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BACKGROUND STRUCTURE
(Penrose, Joyal-Street, Freyd-Yetter, Turaev, ...)
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“ket”: |ψ〉

“bra”: 〈ψ|

“bra-ket”: 〈ψ|φ〉 ∈ C

“ket-bra”: |ψ〉〈ψ| c̄c · |ψ〉〈ψ| = |c ·ψ〉〈c ·ψ|

“probability”: 〈φ|ψ〉〈ψ|φ〉 = 〈φ|Pψ(φ)〉

“mixed states”:
∑
iwi|ψi〉〈ψi| 6= |φ〉〈φ|

“basis”: {|0〉, |1〉, . . . , |n−1〉}&|ij〉 := |i〉⊗|j〉



PRACTICING PHYSICS
Physical System

Physical Operation

PROGRAMMING
Data Types
Programs

LOGIC & PROOF THEORY
Propositions

Proofs

COOKING
Vegetables, meet, fish, spices, mayonaise

Growing, breeding, catching, cutting, mixing, eating



Symmetric Monoidal †-Category

f : A→ B ←→ f† : B → A

ff †



Symmetric Monoidal †-Category

f : A→ B ←→ f† : B → A

ff †

Most important non-†-cats can be fitted within a †-cat,
e.g. Set into Rel, FStoch into MatR+, ...



QUANTUM STRUCTURE
(Abramsky-Coecke 2004)



Object with (pure¬c) quantum structure

A pair
(A , η : I→ A⊗ A)

such that

A

η⊗1A

��

1A

  B
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
B

A⊗ A⊗ A
1A⊗η†

//A

commutes. (†-compactness)
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four-fold duality
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In FdHilb: f ∗ ∼ transposed & f∗ ∼ conjugated
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“Decorated” normalization theorem
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QUANTUM MIXEDNESS
(Selinger 2005)



Construction of mixed states and CPMs
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Construction of mixed states and CPMs
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Proposition: SM †-structure carries over.

Thm.: Quantum structure carries over.
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Composition of mixed states and CPMs



CLASSICAL STRUCTURE
(Coecke-Paquette-Pavlovic 2006)



Copying ?

Quantum Information obeys a No-Cloning theorem.
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Copying ?

Quantum Information obeys a No-Cloning theorem.

In Linear Logic we drop:

A,B,B ` C
A,B ` C

and
A ` C
A,B ` C

which is modelled in a ∗-autonomous category.

Our †-compactness specialises this semantics, and
yields No-Cloning and No-Deleting Theorems.



Copying ?

{∆A : A→ A⊗ A}A

A
f

-B

A⊗ A

∆A

?

f⊗f
-B ⊗B

∆B

?



No-copying in (Rel,×)

{∆X : x 7→ (x, x)}X

{∗} {(∗,0),(∗,1)}
- {0, 1}

NO!

{∗} × {∗}

{(∗,(∗,∗))}

?

{(∗,0),(∗,1)}×{(∗,0),(∗,1)}
- {0, 1} × {0, 1}

{(0,(0,0)),(1,(1,1))}

?

{(0, 0), (1, 1)} 6= {0, 1} × {0, 1}



No-copying of quantum states

{∆H : | i 〉 7→ | i 〉 ⊗ | i 〉}H

C 17→|0〉+|1〉
- C⊕ C

NO!

C ' C⊗ C

17→1⊗1

?

1⊗17→(|0〉+|1〉)⊗(|0〉+|1〉)
- (C⊕ C)⊗ (C⊕ C)

|0〉 7→ |0〉 ⊗ |0〉
|1〉 7→ |1〉 ⊗ |1〉

?



No-copying of quantum states

{∆H : | i 〉 7→ | i 〉 ⊗ | i 〉}H

C 17→|0〉+|1〉
- C⊕ C

NO!

C ' C⊗ C

17→1⊗1

?

1⊗17→(|0〉+|1〉)⊗(|0〉+|1〉)
- (C⊕ C)⊗ (C⊕ C)

|0〉 7→ |0〉 ⊗ |0〉
|1〉 7→ |1〉 ⊗ |1〉

?

|0〉 ⊗ |0〉 + |1〉 ⊗ |1〉 6= (|0〉 + |1〉)⊗ (|0〉 + |1〉)
Bell-states cause trouble!



Object with classical structure

A commutative comonoid

(X , δ : X → X ⊗X , ε : X → I)

such that

X ⊗X δ† //

δ⊗1X

��

X

δ

��

X δ //

1X
##G

GGGGGGGGGGGGGGGGGG X ⊗X

δ†

��

X ⊗X ⊗X
1X⊗δ†

//X ⊗X X

commutes. (†-Frobenius & speciality)



Object with classical structure
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Classical structure⇒ quantum structure

= =
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Notational convention 1:
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Notational convention 1:

= =

Notational convention 2:

=
“Fusion” of dots:

= ==



“Clean” normalization theorem

Each “connected” network consisting of δ, δ†, ε, ε†
admits the following normal form through fusion:

X X

X X XX

X X.........

....
(fusions ∼ graphical normalising rewriting system)
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“Clean” normalization theorem
1.

2.

3.



CLASSICAL STOCHASTICITY
FROM CLASSICAL STRUCTURE
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f : X ⊗X → Y ⊗ Y is diagonal if

f = f ◦ ΞX = ΞY ◦ f



Diagonal structure on X is

ΞX := δX ◦ δ†X : X ⊗X → X ⊗X

f : X ⊗X → Y ⊗ Y is diagonal if

f = f ◦ ΞX = ΞY ◦ f

Define new category D(C) with same objects and

D(C)(X,Y ) := {f ∈ C(X⊗X,Y ⊗Y ) | f diagonal}



E : C→ D(C) :: f 7→ δY ◦ f ◦ δ†X
R : D(C)→ C :: g 7→ δ†Y ◦ g ◦ δX



E : C→ D(C) :: f 7→ δY ◦ f ◦ δ†X
R : D(C)→ C :: g 7→ δ†Y ◦ g ◦ δX

Proposition. E and R are functors.



E : C→ D(C) :: f 7→ δY ◦ f ◦ δ†X
R : D(C)→ C :: g 7→ δ†Y ◦ g ◦ δX

Proposition. E and R are functors.

Proposition. E and R realize isomorphism.

C
E ..' D(C)
R

mm
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Lemma. Diagonal structure is completely positive.

=

Cγ E
//

_�

��

DM(C)
R

uu

_�

��

� � //' CPM(C)

C E //D(C)
R

ii '

f = g g



Definition. We call Cγ ' DM(C) the classical (prob-
ability) theory underlying the quantum theory C.

We call the morphisms of Cγ classical maps. A clas-
sical map is a stochastic map if it preserves ε i.e.

εB ◦ f = εA =
A stochastic map of type p : I → A is a classical
(stochastic) state. It is a pure if it preserves δ i.e.

δA ◦ p = (p⊗ p) ◦ λI =
and ε†A : I→ A is a maximally mixed state.



Theorem.

Classical theories underlying quantum theories:

... carry no phase information i.e. f∗ = f .

... inherit SM †-structure carries over.

... inherit classical structure.



Theorem.

Classical theories underlying quantum theories:

... carry no phase information i.e. f∗ = f .

... inherit SM †-structure carries over.

... inherit classical structure.

Corollary

No-cloning/No-deleting for classical theories.



CLASSICAL STOCHASTICITY
WITHIN QUANTUM THEORY



Cγ
� � //

γ1

33
C F //CPM(C)

Cγ
E //

γ2

33
DM(C) � � 6 1 //CPM(C)

C

C

CPM(C)

DM(C)γ

F[C]

F[C ]γ

∼_

Pure world

Mixed world



Cγ
� � //

γ1

33
C F //CPM(C)

Cγ
E //

γ2

33
DM(C) � � 6 1 //CPM(C)

Cγ
γ1 //

Sqr

��

CPM(C)

Diag

��

Cγ
//

γ2
//CPM(C)



MORE CLASSICAL SPECIES
FROM CLASSICAL STRUCTURE



Partial maps:

1. f∗ = f and preserve δ i.e. δY ◦ f = (f ⊗ f ) ◦ δX
Total maps:

2. also preserve ε i.e. εY ◦ f = εX

Permutation:

3. also f † is total.

Relation:

4. f = δ†Y ◦ (f ⊗ f∗) ◦ δX .



Partial maps:
1. f∗ = f and preserve δ i.e. δY ◦ f = (f ⊗ f ) ◦ δX
Total maps:
2. also preserve ε i.e. εY ◦ f = εX

Permutation:
3. also f † is total.
Relation:
4. f = δ†Y ◦ (f ⊗ f∗) ◦ δX .
Thm. Relations in C constitute a cartesian bicategory
in Carboni and Walter’s sense with local partial order:

f ⊆ g ⇔ f = δ†Y ◦ (f ⊗ g) ◦ δX
δY ◦ f ⊆ (f ⊗ f ) ◦ δX εY ◦ f ⊆ εX



Partial maps:

1. f∗ = f and preserve δ i.e. δY ◦ f = (f ⊗ f ) ◦ δX
Total maps:

2. also preserve ε i.e. εY ◦ f = εX

Permutation:

3. also f † is total.

Relation:

4. f = δ†Y ◦ (f ⊗ f∗) ◦ δX .

Bistochastic map:

5. both f and f † are stochastic maps.



Classical map
��

���

Z
Z

Z
Z

Z
Z

Z
ZZ

Relation (δ-lax, ε-lax)

Stochastic map (ε)
���

���
���

HHH
HHH

HHH

Partial map (δ, ε-lax)

HH
HHH

Total map (δ, ε) Bistochastic map (ε, ε†)

HHH
HHH

HHH

���
���

���

Permutation (δ, ε, δ†, ε†)



Weighted map:

6. g : X → Y exist such that δY ◦ f = (g ⊗ g∗) ◦ δX

f = g g



“Decorated” normalization theorem

Each “connected” network consisting of δ, δ†, ε, ε†
and weighted maps can be rewritten as:

.........

....



QUANTUM MEASUREMENT
FROM CLASSICAL STRUCTURE



Quantum measurement is an operation of type
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Quantum measurement is an operation of type

A→ A⊗X

Def. A quantum measurement with outcome spectrum
X is an Eilenbergh-Moore †-coalgebra for (X ⊗−).

Thm. In FdHilb quantum measurement yields usual
notion in terms of self-adjoint operators.

Thm. We can define POVMs and derive Naimarks’s.

Control structure and concepts correspond with mor-
phisms in the Kleisli category for (X ⊗−) : C→ C



CLASSICAL-QUANTUM INTERACTION
FROM CLASSICAL STRUCTURE



i. Purely classical operation if is in the range of

ΓA : Cγ → Cq+γ ::

{
X 7→ (A,X)
f 7→ 1A ⊗ f ⊗ 1A .

A

A

A

A
f
X

Y

ii. Purely quantum operation is in the range of

QX : CPM(Cq)→ Cq+γ ::

{
A 7→ (A,X)
f 7→ σ† ◦ (1X ⊗ f ) ◦ σ .

A

B

A

B

f f*
X

X



iii. Pure measurement is an operation

M∈ Cq+γ(C)((B ⊗ A, Y ), (B ⊗ A,X ⊗ Y ))

A

A

A

A

M *
Y

XY

M
B

B

B

B

iv. Control operations are co-Kleisli, ...



v. Operation is non-mixed if it is of the form

(1B ⊗ δ†Y ⊗ 1B) ◦ (f ⊗ f∗) ◦ (1A ⊗ δX ⊗ 1A) ∈ Cq+γ

A

B

A

B

f f
*

X

Y



v. Operation is non-mixed if it is of the form

(1B ⊗ δ†Y ⊗ 1B) ◦ (f ⊗ f∗) ◦ (1A ⊗ δX ⊗ 1A) ∈ Cq+γ

A

B

A

B

f f
*

X

Y

Prop. A purely classical operation ΓAf is non-mixing
if and only if f is a weighted map.


