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ABSTRACT

In this paper, we target a data modelling approach used in
computational metabolomics; to be specific, we assess whether
spatial smoothing improves the topic term and noise identi-
fication. By assessing mass spectrometry imaging data, we
design an enhancement for latent Dirichlet allocation-based
topic models. For both data pre-processing and topic model
design, we survey relevant research. Further, we present
the proposed methodology in detail providing the prelimi-
naries and guiding through the performed topic model en-
hancements. To assess the performance, we evaluate the
spatial smoothing application on a number of diverse syn-
thetic datasets.

1. INTRODUCTION

In the research project, we assess an application of spa-
tial smoothing in visual data; that is, we induce continuity
among data elements. The spatial smoothing application
is particularly targeted to be applied for unsupervised pat-
tern recognition. To be more specific, our focus is to model
visual metabolomics data using a particular branch of unsu-
pervised machine learning — topic modelling.

The characteristics of the utilised metabolomics data are
expressed in the form of mass spectrometry imaging (MSI).
To briefly introduce mass spectrometry, the method cap-
tures a biological tissue in the form of mass spectrum: at
the start, the metabolites of a biological tissue are ionised
(by metabolites, we refer to the tissue’s contents — the prod-
uct of a metabolism chemical process); after the initial step,
a mass spectrometer captures the intensity of each ionised
metabolite; as a result, we obtain information about the tis-
sue’s contents and their concentrations.

Relating the latter procedure to MSI, note that we can
partition the tissue into small regions. Effectively, the tis-
sue’s partitioning corresponds to a higher granularity of the
data. As a result, we can identify the contents of the tissue’s
particular regions. As an example, we provide Figure 1 il-
lustrating the rationale behind MSI: the image is the whole
tissue; the image’s pixel is the tissue’s particular region; and
each pixel contains the intensity values of ions (a different
ion type has a unique mass-to-charge m/z value). In order
to visualise MSI data, we would look into a specific mass-to-
charge value. Effectively, the intensity of a pixel would be
set to the intensity value of the respective ion type.

Going into the machine learning application, note that we
use topic modelling for the inference of topic distributions;
effectively, the inferred topic distributions would be treated
as the underlying semantic structure of a sampled tissue.
Since our data is MSI-based, we model the topic distribu-
tions over an image and its every pixel; also, we model the
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Figure 1: The MSI data structure.

types of ions corresponding to particular topics. Since our
machine learning application is based on Bayesian methods,
we tune the model parameters to reflect the metabolomics
environment as realistically as possible. Ultimately, spatial
smoothing is one of such environment settings.

The basis of the project’s research problems comes from
the limitations of current metabolite sampling techniques.
One of the limitations is the presence of noise. For exam-
ple, MSI data could be distorted by noise as a result of
metabolite fragmentation — the ionisation would split the
metabolite’s structure causing a faulty mass-to-charge value
capture. Another limitation is the overlap of the molecules
with similar structures. Effectively, some of the produced
ions could have same mass-to-charge values; as a result,
the ion possessing a lower intensity value would be over-
whelmed and, thus, not reflected in MSI data. A possible
approach mitigating the issue is direct infusion; however, in
this project, we investigate whether the latter issue could be
mitigated using a computational approach.

We contribute to the research in MSI by carrying an ex-
tensive assessment of the spatial smoothing application. The
assessment is performed in both quantitative and qualitative
manners: we assess the performance on a number of diverse
datasets; also, our experiments are designed to reflect the
environment settings of computational metabolomics. Fur-
thermore, we provide Python implementations of the pro-
posed topic model and the experiment settings. Note that
the experiments are performed in Jupyter notebooks; effec-
tively, the practice induces a portable and well-documented
environment for initialising and running the experiments.
The notebooks are also useful in validating the experiment
results: external parties would be able to re-run the experi-
ments in a swift manner.



The paper is organised in the following order: in Sec-
tion 2, we discuss the background of the research project;
in Section 3, we provide a formal definition of the assessed
research problems; in Section 4, we review the results of the
relevant research; in Section 5, we establish the rationale
of the applied methodology; in Section 6, we introduce the
experiments; finally, in Section 7, we conclude the findings.

2. BACKGROUND

The background section covers the basis of the concepts
used throughout the paper. At the start, we provide a high-
level overview of the general topic modelling concepts; then,
we define the terminology used throughout the paper; finally,
we introduce the characteristic qualities of the MSI data.

2.1 Topic Modelling Preliminaries

The research project targets a specific branch of topic
models. The branch consists of Latent Dirichlet Alloca-
tion (LDA) derivatives. Note that the initial LDA model
was introduced by Blei et al. [4]. One of the model’s key
characteristics is the three-level hierarchical treatment of the
data. In the context of the utilised MSI data, the hierarchi-
cal structure can be perceived as follows: in the highest level,
we have an MSI image; in the middle level, we have the pix-
els of an MSI image; and in the lowest level, we have the
intensities of particular ions in a pixel.

Another model’s key characteristic is the generative treat-
ment of the data. By a generative model, we mean that the
latent data instances are treated as a result of a mixture
of underlying parameters. In other words, the generative
data treatment induces randomness in the end product of
the data generation; however, note that the source of the
data — the lowest level parameters — remain the same. The
key aspect of the generative model is the degree of freedom
in the connections of random variables; this notion allows
modelling more realistic, thus, more complex data settings.
Ultimately, the rationale of a generative machine learning
model is based on recovering the underlying semantic struc-
ture. To do this, we employ the rationale of Bayesian meth-
ods.

By applying Bayes’ rule, we can express the underlying
semantic structure in the form of a posterior probability dis-
tribution. Since the posterior expression can not always be
analytically computed, we estimate it using optimisation or
direct sampling. Note that, in this project, we particularly
focus on the topic inference using direct sampling. Relating
to the attempts for applying the sampling-based inference to
LDA-like models, the ground-work was established by Grif-
fiths and Steyvers [9]. The authors display an application
of the collapsed Gibbs sampling — a Markov chain Monte
Carlo (MCMC) algorithm. Since the method integrates the
uncertainty out, we can sample the data entities without the
explicit notion of the underlying parameters.

Going back to the initial LDA model, the model’s au-
thors report on setting the following assumptions: exchange-
ability among the inner components of the lower and mid-
dle data hierarchy levels; and a discrete treatment of the
lower-level data. By exchangeability, it is meant that the
components follow the bag-of-words principle; that is, the
order of the data has no correlation with the underlying
semantic structure. Relating to the rationale behind the
discrete data treatment, it is assumed that the lower-level
components have no spatial connection. With respect to

our project, both assumptions — the exchangeability and
the discreteness — do not correspond to the characteristics
of the metabolomics environment. Therefore, we establish a
methodology to relaxing the latter assumptions.

2.2 Topic Modelling Terminology

In this subsection, we introduce our topic modelling termi-
nology. In order to put the MSI data structure in the topic
modelling context, the components of LDA’s three-level hi-
erarchical structure are defined as follows: a corpus is the
whole image of a sample; a document is an MSI image’s
pixel; and a word is an interval of mass-to-charge values
corresponding to a particular ion. Note that from now on,
we use the latter topic modelling concepts to introduce the
LDA model’s architecture and notation.

Since LDA-like models correspond to the branch of graph-
ical models, the dependence of random variables can be illus-
trated using graphs. In order to familiarise with the architec-
ture and the variables of LDA-like models, we provide Figure
2 illustrating the initial LDA model in the plate notation.
To start with, the circles indicate the model’s variables: the
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Figure 2: The initial LDA model’s architecture.

coloured circle corresponds to the observable variable; and
the uncoloured circles correspond to the hidden variables.
Effectively, the hidden variables define the model’s underly-
ing structure. To introduce the plates, the plate denoted by
K corresponds to the number of topics; the plate denoted by
T corresponds to the number of documents, and the plate
denoted by N corresponds to the number of words. Effec-
tively, the letters in the bottom right corners indicate the
total number of variables. Therefore, a corpus has a T' num-
ber of documents, and each document has an N number of
words.

Before providing a listing with the definitions of the LDA
variables, we introduce their purpose. The variables denoted
by 6 and ¢ correspond to the underlying probability distri-
butions (e.g., in the case of the initial LDA model, we use
Dirichlet distributions). It follows that the variables denoted
by « and (8 act as the parameters of the latter probability
distributions; note that in the context of machine learning,
such auxiliary parameters are called hyper-parameters. Ef-
fectively, a hyper-parameter allows tuning a machine learn-
ing model for a particular dataset application. As a side
reference, note that by a vocabulary we refer to a collection
of terms reflecting a fixed range of words. At this point, we
provide the following list containing the definitions of the
initial LDA model’s variables:

e K is the number of topics;

e T is the number of documents;



e N is the number of words per document;

V' is the size of a vocabulary;
e w is a word;

e z is a word’s topic assignment;

0, is the topic distribution over the document t;

¢r is the vocabulary term distribution over the topic
k;

e « is the hyper-parameter for the topic distributions;

e (3 is the hyper-parameter for the vocabulary term dis-
tributions.

2.3 MSI Data Characteristics

In this subsection, we introduce the qualities of the MSI
data. Furthermore, we set the requirements for the pre-
processing of raw MSI data; note that the pre-processing
serves as an auxiliary method making raw MSI data com-
patible for a scalable topic modelling application. As a side
note, the basis of our applied MSI data characteristics is
established from the mzML data format. Conveniently, we
parse mzML data using the pymzml Python library.

Recall that raw MSI data is mass spectra of a tissue’s
sample (i.e., the sample’s every pixel is expressed in the
form of a mass spectrum); also, every mass spectrum term
conveys a particular intensity value. To help organise the
data, we establish a continuous notion by ordering the mass-
to-charge values. Further, since the sampling equipment can
detect the mass-to-charge values in the millidalton (mDa)
precision, the MSI data is sparse (i.e., a large portion of
mass-to-charge values are mapped to the zero intensity).

In the context of topic modelling, raw MSI data possess a
large vocabulary (above 5000 terms). Note that we consider
every mass-to-charge value as a word; whereas every inten-
sity value is perceived as a word’s occurrence count. Further,
since the intensity values could spike up above 1000, the
time complexity of the latent topic inference would require
pro-longed runs. To overcome the introduced scalability is-
sues, we carry data pre-processing (the applied techniques
are discussed in the upcoming methodology section).

3. STATEMENT OF PROBLEM

To start with, we set the hypothesis of this research project
to ‘The spatial smoothing application induces more realis-
tic representation of the visual computational metabolomics
data — MST’. By spatial smoothing, it is meant that the topic
model would have an auto-regressive treatment among the
nearby MSI instances. As an example, we assume that ad-
jacent pixels would have similar latent topic distributions.
This assumption corresponds to the nature of our datasets —
a metabolite construction (i.e., a topic) is continuous through-
out nearby regions (i.e., sets of adjacent pixels).

The impact of proving the hypothesis would bring the
following contributions:

e Improve the detection of overlapping topics and vocab-
ulary terms;

e Reduce the noisiness of the MSI data;

e Motivate a further research in the spatial smoothing
application in MSI data.

To expand on the overlapping topic detection, the issue
arises when two underlying topics are made of similar vo-
cabulary terms: instead of a separate representation, the
topics are merged. We intend to identify the flow of dis-
tinct topics by applying spatial smoothing; as a consequence,
the spatial smoothing would also impact the data noisiness
reduction. Ultimately, if a naive spatial smoothing applica-
tion displayed a performance improvement, the contribution
would set a basis to utilise state-of-the-art auto-regression
techniques in MSI data.

To my knowledge, the impact of applying spatial smooth-
ing to MSI data has not yet been thoroughly studied. For the
latter reason, this research project serves as an exploratory
assessment — we introduce the rationale behind the applied
methodology; also, we clearly define the range of the experi-
ment settings. To give a brief intuition about the methodol-
ogy, the study assesses the domain-specific parameter tuning
and its impact on a range of synthetic datasets.

4. RELEVANT RESEARCH

In this section, we review the ground-work carried on the
following aspects: the pre-processing of MSI data; the ra-
tionale of the utilised topic models; and novel approaches
exploiting the characteristics of MSI data. Note that the
covered groundwork is selected to reflect the rationale of the
utilised techniques. In order to establish the basis of the
state-of-the-art computational metabolomics methodology,
we consult the survey carried by Alonso et al. [1]; to in-
troduce the key probabilistic topic modelling branches, we
consult the survey carried by Blei [2].

4.1 MSI Data Pre-processing

In order to establish a scalable topic inference, we review
the following MSI data pre-processing techniques: data nor-
malisation; feature binning; and noise reduction. To start
with, data normalisation serves as a method establishing an
adaptable data structure. Bolstad et al. [5] have proposed
the data normalisation method called linear baseline scal-
ing. Note that the method is particularly targeted at sparse
datasets. Effectively, the method is applicable to numeri-
cal features; note that the method’s work-flow is carried as
follows: we find the largest numerical feature of all data in-
stances; then, we calculate the scaling factors by aligning the
largest values to a pre-set upper threshold; finally, we align
the remaining numerical features based on the established
scaling factors. Relating linear baseline scaling to applica-
tions on MSI data, Kohl et al. [10] have shown that the
method’s application does not produce a significant loss of
information to establish a well-performing MSI data infer-
ence.

To introduce feature binning, the technique is used to
merge the instances of a feature space; as a result, fea-
ture binning reduces the data dimensionality. Note that
by the MSI data feature space, we refer to distinct m/z val-
ues. Since raw MSI data is sparse, a successful application
of feature binning is based on identifying appropriate m/z
boundaries reflecting unique metabolite types. To introduce
some examples, the research carried by Craig et al. [6] have
utilised an equally spaced feature binning. Even though the
authors have succeeded to reduce the data dimensionality,
they have encountered a loss of information by splitting the
metabolite topics into arbitrary regions. As an alternative
approach, De et al. [7] have performed a feature binning



based on the identification of spectral peaks. Effectively,
the technique induces a dynamic notion of bin boundaries
which are based on the identified intensity peak regions. As
a result, the merged m/z values serve as a better represen-
tation of metabolite terms.

The last reviewed MSI data pre-processing techniques ad-
dresses the MSI data noisiness. Even though the MSI data
noise reduction is an open research problem utilising tech-
niques beyond data pre-processing, Smith et al. [12] have
shown that the application of a general data pre-processing
routine displays performance improvements. For example,
the authors have induced a lower intensity bound. Effec-
tively, the intensity values below the intensity threshold would
be treated as insignificant and/or as a product of data cap-
turing device imperfections. By applying this procedure,
the authors have successfully reduced the data dimensional-
ity and, thus, increased the data scalability.

4.2 Prospective Topic Models

In this subsection, we review the key characteristics of the
prospective topic modelling inference techniques and model
variations. To apply the inference techniques, we employ
the rationale of a sampling-based LDA model. Griffiths and
Steyvers [9] have displayed a successful application of the
collapsed Gibbs sampler for the topic inference of both tex-
tual and visual data. To expand on the collapsed sampling,
the technique allows skipping the estimation of the 6 and
¢ values; instead, the inference is based on the notion of
the assignment counts. In order to estimate a topic assign-
ment’s probability, the authors suggest using the following
expression:

nlh 48 nlta
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Note that i refers to the current iteration (—i refers to the
previous iteration); k refers to a particular topic; and n refers
to the count of the instances indicated by the term’s su-
perscript. If required, € and ¢ can be sampled from the
following distributions:
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Essentially, more accurate representations of § and ¢ are ob-
tained by running the Gibbs sampler until a sufficient con-
vergence: we preserve the 6 and ¢ values of each iteration;
when the sampling is finished, the average of the preserved
values is an accurate approximation of the underlying 6 and
¢ values.

In order to relax the topic modelling assumptions of the
initial LDA model, we review the model’s derivatives. One
of the assumptions — word exchangeability — is addressed by
Blei and Lafferty [3]. The authors have proposed dynamic
topic model (DTM) inducing the notion of change in the
topic and vocabulary distributions; the model’s architecture
is illustrated in Figure 3. Ultimately, the documents of a
corpus are assigned to segments with unique 6 and ¢ values.
Note that the changes in the 6 and ¢ values are impacted by
their hyper-parameter updates. Since, in the DTM paper,
the authors use variational inference, we provide a reference
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Figure 3: The DTM architecture.

for an alternative dynamic topic modelling variation — se-
quential LDA — proposed by Du et al. [8]. Note that in
the sequential LDA paper, the authors display a rigorous
application of the collapsed Gibbs sampler.

4.3 Prospective Characteristics of MSI Data

At this point, we look into the prospective topic modelling
applications exploiting the characteristics of MSI data and
employing spatial smoothing. To start with, Hooft et al.
[13] have utilised an LDA-like model to infer metabolite sub-
structures from MSI data. The authors have established a
novel approach utilising a favourable LDA’s property — the
option to assign a unique vocabulary term to multiple top-
ics. Effectively, this approach allows identifying metabolite
substructures which are made of overlapping elements.

Relating to the spatial smoothing application, to my knowl-
edge, the idea has not yet been widely spread among the
computational metabolomics community. Nevertheless, a
recent study by Palmer et al. [11] have attempted to quan-
tify spatial chaos among the partitions of MSI data. The
authors have reported that the established notion of spatial
chaos has improved the speed and accuracy of continuous
metabolite pattern identification.

S. METHODOLOGY

In this section, we cover the rationale of the topic model
tuned for the spatial smoothing application. To start with,
we provide details on how to establish the auto-regressive
notion among MSI data; then, we show how to apply the
auto-regression to the topic inference based on the collapsed
Gibbs sampling. Further, we provide a list of the applied
data pre-processing techniques for MSI data. Finally, con-
sidering the data format induced by data pre-preprocessing,
we introduce the generative MSI data process. Effectively,
we apply the generative process to generate synthetic data
for our experiments.

5.1 Spatial Smoothing

We establish the spatial smoothing among MSI data by
inducing the auto-regressiveness among pixels (documents).
Before going into details, note that we cover the established
methods using the previously introduced topic modelling no-
tation. To start with, recall that by auto-regressiveness we
refer to the smooth topic development among the nearby in-

stances of an MSI corpus. In our settings, the auto-regressiveness

is established by assuming that the joint probability distri-



bution of the « priors is given by the following expression:

T
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To introduce the previous expression, note that the index ¢
refers to a particular pixel (a document). This means that
every pixel of an MSI corpus has a unique underlying topic
distribution induced by a unique «. Further, the variances
o2 and o2 correspond to the initialisation variance and the
smoothness variance, respectively. Effectively, o2 is used to
create larger gaps among different topics, whereas o pre-
serves the smoothness. Therefore, we set o2 to possess a
higher value compared to o2.

The previously introduced « priors serve as the initial
point in estimating the true a values. To estimate the true «
values, we utilise the Metropolis—Hastings (MH) algorithm.
The work-flow of the MH algorithm is started by drawing
the proposed state:

x' ~ q(x,6°1).

Note that x denotes the current state, ¢ denotes the proposal
distribution, and 6% denotes the proposal variance; also, note
that if 62 is large, the proposal state converges to the true
posterior in larger yet random increments; alternatively, if 62
is small, the convergence is performed in small yet uniform
increments. Note that the settings for an optimal conver-
gence are unique for diverse datasets; as an example, we can
find the optimal values using cross validation. Going back
to the work-flow, for the second step, we consider the accep-
tance distributions (these are denoted by A) and derive the
formula for the acceptance rate:
p(z'|z)
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Note that the proposal distributions cancel out as
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q(a'|z) = q(z[z").

For the MH algorithm’s final step, we make sure that the ac-
ceptance rate does not overflow the probability boundaries;
that is, we obtain the acceptance rate denoted by r using
the following procedure:

- (1357).

At this point, we apply the rationale of the introduced MH
algorithm to the topic modelling context. Since we utilise
the MH algorithm to update a single value at a time (i.e.,
we update oy ), we make use of the following notation:

g=N =

a *=qa \ itk

Having the previous notation in mind, the MH algorithm’s
application to update « is given as follows:
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For completeness, the expressions at the boundaries take the
following form:
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Also, note that by m we denote the softmax function which
is expressed as follows:

exp(a,k)
S ko explay )

5.2 Auto-regressive Dynamic Topic Model

Our auto-regressive topic model is based on the rationale
of the reviewed dynamic topic model. However, based on
the MSI data characteristics and the application of spatial
smoothing, the auto-regressive model possesses the following
aspects:

m(aer) =

e The static treatment of the 8 hyper-parameter;
e The Gibbs sampler utilising spatial smoothing;

e The application of logarithmic space to perform calcu-
lations.

In the following paragraphs, we introduce each of the previ-
ous listings.

Even though we utilise the rationale of DTM in order
to establish the dynamic notion of the topic development,
we preserve a static S hyper-parameter. This assumption
comes from the characteristics of the metabolomics-based
MSI data: we expect the metabolite patterns (i.e., a topic’s
vocabulary) remain constant. Therefore, in our model, we
utilise the architecture illustrated in Figure 4 below.
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Figure 4: The auto-regressive topic model architecture.
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In order to enhance the Gibbs sampler, we modify the
topic assignment formula to take the following form:

i+ 8
n VB

P(z; = klz—i, w,t) 7 ().

As a consequence, the sampling of 6 also changes; now, we
obtain the topic distribution as follows:

Ht,k = 71'(0(17}@).



Finally, we address the computational stability by per-
forming calculations in logarithmic space. Effectively, the
application of logarithmic space mitigates the susceptibil-
ity to numerical underflow. Note that numerical underflow
is especially relevant in the context of probabilistic models:
calculations involve large products of probabilities. In log-
arithmic space, however, the products are transformed into
sums. Relating to our model, we apply logarithmic space for
both the auto-regressive a update and the sampling-based
inference. The updated expression for the auto-regressive o
update is given as follows:

lOg |:p(z7a_tk7a;,k|X):| _
p(z, a| X)
. =log [p(z,a™", a} 1| X)] — log [p(z, a| X)]

}|3|
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og [m(ai k)] +log [p(at|ai—1)] + log [p(aes1]at)]

— 2 Y _log [m(auk)] + log [p(au|as—1)] + log [p(as1]as)].

As a result, the acceptance rate takes the following expres-
sion:

7,5 = exp [min (0,log [p(z, ™™, af 1| X)] — log [p(2, 2| X)])].

To introduce the updated expression for the inference, it is
expressed as follows:

P(z; = klz—i,w, t) ...
... o log [n(f“l’,)C + 8] —log [0V, + V5] + log [r(aex)]-

5.3 Data Pre-processing and Generative Pro-
cess

In this subsection, we introduce the MSI data format used
in the experiments. At the start, we introduce an example
of real data. Effectively, the example displays an application
of the pre-processing techniques presented in the literature
review section. Further, we transfer the qualities of real
MSI data into our synthetic data generation module. To
be more specific, we provide an algorithm for the generative
data process.

Before carrying the experiments, we familiarise with raw
MSI data characteristics and assess their scalability. To be
more specific, we define the characteristics of our synthetic
data by pre-processing a real MSI data sample. To introduce
the pre-processing details, we dismiss the words below the
intensity threshold of 10; then, we apply the following buck-
etisation strategy: merge adjacent vocabulary terms which
differ less than 7 mDa. Effectively, the bucketisation strat-
egy is based on the spectral peak identification. Finally,
we apply linear baseline scaling to align the highest inten-
sities to 25. Most importantly, note that these settings are
unique with every dataset; however, the provided values al-
low carrying experiments in a scalable manner (i.e., a single
experiment run on one dataset would take approximately 60
minutes).

At this point, we take an exemplary sample. Note that,
in the sample, there are two letters inscribed with the ink
corresponding to a particular mass-to-charge value. In Fig-
ure 5, we compare the visualisation of the sample with and
without the applied pre-processing.

(a) The ‘b and €’ term’s occurrences before linear baseline scaling.
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(b) The ‘b and €’ term’s occurrences after linear baseline scaling.
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Figure 5: The comparison of the ‘b and e’ term’s extraction.

Having the basis for a scalable inference, we transfer the
identified data properties into the synthetic corpus genera-
tion. Before introducing the generative process, recall that
our dynamic topic treatment is unique with respect to ev-
ery document. Therefore, contrary to the reviewed dynamic
topic models, our dynamic segment consists of only one doc-
ument. Considering the latter aspects, we establish our
utilised generative using Algorithm 1 given below:

Algorithm 1 The generative process for a synthetic corpus.

for t + 1,7 do
2: N ~ Poisson(§)
for n + 1, N do

4: 2t,n ~ Multinomial(7 (o))
k={i:ztn: =1}
6: we,n ~ Multinomial(¢y )
end for
8: end for

In practical settings, the rationale of the generative pro-
cess is defined as follows: the £ term represents an approx-
imate number of words per document; oy is the pre-defined
auto-regressive hyper-parameter for the document t; and ¢
is the pre-defined vocabulary term distribution for the topic

k.

6. EXPERIMENTS

In this section, we assess the research problems introduced
in Section 3:

e The spatial smoothing application for recovering the
underlying vocabulary term distributions;

e The auto-regressive model’s performance in terms of
identifying the noise topic.

At the start of the section, we define the settings for tuning
the topic models; then, we look into the settings for gener-
ating the synthetic datasets; afterwards, we introduce the



scope of our experiments. Having defined the settings, we
provide several illustrative examples of the experiment ex-
ecution; and finally, we show the results of the performed
experiments.

6.1 Pre-experiment Settings

The performance of the experiments is assessed by running
the auto-regressive and non-auto-regressive topic models in
parallel. That is, we run the topic models with and without
the pre-set assumption of spatial smoothing. For both mod-
els, we tune the variances corresponding to the « update
introduced in Section 5. Recall that the variance 62 is used
to propose a new o hyper-parameter’s state; the variance g
is used to initialise ap; and the variance o controls spatial
smoothing. Effectively, in the non-auto-regressive model, we
do not have the ¢? term as all o terms are initialised using
ol (this notion relaxes the assumption of spatial smoothing).

In order to run the experiments in an efficient manner, we
identify optimal values of the previously noted variances.
One reason behind the variance tuning corresponds to the
rate of convergence upon the application of the MH algo-
rithm. Based on the algorithm’s rationale — a low accep-
tance rate indicates a slow and stable convergence, whereas
a high acceptance rate indicates a random and unstable con-
vergence — we would find the variance 62 inducing the ac-
ceptance rate of around 30%. Another reason behind the
variance tuning is related to the spatial smoothing applica-
tion. Most importantly, we keep the variance o2 in tact with
the rate of change of the topic smoothing throughout the
data. Furthermore, since the topic development is captured
in discrete space, we want to make sure that the discretisa-
tion step induced by the generative data process is smaller
than the o2 variance; otherwise, we would fail to capture
the high rate of change induced by steep topic changes.

To comment on the datasets generated for the experi-
ments, these are designed to reflect the three following as-
pects: the effect of overlapping topics; the effect of overlap-
ping vocabulary terms; and the effect of noise. Note that
our assessment is based on an intuitive 3 topic scenario: 2
topics model distinct metabolite entities, and the remaining
topic models the noise topic. To comment on the dataset
size, we set T = 50 for the number of documents per cor-
pus and ¢ = 100 for the number of words per documents:
the choice of T" surpasses the discretisation concern; also, as
suggested by the generative algorithm given in Subsection
5.3, the use of the £ parameter establishes a slightly varying
number of words in each document. However, in order to
speed up the inference, we normalise the number of words
per document to possess the maximum value of 50.

In the following figures, we illustrate the variations of the
data generation settings: in Figure 6, we display the setting
controlling the topic overlap; in Figure 7, we display the set-
ting controlling the topic term overlap; and in Figure 8, we
display the setting controlling the error overlap. Note that
the red and green colourings indicate the synthetic metabo-
lite topics; the green colouring indicates the noise topic; and,
for the term names set in the horizontal axes of Figures 7
and 8, we use arbitrary, unique numbers.

Relating the latter settings to our experiments, we assess
their all (eight) possible permutations. To give an exam-
ple of a permutation, one of the experiments would assess
the ability to recover the underlying topic term distribu-
tions with the enabled topic overlap, the disabled topic term

Topic overlap: enabled

1.0
0.8
0.6
0.4 A
0.2 A
0.0 -
(I) fli 1‘2 1|8 2I4 3b 3|6 4I2 4‘8

t

Topic overlap: disabled

1.0 4
0.8
0.6
0.4
0.2
0.0

0 6 12 18 24 30 36 42 48
t

Figure 6: Controlling the topic overlap.
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Figure 8: Controlling the error overlap.




overlap, and the enabled error overlap. Note that the latter
settings directly reflect the 6 and ¢ values of the synthetic
datasets (we do not use the o and 8 hyper-parameters). By
following the latter principle, we establish a clearer represen-
tation of the synthetic data; thus, simplify the performance
assessment.

6.2 Experiment execution

Before going into the experiment execution, note that we
assess the performance based on the models’ ability to re-
cover the underlying synthetic corpus generation settings.
To wrap this assessment into a more concise terminology,
the true solution corresponds to the underlying synthetic
corpus generation settings; and the approximate solution
corresponds to the inference results. As a result, the per-
formance is measured by taking the difference between the
true and approximate solutions.

In order to introduce the rationale behind the perfor-
mance assessment, we look into one of the eight experi-
ments in more detail. Just like for all our experiments, we
run both auto-regressive and non-auto-regressive models for
5000 Gibbs sampling iterations, 1000 of which are dedicated
to the burn-in process. For each of the remaining 4000 iter-
ations, we sample the corresponding 6 and ¢ values; after-
wards, in every 100th iteration, we average the stored 6 and
¢ values, respectively; then, this average is compared to the
true solution. As an example, in the 1100th iteration, we
would take the average of 100 samples; in the 1200th itera-
tion, we would take the average of 200 samples. In a single
experiment, we would have 40 of such batches indicating the
performance — this is illustrated in Figure 9 and Figure 10.
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Figure 9: The 0 recovery performance.
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Figure 10: The ¢ recovery performance.

Relating to the previous example, the 6 and ¢ values cor-
responding to the last iteration are illustrated in Figure 11
and Figure 12, respectively. Also, note that we relax the
colour coding of our figures as the topics are inferred in un-
supervised manner.
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Figure 11: The comparison of the € values.
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To assess the auto-regressive model’s performance, we have
generated 10 distinct datasets for each previously introduced
corpus generation setting. Recall that we assess the fol-
lowing conditions: the topic overlap; the vocabulary term
overlap; and the error term overlap. For every setting per-
mutation, we perform the two-tailed t-test: the t-statistic
suggests the difference in performance; and the p-value sug-
gests whether the result is significant. To be more specific, a
negative t-statistic indicates the auto-regressive model’s su-
perior performance; whereas the results are determined to
be significant if the p-value is below 0.05. The t-statistics
and p-values of all eight performed experiments are provided
in Table 1 below.

Overlap t-statistic p-value

Topic | Term | Error 0 ¢ 0 ¢

False | True | True | —5.41| 0.47 0.00 0.65
False | True | False | —9.46| —0.38| 0.00 0.71
False | False | True 4.74 3.93 0.00 0.00
False | False | False | —2.91| —3.24| 0.02 0.01
True | True | True | —5.99| —1.71| 0.00 0.12
True | True | False | —1.78 | —1.53| 0.11 0.16
True | False | True 1.12 1.17 0.29 0.27
True | False | False 0.52 1.10 0.61 0.30

Table 1: The t-test assessing 8 different overlap settings.

Based on the obtained results, the most significant changes
(the p-values vary from 0.00 to 0.01) occur upon only switch-
ing the error overlap setting (the remaining settings are dis-
abled). If the error overlap is disabled, the spatial smooth-
ing application displays an improved performance (i.e., 3.24
lower error in recovering ¢); however, if the setting is en-
abled, the auto-regressive model performs poorly (i.e., 3.93
higher error in recovering ¢). Further, by relaxing the sig-
nificance threshold, we can also consider the experiment in-
stances where the p-values vary from 0.12 to 0.16. Conve-
niently, in this experiment pair, we again consider only the
switch of the error overlap setting; however, in this case, all
other settings are enabled. To comment on the respective
performance, the spatial smoothing application is superior
in both cases: 1.71 and 1.53 lower error rates in recovering
¢.
Interestingly, we can group the experiment listings in four
pairs: the pairs are centred around the ¢ p-values of 0.01,
0.16, 0.30, or 0.71. The first two pairs are presented in the
previous paragraph; however, for the last two pairs, the p-
values are well beyond the significance threshold. By noting
that, in every pair, only the error setting varies, the insignif-
icant results occur when one of the topic and term settings
is disabled and another is enabled. By looking into the ¢
recovery plots related to the insignificant results, we noticed
that both auto-regressive and non-auto-regressive models in-
fer similar latent ¢ distributions. Effectively, in the case of
the enabled error setting, both models simplify the dataset
complexity; that is, the models assign the overlapping error
terms to the main topics. Alternatively, in the case when
the error setting is disabled, the problem is too simple —
both models recover the ¢ values equally well. To give an
example of a similar performance, the reader can consider
the previously introduced Figure 10 and Figure 12. How-
ever, by examining Figure 10, note that the ¢ value of the
auto-regressive model converges faster.

7. CONCLUSION

In this research paper, we reviewed an attempt to induce
spatial smoothing in MSI data: the research problematic was
supported and inspired by covering the relevant literature;
the model’s design was introduced by providing the prelim-
inary knowledge covering LDA, spatial smoothing, and MSI
data pre-processing; finally, the experiment settings were de-
signed to identify both superior and inferior spatial smooth-
ing application prospects.

Our main objectives were to identify the spatial smooth-
ing application’s prospect in recovering the ¢ values used
upon the generative data process and the ability to separate
the noise topic. We report that only a half of the carried ex-
periments displayed a significant performance in recovering
the ¢ values. To be more specific, we observe an improved
¢ recovery when the synthetic datasets are generated us-
ing enabled topic and terms overlap settings; alternatively,
when both topic and term overlap settings are disabled, the
performance is superior if the error overlap is disabled and
inferior if the error overlap is enabled.

To expand on the overlapping noise topic’s identification
(i.e. noise detection), the auto-regressive model — just like
the non-auto-regressive model — assigns the overlapping er-
ror terms to the main topics. For this reason, we conclude
that the spatial smoothing application is negligible in im-
proving the overlapping noise topic term detection. How-
ever, looking into the statistical test on the 0 values, 6 out 8
experiments display a significant performance in recovering
the 0 values. In 5 out 6 cases, the 6 values are recovered with
a lower error; this result is mostly impacted by the model’s
ability to reflect the shape of the noise topic with a better
accuracy.

Since some of the experiment settings display a perfor-
mance improvement, the spatial smoothing application could
be considered for a further research. We would recommend
looking into the application of the undirected graphical model
— Markov random field. Effectively, the application would
establish more complex spatial smoothing settings: the spa-
tial treatment of neighbouring entities could be improved
from 1-dimensional to 2- or 3-dimensional. Effectively, the
spatial dimensionality escalation would reflect the visual as-
pect of MSI data better.

To suggest an alternative research direction in assessing
the spatial smoothing application, we propose a research
problem on investigating bucketisation enhancements. In
other words, the spatial smoothing application might have
an impact upon the feature extraction from MSI data. To
be more specific, spatial smoothing might establish more
appropriate bucket size ranges in concatenating raw mass-to-
charge values. If successful, this application would improve
the quality of MSI data features and, consequently, improve
the performance of the research problems addressed by this
research project.

To give the final verdict on the research project’s out-
come, we consider the performance obtained using the set-
tings reflecting the metabolomics environment the best. Ef-
fectively, the more overlap settings are enabled, the better
the metabolomics environment is represented. As shown by
Table 1, the auto-regressive model tends to perform bet-
ter when most of the overlap settings are enabled. There-
fore, we conclude that spatial smoothing can be indeed ef-
fective on improving the assessment of the MSI data with
metabolomics environment characteristics.
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