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ABSTRACT

Mathematical temnis modelling is increasing in popularity
and mostly being driven by recently sparked worldwide in-
terest in data analytics, which is spawning a whole new seg-
ment of the sport industry. Open source software packages
for computational statistics that are making the application
of more advanced algorithms easier even for non specialists
which are making their way into sport betting, and the trac-
tion of online betting exchanges are also factors for a strong
interest in sports predictions.

Bettors use predictive modelling to estimate the probabil-
ity of a player winning a match and place bets based on their
predictions. Millions of pounds are invested in different ten-
nis betting markets around the world at any time of the ten-
nis season.

The magority of published papers use a Hierarchical Markov
chain model to describe a tennis match, to which estimates
of a player’s probability of winning a point on serve are
passed as parameters. Estimates are generally based on over-
all match statistics working under the assumption that the
parameters do not change during the match and are not up-
dated with live point by point data.

This paper presents possible improvements to the common
tennis model by deviating from the common opponent model
and basing predictions on point by point data. The question
of what is the optimum combination of historical and current
data for making match outcome predictions is explored, and
experimental solutions are presented. By knowing how much
weight should be put on historical data better match outcome
predictions can be made. The methods described are shown
to perform better than methods used in previous published
research which rely on historical data only.

1. INTRODUCTION

Tennis is one of the most popular sports in the world. The
format of the game has made tennis one of the most heavily
traded sports in betting markets, and with an opportunity
for big profits, interest in tennis predictions is high among
professional traders and recreational gamblers.

The game is played between two players with only two pos-
sible outcomes to a match as well as to every point played. In
doubles tournaments tennis is played between four players,
but this paper focuses on singles competition. The scoring
system is relatively fine grained and reliably reflects events

on court and the progression of the match. This is in con-
trast to sports like football where modelling in-play dynam-
ics mathematically might be a substantially harder prob-
lem to solve and is probably also one of the reasons for the
growth of many in-play betting markets for tennis.

There are some irregularities to tennis rules however which
complicate modelling slightly. Lengths and formats of matches
can vary because slightly different rules can be used at dif-
ferent tournaments.

At a late stage of a given match, it is usually easy to
predict the winner. Any person familiar with the rules of
tennis can correctly predict who is more likely to win at
match point for example. At that stage there is sufficient
current data available - score, number of serves served and
points won on serve for both players in the match, as well
as other information such as break points won etc. to make
a highly informed prediction based just on this current data
- data acquired during the current match.

Making a good prediction about the outcome of the match
becomes increasingly more difficult the further from the end
of the match one tries to make it, since there is less current
data available to make good predictions from. The rules of
tennis require players to perform well over time, and differ-
ent factors affect player’s performance. It is thus very hard
to make a good prediction about the outcome of the match
after observing, say the first point of the match.

To bypass this restriction historic data is often used to
make up for the lack of current data. Data from many previ-
ous matches is aggregated to construct a profile of a player’s
performance over a longer time frame than one match, in the
hope that when this data is fed to the model the predictions
will be more accurate and the effects of partial current data
minimized.

A side effect of this solution can be a failure of the model
to recognize and include strong signals from the current data
and appropriately base predictions on them. For example if
a top player has a “bad day” and is about to lose in straight
sets, the model can still favor him late in the match based
on the aggregated historic data of good performances. It
displays low variance and high bias.

The predictive power of the model could therefore improve
if the right balance between historic and current data could
be used to better asses the parameters passed to the model.



This paper proposes a solution for this problem and evalu-
ates it against methods used in previous research.

2. BACKGROUND

A tennis match consists of sets, which consist of games,
which in turn consist of points. To win the match a player
therefore has to win the sequence of points which yields the
required number of games and sets. This structure makes it
possible to model a match as a hierarchical Markov model,
which consists of all possible Markov chains for a particu-
lar event. A Markov chain is a construction of a sequence of
random variables which represent possible states of the mod-
elled event. The transitions in the chain are the probability
a of player winning a point on their serve, or the probability
of the opponent winning a point on return. These two prob-
abilities must sum up to 1 as each point has two possible
outcomes. O’Malley [1] demonstrated that a Markov chain
can be derived for any tennis match.

Since the points are represented as random variables in
the model, they are considered to be independent and iden-
tically distributed (IID) thus satisfying the Markov property
- future events are independent of the past. Klaassen and
Magnus [2] have shown that the IID assumption does not
hold exactly in tennis, but the deviation from the ideal case
is small. The majority of previous research relies on this
hypothesis for its simplicity.

Figure 1 shows a graph representation of a tennis game
modeled as a Markov Chain. It can be seen that in a tennis
game a player has an equal probability of winning the game
at the score 30-30 and Deuce, as well as at 40-30 (30-40)
and Advantage. p is the probability of a player winning a
point on their serve and (I - p) represents the probability
of the opponent winning the point on their return. To rep-
resent the whole match this model is scaled up to represent
a set of games and match of sets in equal fashion with the
exception of transitions then representing the probability of
a player winning a game and set respectively. The Markov
chain representation of a set is presented in figure 2, figure
3 shows the tiebreak model and figure 4 shows the chain for
a best of 3 match.

Hence in this model the probability of a player winning
the match is directly dependent on his probability of winning
a point on serve. A useful observation is also that different
values of p can be fed to the model at each transition without
violating the general ideas behind it. This research takes
advantage of this fact.

By solving the chain model, a probability of winning a
match can be obtained for a chosen player. Theoretically
a game can be played indefinitely from the score of deuce
onward if each player wins one point alternately (The same
can occur in a tiebreak or in the 5th set of some grand slam
tournaments). This makes it hard to solve the model ana-
lytically, although approximations in form of equations do
exist [4]. Therefore it can sometimes be easier to implement
the model so that the results are obtained by simulation.

Considering we have a model which relies solely on p to
make predictions, it becomes important to estimate it accu-
rately, or at least estimate p - ¢ correctly. ¢ is defined as

Figure 1: Adapted from [3]. A Markov model of a tennis
game.

The nodes represent all possible scores in a game. p is the
probability of the player serving to win the point. p-1 is the
probability of the player returning to win a point. The WIN
and LOSE nodes are terminal points in a game. After one
or the other state is reached a new game begins at 0-0.

the probability of of player 2 to win a point on his serve, the
same as p is for player 1. This is done by gathering histori-
cal data on overall match statistics and computing estimates
relative to a players performance against the average past
opponent in majority of published research.

Some use a slight variation of this approach. For exam-
ple Barnett [5] uses an updating function to adjust the val-
ues for different surfaces and Newton and Aslam [6] use the
variance in a player’s points won on serve and return to
adjust the opponent’s serve winning probability. Knotten-
belt et al [7] develop a common-opponent approach by using
only the subset of historical data containing past opponents
that both players have previously encountered. Klaassen
and Magnus [2] use all the data available to compute the
average probability of a player winning a point on serve -
what they call the field value.

2.1 Klaassen & Magnus

Klaassen and Magnus build a deterministic Markov chain
model described in section 3.1. They develop a method for
estimating p and ¢ before the start of a match from a dataset
of played matches. They then use the obtained p and ¢ as
inputs to the model, to calculate the players’ probability of
winning the match from any given score. It is important to
note that p and ¢ remain fixed during the match - they are
based solely on historical data and do not include new infor-
mation from the currently playing match in the probability
estimates at any point in the match.

This method is used as one of the baselines in this paper.
However, there is a downside to the described method. By
keeping p and ¢ fixed during the match, there is a chance
of overestimating or underestimating a player’s probability
to win a match. This method shows poor performance in



Figure 2: Adapted from [8]. A Markov model of a tennis set.
Nodes represent games. p_g represents the probability of a
player to win a game on his serve, and q_g represents the
probability of the opponent to win a game his serve. p_t
is the probability of player winning a tiebreak, and q_t the
probability of the opponent to win a tiebreak.

cases where a player’s performance in the current match dif-
fers greatly from historical performance, which can be made
worse further by using field data to estimate p and ¢ in the
first place, since a single player’s performance on serve in
the current match could diverge greatly from the historical
field estimates. In this case the model will still favor the
losing player late in a match, or the opposite, will not favor
the winning player, since none of the current match data
are taken into the account in the process of estimating the
winning probabilities.

This paper suggest a solution to this issue in Section 3, and
compares the performance of the proposed method against
the one described above in Section 4.

2.2 Newton & Aslam

Netwon and Aslam recognize that a player’s probability of
winning a point on serve is not constant throughout a tour-
nament but varies from match to match. They conclude that
it is therefore better modelled as a random variable whose
probability density function closely resembles a Gaussian [6].
They then use a combination of the analytical formulas to
solve the chain model and Monte Carlo simulations to ob-
tain a probability density function (pdf) for a player to win
a game on serve, which they use in further head to head sim-
ulations to obtain the pdfs for a player to win a match. In
their further analysis they focus on ranking related analysis.
Similar to Klaassen and Magnus, they also use their data to
define a field of players when performing their analysis.

3. APPROACH

The model and all the experiments were developed in the
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Figure 3: Adapted from [8]. A Markov model of a tiebreak
game.
Nodes are possible scores. p and q are defined the same as
in model 1.

Python' programming language and made use of Pandas?,
Numpy® and libraries among others. The majority of ex-
ploratory analysis was done in the IPython Notebook* com-
putational environment.

Many great libraries for data analysis and scientific com-
puting have evolved in the Python ecosystem and were par-
ticularly helpful in this research. Pandas allowed for easy
manipulation of the dataset and together with the rapid pro-
totyping capabilities of the language and author’s experience
with it the choice of tools was obvious.

3.1 Deterministic Markov Model

Based on the details in section 2 a Markov chain model
was built. The model takes three input parameters, p and ¢
- the probabilities of players winning a point on their serve,
and a score. The model outputs the probability of the player
with serve winning probability p winning the match from
a given score. This model replicates the model built by
Klaassen and Magnus [8].

Barnett [4] defines the backward recursion formula for the
Markov chain model with the following notation. Players A
and B have a constant probability p4 and pp of winning a
point on their serve. With probability pa the state changes
from the score a,b to a+1,b and with probability g4 =1 —
pa it changes from a,b to a,b+1. a,b represent the current
score for player A and B respectively (30-30 = 2-2). Hence
P4 is the probability that player A wins the game on serve
when the score is (a,b) and we have the following recursion
formula:

Pa =paPala+1,b) + gaPala,b+1) (1)

The boundary values are:
Ps(a,b) =1, ifa=4 and b < 2 and
1

www.python.org
http://pandas.pydata.org/
3http://www.numpy.org/
4www.ipython.org/notebook



Figure 4: Adapted from [3]. A Markov model of a best of 3
sets tennis match.

Nodes represent sets p_s is a probability of a player to win a
set. It can be seen how the game model is extended to sets
and match, and how the probability of winning a match is
dependent on probabilities of winning a set, a game and a
point.

Pa(a,b) =0, ifa <2 and b=4.

Barnett then defines an explicit formula for handling the
deuce score, realizing that the chance of winning from deuce
equals the form of a geometric series and the equation can
be expressed as:

PA
Pa(3,3) = —— 2
(3,3) PA+a; @)

For player A serving first the conditional probabilities to
win the tiebreaker PT (x,y) from score (x,y) is:

Ptiebreake'r‘(x7 Z/) = pAPtiebreaker('T + 17 Z/)+
(1 = pa)Priebreaker(z,y + 1) (3)
for 2 < (z+y+3)mod 4<3

Prievreaker (ZE, y) = pBPtiebreakm‘(x + 1, y)+
(1 _pB)Ptiebreaker(m,y+ 1) (4)
for 0 < (z+y-+3) mod4<1

The boundary values are:
Ptiebreaker(77 y) =1 when = — Y 2 27
Ptiebreaker(f, 7) = 0 when y—x >2 and

1—
Ptiebreaker(ﬁa 6) = pA(lfpp/;()Jr(IZ)lli)pA)PB )

Assuming that player A serves first in the set the proba-
bilities of winning a set from set score (x,y) are:

PSEt(x7y) :piame SEt(x+17y)+ (5)
(1 = p%"™) Pset(z,y + 1) for even (z + y)
Pser(z,y) = p5™ Pset(z + 1,y)+

6
(1 = p%'™®) Pset(m,y + 1) for odd (z +y) (6)

Where p%"™* is the probability of player A winning a game
from score (0,0) while serving and p%'™¢ is the same for
player B.

The boundary values in this case are:
Pser(z,y)=1ifx>6, z —y > 2,
Piet(z,y) =0if y > 6, y —x > 2 and

Pict(6,6) = pricbreaker Where Piicbreaker is the probability of
player A winning a tiebreaker from score (0,0) while serving
first.

Finally Barnett derives the following equation:

Pmatch(xyy) = pi'ftpmatch(x + ]~ay)+

7
(1 = pX") Prmaten(z,y + 1) for even (z +y) @

Praten (ZE, y) = pgtpmatch(x +1, y)+
(1 - pgt)Pmatch(l‘yy + 1) for odd (CL‘ + y)

Where Pratcn(x,y) is the probability of player A winning

the match from match score (x,y), ps* is the probability of

player A winning a set from score (0,0) while serving first

and pi¥! is the same for player B.

(8)

The boundary values in this case are:
Pmatch(37 Z/) =1 for y < 37
Praten(x,3) = 0 for z < 3 and
Praten(2,2) = pi".
This set of boundary values holds for a 5 set match. They
are similar for a 3 set match.

3.2 Stochastic Model

A module which implements the rules of tennis and al-
lows for simulation of a match on a point by point basis was
developed. The module can correctly keep score and cal-
culate and update statistics on percentage of serving points
won for each player while the match is being simulated. A
score and sequence of point outcomes relative to the player
serving with an additional parameter to choose the serving
player can be accepted as inputs, as well as p and ¢q. The
first is useful for back-testing matches and for the purpose
of verification of the module’s operation. The latter is used
for simulations.

Hence the module also allows for replaying of a match
based on historical point by point data for an arbitrary num-
ber of points, then simulating the match forward from a
given point in the match. This feature is used in the exper-
iments this research is based on.

3.3 Evaluation Metrics

In predictive modeling an increase in accuracy often comes
at the expense of simplicity. Therefore the performance
gains have to warrant the increase in the complexity of the
model in order for the building of the model to make sense.
A simple baseline was established for the purpose of measur-
ing these gains and comparing the performance of methods
used in published research to the ones developed as part of
this research. The baseline used is “the higher ranked player
always wins the match”.

Rank being the ATP singles ranking of a player at the time
of the match ®. All experiments are compared against this
baseline in Table 3.

3.4 Replication of Klaassen and Magnus

Using the Wimbledon dataset detailed in Table 3.7 and
the Markov chain model described in section 3.1 we at-
tempted to replicate the results of Klaassen and Magnus

Shttp://www.atpworldtour.com/Rankings/



as closely as the descriptions of their procedure would allow
with the intention of benchmarking our newly proposed im-
provements to the models which are the state of the art in
published research.

Match winning probabilities were computed for every score
of every match contained in the dataset. p and ¢ used as
inputs are set to beta_i and beta_j dataset fields, which were
precomputed by Klaassen and Magnus for use in their re-
search. They are the probabilities of players winning a point
on their serve and are kept constant in their experiments.

3.5 Experiment 1

Our first experiment uses the same setup as described
in section 3.4, but the use of historical data is omitted in
prediction making. For every match, the current statistics
on players’ serving get calculated by observing the first 30
points of the match. p then gets calculated using equation
9. ¢ is obtained by the identical equation with the difference
of serving statistics for player 2 being used.

__ points_won_when_player_1_serves

9)

p and ¢ are passed as inputs to the model and match
winning probabilities are obtained from the model. These
results can be obtained by either the deterministic model
our by our stochastic model. The results from the stochas-
tic model approach those of the deterministic model when
increasing the number of simulations we make. Since this
consumes unnecessary CPU cycles every match was simu-
lated once and for every score P(win) was computed using
the deterministic model.

If the stochastic model is used the match winning proba-
bility at a given point for the player with point winning
probability p is determined by Equation 10.

total_points_served_by_player_1

matches_won

P(win) = (10)

matches_simulated

3.6 Experiment 2

The second experiment is based on the hypothesis that as-
sumes sampling points from a probability distribution could
be an equal or better alternative to calculating point esti-
mates of serve winning probabilities. This builds on previous
research by Newton and Aslam [6].

A beta distribution is assumed to be the best option as
we are predicting binary outcomes.

To see why a beta distribution is the correct solution to
our problem consider the following scenario. We want a
good estimate of p for a player. As defined in equation 9 we
might call it conversion rate on serve. If we obtain a player’s
conversion rate over a long period of time, say a season, or
several seasons, we can reason quite well about the player’s
ability to convert points on serve. But for reasons described
in section 2, we might want to put more weight on current
data. In case when we don’t use any historical data, equa-
tion 9 will be a bad measure at the start of a match. If the
player converts the 1st point, his conversion rate will briefly
be 1, and if he does not it will be 0. But this is unlikely to be
realistic, as historic data shows such extremes are unlikely
to occur over longer periods of time. Hence we know that
conversion rate is a bad predictor at the start of the match.

pll_total_serves
pll_won_serves
pl2_total_serves
pl2_won_serves

a1
cococo

for point in match:
if empirical start reached:
p pll_won_serves/pll_total_serves
q pl2_won_serves/pl2_total_serves
if pll serving:
P(win) = match_probability (p,q,
score)
if pll wins point:
pll_won_serves 4= 1
pll_total_serves 4= 1
if pl2 serving:
P(win) = 1 — match_probability (q,p,
score)
if pl2 wins point:
pl2_won_serves += 1
pl2_total_serves 4= 1

Figure 5: A pseudocode snippet implementing part of the ex-
periment 1. p,q are set to Klaassen’s p,q at the start. When
up to “start” points are observed, p,q get reevaluated and use
only current data from point “start” forward.

Historic data is useful in giving us prior expectations.
Conversion rate can be represented with a binomial distri-
bution - a series of won or lost points on serve and the best
way to represent the prior is with a Beta distribution. The
domain of a beta distribution is [0, 1], the same as p.

A Beta distribution can be expressed as:

Bla, B) = Kp'®~ V(1 —p)®~Y (11)

The parameter o can in this case be interpreted as points
a player has served and won, where a + 3 gives total points
served by the player.

The expected value of the Beta distribution is defined as:

E:aiﬁ (12)

In the experiments, each player starts of with his own beta
distribution which is initialized such that

Qyq
ag + B4

p

ap + Bp (13)

p= and ¢ =

In all experiments using the beta distribution we set E to

equal p at the start. At the initialization stage p and q are
sourced from the data set and set to equal beta_i and beta_j.

3.6.1 Beta Experiment 1

After p and p are initialized as described previously, al-
pha values are set to 20 for both players (This number was
chosen randomly for the first experiment, see table 2 for a
suggestion of an optimal value for this parameter). Beta
values can then be worked out from this setup. The match
is allowed to be played out for 50 points during which alpha
and beta values for the player who is serving are updated as
follows:




a =a+n {n =0 if player loses point
B =B+(1-n)
p and g parameters are then set to equal E of the updated
beta distribution, and fed to the model. The match is then
simulated a 100 times from every next point in the match.

At any given point in the match P(win) of the serving player
is determined by Equation 10.

n =1 if player wins point

3.6.2 Beta Experiment 2

The 2nd experiment is set up the same way as the 1st
case, with the exception of p and ¢ getting sampled once
from the updated beta distribution at the start of every
simulated match.

3.6.3 Beta Experiment 3

The 3rd experiment going one step further, samples p and
q at every point of every match we simulate. Comparison
of the results from all three methods are presented in the
Evaluation section.

3.7 Dataset

All experiments use the Wimbledon dataset®. The dataset
contains match data at point level over four years, 1992-
1995, for the Wimbledon Grand Slam tournament. 481
matches are recorded for men’s and women’s singles matches.
It contains a total of 88883 points. Match data was recorded
only on the 5 most important courts of the tournament and
the amount collected accounts for approximately half of the
matches played during those 4 years. For every match, the
players and their rankings are known, as well as the exact
sequence of points played. 1st and second serve details were
also recorded, as was data on whether the point was decided
through an ace or double fault. A summary of the data is
provided below.

Men | Women
Matches 258 223
Sets 950 503
Final Sets 51 57
Games (excl tiebreaks) | 9367 4486
Tiebreaks 177 37
Points 59466 | 29417

Some overall statistics on the dataset are presented in Ta-
ble 1.

Statistic | Men | Women
Average points per match | 230 | 131
Longest match (in points) | 453 | 240
Shortest match (in points) | 115 | 61
Table 1: Overall dataset statistics.

Wimbledon is a tournament played on grass which is a
very fast surface. This generally serves well powerful servers
who are able to win many points with aces. It tends to be the
tournament where most aces are scored by players. Hence
it is interesting to look at some stats about aces and com-
pare them between men and women, who often play with a
different style and tactics.

Shttp://www.janmagnus.nl/misc/file508545.xlsx

Aces vs Round
16 : : :

aces %

Figure 6: Points won with an ace as a percentage of points
served, aggregated by round.

Figure 6 shows that the serve is a bigger weapon in men’s
game. 16% of all served points were won with an ace in the
final rounds of the tournament and less than 4% in women’s
finals. Another interesting observation is the rate of aces
rising with every round. That can be explained by the fact
that top players tend to have powerful serves, and players
with powerful serves are likely to win matches at Wimble-
don an hence fight their way through to the later stages of
the tournament.

Another dataset was manually collected from a video broad-
cast of the 2014 ATP Tour Finals in London. It is not used
in this research however. Tour Finals matches are played to
a best of 3 sets. The tournament also has a different format
than Wimbledon, being a Round Robin event. Furthermore,
the final was canceled because of an injury of one of the play-
ers and an exhibition event was played instead. As it would
be hard to draw meaningful comparisons with the Wimble-
don dataset, analysis of the smaller dataset is omitted, it
might however prove to be useful in future research.

4. EVALUATION

Table 3 contains the performance benchmark results for

all methods used in this research. The baseline, although
very simple performs quite well. This would suggest that
ATP player rankings are actually a relatively good predic-
tor of match winners, and are representative of players’ skills
and performance on tour.
However, there could be more reasons for good baseline per-
formance. Our dataset only includes data from one Grand
Slam tournament - Wimbledon. Being one of the most pres-
tigious tournaments in tennis the majority of top players
in the world are sure to compete. At this level the rank
difference between two players can represent a much bigger
difference in skill than between two lower ranked players.
There is usually a bigger performance difference between
players ranked 1 and 4 than between 250 and 259. This ef-
fect could be further emphasized by the fact that detailed
point by point data in our dataset was only recorded on the
few main courts, where matches with top players are usu-
ally prioritized when scheduling, because they draw a bigger
audience. On the other hand the baseline is a fairly crude
method of making predictions - it is a binary prediction at
any point before or during the match.



The method used by Klaassen and Magnus outperforms
the baseline while it also allows for expression of confidence
in one’s predictions at any given point during the match.
Instead of binary the predictions are on an interval [0,1].
Nevertheless, as explained in section 3 this approach has the
downside of greatly favoring historic data over current data
when making predictions. An example of this occurring is
presented in Figure 10(c). If only relying on current match
data the model is able to make better predictions (in this
case 150 points into the match).

4.1 Empirical

To eliminate the bias on historic data we next look into

how the same model performs if only fed current data. As
presented in Plot 10, at a later stage current data can be a
better predictor of match outcome than historic data. Table
shows that at the end of 2nd set (men) or 1st set (women)
the model performs better with current data only.
Plot 7 shows the median as well as 25th and 75th percentiles
for value of P(win) across all matches played by men for
Magnus (historic data) versus Empirical (current data) for
every point >= 150. It can be observed that after point 210
the model performs significantly better with current data
only, while that claim cannot be made for points played
earlier in the match.

Even Earlier in the match however when there is not yet
enough current data observed the model makes poor predic-
tions. Figure 10 shows an example.

4.1.1 When Current Data Fails

To demonstrate how using only current data can lead to
bad predictions lets examine the next case. Figure 10 shows
the 1992 quarter final round played between Andre Agassi
and Boris Becker. Becker was ranked 5th in the world at the
time while Agassi was ranked 14th. By our simple baseline
Becker is therefore the favorite. The P(win) probabilities are
plotted from the perspective of Becker. A total of 305 points
were played in the match. Becker, with a better serve win-
ning probability is also the favorite at the start of the match
if using the Klaassen and Magnus method.

Using the empirical method - only relying on current data,
we observe the match for 38 points (subplot 1). During these
points Becker manages to win most of points on his serve.
At point 38 Becker’s p is 0.8, while Agassi’s equals 0.63.
This is a relatively big difference and the result is obvious.
Solely based on the observation of 38 points from the current
match the model predicts Becker will win with probability
almost equal to 1. The confidence of the model in this pre-
diction is flawed however as it is unlikely that Becker can
continue winning points on his serve with p = 0.8 for the
rest of the match.

The middle subplot of Figure 10 shows how the results
change if we observe a 100 points of the match first. Enough
current data is observed by this point to better reflect the
reality on the court. The model even makes a slightly better
prediction based just on current data.

The rightmost subplot reflects the true power of observing
enough current data however. When observing 180 points

before making any predictions based on the empirical method,
the model is now certain that Becker is losing. In contrast it
can be seen that the model still favors Becker to win at point
250 with probability close to 0.7 when using the Klaassen
and Magnus method.

Since we want to take advantage of the good performance
of the empirical method once enough current data is ob-
served while at the same time avoid the incredibly poor per-
formance when data is unbalanced and too sparse to reflect
the real events on court, we turn to the Beta experiments.

4.2 Beta Experiments

Table 3 shows the performance of all Beta Experiments
with their « values initialized to 20. Alpha values control
the balance between the current and historic data. By set-
ting « to different values we control how much our prior
expectations influence the shape of the beta distribution we
later sample from. The higher we set alpha to be initially
the less influence will current data have on the shape of the
distribution. For low values of a we favor current data more.

4.3 Setting alpha parameter

By setting the a parameter when initializing the beta dis-
tributions we control the balance between historical and cur-
rent data. As mentioned in section 3.6 « + 3 can be inter-
preted as the number of points served by the player. This
effectively means that when we initialize the beta distribu-
tion we set the number of points observed on a player’s serve
before the current match starts with a+ . For example set-
ting alpha to 2 means two points where the player served and
won were observed. Hence with alpha and beta parameters
we set our prior. From this it follows that if we initialize
the distribution with a low alpha, the effect of current data
with which we update the alpha and beta parameters during
the match on the distribution will be large. In contrast, if
we initialize the distribution with o = 10000 the effect of
current data will be small, since the average match in the
dataset is 230 points long.

Table 2 show performance of the model at different values
of a.

alpha | run 1 run 2 Average model performance
2.0 88.37% | 87.21% | 87.790%
10.0 87.21% | 87.60% | 87.405%
200.0 | 88.76% | 89.15% | 88.955%
400.0 | 88.76% | 89.15% | 88.955%
500.0 | 89.15% | 88.37% | 88.760%
700.0 | 88.76% | 87.98% | 88.370%
1,000 | 89.15% | 87.6 % | 88.375%
10,000 | 87.98% | 89.15% | 88.565%
Table 2: Alpha vs Average prediction accuracy.

4.3.1 Example

The effect of different alpha values described in Section 4.3
is best demonstrated on an example. Figure 9 shows the dif-
ferent distributions for the 1992 1st round match between J.
Courier and M. Zoecke. The solid lines represent the initial
distributions. The dotted lines are the updated distribu-
tions. They are updated as described in Section 3.6.1.

When a = 10 the shape of the distribution represents our
uncertainty in out prior beliefs. After we observe 50 points



Empirical vs Klaassen (Men)

1.00 T T T

< 0.80} .
£ 0sl — mag_median||
mag_25th
0.70 — mag_75th
0.65F — emp_median}|
emp_25th
0.60f -
— emp_75th
0.55 s s s ‘ ‘
150 170 190 210 230 250
point
(a) Men

270

Empirical vs Klaassen (Women)

1.00 —
0.95F i
0.90} 4
0.85 4
0.80} 4
0.75} |
— mag_median — emp_median
0.70} mag_25th emp_25th ||
— mag_75th — emp_75th
0.65 I I
80 100 120 140
point
(b) Women

Figure 7: Empirical vs Magnus percentiles. Figure 7a shows the performance of the Empirical method vs that of Klaassen and
Magnus over all matches in the dataset for men. Figure 7b shows the same for all women’s matches. The 25th, 50th and
75th percentiles are plotted at every points in matches. To account for different lengths of matches, the starting point for our
calculations is the length of the shortest match from the end of every match (115 points for men, 61 for women). Every match
contains at least 115 or 61 data points for men and women respectively, counting backward from the end of every match. That
is how we ensure data aggregated at each point contains every match in the set.

alpha vs Performance
89.0 P T T

88.8
88.6
88.4

88.2

Performance

. .
600 800

alpha

0 200 200 1000

Figure 8: Values of a subject to test that give the best perfor-
mance are between 200.0 and 400. This results is interesting
as suggests a balance of historical and current data gives the
best prediction accuracy. If a much higher value of a would
give the best results it would mean historical data is more
important to good prediction making, and if the value was
lower it would mean that current data is more important.

of the match the distributions our we can make a more con-
fident estimate of the true values of players’ p and ¢ as we
have observed more data. Therefore the width of the distri-
butions is reduced.

The second and third plot of Figure 9 show the same pro-
cess with the exception of the alpha parameter being initial-
ized to 200 and 10000 respectively. Because we initialize the
distribution with more “observed points prior to the start
of the match”, our confidence in our prior beliefs are higher
than in the previous case. This is reflected in the shape of
the distributions.

4.4 Overall Results

Table 3 shows the percentage of correct match outcome
predictions after 2 sets played for men and 1 set played for
women, for different methods. The baseline is ”the high-
est ranked player always wins”. The rest of the methods
are counted "correct” when P(win) > 0.5 for the player that
ends up winning the match. Correct predictions are aggre-
gated over the whole dataset and divided by total number of
matches in the set. It is interesting to observe that the base-

Method Men Women
Baseline 78.3% | 82.5%

" Klaassen & Magnus | 88.4% | 84.3%
Empirical 86.8% | 85.2%
Beta Experiment 1 | 89.5% | 87.0%
Beta Experiment 2 | 89.5% | 87.9%
Beta Experiment 3 | 89.1% | 84.3%

Table 3: Prediction accuracy for different methods (P (win)
> 0.5).

line performs better for the women’s dataset, which would
suggest that higher ranked female players were consistently
more dominant. This is a curious result as from observing
the modern game at the time of writing one would conclude
the opposite. Top ranked male players are consistently win-
ning matches with few upsets while the women’s game is
much more volatile.

Furthermore table 3 shows our Beta method outperforms
the Baseline andEmpirical method which is expected, how-
ever it also performs better than the Klaassen method, al-
though by a small amount. To be able to conclude which
Beta method performs best with more certainty more tests
should be performed with different values of a.

S. FUTURE WORK

This paper improved upon the model commonly used in
previous research in terms performance in predictive ability
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Figure 9: Shows effect of different settings of alpha on beta distributions on the example of the 1992 1st round match between
Courier and Zoecke. The figure shows how the balance between historic and current data is controlled by setting a. The solid
lines represent the distributions when they are initialized with their respective value of alpha (10 in plot (a), 200 in plot (b),
etc.). B values are set as described by equation 13. The parameters are then updated as defined in equation 3.6.1. It can be
observed from the plots that if « is set to a small number like in (a) the effect of the current data with which we update the
parameters is bigger than if the value of v is increased. This means that in case (a) we rely more on the current data observed
so far when we start simulating the match, while in case (b) and even more in case (c¢) we rely more on the historical data.

of match outcomes.

The next logical step is to back test the improved model on
actual historic point by point betting market data. It has
proved impossible to obtain such data for our data set as
markets such as Betfair did not exist when the Wimbledon
data set was recorded. It is easier to record current bet-
ting market data, although some information like live score
streams are still quite hard to obtain since they are valuable
and companies often restrict free access.

A further step is testing the model with different betting
strategies. It would be interesting to consider the perfor-
mance of our enhanced model together with strategies like
hedging, as well as accounting for commission on net profit
and other real world scenarios.

It would also be interesting to run a bigger number of
simulations in our Beta experiments, as well as comprehen-
sively test different Beta experiments across a range of o
values and also on women’s dataset. Because of time con-
straints the number of simulations per point had also been
set relatively low. Code improvements for better perfor-
mance would also be beneficial.

Moreover, systems like HawkEye” collect numerous pa-
rameters about matches with high precision and incredible
detail. Sadly we were unable to obtain any datasets with in
play data on movement of players, speed and spin of the ball
etc. However, the rich detail of these datasets would likely
allow for a better and even more interesting insight into the
game of tennis. It could also be possible to enhance the

"http://www.hawkeyeinnovations.co.uk/

predictive model to a sub point level, where we could make
predictions about point outcomes from relative positions of
players on the court, the power of their strokes etc. It could
be possible to infer a player’s physical condition during the
match by comparing their reaction speed, distance covered
on court and the speed of the ball leaving their rackets.

6. CONCLUSIONS

Making match outcome predictions from a combination
of in play and historical data is shown to be more effective
than relying on a single method of either lumping together
all available historical data or using just the current in-play
data. Historical data contains useful information and can
prove beneficial especially in early stages of matches when
current in play point by point data is sparse. Using point
sampling from a beta distribution can offer the right balance
between historic and current data. Optimizing the o param-
eter for a given data set can further improve performance.

During research for this paper we encountered the com-
mon pitfalls of data analysis - data being hard to access,
incomplete or in formats hard to scrape.

However the proposed method of sampling from a beta
distribution offers a way of circumventing some of the issue
of lacking data as it is shown that it is possible to achieve
a good performance without comprehensive historical data,
hence potentially making our method good for real world
application in betting. Further research with betting data
from a betting exchange like Betfair would be compelling.
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Figure 10: “pt” is the number of points observed before p,q are calculated with the empirical method.

Calculated with the Klaassen method p = 0.68 (Becker) and q¢ = 0.65 (Agassi). They stay fized through the match.

The plots show P(win) for Becker. Hence, Becker was the favorite but lost the match. The figure compares the performance of
empirical and Klaassen methods on a single match between Becker and Agassi. (a) Shows the downside of using only current
data early in the match (blue line). Not enough points have been observed yet to make accurate predictions and the empirical
method vastly overestimates Becker’s probability to win the match. (b) demonstrates how the empirical method improves as
we collect more data from the match. If p and q are estimated at point 100 instead of 38 as in (a) the model outputs a
slightly better prediction than the Klaassen method which relies solely on historical data. (c) shows the outcome prediction
for the empirical method gets even better if p and q are estimated even later in the match, at point 180. At the same time
it demonstrates the downside of using only historical data to make the prediction as Klaassen’s method still favors Becker at
point 250 with probability close to 0.7. To try to take advantage of the superior performance of the empirical method later
in the match while avoiding its bad performance at the start of the match when current data is sparse we design the Beta
experiments.
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