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This talk is about various related topics :

The Temperley-Lieb algebra

e A von Neumann algebra, developed for statistical mechanics, very important in knot theory.

Polynomial knot invariants

e Polynomials derived from knot presentations, invariant of the way the knot is drawn.

The Geometry of Interaction construction :
e A categorical construction that gives compact closed categories from traced monoidal categories.

e Originating from Girard’s Linear Logic, and ‘Geometry of Interaction’ program.

Two-way automata
e Simple finite state machines, also known as ‘read-only Turing machines’.
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e V. Jones The T-L algebra plays a key role in knot invariants.

e L. Kauffman It also has a presentation as ‘planar diagrams’.

e PMH Models of 2-way automata are examples of the Gol construction.

e S. Abramsky The T-L algebra has a fully abstract presentation, as planar diagrams within a Gol

category.

For experts . There are 2 very different flavours of Gol, ‘particle-style’ and ‘wave-style’. This talk is all about

particle-style Gol.
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® (2006) Aharanov, Jones, Landau The ‘Quantum Jones Polynomial’ algorithm.

— This gives an exponential speedup in computing the Jones knot polynomial,

— but only at certain distinguished values ...

e This algorithm relies on :

1. The Hadamard test — a standard bit of QM algorithm toolkit.
2. Unitary representations of the T-L algebra.

3. A clever result on the uniqueness of traces, in various settings.
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1. There is an implicit connection between the T.-L. algebra and two-way automata :

— can this be made explicit ?

2. (This requires : ) what does planarity mean for two-way automata ?

3. What is the complexity class of the resulting machines ?

4. |s there a connection with :

(a) quantum two-way automata ?

(b) knot theory ?

(c) The Jones polynomial algorithm ?
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A purely algebraic definition

The Temperley-Lieb monoid M, :

This has generators 0, Uy, Us, . . . U, and relations
U;U;U;, =U; forall |i—j| =1
U? = 6U; = Ud
U;U; =U;U; forall |i—j|>1
The Temperley-Lieb algebra T'L,, :

e Consider the ring L x of all 1-variable Laurent polynomials over X ...

e The T.-L. algebra is the monoid algebra of formal linear combinations

Zlimi where [; € Ly and m; € M,,
i

up to some quotient 0 = 7.1, where 7 € L.
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The T.-L. algebra :
e Independently rediscovered by V. Jones, (in 1985), it plays a starring réle in his knot polynomial.
e L. Kauffman gave an interpretation (in 1990) as planar diagrams.

THE GENERATORS OF THE TEMPERLEY-LIEB MONOID
O 0 = O ° O

5 o o> < | _
o 6o o— 0 O L

U, U, U

1

These are considered up to planar isotopy — and this provides the relations between generators.
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U, U=U1;

e ¢

j

4

Ui UU L =Uy |
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The only ‘non-obvious’ relation is that closed loops become global scaling factors :

U U=50,

Special cases :
e 0 — 0.

— Everything is trivial.

o0 =1.

— Loops are ignored completely.

e ) — W ,an p-th root of the identity, so w” = 1.
— This is the case covered by the quantum algorithm (when p is prime).
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The key steps are :

Braid closure A braid diagram may be closed by adding in feedback loops.

% >

Traditional knot theory — every knot or link is the closure of a braid diagram.

Kauffman computed the Jones polynomial using a recursive algorithm to ‘eliminating crossings in a

diagram’.

A diagram with crossings is mapped to the formal sum of diagrams without crossings — in an expo-
nential number of steps.
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The Jones polynomial , as described by Kauffman , is computed by
1. Replacing crossings with weighted formal sums of link diagrams.

2. Replacing unknotted loops with values.

X )mr () + () ¢

O =) d

The weights are Laurent polynomials over 1 variable, X, and taking
e A=X
e B=X1

maps equivalent knot diagrams to the same polynomial.
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A two-way automaton is specified by :
e A set A of Alphabet Symbols

e A set S of States

— S'is divided into left-moving states L, and right-moving states R, so S = L W R.

e For each a € A, a next-state relation [a] C S x S.

As a state machine, there is :
e A finite tape , with alphabet symbols written on it.
e A single machine head , labelled by a state.

e End markers for the tape.
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Ilachine head iz labelled by a
member of the state set 2 _

Tape cells contain members

g e of the alphabet set &
i s S :
a c|bla
™ =
~ -
. -
S -~

r{b The machine head cannot
Fass the end markers of the tape

This is one definition. Others are similar, and provably equivalent.
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At each primitive step :
1. If the machine head has a left-moving label, it moves onto the cell to the left.
— alternatively, it moves onto the cell to the right.

2. The cell contents determine a new label for the machine head.

3. If the new label is left-moving, the machine head moves to the left of the cell.

— alternatively, it moves to the right of the cell.

(This description is due to PMH. It is simpler than, but equivalent to, Birget’s definition).
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W p 18 left-moving
d

qlalp

g 18 right-moving
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A configuration is simply an instantaneous description of a 2-way automaton.

From the definition — a configuration with the machine head over an end-marker has either
1. no ‘previous configuration’ under the machine evolution.

2. no ‘next configuration’ under the machine evolution.

Call such configurations the boundary configurations
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Each word w € A* determines a relation [w] on the state set.

q is related to p by [w], written ¢[w]p exactly when :

There exists a boundary-to-boundary computation that

1. Starts with p labelling the machine head.

2. Finishes with ¢ labelling the machine head.

This is called the global transition relation

[ —

of w.
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e The transition relation for a singleton a € A is exactly the next-state relation from the definition.

e If a two-way automaton is deterministic , every transition relation is a partial function

e |f a 2-way automaton is reversible , every transition relation is a partial bijection

e The relation [uv] can be derived from [u] and [v] separately.

— Formulee to do this were given by J.-C. Birget.

— These are just the composition given by the (Gol construction.
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A two-way automaton has :
e Aset A of Alphabet Symbols
e Sets L and R of left-moving and right-moving States.

e For each a € A, atransition relation [a] C .S x S.

We also require :

1. A partial order < on the state set S, satisfying:

e The subsets L and R are chains — i.e. totally ordered subsets.

e Left-moving and right-moving states are incomparable, so [#7r foralll € L, r € R.
2. An bijection o : S — S, satisfying

e o is an involution, so 0? = 1g.

e 0 is anti-monotonic, sop < ¢ = o(q) < a(p).
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For 2n states, write the left-moving states as

—_
A
(N
A

VAN

T
T
7

and the right-moving states as

—_
'V
(N
'V
'V

l
l
sl

The axioms state that :

p#q forall < pg < n
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We can now give a diagrammatic presentation of transition relations.

Let w € A be a word over the input alphabet.

Start with 2 columns of nodes, labelled 1...n

1o
20
30

n o

For each pair of states g, p related by the transition relation [w],

Draw a directed line on this diagram :

o1
o2
O3

on
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w1 i[w]i
. o1 i
jca/:
i
i W] 1 ] [w]1
! : o0l
ic';./:
j

Each transition relation determines, and is determined by a transition diagram
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Every transition relation [w] determines, and is determined by, a diagram such as

1 1
2 2
3 3
4 4
5 5

Questions : When are these diagrams

1. undirected ?

i.e. The direction on the arrows does not matter.

2. planar ?

l.e. Lines in the diagram do not cross.

— the intention is to reproduce Kauffman’s diagrammatic presentation of the Temperley-Lieb monoid.
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A diagram is undirected when :

e whenever there is a line from node x to node v, there is also a line from node y to node x.

) [w]
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“whenever there is a line from node x to node v, there is also a line from node y to node x” states

that :

ylwlr < o(z)[wlo(y)

or, using the relational converse,

ylwlz < o(y)|wlo(z)

writing o in relational form, and noting that this is quantified over x, y :

— giving a characterisation of undirected transition diagrams.
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Let w € A* be an input word, with an undirected transition diagram.

Question when is this planar ??

To enforce planarity we need to rule out 3% possibilities :

@ ® . ®
h
d ) :
b t
Each undirected diagram corresponds to 4 statements a transition relation [w]

— planarity for directed diagrams requires 4 times as many axioms !

&(Up to left-right symmetry ...)
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Claim : 2 conditions force a transition diagram for w to be planar.

e \Weak monotonicity :

Given
/

qlw]p and ¢'[w]p
then

p<p = ¢<{q or ¢#q
e The interval condition :

Given
ylwlr and blw]a

then
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Consider 3 distinct crossing types, drawn with an orientation :

oa 9 d
h
d ) ¢
b t
— — — —
From 1. : d [w]'a and ‘¢ [w] b . However, ‘@ < b but d > ‘¢, contradicting weak montonicity .
From2.: s'[w|p and t [w]|q.However, p < ¢ but " > t, contradicting weak montonicity .

From3.: ‘e < 7 < o(g"). However, o (

interval condition

of

— —
)="€ < g but €#h and h# ¢, contradicting the
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Each transition relation [w] C S x S may be decomposed into 4 components.
1. [«—w—] C LxL

2. [sw] € LxR

3. lw=]CRxL

4. |[—w —] C R X R.

This gives the matrix or directed graph of the transition relation

L low]
I G N it o _
(w] = drawn as: [=w] [w=]
=] [-w—]
R~ [-w—] "R
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Given such graphs for [v] and [u], we draw the composite as

L'tz L A i Y VR e B )
=vu] hu=s] = [=v] [v=] =u] [u=]
A I R~ v "R~ [us] R

This concatenation denotes ‘taking the union over all paths”, giving

[ vu=] = [ o] | (= o =) u-]
= vu = [= ] U [ o-] |J([= ulfo =) [~ -]

and similarly (dually) for [—vu —| and [vu =|.
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Using either

(i) Algebraic Manipulations, or
(i) Categorical Structure (via the identification with Geometry of Interaction),

we may show :
1. This composition is associative
2. It also preserves partial injectivity
3. The composite of undirected transition relations is also undirected .

4. The composite of planar transition relations is also planar .
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Define the 2-way automaton 7 L A,, by :

— — =
o Statesetis S = LW R,where L={1 < 2 <...<n}andR={1>2>...>7}
e Input alphabetis A = {v,e1,€e9,...,€,_1}.

e Transition functions given by undirected diagrams :

[v] [e4] [e;] [e,.1]
T—=3 & <8 I 3 - S—
oO——0O O——0O . _
: ) ) : ) :
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It is easy to check that all transition functions :
1. are undirected (this is by construction!)
2. are weakly monotonic .

3. satisfy the interval condition

Using the Gol composition,

eillejlle] = lei]  when i —j| =1
leillej] = lejlles]  when i —j] > 1
leille:] = [ei]

This gives a representation of the Temperley-Lieb monoid, with a loop value of 1.
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We have a representation of the T-L monoid, in the special case where the loop value is 0 = 1.

— the composition of generators ‘forgets about closed loops'.
e For the full T-L algebra, we need arbitrary loop values.
271

e For the quantum Jones polynomial algorithm, we require d = e » , for prime p.

Provided we can count closed loops, we can add in a loop value ...
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Consider 2 distinct diagrams for 7 L As, with 4 cells on the tape :

e €5 e, e,

o= <g

[V
llvm
Sdb

e, e, e, e,

> >

In both cases , the total length of all paths is 20(: 5 X 4) steps.
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A general result Given 7 L A,,, with k cells on the tape,
the sum of all path lengths including closed loops is n X k.

Consider an arbitrary diagram such as

QOO0 0O0
u})v

I

I

I

|

I

I
0(&)

Check that the 2 options

have the same total path length.
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We keep track of ‘time-to-termination’ by labelling lines in a transition diagram.

For the generators, every path has length 1 :

" o—l—o0 o—l—o

o—il—o0
o—j——0 o—|—o0 o——~: ~1: fi'.Iﬁ'-___O*"O
Ul Uz U

Relations compose in the usual way — and path labels are added :

o___Ll o ol :

0 - - -

o
o
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O 50

o T o)
O 7 0

\

I

v
Total path length Total path length

=19 =18

O’-—._\_\_\'/ o /_/O
S——2l =8

\. )
e

Total path length = 31
=19+18-6

Closed loops show up as ‘missing time’ — the above composite created a closed loop of length 6.
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Question Giving a composite such as :

[V] [U] = [VU]
AN J/ \.
e e e
path length =5 path length = A path length = A+5 - »

how many closed loops have been added ?

Possible Answers
e 1, of length n
e 1/2, each of length 2.
e somewhere in between ...

How can we count loops ? When either v or u is a generator, at most 1 new closed loop is created.
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Future directions :

e The formal setting for ‘counting steps’ :
1. Allows us to count closed loops

2. Lets us represent T'L A,, by unitary maps.

e In the unitary setting, we can also

1. label transitions by complex amplitudes, such as

10. o 01
B‘ B and
! \

1o+ o g i+

o
!

i+t107 P

N
*0i+1

2. Interpret this as “a coherent superposition of left-moving and right-moving states”.

Question : How much of the Jones polynomial algorithm is just a 2-way automaton computation ?
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