Types & Programming Languages
Exercises 1

These exercises are based on the material in Lectures 1 and 2.

1. For each of the following expressions, show its sequence of reductions as far as possible, and
give a full derivation of each reduction step.

(a) (if 1==1 then 2 else 3)+(1+2)
(b) if 142 then 3 else 4

2. Extend the language with a multiplication operator: modify the abstract syntax and give
suitable reduction rules.

3. Similarly extend the language with a logical or operator, giving both straightforward and
“short-cut” reduction rules in the same way that we did for logical and.

4. This exercise explores the relationship between the reduction relation and realistic evaluation
of expressions on a stack. For each expression e we define compile(e) to be a sequence of
instructions for a stack machine. First of all we ignore conditional expressions, and define

compile(v) = push(v)
compile(e +¢€') = compile(e) compile(e’) add
compile(e == ¢€') = compile(e) compile(e') eqtest
compile(e&e’) = compile(e) compile(e’) and

The instruction push places a value onto the stack, the instruction add replaces the top two

values on the stack with their sum, and the instructions eqtest and and work similarly. The

stack may contain both integer and boolean values.

For example, compile(1+4(2+3)) = push(1) push(2) push(3) add add. Executing this sequence
of instructions would result in a stack containing the value 6.

compile(1 + (2 == 3)) = push(1) push(2) push(3) eqtest add. Executing this sequence of
instructions would generate a run-time type error or get stuck.

(a) What can you say about the relationship between the result of reducing an expression
e, and the result of executing compile(e)? What can you say about the relationship
between individual reduction steps and the execution of individual stack instructions?

(b) Suppose we extend compile to conditional expressions by defining
compile(if e then €’ else €”) = compile(e’) compile(e”) compile(e) cond

where the instruction cond replaces the top three values on the stack with either the
second or third value from the top, depending on whether the top value is true or false.
What is the difference between reduction and stack evaluation of conditional expres-
sions? If we want reduction to match this definition of stack evaluation, what should
the reduction rules for conditional expressions be? Why don’t we want to modify the
reduction rules, and how should we modify stack execution instead?



