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Background

This talk is about various related topics :

The Temperley-Lieb algebra :

• A von Neumann algebra, developed for statistical mechanics, very important in knot theory.

Polynomial knot invariants :

• Polynomials derived from knot presentations, invariant of the way the knot is drawn.

The Geometry of Interaction construction :

• A categorical construction that gives compact closed categories from traced monoidal categories.

• Originating from Girard’s Linear Logic, and ‘Geometry of Interaction’ program.

Two-way automata :

• Simple finite state machines, also known as ‘read-only Turing machines’.
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What is already known ?

• V. Jones The T-L algebra plays a key role in knot invariants.

• L. Kauffman It also has a presentation as ‘planar diagrams’.

• PMH Models of 2-way automata are examples of the GoI construction.

• S. Abramsky The T-L algebra has a fully abstract presentation, as planar diagrams within a GoI

category.

For experts : There are 2 very different flavours of GoI, ‘particle-style’ and ‘wave-style’. This talk is all about

particle-style GoI.
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Why the interest ?

• (2006) Aharanov, Jones, Landau The ‘Quantum Jones Polynomial’ algorithm.

– This gives an exponential speedup in computing the Jones knot polynomial,

– but only at certain distinguished values ...

• This algorithm relies on :

1. The Hadamard test — a standard bit of QM algorithm toolkit.

2. Unitary representations of the T-L algebra.

3. A clever result on the uniqueness of traces, in various settings.
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Some questions ...

1. There is an implicit connection between the T.-L. algebra and two-way automata :

– can this be made explicit ?

2. (This requires : ) what does planarity mean for two-way automata ?

3. What is the complexity class of the resulting machines ?

4. Is there a connection with :

(a) quantum two-way automata ?

(b) knot theory ?

(c) The Jones polynomial algorithm ?
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The Temperley-Lieb algebra

A purely algebraic definition :

The Temperley-Lieb monoid Mn :

This has generators δ, U1, U2, . . . Un, and relations

UiUjUi = Ui for all |i− j| = 1

U2
i = δUi = Uiδ

UiUj = UjUi for all |i− j| > 1

The Temperley-Lieb algebra TLn :

• Consider the ring LX of all 1-variable Laurent polynomials over X ...

• The T.-L. algebra is the monoid algebra of formal linear combinations

∑

i

limi where li ∈ LX and mi ∈Mn

up to some quotient δ = τ.1, where τ ∈ LX ..
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The Temperley-Lieb monoid as planar diagrams

The T.-L. algebra :

• Independently rediscovered by V. Jones, (in 1985), it plays a starring rôle in his knot polynomial.

• L. Kauffman gave an interpretation (in 1990) as planar diagrams.

THE GENERATORS OF THE TEMPERLEY-LIEB MONOID

These are considered up to planar isotopy — and this provides the relations between generators.
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The only ‘non-obvious’ relation is that closed loops become global scaling factors :

Special cases :

• δ = 0.

– Everything is trivial.

• δ = 1.

– Loops are ignored completely.

• δ = ω , an p-th root of the identity, so ωp = 1.

– This is the case covered by the quantum algorithm (when p is prime).
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Knot invariants from the Temperley-Lieb algebra

The key steps are :

Braid closure A braid diagram may be closed by adding in feedback loops.

Traditional knot theory – every knot or link is the closure of a braid diagram.

Kauffman computed the Jones polynomial using a recursive algorithm to ‘eliminating crossings in a

diagram’.

A diagram with crossings is mapped to the formal sum of diagrams without crossings — in an expo-

nential number of steps.
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The Jones polynomial , as described by Kauffman , is computed by

1. Replacing crossings with weighted formal sums of link diagrams.

2. Replacing unknotted loops with values.

The weights are Laurent polynomials over 1 variable, X , and taking

• A = X

• B = X−1

• d = −X2 + X−2

maps equivalent knot diagrams to the same polynomial.
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2-way automata — a complete change of subject

A two-way automaton is specified by :

• A set A of Alphabet Symbols

• A set S of States

– S is divided into left-moving states L, and right-moving states R, so S = L ]R.

• For each a ∈ A, a next-state relation [a] ⊆ S × S.

As a state machine, there is :

• A finite tape , with alphabet symbols written on it.

• A single machine head , labelled by a state.

• End markers for the tape.
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The anatomy of a 2-way automaton

This is one definition. Others are similar, and provably equivalent.
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The dynamics of a 2-way automaton

At each primitive step :

1. If the machine head has a left-moving label, it moves onto the cell to the left.

– alternatively, it moves onto the cell to the right.

2. The cell contents determine a new label for the machine head.

3. If the new label is left-moving, the machine head moves to the left of the cell.

– alternatively, it moves to the right of the cell.

(This description is due to PMH. It is simpler than, but equivalent to, Birget’s definition).
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An example 2-way automaton computation:
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Boundary configurations

A configuration is simply an instantaneous description of a 2-way automaton.

From the definition — a configuration with the machine head over an end-marker has either

1. no ‘previous configuration’ under the machine evolution.

2. no ‘next configuration’ under the machine evolution.

Call such configurations the boundary configurations .
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Birget’s Relations

Each word w ∈ A∗ determines a relation [w] on the state set.

q is related to p by [w], written q[w]p exactly when :

There exists a boundary-to-boundary computation that

1. Starts with p labelling the machine head.

2. Finishes with q labelling the machine head.

This is called the global transition relation of w.
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Some basic results :

• The transition relation for a singleton a ∈ A is exactly the next-state relation from the definition.

• If a two-way automaton is deterministic , every transition relation is a partial function .

• If a 2-way automaton is reversible , every transition relation is a partial bijection .

A not-so-basic result :

• The relation [uv] can be derived from [u] and [v] separately.

– Formulæ to do this were given by J.-C. Birget.

– These are just the composition given by the GoI construction.
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From two-way automata to planar diagrams

A two-way automaton has :

• A set A of Alphabet Symbols

• Sets L and R of left-moving and right-moving States.

• For each a ∈ A, a transition relation [a] ⊆ S × S.

We also require :

1. A partial order ≤ on the state set S, satisfying:

• The subsets L and R are chains – i.e. totally ordered subsets.

• Left-moving and right-moving states are incomparable, so l#r for all l ∈ L, r ∈ R.

2. An bijection σ : S → S, satisfying

• σ is an involution, so σ2 = 1S .

• σ is anti-monotonic, so p ≤ q ⇒ σ(q) ≤ σ(p).

Page 19



Conventions :

For 2n states, write the left-moving states as

←−
1 ≤

←−
2 ≤ . . . ≤ ←−n

and the right-moving states as
−→
1 ≥

−→
2 ≥ . . . ≥ −→n

The axioms state that :

σ(←−a ) = −→a and σ(−→a ) =←−a

←−p #−→q for all 1 ≤ p, q ≤ n
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Transition diagrams

We can now give a diagrammatic presentation of transition relations.

Let w ∈ A be a word over the input alphabet.

Start with 2 columns of nodes, labelled 1...n

For each pair of states q, p related by the transition relation [w],

q[w]p

Draw a directed line on this diagram :

Page 21



From relations to diagrams :

Each transition relation determines, and is determined by a transition diagram .
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the T.-L. monoid, and transition diagrams ?

Every transition relation [w] determines, and is determined by, a diagram such as

Questions : When are these diagrams

1. undirected ?

i.e. The direction on the arrows does not matter.

2. planar ?

i.e. Lines in the diagram do not cross.

– the intention is to reproduce Kauffman’s diagrammatic presentation of the Temperley-Lieb monoid.
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Undirected transition diagrams, graphically

A diagram is undirected when :

• whenever there is a line from node x to node y, there is also a line from node y to node x.
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Undirected transition diagrams, algebraically

“whenever there is a line from node x to node y, there is also a line from node y to node x” states

that :

y[w]x ⇔ σ(x)[w]σ(y)

or, using the relational converse,

y[w]x ⇔ σ(y)[w]cσ(x)

writing σ in relational form, and noting that this is quantified over x, y :

[w] = σ[w]cσ = σ−1[w]cσ

– giving a characterisation of undirected transition diagrams.
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Enforcing Planarity – diagramatically

Let w ∈ A∗ be an input word, with an undirected transition diagram.

Question when is this planar ??

To enforce planarity we need to rule out 3a possibilities :

Each undirected diagram corresponds to 4 statements a transition relation [w]

— planarity for directed diagrams requires 4 times as many axioms !

a(Up to left-right symmetry ...)
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Enforcing Planarity – algebraically

Claim : 2 conditions force a transition diagram for w to be planar.

• Weak monotonicity :

Given

q[w]p and q′[w]p′

then

p ≤ p′ ⇒ q ≤ q′ or q#q′

• The interval condition :

Given

y[w]x and b[w]a

then

a ≤ x ≤ σ(b) ⇒ σ(a) ≤ y ≤ b
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How do these conditions work ?

Consider 3 distinct crossing types, drawn with an orientation :

From 1. :
←−
d [w]←−a and←−c [w]

←−
b . However,←−a ≤

←−
b but

←−
d ≥ ←−c , contradicting weak montonicity .

From 2. : −→s [w]←−p and
−→
t [w]←−q . However,←−p ≤ ←−q but−→s ≥

−→
t , contradicting weak montonicity .

From 3. : ←−e ≤
←−
f ≤ σ(−→g ). However, σ(←−e ) = −→e ≤ −→g but −→e #

←−
h and

←−
h #−→g , contradicting the

interval condition .
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Composing transition relations — the GoI composition

Each transition relation [w] ⊆ S × S may be decomposed into 4 components.

1. [← w−] ⊆ L× L

2. [� w] ⊆ L× R

3. [w �] ⊆ R× L

4. [−w→] ⊆ R× R.

This gives the matrix or directed graph of the transition relation

[w] =





[← w−] [
 w]

[w 
] [−w →]



 drawn as :

L L[←w−]kk

[w�]

��
R

[�w]

SS

[−w→]
++
R
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The GoI composition (cont.)

Given such graphs for [v] and [u], we draw the composite as

L′′ L[←vu−]kk

[vu�]

��
R

[�vu]

SS

[−vu→]
++
R′′

=

L′′ L′[←v−]kk

[v�]

��

L[←u−]kk

[u�]

��
R

[�v]

SS

[−v→]
++
R′

[�u]

SS

[−u→]
++
R′′

This concatenation denotes ‘taking the union over all paths”, giving

[← vu−] = [← v−]
∞
⋃

n=0

([� u][v �])n[← u−]

[� vu] = [� v] ∪ [← v−]

∞
⋃

n=0

([� u][v �])n[−v →]

and similarly (dually) for [−vu→] and [vu �].
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Composition and planarity

Using either

(i) Algebraic Manipulations, or

(ii) Categorical Structure (via the identification with Geometry of Interaction),

we may show :

1. This composition is associative

2. It also preserves partial injectivity

3. The composite of undirected transition relations is also undirected .

4. The composite of planar transition relations is also planar .
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An interesting example

Define the 2-way automaton T LAn by :

• State set is S = L ] R, where L = {
←−
1 ≤

←−
2 ≤ . . . ≤ ←−n } and R = {

−→
1 ≥

−→
2 ≥ . . . ≥ −→n }

• Input alphabet is A = {v, e1, e2, . . . , en−1}.

• Transition functions given by undirected diagrams :
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Properties of T LAn

It is easy to check that all transition functions :

1. are undirected (this is by construction!)

2. are weakly monotonic .

3. satisfy the interval condition .

Using the GoI composition,

[ei][ej][ei] = [ei] when |i− j| = 1

[ei][ej] = [ej ][ei] when |i− j| > 1

[ei][ei] = [ei]

This gives a representation of the Temperley-Lieb monoid, with a loop value of 1.
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The problem with loop-values

We have a representation of the T-L monoid, in the special case where the loop value is δ = 1.

— the composition of generators ‘forgets about closed loops’.

• For the full T-L algebra, we need arbitrary loop values.

• For the quantum Jones polynomial algorithm, we require δ = e
2πi

p , for prime p.

Provided we can count closed loops, we can add in a loop value ...
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Complexity and ‘time-to-termination’ of T LAn

Consider 2 distinct diagrams for T LA5, with 4 cells on the tape :

In both cases , the total length of all paths is 20(= 5× 4) steps.
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the general case :

A general result Given T LAn, with k cells on the tape,

the sum of all path lengths including closed loops is n× k.

Consider an arbitrary diagram such as

Check that the 2 options

have the same total path length.
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Complexity - diagrammatically

We keep track of ‘time-to-termination’ by labelling lines in a transition diagram.

For the generators, every path has length 1 :

Relations compose in the usual way — and path labels are added :
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Closed loops show up as ‘missing time’ — the above composite created a closed loop of length 6.
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Distinguishing 6 from 4 + 2 ...

Question Giving a composite such as :

how many closed loops have been added ?

Possible Answers

• 1, of length n

• n/2, each of length 2.

• somewhere in between ...

How can we count loops ? When either v or u is a generator, at most 1 new closed loop is created.
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Future directions :

• The formal setting for ‘counting steps’ :

1. Allows us to count closed loops

2. Lets us represent TLAn by unitary maps.

• In the unitary setting, we can also

1. label transitions by complex amplitudes, such as

2. Interpret this as “a coherent superposition of left-moving and right-moving states”.

Question : How much of the Jones polynomial algorithm is just a 2-way automaton computation ?
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