
Types & Programming Languages
Exercises 2

These exercises are based on the material in Lectures 1, 2, 3 and 4.

1. Prove by induction that for all n ∈ N , 0+1+4+ · · ·+n2 = n(n+1)(2n+1)
6 . Follow the structure

of the proof in Lecture 3 Slide 16.

2. Fill in the details in the proof of Type Preservation (Exercise, Lecture 3 Slide 17).

3. Call by name means that the only reduction rule for function applications is the rule on
Lecture 4 Slide 22. What are the advantages and disadvantages of call by name compared
with call by value, from the point of view of practical programming? Hint: think about the
function definitions

f(x:int):int is 3

g(x:int):int is x+x

and the applications

f(2+2)
g(2+2)

What would you want to do in a language implementation?

4. The operational semantics we have defined is sometimes called small step operational seman-
tics. The alternative is big step operational semantics, which directly associates a final value
with each expression by means of the following inductive rules. e ⇓ v means that the result
of evaluating the expression e is the value v.

• If v is a value then v ⇓ v.

•
e ⇓ u f ⇓ v w is the sum of u and v

e + f ⇓ w

• Similar rules for == and &.

•
c ⇓ true e ⇓ v

if c then e else e′ ⇓ v
and

c ⇓ false e′ ⇓ v

if c then e else e′ ⇓ v

(a) Prove by induction on e that if e → e′ and e′ ⇓ v then e ⇓ v.

(b) Prove that if e →∗ v then e ⇓ v. Use induction on the length of the reduction sequence
e →∗ v, and the previous result.

(c) Prove by induction on e that if e ⇓ v then e →∗ v.

1


