Classical and quantum structures

QNet I & QDay III - Glasgow

Bob Coecke

EPSRC Advanced Research Fellow

Oxford University Computing Laboratory

sel0.comlab.ox.ac.uk:8080/BobCoecke/Home_en.html

Work with Eric Paquette and Dusko Pavlovic, extending initial work with Samson Abramsky and Selinger's elaboration thereon.

ULTIMATE GOALS

BACKGROUND STRUCTURE

(Penrose, Joyal-Street, Freyd-Yetter, Turaev, ...)

Symmetric Monoidal Category

 $1_A \quad f \quad g \circ f \quad 1_A \otimes 1_B \quad f \otimes 1_C \quad f \otimes g \quad (f \otimes g) \circ h$

Symmetric Monoidal Category

 $1_A \quad f \quad g \circ f \quad 1_A \otimes 1_B \quad f \otimes 1_C \quad f \otimes g \quad (f \otimes g) \circ h$

 $\psi: \mathbf{I} \to A \qquad \pi: A \to \mathbf{I} \qquad \pi \circ \psi: \mathbf{I} \to \mathbf{I}$

Symmetric Monoidal Category

"ket": $|\psi\rangle$

"bra": $\langle \psi |$

"bra-ket": $\langle \psi | \phi \rangle \in \mathbb{C}$

"ket": $|\psi\rangle$ "bra": $\langle\psi|$ "bra-ket": $\langle\psi|\phi\rangle \in \mathbb{C}$ "ket-bra": $|\psi\rangle\langle\psi| \quad \bar{c}c \cdot |\psi\rangle\langle\psi| = |c \cdot \psi\rangle\langle c \cdot \psi|$

- "ket": $|\psi\rangle$
- "bra": $\langle \psi |$
- "bra-ket": $\langle \psi | \phi \rangle \in \mathbb{C}$

"ket-bra": $|\psi\rangle\langle\psi|$ $\bar{c}c\cdot|\psi\rangle\langle\psi| = |c\cdot\psi\rangle\langle c\cdot\psi|$

"probability": $\langle \phi | \psi \rangle \langle \psi | \phi \rangle = \langle \phi | P_{\psi}(\phi) \rangle$

- "ket": $|\psi
 angle$
- "bra": $\langle \psi |$
- "bra-ket": $\langle \psi | \phi \rangle \in \mathbb{C}$

"ket-bra": $|\psi\rangle\langle\psi|$ $\bar{c}c\cdot|\psi\rangle\langle\psi| = |c\cdot\psi\rangle\langle c\cdot\psi|$ "probability": $\langle\phi|\psi\rangle\langle\psi|\phi\rangle = \langle\phi|P_{\psi}(\phi)\rangle$ "mixed states": $\sum_{i} w_{i}|\psi_{i}\rangle\langle\psi_{i}| \neq |\phi\rangle\langle\phi|$

- "ket": $|\psi
 angle$
- "bra": $\langle \psi |$
- "bra-ket": $\langle \psi | \phi \rangle \in \mathbb{C}$
- "ket-bra": $|\psi\rangle\langle\psi|$ $\bar{c}c\cdot|\psi\rangle\langle\psi| = |c\cdot\psi\rangle\langle c\cdot\psi|$
- "probability": $\langle \phi | \psi \rangle \langle \psi | \phi \rangle = \langle \phi | P_{\psi}(\phi) \rangle$
- "mixed states": $\sum_{i} w_i |\psi_i\rangle \langle \psi_i| \neq |\phi\rangle \langle \phi|$
- "basis": $\{|0\rangle, |1\rangle, \dots, |n-1\rangle\} \& |ij\rangle := |i\rangle \otimes |j\rangle$

PRACTICING PHYSICS Physical System Physical Operation

> PROGRAMMING Data Types Programs

LOGIC & PROOF THEORY Propositions Proofs

COOKING

Vegetables, meet, fish, spices, mayonaise Growing, breeding, catching, cutting, mixing, eating

Symmetric Monoidal †-Category

$f: A \to B \quad \longleftrightarrow \quad f^{\dagger}: B \to A$

Symmetric Monoidal †-Category $f: A \to B \iff f^{\dagger}: B \to A$

Most important non- \dagger -cats can be fitted within a \dagger -cat, e.g. Set into Rel, FStoch into $Mat_{\mathbb{R}^+}$, ...

QUANTUM STRUCTURE

(Abramsky-Coecke 2004)

Object with (pure \neg_{C}) quantum structure

A pair

$$(A, \eta : \mathbf{I} \to A \otimes A)$$

such that

commutes. (†-compactness)

Object with (pure \neg_c) quantum structure

Object with (pure \neg_c) quantum structure

Object with (pure \neg_c) quantum structure

four-fold duality

four-fold duality

In FdHilb: $f^* \sim$ transposed & $f_* \sim$ conjugated

"Sliding" boxes

$f = f^* = \int f^* f$

Applying "decorated" normalization 1

QUANTUM MIXEDNESS

(Selinger 2005)

(incarnates Stinespring theorem)

Proposition: SM †-structure carries over.

Thm.: Quantum structure carries over.

Composition of mixed states and CPMs

CLASSICAL STRUCTURE

(Coecke-Paquette-Pavlovic 2006)

Quantum Information obeys a No-Cloning theorem.

Quantum Information obeys a No-Cloning theorem.

In Linear Logic we drop:

which is modelled in a *-autonomous category.

Quantum Information obeys a No-Cloning theorem.

In Linear Logic we drop:

which is modelled in a *-autonomous category.

Our *†*-compactness specialises this semantics, and yields No-Cloning and No-Deleting Theorems.

$$\{\Delta_A: A \to A \otimes A\}_A$$

No-copying in (\mathbf{Rel}, \times)

$$\{\Delta_X : x \mapsto (x, x)\}_X$$

 $\{(0,0),(1,1)\} \neq \{0,1\} \times \{0,1\}$

No-copying of quantum states

$$\{\Delta_{\mathcal{H}} : |i\rangle \mapsto |i\rangle \otimes |i\rangle\}_{\mathcal{H}}$$

No-copying of quantum states

$$\{\Delta_{\mathcal{H}} : |i\rangle \mapsto |i\rangle \otimes |i\rangle\}_{\mathcal{H}}$$

 $|0\rangle \otimes |0\rangle + |1\rangle \otimes |1\rangle \neq (|0\rangle + |1\rangle) \otimes (|0\rangle + |1\rangle)$ Bell-states cause trouble!

A commutative comonoid

$$(X\,,\delta:X\to X\otimes X\,,\epsilon:X\to \mathrm{I})$$

such that

commutes. (†-Frobenius & speciality)

Classical structure \Rightarrow **quantum structure**

Notational convention 1:

 \equiv

"Clean" normalization theorem

Each "connected" network consisting of δ , δ^{\dagger} , ϵ , ϵ^{\dagger} admits the following normal form through fusion:

(fusions \sim graphical normalising rewriting system)
"Clean" normalization theorem 1.

CLASSICAL STOCHASTICITY FROM CLASSICAL STRUCTURE

Diagonal structure on X is

 $\Xi_X := \delta_X \circ \delta_X^{\dagger} : X \otimes X \to X \otimes X$

Diagonal structure on X is

 $\Xi_X := \delta_X \circ \delta_X^{\dagger} : X \otimes X \to X \otimes X$

 $f: X \otimes X \to Y \otimes Y \text{ is } diagonal \text{ if}$ $f = f \circ \Xi_X = \Xi_Y \circ f$

Diagonal structure on X is

$$\Xi_X := \delta_X \circ \delta_X^{\dagger} : X \otimes X \to X \otimes X$$

$$f: X \otimes X \to Y \otimes Y \text{ is } diagonal \text{ if}$$
$$f = f \circ \Xi_X = \Xi_Y \circ f$$

Define new category $D(\mathbf{C})$ with same objects and $D(\mathbf{C})(X,Y) := \{f \in \mathbf{C}(X \otimes X, Y \otimes Y) \mid f \text{ diagonal}\}$ $E: \mathbf{C} \to \mathrm{D}(\mathbf{C}) :: f \mapsto \delta_Y \circ f \circ \delta_X^{\dagger}$ $R: \mathrm{D}(\mathbf{C}) \to \mathbf{C} :: g \mapsto \delta_Y^{\dagger} \circ g \circ \delta_X$

 $E: \mathbf{C} \to \mathrm{D}(\mathbf{C}) :: f \mapsto \delta_Y \circ f \circ \delta_X^{\dagger}$ $R: \mathrm{D}(\mathbf{C}) \to \mathbf{C} :: g \mapsto \delta_Y^{\dagger} \circ g \circ \delta_X$

Proposition. E and R are functors.

Proposition. E and R are functors.

Proposition. *E* and *R* realize isomorphism.

$$\mathbf{C} \xrightarrow{\underline{E}} \mathbf{D}(\mathbf{C})$$

Lemma. Diagonal structure is completely positive.

Lemma. Diagonal structure is completely positive.

Lemma. Diagonal structure is completely positive.

Definition. We call $C_{\gamma} \simeq DM(C)$ the *classical (probability) theory* underlying the quantum theory C.

We call the morphisms of C_{γ} *classical maps*. A classical map is a *stochastic map* if it preserves ϵ i.e.

$$\epsilon_B \circ f = \epsilon_A \qquad \qquad \blacksquare = \blacksquare$$

A stochastic map of type $p : I \rightarrow A$ is a *classical* (*stochastic*) *state*. It is a *pure* if it preserves δ i.e.

$$\delta_A \circ p = (p \otimes p) \circ \lambda_{\mathrm{I}} \quad \checkmark = \checkmark \checkmark$$

and $\epsilon_A^{\dagger} : I \to A$ is a maximally mixed state.

Theorem.

Classical theories underlying quantum theories:

... carry no phase information i.e. $f_* = f$.

... inherit SM [†]-structure carries over.

... inherit classical structure.

Theorem.

Classical theories underlying quantum theories:

... carry no phase information i.e. $f_* = f$.

... inherit SM [†]-structure carries over.

... inherit classical structure.

Corollary

No-cloning/No-deleting for classical theories.

CLASSICAL STOCHASTICITY WITHIN QUANTUM THEORY

MORE CLASSICAL SPECIES FROM CLASSICAL STRUCTURE

Partial maps:

1. $f_* = f$ and preserve δ i.e. $\delta_Y \circ f = (f \otimes f) \circ \delta_X$ *Total maps*:

2. also preserve ϵ i.e. $\epsilon_Y \circ f = \epsilon_X$

Permutation:

3. also f^{\dagger} is total.

Relation:

4.
$$f = \delta_Y^{\dagger} \circ (f \otimes f_*) \circ \delta_X.$$

Partial maps:

1. $f_* = f$ and preserve δ i.e. $\delta_Y \circ f = (f \otimes f) \circ \delta_X$ *Total maps*:

2. also preserve ϵ i.e. $\epsilon_Y \circ f = \epsilon_X$

Permutation:

3. also f^{\dagger} is total.

Relation:

4. $f = \delta_Y^{\dagger} \circ (f \otimes f_*) \circ \delta_X$.

Thm. Relations in C constitute a *cartesian bicategory* in Carboni and Walter's sense with local partial order:

$$f \subseteq g \iff f = \delta_Y^{\dagger} \circ (f \otimes g) \circ \delta_X$$
$$\delta_Y \circ f \subseteq (f \otimes f) \circ \delta_X \qquad \epsilon_Y \circ f \subseteq \epsilon_X$$

Partial maps:

1. $f_* = f$ and preserve δ i.e. $\delta_Y \circ f = (f \otimes f) \circ \delta_X$ *Total maps*:

2. also preserve ϵ i.e. $\epsilon_Y \circ f = \epsilon_X$

Permutation:

3. also f^{\dagger} is total.

Relation:

4.
$$f = \delta_Y^{\dagger} \circ (f \otimes f_*) \circ \delta_X.$$

Bistochastic map:

5. both f and f^{\dagger} are stochastic maps.

Weighted map:

6. $g: X \to Y$ exist such that $\delta_Y \circ f = (g \otimes g_*) \circ \delta_X$

"Decorated" normalization theorem

Each "connected" network consisting of δ , δ^{\dagger} , ϵ , ϵ^{\dagger} and weighted maps can be rewritten as:

QUANTUM MEASUREMENT FROM CLASSICAL STRUCTURE

 $A \to A \otimes X$

$$A \to A \otimes X$$

Def. A *quantum measurement* with *outcome spectrum* X is an Eilenbergh-Moore \dagger -coalgebra for $(X \otimes -)$.

$$A \to A \otimes X$$

Def. A *quantum measurement* with *outcome spectrum* X is an Eilenbergh-Moore \dagger -coalgebra for $(X \otimes -)$.

Thm. In **FdHilb** quantum measurement yields usual notion in terms of self-adjoint operators.

 $A \to A \otimes X$

Def. A *quantum measurement* with *outcome spectrum* X is an Eilenbergh-Moore \dagger -coalgebra for $(X \otimes -)$.

Thm. In **FdHilb** quantum measurement yields usual notion in terms of self-adjoint operators.

Thm. We can define POVMs and derive Naimarks's.

 $A \to A \otimes X$

Def. A *quantum measurement* with *outcome spectrum* X is an Eilenbergh-Moore \dagger -coalgebra for $(X \otimes -)$.

Thm. In **FdHilb** quantum measurement yields usual notion in terms of self-adjoint operators.

Thm. We can define POVMs and derive Naimarks's.

Control structure and concepts correspond with morphisms in the Kleisli category for $(X \otimes -) : \mathbb{C} \to \mathbb{C}$

CLASSICAL-QUANTUM INTERACTION FROM CLASSICAL STRUCTURE

iii. Pure measurement is an operation

 $\mathcal{M} \in \mathbf{C}_{q+\gamma}(\mathbf{C})((B \otimes A, Y), (B \otimes A, X \otimes Y))$

iv. Control operations are co-Kleisli, ...
v. Operation is non-mixed if it is of the form $(1_B \otimes \delta_Y^{\dagger} \otimes 1_B) \circ (f \otimes f_*) \circ (1_A \otimes \delta_X \otimes 1_A) \in \mathbf{C}_{q+\gamma}$

v. Operation is non-mixed if it is of the form $(1_B \otimes \delta_Y^{\dagger} \otimes 1_B) \circ (f \otimes f_*) \circ (1_A \otimes \delta_X \otimes 1_A) \in \mathbf{C}_{q+\gamma}$

Prop. A purely classical operation $\Gamma_A f$ is non-mixing if and only if f is a weighted map.