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ABSTRACT

Mass spectrometry (MS) is an experimental technique in
chemistry that is used to assist in the identification of chem-
ical compounds by means of fragmentation. However due to
the amount of noise in the data, current methods of analy-
sts are very manual and since the process can produce vast
amounts of data, this makes the detection of key features
very time-consuming. In this paper we present the results
of applying various clustering techniques from the machine
learning sphere to this domain. The results that were gath-
ered are promising, in both the quantity and quality of fea-
tures that were detected, indicating strong potential for au-
tomation in a key stage of the MS data analysis pipeline.

1. INTRODUCTION

In mass spectrometry an unidentified chemical compound,
is broken down into smaller charged fragments whose indi-
vidual m/z (mass to charge ratio) and intensity (relative
abundance) can then be recorded. These pairs of m/z and
intensity values are referred to as MS peaks which can then
be collectively plotted to produce a mass spectrum, see Fig-
ure 1. By analysing patterns of fragmentation in the mass
spectrum it is hoped that key characteristics of the under-
lying chemical can be identified.

However, while current mass spectrometry methods are
known to be extremely accurate in calculating the m/z val-
ues of chemical fragments, it can often be very difficult to
determine whether or not two peaks with similar m/z values
represent different underlying chemical features. It is cur-
rently an open question on how best to approach this, that
is, to group MS peaks in a way which maximises the number
of features identified without overfitting the data.

In this paper we apply algorithms based on k-means and
Gaussian mixture models to detect clusters of peaks and
then apply information criterion methods to determine the
optimal number of clusters. We also consider the effective-
ness of other clustering methods such as DBSCAN and OP-
TICS which take a density-based approach to identify the
number of features directly. Once the final set of clusters
are identified, we then assume that peaks belonging to the
same cluster represent the same underlying chemical feature,
thus reducing a larger set of real-valued peaks to a signifi-
cantly smaller ”"vocabulary” of chemical fragments. By im-
proving the process by which we formulate such a dictionary
of features, we intend to supplement the work of [10] which
describes a topic detection algorithm MS2LDA that maps
the features identified here to chemical structures known as
Mass2Motifs, which characterise the chemical behavior of
the underlying compounds being fragmented.

2. BACKGROUND

Mass spectrometry

MS is a common analytical tool used in chemistry to de-
rive information about a chemical compound’s constituent
substructures. There are many different implementations of
MS, but they all revolve around the central premise of ionis-
ing chemical compounds and then sorting those compounds
according to their mass to charge ratio.

Figure 1: An example mass spectrum
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The charge of an ion in MS can either be positive, which
is achieved with the loss of electrons or gain of protons, or
it can be negative which is usually achieved with the loss
of protons. Furthermore when the charge is positive, this
in general tends to be in the range +1, +2 or +3, charge
is always a whole number and is unlikely to be any higher.
When the charge is negative, this is also likely to be in the
range in -1, -2 or -3 and similarly is unlikely to be any higher.
The mappings of m/z values to intensity are commonly re-
ferred to as peaks and if we were to review a peak for a
chemical compound, the peak would not correspond to the
chemical directly but rather its corresponding ion. So in the
case of an element M being ionised with an additional proton
(which we denote as a hydrogen ion H) then the peak would
refer to the ion [M + H|' with m/z value being the mass of
M plus the mass of H. However in the instance where M is
ionised by two hydrogen ions then the peak would refer to
the ion [M+2H]*" and would have a m/z value equivalent to
(M + 2H)/2, see Figure 2. This means that two fragments
with different charges that represent the same underlying
chemical feature are given very different m/z values whilst
also adding to the issue of noise in the data. Furthermore



we have the added complication of isotopes !, an example
being an element such as carbon which predominately ex-
ists in the form carbon-12 but also exists less frequently in
the form carbon-13. Such isotopic behavior results in what
is known as mass shift which can mean two peaks which
would otherwise represent the same underlying chemical are
similarly represented with very different m/z values again
raising the risk of misclassifcation and noise in the data set.

Figure 2: Example mass spectrum showing an element M
ionised with one, two and three H ions along with a com-
monly occurring ionised isotope of M
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Although current approaches used to perform mass spec-
trometry are known to be extremely accurate, they still ex-
hibit some degree of random uncertainty in their measure-
ments such that the same molecular fragment exhibited in
two separate MS experiments’ mass spectra cannot be ex-
pected to return the exact same peak in separate instances.
Another complication is that two molecular fragments that
are isobaric, that is chemicals that have the same molecu-
lar weight, are very hard to distinguish. Similarly isomers,
that is compounds with the same chemical formula but dif-
ferent structural formulae, suffer the same problem and are
difficult to distinguish by m/z value alone.

The raw experimental data used by the algorithms inves-
tigated in this paper were produced using a tandem mass
spectrometry approach which consists of two stages: MS1
and MS2. The MS1 phase involves ionising a chemical mix-
ture’s constituent chemical compounds from which we can
derive their individual m/z and intensity values which we
refer to as MS1 peaks. In the MS2 phase the different
molecules are separated by liquid chromatography and at
regular time intervals the ionised compounds are broken up
into their constituent ionised fragments, however not all the
molecules in the mixture will be able to be fragmented in
this way, due to shortcomings of current technology. For
these fragments we again are able to derive m/z values and
intensity values which map to their respective MS2 peaks.
It is the case that each of the fragments’ MS2 peaks belong
to a single MS1 peak and each MS1 peak will correspond to
a constituent chemical compound of the mixture.

The conventional approaches taken to identify a chemi-
cal compound from its MS data were reliant on a trained
expert comparing the resulting mass spectrum of the un-
known compound to reference spectra of known chemicals.
This process is incredibly time-consuming and is made dif-

sotopes are atoms of the same element which have different
numbers of neutrons but the same number of protons in the
nucleus.

ficult due to spectra exhibiting large amounts of loss and
noise. Tools currently exist to automate this process, [17]
[9], comparing the experimental spectrums to spectra held
in public databases, such as [15]. However relatively poor
coverage of reference spectra means this approach of directly
mapping is limited unless the corresponding reference data
exists in the database.

Latent Dirichlet allocation

A new approach MS2LDA [10], applies a technique known
as latent Dirichlet allocation (LDA) [7], from text mining
which models individual documents from a corpus as a finite
mixture of a set of underlying topics. The process assumes
that a set of words which make up the a document are chosen
from a set of topics, where a topic is defined as a set of words
which share a common theme.

The key utility of this process is that given a vocabulary
of words and a set of known topics, then given a new doc-
ument we should be able to derive the set of topics which
generated that document. MS2LDA extends this analogy
to mass spectra, with the set of MS2 peaks of a molecule
representing a document and the MS2 peaks representing
words. The topics in this case would be commonly occur-
ring chemical structures which we refer to as Mass2Motifs.
A Mass2Motif topic would represent a common chemical
structure such as a functional group, with the ”"vocabulary”
specific to that topic represented by the different ways that
particular chemical structure might fragment in different in-
stances.

Figure 3: A mass spectrum with two sets of peaks derived
from two distinct fragments, here the clustering may be easy
to spot but difficulties can arise as the number of peaks
increases
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However this approach is hindered by the presence of noise
in the MS data. Using the LDA approach requires a fixed
vocabulary as one of the parameters, but due to the nature
of the experimental procedure it is rare for two instances of
the same underlying chemical fragment to be represented by
the exact same m/z value, with the difference being in the
parts per million, see Fig 3. Hence we are not able to use
the real-valued MS2 peaks as a vocabulary directly since the
dictionary size would increase linearly with the number of
peaks in the data.

Tt is therefore the objective of this paper to investigate the
potential of clustering algorithms in grouping together sets
of MS2 peaks so that they can be mapped to a fixed vocabu-
lary of underlying chemical fragments which can then in turn
be used by topic modelling algorithms, such as MS2LDA, to
identify Mass2Motifs of unknown chemical compounds.



3. CLUSTERING METHODS

There is a variety of clustering algorithms available and
the key focus of this investigation has been identifying which
approaches are most effective in extracting features from our
MS data. In this section we outline some of the technical
characteristics of various clustering methods.

Iterative clustering algorithms

K-means is one of the oldest and most commonly used clus-
tering algorithms, [13], [12]. The algorithm itself is iterative
and simple to implement and requires a predetermined num-
ber of clusters k to be searched for in a set of data points.
However it is known to be NP-Hard [2], but there are a num-
ber of heuristic algorithms that exist which are able to re-
duce computational time considerably such as K-means++
described in [3].

Another approach is to use expectation maximisation in
the context of a Gaussian mixture model (GMM) [8]. This
can be considered a more generalised algorithm, as opposed
to k-means which assumes all distributions are spherical.
The GMM approach is iterative with each iteration having
two stages, first the expectation-step where each object is
assigned to a centroid and then the maximisation-step where
a point is assigned to the cluster with the highest likelihood.

Choosing a value of k for k-means or GMM which best
represents a data set can be subjective. The number of
clusters is dependent on several factors such as shape and
distribution of data points. A factor which makes finding
an optimal k difficult is that performance functions based
on the distance between all points and their respective allo-
cated centroids will always favour increasing the number of
clusters since the distance between a data point and its as-
signed cluster centroid will always decrease when the number
of clusters increases. Therefore in order to find the optimal
k we must find the point of equilibrium which is able to
achieve the least distance cost between points and centroids
using the least number of clusters.

One approach is to use an information criterion, with one
such example being the Akaike information criterion (AIC)
[1], which is a statistical approach for calculating the qual-
ity of a set of clusters to the data. The process works by
assigning a penalty to each new cluster, for this we need a
general objective function that has the parameters of dis-
tortion, which can be defined as how much a point deviates
from its prototype cluster, and a measure of model complex-
ity, which in this instance would be the number of clusters.
Another IC approach is that of the Bayesian information
criterion (BIC) as described in [18], which makes use of a
likelihood function, with the number of clusters chosen be-
ing based on which number of clusters returns the lowest
BIC.

Another algorithm x-means [16] combines both the k-
means algorithm and BIC into a single algorithm whilst tak-
ing a slightly different approach. Rather than simply varying
k over a wide range of values which can be computationally
expensive, x-means performs an initial k-means sweep for
clusters and then identifies which candidate clusters would
be best suited for refinement into subclusters using BIC, it
then performs this operation recursively until no more viable
divisions can be identified.

Density-based clustering (DBC) algorithms

DBC algorithms are another approach which can be used
to directly specify the number of clusters. one such exam-
ple being density-based spatial clustering of applications with
notse (DBSCAN), [14]. This algorithm groups data points
into clusters that are in close proximity to each other, it
does this by designating points as being either core, reach-
able or outlier points. Whether or not a point is designated
a core point is based on whether a predetermined minimum
number of points lie within an epsilon of that point, points
are considered reachable if they are directly in the neigh-
bourhood of a core point or a point that is itself reachable,
while outliers are not in range of either reachable or core
points. The benefits of this approach is that clusters can
be arbitrary shapes and noise from outliers can be ignored.
However the choice of epsilon or minimum number of points
can have a large impact on the final choice of clusters [6]
such that domain specific knowledge is often required for
configuration. Another DBC algorithm, "Ordering points
to identify the clustering structure” (OPTICS) [11] takes a
similar approach to DBSCAN but has the benefit that its
clusters can vary in density allowing it to be more flexibility
than DBSCAN in certain instances. However OPTICS can
also be highly sensitive to its choice of initial parameters so
requires careful configuration.

4. APPROACH
Methodology

The clustering algorithms used to extract features from our
MS data included:

1. GMM using AIC
GMM using BIC
k-means using BIC
X-means

DBSCAN

. OPTICS

Algorithms (1), (2) and (3) involved varying the number
of clusters k and then choosing the number of clusters that
returned the optimal IC value. Note that while (3) is not a
probabilistic algorithm, it can still calculate the probablistic
BIC indirectly by using the centroids as the mean values of
the distributions.

The chemical solutions from which the MS data used in
this report was derived came from 19 different beer sam-
ples. In stage one of the tandem MS experiment, the beer
was refined to separate each of the constituent chemical com-
pounds in the solution, these chemical compounds were then
ionised to produce the MS1 peaks and then each compound
was fragmented to produce the associated MS2 peaks for
each MSI1 peak. It is the case that no two MS2 peaks relat-
ing to the same MS1 peak will represent the same underlying
chemical fragment, however this constraint does not apply
for two MS2 peaks originating from the same original mix-
ture but different MS1 peaks.

The MS2 peaks from all 19 beers were then combined
into a single data set consisting of hundreds of thousands
of peaks. Instead of directly clustering all the peaks of the
data set directly, an initial filtering was carried out to re-
duce the set of peaks into smaller neighbourhoods of peaks.
This is because peaks need only be distinguished from other
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Figure 4: A histogram with 100 bins illustrating the distribution of an example grouping of MS2 peaks over a short-range of

m/z values. The black lines indicate each algorithms choice of centres.
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peaks within an immediate vicinity of approximately 20ppm
relative to their m/z values. For instance two peaks with
m/z values of 217.1213449 and 217.1234009 could poten-
tially represent the same underlying fragment but a peak
with an m/z value of 218.12753703 will have no possibility
of being related to the first two values.

The process for filtering peaks into local groupings to then
be clustered was as follows, after sorting all the peaks ac-
cording to their m/z values, the distance between every peak
and its subsequent peak was calculated and if the difference
was below a certain epsilon then they were grouped together,
otherwise they would be assumed to be unrelated and a new
grouping would be formed. This process involved iterating
through the list of peaks until all peaks belonged to a group-
ing consisting of one or more peaks.

Note that groupings consisting of a single peak were classi-
fied as a single feature. Also groupings consisting of multiple
peaks whose range fell below neighbourhood of radius ep-
silon were also assumed to represent a single feature. Those
groupings whose range exceeded a radius of epsilon were as-
sumed to represent two or more chemical features and the
clustering algorithms were subsequently applied. It should
also be noted that while the value of epsilon used for filtering
the peaks was varied, the value of the neighbourhood radius
used in the DBC algorithms was fixed as 10% of epsilon
for each instance and the minimum number of neighbouring
points for a peak to be considered a core point was fixed at
5 peaks for all instances.

Once the cluster centroids were identified they were then
allocated formula labels by an elemental formula assigner
[5], which used a knapsack algorithm [4]. This allowed for
different algorithms’ predicted centroids, which had similar
m/z values, to be compared directly.

Table 1: The values indicate the number of different features
detected by the various clustering algorithms, in the data set
consisting of all 19 beers, as the relative epsilon was varied
over 3 different values.

No. of features detected over varying epsilon
Epsilon 20 ppm 10 ppm 5 ppm
GMM AIC 227 37 9
GMM BIC 183 31 9
k-means BIC 491 65 12
X-means 306 57 11
DBSCAN 337 54 12
OPTICS 249 45 0

Table 2: The percentages illustrate the proportion of over-
lapping features chosen by the same algorithm when applied
to two different data sets, such that the first data set con-
sisted of the peaks contained in the first 10 beer samples
and the second data set consisted of the remaining 9 beer

samples.

Proportion of overlapping features

Epsilon 20 ppm 10 ppm 5 ppm
GMM AIC 36 % 47 % 69 %
GMM BIC 29 % 40 % 69 %
k-means BIC 78 % 83 % 85 %
X-means 49 % 53 % 85 %
DBSCAN 54 % 69 % 85 %
OPTICS 40 % 58 % 0 %
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Figure 5: Each of the algorithms was applied to data sets of
synthetic clusters. The true cluster centres used to generate
the peaks are coloured in red while the predicted centres
chosen by the algorithms are coloured in black.
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(c) Synthetic set of 2 features
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Table 3: Sets of synthetic clusters were generated using 7,
4 and 2 test nodes with known centres. Each algorithm
was then applied and the number of predicted nodes was
recorded.

Number of predicted features
Test nodes 7 4 2
GMM AIC 3 2 2
GMM BIC 2 2 2
k-means BIC 7 4 2
X-means 7 2 2
DBSCAN 6 6 2
OPTICS 3 4 2

Table 4: Sets of synthetic clusters were generated using 7, 4
and 2 test nodes with known centres. Each algorithm was
then applied and the average loss between each predicted
node and its closest test node was recorded.

Avg. loss of predicted features (10~7)
Test nodes 7 4 2
GMM AIC 0.9926 0.2669 0.08405
GMM BIC 0.9782 0.2669 0.08405
k-means BIC 0.1137 0.1137 0.09349
X-means 0.1137 0.814 0.09349
DBSCAN 0.1071 0.3396 0.09397
OPTICS 0.115 0.2529 0.0173

5. DISCUSSION
Analysis

The 6 clustering algorithms were compared against each
other by 3 different approaches, these included:

1. comparing performance of the different algorithms against

the same data set containing peaks from all 19 beers

2. comparing the overlap of features detected by the same

algorithm on different data sets

3. comparing the average loss of the predicted centroids

to the true mean value of various synthetically gener-
ated clusters

For deliberating on the effectiveness of the algorithms, we
had the general preference for whichever approach detected
the greatest number of features as well as the most consistent
choice of features.

The choice of epsilon for deciding initial groupings is non-
trivial, so results were generated for epsilon values of 5ppm,
10ppm and 20ppm in order to more comprehensively gauge
the performance of the algorithms. It was the case that as
epsilon became smaller, the groupings contained fewer peaks
and more single-peak features were identified. Likewise as
the value of epsilon became larger, clusters became more
common and grew in complexity and fewer more general fea-
tures were detected. The behavior of individual algorithms
varied with the choice of epsilon such that while the number
of features detected was broadly consistent for smaller ep-
silon, the number of features detected began to diverge as ep-
silon grew larger with GMM AIC, GMM BIC and OPTICS
beginning to fall noticeably behind k-means BIC, x-means
and DBSCAN in regard to number of features detected, see



Table 1, and in the consistency of feature intersection across
different data sets, see Table 2.

Another area in which the algorithms’ performance di-
verged was in the ability to detect the correct number of
centroids in groupings with a high number underlying fea-
tures. In general, the algorithms were quite consistent in
predicting features when the number of underlying features
was 2 or 3, and it is worth noting that groupings of this
size made up the vast majority of filtered groupings. How-
ever the performance of the algorithms started to diverge
for complex groupings of 4 or more underlying features with
GMM AIC and GMM BIC struggling to detect more than
2 or 3 features in even the most complex of sets, while k-
means BIC, x-means, DBSCAN and OPTICS facing fewer
difficulties in detecting the same number of real features in
the synthetic sets, see Table 3.

We also saw divergence in the performance between al-
gorithms in respect to average loss, where we define loss
as the distance of the predicted nodes to the nearest mean
value used to generate a synthetic cluster. While the values
for loss were rather consistent when there was 2 underly-
ing nodes, when the number of underlying synthetic nodes
increased, the more simplistic GMM AIC and GMM BIC
algorithms began to lose any connection with the underly-
ing nodes while the other 4 algorithms exhibited relatively
conistent loss as the number of nodes increased, see Table 4.

None of algorithms displayed a universal advantage over
the others, though k-means BIC, x-means and DBSCAN
were broadly able to make similar choices on the number of
features detected. However k-means BIC seems to have had
a noticeable advantage for predicting the correct number of
nodes whilst exhibiting the smallest overall loss between the
predicted nodes and true underlying features. That being
said, the average loss for GMM AIC and GMM BIC was
the lowest among all the algorithms for groupings consisting
of 2 underlying features implying that perhaps an approach
of using different algorithms for groupings of different com-
plexities may be best.

While further analysis could be carried out to deliberate
on the performance of various algorithmic approaches, what
is clear is that clustering algorithms do provide valuable in-
sight into identifying features in mass spectrometry data. As
can be seen from performance across both real MS data sets,
see Figure 4, and synthetic data sets, see Figure 5, cluster-
ing algorithms can consistently reduce the noisy real-valued
raw MS data to a smaller set of underlying features thereby
considerably reducing the complexity of one stage of the MS
data analysis pipeline.

Further work

There were a number of avenues for investigation to reduce
noise in the MS data further that were not included in the
scope of this report.

The main objective of this paper was to investigate the
effectiveness of clustering techniques in reducing the num-
ber of features from a larger number of peaks to a smaller
set of features which better represented the true underly-
ing chemical fragments. Hence one opportunity to reduce
noise in the data would have been to make corrections for
potential isotopes present in the mass spectra. Transforma-
tions to account for mass shift could have been undertaken,
such that peaks with high relative intensity could have had
ranges of m/z values identified where isotopic representa-

tions of features could exist and if it was found that lower
intensity peaks existed in those areas, those lower intensity
peaks could have been associated with the more common
high intensity isotopic representation.

However one should note that the possibilities for trans-
formations would become extremely complex very quickly if
we were to take into account every possible isotopic combina-
tion. Therefore one possible approach would be to limit our
corrections to particularly common isotopes, such as carbon-
13.

Similarly we also assumed that all the ionised fragments
had a single charge. This is not always the case, with
the specific rate of instance of fragments with non-singular
charge varying between specific implementation of MS used
and specific experimental instances. Hence in the same way
we took into account mass shift for isotopes we could make
corrections for the shift in the peaks’ m/z values caused by
the presence of multiple charges, thereby reducing the num-
ber of features to be annotated even further. However this
approach would result in a large number of transformations
needed to be considered for each outlier.

It should also be noted that while the clustering algo-
rithms themselves were relatively computationally inexpen-
sive to run, the knapsack algorithm which was used for an-
notating predicted centroids with formula labels proved to
be a limiting factor in the size of data set that could be anal-
ysed, with the data used in this experiment, which consisted
of several hundred thousand peaks, likely to have a running
time of several hours on a conventional desktop computer.
There are a number of ways this could have been approached
such as caching formula ranges in a dictionary data structure
or by restructuring the algorithms to compute in parallel.

6. CONCLUSION

In summary, we have strong evidence to suggest that clus-
tering algorithms are effective in reducing noise and com-
plexity in MS data by merging neighbouring peaks into more
general and informative features.

Furthermore we have identified that k-means (with BIC),
x-means and the DBC algorithms DBSCAN and OPTICS
perform particularly well in clustering groupings of peaks
which are likely to contain more than two nodes. In this
investigation we were able to examine the effectiveness of the
clustering algorithms across various parameters and while
configuration of these values can have a substantial impact
on the final choice of predicted nodes, noticeable reductions
in complexity were achieved.

Hence we can strongly attest that clustering algorithms do
provide impressive potential for automation in the detection
of fragments in MS data to a level that is close to that of
the true underlying features. It is therefore hoped, with
further refinement, that the methods identified in this report
could substantially improve the speed and quality of MS
data analysis in the future.
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