Types & Programming Languages
Exercises 4
These exercises are based on the material in Lectures 6, 7, 8 and 9.
1. The typing rule for the equality test operator is
I'be:int ' f:int
I'>e==f: bool

It also makes sense to allow equality tests on boolean values, and we might try the general
typing rule
I've:T Tvf:T
I'>e==f: bool
What problems are likely to be caused by this general form of equality test, if we have
function types in the language? (Hint: think about how you would define reduction rules for
the general equality test.)

2. Work out the type of each of the following expressions, in the simply typed lambda calculus
combined with SEL. (Using the notation fn x:T => e for Az : T.e).

fn x:int => x+1

fn x:int => (fn y:bool => (x == 1) & y)

fn x:int->int => x(x(2))

fn x:int->int => (fn y:int => xy)

3. Assuming that we have record types, what is the type of this expression?
{a=1+42, b=1==2, c = {x =3} }
Show how this expression reduces to a value.

4. Assume that we have sum types or variant types. A very useful idea is the option type. Given
a type T we construct the type
option T = < none:unit, some:T >.

An expression of type option T is either the value none() or an expression some(e) where
e is an expression of type T.

For example, option int has values none(), some (1), some(2) etc. and we could also con-
struct expressions such as some (1+2) and so on.

Option types can be used to represent the results of computations which might return an
error condition instead of a useful value: for example, a square root function might be given
the type

sqrt : float -> option float

to allow for the error case when the argument is negative.

(a) Give an example of a case expression which would be used to analyse an expression of
type option int, and show how it reduces.

(b) Write down the typing rule for case expressions associated with the type option int.

5. We have seen how reference types allow us to describe the assignable variables of an imperative
language: for example, the Java code



{ int x = 1;
X =x + 1;

corresponds to

let val x = ref 1
in x := (!'x) + 1
end

When we use objects in Java there is slightly more going on. A variable of some object
type MyClass stores either null or a reference to an object of type MyClass. So a Java
variable MyClass x corresponds to a value of type option ref MyClass, with the value
none () representing null.

Assume that we have a Java function
MyClass f(int x).
A typical use of £ might look like this:

MyClass x = f£(1);
if (x == null)
code 1
else
code 2 ...

Show how this style of coding would appear in our language.



