorems.



Copying ?

{AAZA—>A®A}A
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Ay Ap
A A B® B

fef



No-copying in (Rel, x)

{Ax :x— (z,2)}x

{(+0),(+,1)}
& -{0,1}

{(k,(x,%))} NO! {(0,(0,0)).(1,(1,1))}

(% O e 01 < 0.1

1(0,0),(1,1)} # 10,1} x {0, 1}



No-copying of quantum states
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No-copying of quantum states

B ]i) = 1)@ i) pn

1—0)+[1)

C .CaC
1—1®1 NO! 0) = 10) @ 0)
1) — 1) ®|1)

CxC®C (CaC)®(CaC)

lo1=(|0)+[1)@(]0)+(1))

0) ®10) + [1) @ [1) # (]0) +[1)) ® (|0) +[1))
Bell-states cause trouble!



Object with classical structure

A commutative comonoid
(X,0: X = X®X,e: X —1)

such that

Xox 9 .y X ' X®X

0R1x

XQX®X

1x®5T

commutes. (7-Frobenius & speciality)
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Classical structure = quantum structure

|
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Object with classical structure
X X
X X




Object with classical structure




Object with classical structure



Object with classical structure



Notational convention 1:
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Notational convention 1:

Notational convention 2:

“Fusion” of dots



““Clean’ normalization theorem

Each “connected” network consisting of J, ¢, ¢, €
admits the following normal form through fusion:

X X X E B B EEREEEDN X

X X X EEEE X

(fusions ~ graphical normalising rewriting system)
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CLASSICAL STOCHASTICITY
FROM CLASSICAL STRUCTURE
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Diagonal structure on X 1s

Sy =0xodl XX > XX

~

f:X®X =Y ®Y isdiagonal if
J=JfozZx=Zyof

Define new category D(C) with same objects and

DIC)X,Y) ={fe C(X®X,YRY) | f diagonal}
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E'C—>D() f0dyofodl
)— C g|—>5Togo5X

Hi -

Proposition. & and R are functors.

Proposition. £/ and R realize isomorphism.

B
~———D(C
c—£ -D(C)




Lemma. Diagonal structure is completely positive.
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Lemma. Diagonal structure is completely positive.

R

C,” /‘%\ DM(C) CPM(C)
| 1
C——= —-D(C)




Lemma. Diagonal structure is completely positive.

R




Definition. We call C., ~ DM(C) the classical (prob-
ability) theory underlying the quantum theory C.

We call the morphisms of C,, classical maps. A clas-
sical map 1s a stochastic map if it preserves € 1.€.

epof =€y *:I

A stochastic map of type p : I — A is a classical
(stochastic) state. It is a pure if it preserves 0 i.e.

dpop=(p®p) o V: vv

and 6]:1 : I — A is a maximally mixed state.



Theorem.
Classical theories underlying quantum theories:
... carry no phase information i.e. fx = f.
... inherit SM f-structure carries over.

... Inherit classical structure.



Theorem.
Classical theories underlying quantum theories:
... carry no phase information i.e. fx = f.
... inherit SM f-structure carries over.

... Inherit classical structure.

Corollary

No-cloning/No-deleting for classical theories.



CLASSICAL STOCHASTICITY
WITHIN QUANTUM THEORY



Pure world

Mixed world



C c—LI - CPM(C)

71

O DM 0PN

72

C, e CPM(C)

Sqr Diag

CPM(C)

72



MORE CLASSICAL SPECIES
FROM CLASSICAL STRUCTURE



Partial maps:

1. f. = fand preserve di.e. 0y o f = (f ® f) o0
Total maps:

2. also preserve €i.e. ey o [ = €x

Permutation:

3. also fT is total.

Relation:
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Partial maps:

1. f, = fand preserve di.e. oy o f = (f ® f) o dx
Total maps:

2. also preserve ei.e. ey o [ = €x

Permutation:

3. also fT is total.

Relation:

4. f =6l o (f® f.) o bx.

Thm. Relations in C constitute a cartesian bicategory
in Carboni and Walter’s sense with local partial order:

fCge f=00(f®g)odx
dyof C(f®f)odx ey o f Cex



Partial maps:

1. f. = fand preserve di.e. 0y o f = (f ® f) o0
Total maps:

2. also preserve €i.e. ey o [ = €x

Permutation:

3. also fT is total.

Relation:

4.f =0} o (f® f)odx.

Bistochastic map:

5.both f and fT are stochastic maps.



Classical map

Relation (d-laz, e-lax)

/

Stochastic map (e
Partial map (6, e-lax)

T

Total map (0, €) Bistochastic map (e, €')

/\

Permutation (9, €, 5* eT



Weighted map:
6.g: X — Yexistsuchthatdy o f = (¢ ® g,) 0 dx




‘“Decorated’” normalization theorem

Each “connected” network consisting of J, ¢, ¢, €
and weighted maps can be rewritten as:




QUANTUM MEASUREMENT
FROM CLASSICAL STRUCTURE
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Quantum measurement is an operation of type

A—- AR X

Def. A quantum measurement with outcome spectrum
X is an Eilenbergh-Moore t-coalgebra for (X ® —).

Thm. In FdHilb quantum measurement yields usual
notion in terms of self-adjoint operators.

Thm. We can define POVMs and derive Naimarks’s.

Control structure and concepts correspond with mor-
phisms in the Kleisli category for (X ® —) : C — C



CLASSICAL-QUANTUM INTERACTION
FROM CLASSICAL STRUCTURE



i. Purely classical operation if is in the range of

X — (A X
FA:CV—>Cq+7::{f|_>1<A®f>®1A.
| |
A X A

il. Purely quantum operation is in the range of

Ar— (A
QXCPM(Cq>_>Cq+7{f|_>0<'TC7))((1>X'®f)OO-

B X B

» | e

A X A



ili. Pure measurement is an operation

M€ Cu,(C)(BRAY),(BRAX®Y))
|‘3 A X\‘( A I‘B
B A Y A B

iv. Control operations are co-Kleisli, ...



v. Operation is non-mixed if it is of the form

(1B®6;[/®1B>O(f®f*)O(1A®5X®1A) S Cq—|—7



v. Operation is non-mixed if it is of the form

(1B®5;[/®1B)O<f®f*)O(1A®5X®1A) S Cq—|—7

B Y B
A X A

Prop. A purely classical operation I' o f is non-mixing
if and only if f is a weighted map.



