
Based on lectures by R Poet 2003,
modified by P Gray and R Welland

2/23/10	

 PSD3 2008-09	

 1	

Modelling Dynamic Behaviour -
 From Use Cases to Classes

MechEng SE3
Simon Gay

24 February & 3 March 2010

Based on lectures by R Poet 2003,
modified by P Gray and R Welland

Reminder: Assignment

Remember to hand in the assignment on Friday.

Based on lectures by R Poet 2003,
modified by P Gray and R Welland

Announcement

On Friday 26th February we will have a guest lecture
by Dr Tim Storer, Computing Science Department.

On Wednesday 17th March we will have a guest lecture
by Iain McGinniss, Computing Science Department (formerly
of Sword Ciboodle).

Based on lectures by R Poet 2003,
modified by P Gray and R Welland

2/23/10	

 PSD3 2008-09	

 4	

Modelling Dynamic Behaviour

  The dynamic behaviour of the system is what happens when the
system is running.

  We have already seen one way of modelling this: activity
diagrams.

  The dynamic behaviour involves objects rather than classes.
  This is not really highlighted by the activity diagrams, and so the

activities also need to be expressed in different ways that involve
objects.

»  Sequence diagrams, which concentrate on the time sequencing of
operations.

»  Communication diagrams, which group all of the methods
associated with an object in one place. (Called Collaboration
diagrams in UML 1.x)

  These two types of diagram are collectively called Interaction
diagrams.

Based on lectures by R Poet 2003,
modified by P Gray and R Welland

2/23/10	

 PSD3 2008-09	

 5	

Object Notation in UML

  An object is represented by a rectangle containing the
object name, a colon and the class name, all
underlined.

  The object name can be omitted, in which case the
colon must be present, to show that the word is a
class name.

  The class name can be omitted, in which case the
colon is not needed.

an_order: Order

an_order

: Order

Based on lectures by R Poet 2003,
modified by P Gray and R Welland

2/23/10	

 PSD3 2008-09	

 6	

Sequence Diagrams

  Objects are shown at the top of dashed vertical lines.
»  The vertical line is called the object's lifeline.
»  Time sequencing moves downwards.

  Messages are sent from one object to another, and
are represented by solid horizontal arrows.
»  They correspond to method calls.
»  The active object is the one at the blunt end of the arrow.

Control starts in this object and is transferred to the passive
object.

»  The passive object is at the sharp end of the arrow.
»  The method is a method of the passive object's class.

Based on lectures by R Poet 2003,
modified by P Gray and R Welland

2/23/10	

 PSD3 2008-09	

 7	

One object sends
a message to another

:MyObjectA :MyObjectB

doIt()

Based on lectures by R Poet 2003,
modified by P Gray and R Welland

2/23/10	

 PSD3 2008-09	

 8	

An object sends
a message in an activation

:MyObjectA :MyObjectB

doIt()

:MyObjectC

doSomethingElse ()

Based on lectures by R Poet 2003,
modified by P Gray and R Welland

2/23/10	

 PSD3 2008-09	

 9	

Sequence Diagrams (2)
  Arrows represent flow of control, not flow of

information.
»  Information can flow into the method via parameters and

back via reference parameters and return values even
though the arrow goes in one direction.

  Method activations are shown as rectangles on the
lifeline.
»  The code associated with the method is being processed at

this time.
  Object creation is done with a method called new.

»  The new object appears at the corresponding place in the
diagram, complete with its own lifeline.

  Returns from the method can be shown but are
usually omitted, since they just clutter the diagram.

Based on lectures by R Poet 2003,
modified by P Gray and R Welland

2/23/10	

 PSD3 2008-09	

 10	

Sequence Diagrams (3)

  The object at the extreme left starts off the processing
»  It initiates the activity that the sequence diagram is

describing.
  An object can call one of its own methods (self

delegation).
»  The new method activation is overlaid on the original.

  Object deletion is indicated by a large cross at the end
of the lifeline.

  A conditional method call is shown using a guard on
the top of the arrow.

  Repetition is shown by an asterisk in front of the
method name.

Based on lectures by R Poet 2003,
modified by P Gray and R Welland

2/23/10	

 PSD3 2008-09	

 11	

An Example: Activity Diagram

More
Items

Items in
stock

Add to
delivery

Need to
reorder

Reorder

Dispatch
order

[no]

[yes]

[yes]

[yes] [no]

[no] Problem: Assume that we have
entered the details of an order
into a system and we are now
making up the delivery by
selecting the required items from
stock, if available.

Based on lectures by R Poet 2003,
modified by P Gray and R Welland

2/23/10	

 PSD3 2008-09	

 12	

An Example: Sequence Diagram

entryWindow anOrder orderLine stockItem
prepare

*prepare check

[instock=true]
remove reorder

reorderItem
new

deliveryItem new
[instock=true]

Based on lectures by R Poet 2003,
modified by P Gray and R Welland

2/23/10	

 PSD3 2008-09	

 13	

Communication Diagrams

  These group the messages together with the
objects by doing away with the lifelines.

  It is easier to see all the methods that belong
to an object.

  It is harder to see the time sequencing
information.
»  A sequence number is placed in front of the

method.

Based on lectures by R Poet 2003,
modified by P Gray and R Welland

2/23/10	

 PSD3 2008-09	

 14	

An Example: Communication
Diagram

entryWindow

anOrder

orderLine stockItem

reorderItem deliveryItem

1: prepare

2*: prepare

7: new

3: check

4: remove

5: reorder

6: new

Based on lectures by R Poet 2003,
modified by P Gray and R Welland

2/23/10	

 PSD3 2008-09	

 15	

Relationship with Other Diagrams

  Methods
»  Both sequence and communication diagrams will generate

methods.
»  These methods will have a corresponding entry in the

individual class diagram.
»  We do not usually record method parameters and return

values in interaction diagrams.
»  This information is added in the individual class diagram.

  Class Interactions
»  If an object calls a method of another object, then the class

corresponding to the first object must know about the class
corresponding to the second object.

»  A dependency, part of or inheritance relationship.

Based on lectures by R Poet 2003,
modified by P Gray and R Welland

2/23/10	

 PSD3 2008-09	

 16	

Class Structure Diagram

Order

OrderLine

DeliveryItem

StockItem

ReorderItem

Based on lectures by R Poet 2003,
modified by P Gray and R Welland

2/23/10	

 PSD3 2008-09	

 17	

One Detailed Class

StockItem

check(Item, Quantity) : Boolean

remove(Item, Quantity)

reorder(Item, Quantity)

Based on lectures by R Poet 2003,
modified by P Gray and R Welland

2/23/10	

 PSD3 2008-09	

 18	

From Use Cases to Classes

1. Start with the use case details
  Numbered list or
  Activity diagram

2. Identify classes and associations
  Conceptual class diagram

3. Convert use case details to a sequence diagram
  Objects and methods

4. Convert methods on sequence diagrams to methods
on class diagrams
  Interface class diagram

5. Convert associations to directed dependencies

Based on lectures by R Poet 2003,
modified by P Gray and R Welland

2/23/10	

 PSD3 2008-09	

 19	

Request Teachers Flow of Events

1. For each lab associated with the course, enter
course and lab name, day and time, and
weeks during which it will run.

2. Enter skills level required for each part-time
teacher. A lab may be staffed by more than
one person. Skills levels are tutor, graduate
demonstrator, undergraduate demonstrator.

3. Enter suggested teachers, to help the
recruiter.

4. Notify PTT Director.

Based on lectures by R Poet 2003,
modified by P Gray and R Welland

2/23/10	

 PSD3 2008-09	

 20	

Example: PTT Courses

  Initial conceptual class diagram for
Request Teachers.

Teacher

skill level

Lab

name
time
weeks

Course

Name

Based on lectures by R Poet 2003,
modified by P Gray and R Welland

2/23/10	

 PSD3 2008-09	

 21	

Sequence Diagram 1

R
eq

ue
st

 T
ea

ch
er

s
Course

Lab
new

add_lab

add_teacher

Based on lectures by R Poet 2003,
modified by P Gray and R Welland

2/23/10	

 PSD3 2008-09	

 22	

Sequence Diagram 2

  Looking at this diagram raises a question. We have used two
steps to create the lab where one step would be best.

  We can modify the diagram to use a one step creation method.
R

eq
ue

st
 T

ea
ch

er
s Lab

new
add_lab

add_teacher

Course

Based on lectures by R Poet 2003,
modified by P Gray and R Welland

2/23/10	

 PSD3 2008-09	

 23	

Activity Diagram

  The sequence diagram raises the question of
where the course objects comes from.
»  We will create a new object and class called
AllCourses which stores all the current courses.

»  We also need to amend the use case details: flow
of events, which are now complex enough for an
activity diagram to be useful.

Based on lectures by R Poet 2003,
modified by P Gray and R Welland

2/23/10	

 PSD3 2008-09	

 24	

Activity Diagram (2)
Enter name
of course

Find course

Create lab

Create new course
[not found]

[found]

Add to list of courses

Enter teacher requirements

Notify PTT director

Based on lectures by R Poet 2003,
modified by P Gray and R Welland

2/23/10	

 PSD3 2008-09	

 25	

Conceptual Class Diagram 2

  We have another question, how do we record
the suggested teachers.
»  Use a PendingTeachReqs object.
»  It is about time we amended our class diagram.

Teacher Lab Course

PendingTeachReqs AllCourses

Based on lectures by R Poet 2003,
modified by P Gray and R Welland

2/23/10	

 PSD3 2008-09	

 26	

Sequence Diagram 3
R

eq
ue

st
 T

ea
ch

er
s

Course

Lab
new

add_lab

add_teacher_req

AllCourses find course PendingTRQS

add_teacher_req

Based on lectures by R Poet 2003,
modified by P Gray and R Welland

2/23/10	

 PSD3 2008-09	

 27	

Sequence Diagram 4
R

eq
ue

st
 T

ea
ch

er
s

Course

Lab
new

add_lab

add_teacher_req

AllCourses
find course

PendingTRQS

add_teacher_req

not found
new

add_course

Based on lectures by R Poet 2003,
modified by P Gray and R Welland

Sequence Diagram 4A

2/23/10	

 PSD3 2008-09	

 28	

R
eq

ue
st

 T
ea

ch
er

s

Course

Lab
new

add_lab

add_teacher_req

AllCourses
find course

PendingTRQS

add_teacher_req

not found

new
add_course

Based on lectures by R Poet 2003,
modified by P Gray and R Welland

2/23/10	

 PSD3 2008-09	

 29	

More Refinements

  There will be a similar diagram for the separate case
when a new course is created (shown last slide).

  We notice that we add a teaching request in two
stages. We would like to do this in one operation.

  The add_teacher_request method will have three
parameters, the skill level, the lab and the teacher
itself.

  This suggests we need a new class of objects, that of
teacher request.

  This solves the atomic operation problem since all of
this work will be achieved when we create a
TeachReq object.

Based on lectures by R Poet 2003,
modified by P Gray and R Welland

2/23/10	

 PSD3 2008-09	

 30	

Conceptual Class Diagram 3

TeachReq Lab Course

PendingTeachReqs AllCourses

Teacher

Based on lectures by R Poet 2003,
modified by P Gray and R Welland

2/23/10	

 PSD3 2008-09	

 31	

Sequence Diagram 5
R

eq
ue

st
 T

ea
ch

er
s

Course

Lab new
add_lab

AllCourses
find course

PendingTRQS

TeachReq
new

add
add

add_suggestion

Based on lectures by R Poet 2003,
modified by P Gray and R Welland

2/23/10	

 PSD3 2008-09	

 32	

Classes with Dependencies

Teacher

TeachReq

PendingTeachReq

Lab Course

AllCourses

Based on lectures by R Poet 2003,
modified by P Gray and R Welland

2/23/10	

 PSD3 2008-09	

 33	

Communication Diagram

 R

eq
ue

st
 T

ea
ch

er
s

TeachReq Lab Course

PendingTeachReqs AllCourses

Teacher

1. find course

2. add_lab 3. new

4. new

5. add
6. add

7. add_suggestion

Based on lectures by R Poet 2003,
modified by P Gray and R Welland

2/23/10	

 PSD3 2008-09	

 34	

Communication Diagram
(Revised)

 R

eq
ue

st
 T

ea
ch

er
s

TeachReq Lab Course

PendingTeachReqs AllCourses

Teacher

1. find course

2. add_lab 3. new

4. new

5.1 add
5.2. add

6. add_suggestion

Based on lectures by R Poet 2003,
modified by P Gray and R Welland

2/23/10	

 PSD3 2008-09	

 35	

Extending the Notation

 What we covered so far is enough for
most problems you are likely to deal with

 There are various extensions that can
add extra information to the sequence
diagrams

 These are included in case you meet
them in examples or other courses; you
don’t really need them at this stage

Based on lectures by R Poet 2003,
modified by P Gray and R Welland

2/23/10	

 PSD3 2008-09	

 36	

Conditionals
:MyObjectA :MyObjectB

[pressure > 100]: setActive (false)

[i < 5]: doIt ()

[pressure <= 100]: setActive (true)

Based on lectures by R Poet 2003,
modified by P Gray and R Welland

2/23/10	

 PSD3 2008-09	

 37	

Asynchronous Messaging

  Normal assumption is that messages are
synchronised; after sending message to
object wait for response before proceeding.

 Asynchronous messages don’t wait for a
reply

 May continue to be active and send
messages

 Shown with a “half headed” arrow

Based on lectures by R Poet 2003,
modified by P Gray and R Welland

2/23/10	

 PSD3 2008-09	

 38	

Asynchronous Messaging Example

:PatientMonitor :PatientStatusChecker Nurse

[emergency = true]:

Page (emergency)

emergency :=
checkBloodPressure()

Based on lectures by R Poet 2003,
modified by P Gray and R Welland

2/23/10	

 PSD3 2008-09	

 39	

Timing Constraints

