Types \& Programming Languages
 Exercises 2 (Partial Solutions)

These exercises are based on the material in Lectures $1,2,3$ and 4.

1. To prove by induction that for all $n \in N, 0+1+4+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$:

We are trying to prove: for all $n \in N, P(n)$ where $P(n)$ means $0+1+4+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$.
For the base case, we prove $P(0)$, which means

$$
0=\frac{0 \times(0+1) \times(2 \times 0+1)}{6}
$$

and this is clearly true.
For the induction step, we assume $P(k)$ (for a general k) and prove $P(k+1)$.
This means that we assume

$$
0+1+4+\cdots+k^{2}=\frac{k(k+1)(2 k+1)}{6}
$$

(the induction hypothesis) and prove

$$
0+1+4+\cdots+k^{2}+(k+1)^{2}=\frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}
$$

Using the induction hypothesis, the left hand side of what we are trying to prove is

$$
\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2}
$$

and then algebra completes the proof.
2. Fill in the details in the proof of Type Preservation (Exercise, Lecture 3 Slide 17).
3. Call by name means that the only reduction rule for function applications is the rule on Lecture 4 Slide 22. What are the advantages and disadvantages of call by name compared with call by value, from the point of view of practical programming? Hint: think about the function definitions
$\mathrm{f}(\mathrm{x}$:int):int is 3
$g(x:$ int $):$ int is $x+x$
and the applications
f(2+2)
g(2+2)

What would you want to do in a language implementation?
4. The operational semantics we have defined is sometimes called small step operational semantics. The alternative is big step operational semantics, which directly associates a final value with each expression by means of the following inductive rules. $e \Downarrow v$ means that the result of evaluating the expression e is the value v.

- If v is a value then $v \Downarrow v$.
- $\frac{e \Downarrow u \quad f \Downarrow v \quad w \text { is the sum of } u \text { and } v}{e+f \Downarrow w}$
- Similar rules for $==$ and \&.
- $\frac{c \Downarrow \text { true } e \Downarrow v}{\text { if } c \text { then } e \text { else } e^{\prime} \Downarrow v}$ and $\frac{c \Downarrow \text { false } e^{\prime} \Downarrow v}{\text { if } c \text { then } e \text { else } e^{\prime} \Downarrow v}$
(a) Prove by induction on e that if $e \rightarrow e^{\prime}$ and $e^{\prime} \Downarrow v$ then $e \Downarrow v$.
(b) Prove that if $e \rightarrow^{*} v$ then $e \Downarrow v$. Use induction on the length of the reduction sequence $e \rightarrow^{*} v$, and the previous result.
(c) Prove by induction on e that if $e \Downarrow v$ then $e \rightarrow^{*} v$.

