Model Based Identification of Transcription Factor Regulatory Activity via Markov Chain Monte Carlo

Simon Rogers1, Raya Khanin2 and Mark Girolami1

1Bioinformatics Research Centre
Department of Computing Science
University of Glasgow
2Department of Statistics
University of Glasgow

Glasgow Systems Biology Workshop, 2nd May 2006
Outline

1 Motivation
 • Regulatory Networks
 • Regulation

2 Model
 • Kinetic Model of transcription
 • Inference

3 Results
 • Synthetic Data
 • Fission Yeast Cell Cycle
 • Dataset Comparison
Outline

1 Motivation
 - Regulatory Networks
 - Regulation

2 Model
 - Kinetic Model of transcription
 - Inference

3 Results
 - Synthetic Data
 - Fission Yeast Cell Cycle
 - Dataset Comparison
Considerable effort has gone into the *Reverse Engineering* of regulatory networks from microarray data:
- To infer network topology
- To model the kinetics of specific regulatory interactions

All methods impose different assumptions
- Bayesian Nets - data must be *discretised*
- Correlation, state-space, linear regression - all *linear*
Modeling Regulatory Networks

- Considerable effort has gone into the *Reverse Engineering* of regulatory networks from microarray data:
 - To infer network topology
 - To model the kinetics of specific regulatory interactions

- All methods impose different assumptions
 - Bayesian Nets - data must be *discretised*
 - Correlation, state-space, linear regression - all *linear*
Modeling Regulatory Networks

- Considerable effort has gone into the Reverse Engineering of regulatory networks from microarray data:
 - To infer network topology
 - To model the kinetics of specific regulatory interactions

- All methods impose different assumptions
 - Bayesian Nets - data must be \textit{discretised}
 - Correlation, state-space, linear regression - all \textit{linear}
Additionally, all of these approaches make one other major assumption...

- Expression of the gene coding the TF is equivalent to the activity of the TF

In many examples, this is not the case
Outline

1 Motivation
 - Regulatory Networks
 - Regulation

2 Model
 - Kinetic Model of transcription
 - Inference

3 Results
 - Synthetic Data
 - Fission Yeast Cell Cycle
 - Dataset Comparison
Unobservable Modifications

In many cases gene expression is **not an accurate replacement for transcription factor activity**.
Examples 1, HIF

- **HIF**: HIF-1 is an important TF that stimulates tumour growth and metastases
- No over-expression of HIF-1 gene found in human breast cancer samples
- **But**: Over-expression of HIF-1 protein was found
- Other mechanisms must be responsible
- Vleugel *et al.*, 2004, Cell.Oncol.26
Examples 2, Fission Yeast

expression of SEP

expression of SEP's targets

Rogers, Khanin, Girolami (Glasgow)
Goal

- Translation and post-translational modifications result in a lack of correlation between gene expression and protein activity level.
- Therefore, the activity profile (TFA) cannot be approximated by transcription factor expression.
- We would like to be able to infer the levels of TF activity from the expression profiles of the target genes.
Previous Approaches

Several approaches based on linear (or log-linear) models of transcription
- Boulesteix and Strimmer (2005)
- Kao et al. (2004)

Fewer approaches using more realistic transcription models
- Nachman et al. (2004) Used non-linear model of transcription within the framework of Bayesian networks
- Khanin et al. (2005) Michaelis-Menten model of transcription, TFA inferred via Maximum Likelihood

The work here extends on the previous work of Khanin et al.
Previous Approaches

- Several approaches based on linear (or log-linear) models of transcription
 - Boulesteix and Strimmer (2005)
 - Kao et al. (2004)

- Fewer approaches using more realistic transcription models
 - Nachman et al. (2004) Used non-linear model of transcription within the framework of Bayesian networks
 - Khanin et al. (2005) Michaelis-Menten model of transcription, TFA inferred via Maximum Likelihood

- The work here extends on the previous work of Khanin et al.
Previous Approaches

- Several approaches based on linear (or log-linear) models of transcription
 - Boulesteix and Strimmer (2005)
 - Kao et al. (2004)

- Fewer approaches using more realistic transcription models
 - Nachman et al. (2004) Used non-linear model of transcription within the framework of Bayesian networks
 - Khanin et al. (2005) Michaelis-Menten model of transcription, TFA inferred via Maximum Likelihood

- The work here extends on the previous work of Khanin et al.
Aside - Single Input Motifs (SIMs)

Common network *motifs* - consisting of one TF regulating several target genes
Outline

1. Motivation
 - Regulatory Networks
 - Regulation

2. Model
 - Kinetic Model of transcription
 - Inference

3. Results
 - Synthetic Data
 - Fission Yeast Cell Cycle
 - Dataset Comparison
Transcription Model

Most previous approaches have assumed a linear model of transcription

Fail to capture non-linearities e.g. saturation

The Michaelis-Menten model has been used previously for regulation

\[
\dot{\mu}_i = \alpha + p(\eta_i) - \delta \mu_i \tag{1}
\]

where \(p(\eta_i) = \beta \frac{\eta_i}{\eta_i + K} \) \tag{2}
Model Overview

TFA to be inferred

\(\eta \)

Gene specific kinetic parameters to be inferred

\(\beta, \alpha, K, \delta \)

Observed Expression Data

\(\mu(t) \)
Outline

1 Motivation
 - Regulatory Networks
 - Regulation

2 Model
 - Kinetic Model of transcription
 - Inference

3 Results
 - Synthetic Data
 - Fission Yeast Cell Cycle
 - Dataset Comparison
Khanin *et al.* used Maximum Likelihood to produce point estimates of η and the kinetic parameters for each gene.

Point estimates of parameter values provide little information:
- Calculation of confidence intervals is non-trivial.

Full Bayesian inference would be more desirable:
- Full posteriors over parameters provide information regarding confidence and parameter sensitivity.
- Prior knowledge regarding parameter values and TFA profiles can be easily encoded through prior distributions.
- Straightforward to extend - discussed in future work.
- Implementation more straightforward.
Khanin et al. used Maximum Likelihood to produce point estimates of η and the kinetic parameters for each gene.

Point estimates of parameter values provide little information:
- Calculation of confidence intervals is non-trivial.

Full Bayesian inference would be more desirable:
- Full posteriors over parameters provide information regarding confidence and parameter sensitivity.
- Prior knowledge regarding parameter values and TFA profiles can be easily encoded through prior distributions.
- Straightforward to extend - discussed in future work.
- Implementation more straightforward.
Inference

- **Sampling:** Metropolis Algorithm with Gaussian jumping distribution
- **Priors:** Uniform priors for parameters and η, Gamma prior for σ^2.
Inference

- **Sampling**: Metropolis Algorithm with Gaussian jumping distribution
- **Priors**: Uniform priors for parameters and η, Gamma prior for σ^2.
Outline

1 Motivation
 - Regulatory Networks
 - Regulation

2 Model
 - Kinetic Model of transcription
 - Inference

3 Results
 - Synthetic Data
 - Fission Yeast Cell Cycle
 - Dataset Comparison
Synthetic Dataset

- 10 Genes
- 10 time points
- 3 replicates
- Activation
- 3 Separate datasets with $\sigma^2 = 0.01, 0.05, 0.1$
Synthetic - Inferred η profiles
Synthetic - Inferred Expression profiles

\[\sigma^2 = 0.01 \]

\[\sigma^2 = 0.05 \]

\[\sigma^2 = 0.1 \]
Synthetic - Inferred Expression profiles

\[p(\sigma^2 | \ldots) \]

\(\sigma^2 \)
Outline

1. Motivation
 - Regulatory Networks
 - Regulation

2. Model
 - Kinetic Model of transcription
 - Inference

3. Results
 - Synthetic Data
 - Fission Yeast Cell Cycle
 - Dataset Comparison
Cell-cycle regulation in Fission Yeast
Fission Yeast Dataset

- 20 time points (samples taken every 15 minutes)
- 3 Replicates
- From Rustici et al, Nature Genetics 2004
- Lots of other data available

Rogers, Khanin, Girolami (Glasgow)
Fission Yeast - inferred η
Fission Yeast - inferred expression profiles
Fission Yeast - inferred expression profiles
Fission Yeast - inferred expression profiles

\[p(\sigma^2 | \ldots) \]

\(\sigma^2 \)

\(\sigma^2 \)

\(\sigma^2 \)

\(\sigma^2 \)
Comparison

- Could we have created the same model without inferring η?
- Try fixing η equal to the expression of SEP

Rogers,Khanin,Girolami (Glasgow) MCMC for TFA 28 / 37
Comparison

Could we have created the same model without inferring η?
Try fixing η equal to the expression of SEP
Comparison

- Could we have created the same model without inferring η?
- Try fixing η equal to the expression of SEP
Outline

1 Motivation
 - Regulatory Networks
 - Regulation

2 Model
 - Kinetic Model of transcription
 - Inference

3 Results
 - Synthetic Data
 - Fission Yeast Cell Cycle
 - Dataset Comparison
Combining datasets

- So far we have considered expression with multiple replicates
- What about multiple datasets?
 - Kinetic parameters should be conserved
 - Only η and noise σ^2 should change
 - Can combine hoping to improve inference

Datasets under different η conditions
Different Sample Synchronisations
Combining datasets

- So far we have considered expression with multiple replicates
- What about multiple datasets?
 - Kinetic parameters should be conserved
 - Only η and noise σ^2 should change
 - Can combine hoping to improve inference
 - Datasets under different η conditions
 - Different Sample Synchronisations
Combining datasets

\[\eta_1 \]

\[\eta_2 \]

\[\beta, \alpha, K, \delta \]

Observed Expression Data
Synthetic Combination Experiment

- 3 genes, 10 time-points
- Create 2 datasets from different true η profiles
 - Dataset 1 - High Noise, 1 replicate
 - Dataset 2 - Low Noise, 3 replicates
- Infer η profile for dataset 1 using just dataset 1
- Infer η profile for dataset 1 using both datasets (with shared kinetic parameters)
- Will investigate whether or not inference is improved via addition of data under different η conditions
Synthetic Combination Experiment

- 3 genes, 10 time-points
- Create 2 datasets from different true η profiles
 - Dataset 1 - High Noise, 1 replicate
 - Dataset 2 - Low Noise, 3 replicates
- Infer η profile for dataset 1 using just dataset 1
- Infer η profile for dataset 1 using both datasets (with shared kinetic parameters)
- Will investigate whether or not inference is improved via addition of data under different η conditions
Synthetic Combination Experiment

- 3 genes, 10 time-points
- Create 2 datasets from *different* true η profiles
 - Dataset 1 - High Noise, 1 replicate
 - Dataset 2 - Low Noise, 3 replicates
- Infer η profile for dataset 1 using *just* dataset 1
- Infer η profile for dataset 1 using *both* datasets (with shared kinetic parameters)
- Will investigate whether or not inference is improved via addition of data under different η conditions
Synthetic Combination Experiment

- 3 genes, 10 time-points
- Create 2 datasets from different true η profiles
 - Dataset 1 - High Noise, 1 replicate
 - Dataset 2 - Low Noise, 3 replicates
- Infer η profile for dataset 1 using just dataset 1
- Infer η profile for dataset 1 using both datasets (with shared kinetic parameters)
- Will investigate whether or not inference is improved via addition of data under different η conditions
Synthetic Combination Experiment

- 3 genes, 10 time-points
- Create 2 datasets from different true η profiles
 - Dataset 1 - High Noise, 1 replicate
 - Dataset 2 - Low Noise, 3 replicates
- Infer η profile for dataset 1 using just dataset 1
- Infer η profile for dataset 1 using both datasets (with shared kinetic parameters)
- Will investigate whether or not inference is improved via addition of data under different η conditions
Inferred η profile on single dataset
Inferred η profile on combined dataset

![Graph showing inferred and true profiles with MCMC for TFA by Rogers, Khanin, and Girolami (Glasgow)]
Typical gene expression profile
Summary

- The expression of the gene coding for a TF can not generally be used to approximate the TFA.
- Using Bayesian inference and a non-linear kinetic model, it is possible to infer the TFA from the expression of the target genes.
- In this setting, it is possible to combine datasets to improve inference when data is sparse.

Future work
- Extend to other network motifs (MIM, FFL, etc).
- Incorporating models of translation, delays etc.
- Discriminating between competing Biological hypothesis - e.g. possible post-translation modifications of SEP.
Summary

- The expression of the gene coding for a TF can not generally be used to approximate the TFA.
- Using Bayesian inference and a non-linear kinetic model, it is possible to infer the TFA from the expression of the target genes.
- In this setting, it is possible to combine datasets to improve inference when data is sparse.

Future work
- Extend to other network motifs (MIM, FFL, etc).
- Incorporating models of translation, delays etc.
- Discriminating between competing Biological hypothesis - e.g. possible post-translation modifications of SEP.
Acknowledgments

- Simon Rogers and Mark Girolami are supported by EPSRC grant EP/C010620/1 "Stochastic Modelling and Statistical Inference of Gene Regulatory Pathways: Integrating Multiple Sources of Data"
- Raya Khanin is supported by a RCUK fellowship in the Department of Statistics