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• Any questions from the lab?
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Today's lecture

• Deterministic modeling review.

• Stochastic simulation as an alternative.

• Stochastic Simulation - Gillespie algorithm.

• Gillespie - weaknesses and extensions.
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Deterministic models

Recall the simple model:

A + B � 2B + A

B + C � 2C

C � ⇥

Resulting in the following set of ODEs:

˙[A] = 0
˙[B] = k1 · [A] · [B]� k2 · [B] · [C]
˙[C] = k2 · [B] · [C]� k3 · [C]

k1

k2

k3

mailto:simon.rogers@glasgow.ac.uk
http://www.dcs.gla.ac.uk/~srogers


simon.rogers@glasgow.ac.uk   www.dcs.gla.ac.uk/~srogers   @sdrogers

Simulation

Initial Value Problem

An initial value problem is an ODE (or a system of ODEs) and values of variables at
t = 0.

8
>><

>>:

Ȧ = 0

Ḃ = k1 · A · B � k2 · B · C

Ċ = k2 · B · C � k3 · C

A|t=0 = 1 B|t=0 = 50 C|t=0 = 50
k1 = 0.25 k2 = 0.0025 k3 = 0.125

Solving an initial value problem means finding the function of dependent variables that
satisfies the initial condition and behaves by the law defined with the differential
equation.
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Given initial concentrations and constants:

We can simulate concentrations over time:

Initial Value Problem

8
>><

>>:

Ȧ = 0 A|t=0 = 1 k1 = 0.25

Ḃ = k1 · A · B � k2 · B · C B|t=0 = 50 k2 = 0.0025

Ċ = k2 · B · C � k3 · C C|t=0 = 50 k3 = 0.125
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All assumptions are wrong, some are useful...

• In order to construct these ODEs what 
assumptions have we made?

• Deterministic

• Mass action kinetics

• Continuous values

• Closed system

• Well mixed

We have assumed that we can accurately model 
based on some notion of average behavior.
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Exact simulation

• An alternative to ODE approaches is exact stochastic 
simulation.

• Exact?

• We deal with populations rather than concentrations. 

• We explicitly model each reaction. 

• Not: “This is exactly what will happen”! 

• Stochastic? 

• Model the inherent uncertainty of the system. 

• Particularly important for species with small populations.
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Exact stochastic simulation

• The most famous stochastic simulation algorithm 
is the Gillespie algorithm:
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There are two formalisms for mathematically describing the time behavior of a spatially homogeneous chemical 
system: The deterministic approach regards the time evolution as a continuous, wholly predictable process 
which is governed by a set of coupled, ordinary differential equations (the “reaction-rate equations”); the stochastic 
approach regards the time evolution as a kind of random-walk process which is governed by a single dif- 
ferential-difference equation (the “master equation”). Fairly simple kinetic theory arguments show that the 
stochastic formulation of chemical kinetics has a firmer physical basis than the deterministic formulation, but 
unfortunately the stochastic master equation is often mathematically intractable. There is, however, a way 
to make exact numerical calculations within the framework of the stochastic formulation without having to 
deal with the master equation directly. It is a relatively simple digital computer algorithm which uses a rigorously 
derived Monte Carlo procedure to numerically simulate the time evolution of the given chemical system. Like 
the master equation, this “stochastic simulation algorithm” correctly accounts for the inherent fluctuations 
and correlations that are necessarily ignored in the deterministic formulation. In addition, unlike most procedures 
for numerically solving the deterministic reaction-rate equations, this algorithm never approximates infinitesimal 
time increments dt by finite time steps At. The feasibility and utility of the simulation algorithm are demonstrated 
by applying it to several well-known model chemical systems, including the Lotka model, the Brusselator, and 
the Oregonator. 

I. Introduction 

In this paper we shall be concerned with the following 
general problem: If a fixed volume V contains a spatially 
uniform mixture of N chemical species which can inter- 
react through M specified chemical reaction channels, then 
given the numbers of molecules of each species present a t  
some initial time, what will these molecular population 
levels be at  any later time? 

The traditional way of treating this problem begins by 
translating it into the mathematical language of ordinary 
differential equations. More specifically, if we assume that 
the number of molecules of the ith species in V a t  time 
t can be represented by a continuous, single-valued 
function X , ( t )  (i = 1,. . .,N, and if we further assume that 
each of the M chemical reactions can be regarded as a 
continuous rate process, then we can easily construct a set 
of coupled, first-order, ordinary differential equations of 
the form 

d X , / d t  = f l ( X 1 , .  . . J N )  

u Z / d t  = . . . .  fZ(X1,- * J N )  (1) 

a N / d t  = f N ( x 1 , .  * . J N )  

The specific forms of the functions fi on the right (which 
are usually nonlinear in the Xi’s) are determined by the 
structures and rate constants of the M chemical reaction 
channels. These equations are called the “reaction-rate 
equations”; solving them for the functions Xl( t ) , .  . . , X d t ) ,  
subject to the prescribed initial conditions, is tantamount 
to solving the time-evolution problem posed earlier. 
Analytical solutions to the reaction-rate equations can be 
found only for rather simple systems, so it is usually 
necessary t o  solve these equations numerically on a 
computer. As is evident from many of the papers in this 
symposium series, the art of reliably solving reaction-rate 
equations on a computer has been developed to an im- 
pressive and sophisticated level. 

*Address correspondence to the author at Code 3821, Naval 
Weapons Center, China Lake, Calif. 93555. 

Although the great importance and usefulness of the 
differential reaction-rate equations approach to chemical 
kinetics cannot be denied, we should not lose sight of the 
fact that the physical basis for this approach leaves 
something to be desired. This approach evidently assumes 
that the time evolution of a chemically reacting system is 
both continuous and deterministic. However, the time 
evolution of a chemically reacting system is not a con- 
tinuous process, because molecular population levels 
obviously can change only by discrete integer amounts. 
Moreover, the time evolution is not a deterministic process 
either. For, even if we put aside quantum considerations 
and regard the molecular motions to be governed by the 
equations of classical mechanics, it is impossible even in 
principle to predict the exact molecular population levels 
a t  some future time unless we take account of the precise 
positions and velocities of all the molecules in the system. 
In other words, although the temporal behavior of a 
chemically reacting system of classical molecules is a 
deterministic process in the full position-momentum phase 
space of the system, it is not a deterministic process in the 
N-dimensional subspace of the species population num- 
bers, as (1) implies. 

In many cases of course the time evolution of a 
chemically reacting system can, to a very acceptable degree 
of accuracy, be treated as a continuous, deterministic 
process. However this should not always be taken for 
granted, especially now that the attention of chemical 
kineticists is increasingly being drawn to the study of 
ecological systems, microscopic biological systems, and 
nonlinear systems driven to conditions of chemical in- 
stability. In some cases like these, the inability of the 
reaction-rate equations to describe the fluctuations in the 
molecular population levels can be a serious shortcoming. 
Moreover, contrary to widespread belief, it is not even 
guaranteed that the reaction-rate equations will provide 
a sufficiently accurate account of the auerage molecular 
population levels; for, except for very simple linear systems, 
the average molecular population levels will not exactly 
satisfy any closed system of equations such as (1). 
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Stochastic Simulation of Coupled Chemical Reactions 

The expression for P(7, p )  in (18) is, like the master 
equation (13), a rigorous mathematical consequence of the 
fundamental hypothesis (4). Notice that P(7, p )  depends 
on all the reaction constants (not just on c,), and on the 
current numbers of molecules of all reactant species (not 
just on the R, reactants). 

IIIC. T h e  Stochastic Simulation Algorithm. A t  the 
beginning of section IIIB, we observed that essentially what 
is needed to simulate the time evolution of a chemically 
reacting system is some way of specifying when the next 
reaction will occur and what kind of reaction it will be. We 
can now frame this requirement in more precise, math- 
ematical terms: What is needed is a method for drawing 
or “generating” a pair (7, p )  from the set of random pairs 
whose probability density function is P(7, p) in (18). It 
turns out that there is a simple, rigorous way of doing this 
on a digital computer, provided we have access to a reliable 
“unit-interval uniform random number generator”. 

A unit-interval uniform random number generator is a 
computer subprogram which, when called, calculates and 
returns a random (or more properly, a “pseudorandom”) 
number r from the uniform distribution in the unit in- 
terval; that is, the a priori probability that any generated 
number r will fall inside any given subinterval [a,  b] of the 
unit interval [0, 11 is equal to b - a. Nowadays, virtually 
every large digitial computer facility has one of these 
subprograms in its library file that is fast, easy to use, and 
sufficiently reliableas When called, the typical generator 
subprogram calculates the required pseudorandom number 
r by performing a few relatively simple operations on the 
previous pseudorandom number that was calculated. 
Thus, n successive calls will produce a “chain” of n 
pseudorandom numbers. The f irst  number of the chain 
is determined by initializing the generator with a user- 
chosen starter number; different starter numbers will 
result in different but statistically equivalent chains. 

Now, if our goal were to generate a random pair (7, p )  

according to the probability density function 

1 if O <  T < 1 and 0 < p < 1 

1 0 otherwise 
P ’ h  Y )  = 

then we could simply generate two random numbers r1 and 
r2 using a unit-interval uniform random number generator 
and take 
r =  rl  

Y = r2 

However, our objective here is to generate a random pair 
(7 ,  p)  according to the probability density function in (18), 
not the probability density function in (20a). As it 
happens, there exists a mathematically rigorous procedure 
for taking two random numbers r1 and r2 from the unit- 
interval uniform distribution, and constructing from them 
a random pair (7, p) from a set described by any specified 
pair probability density fun~ t ion .~  For the pair probability 
density function in (20a), this construction procedure turns 
out to be precisely (20b); for the pair probability density 
function P(7, p )  in (18), the construction procedure turns 
out to be as follows: 

With r1 and r2 two random numbers from the unit- 
interval uniform distribution, take 

7 = ( l / a o )  1n (1/r1) 

and take p to be that integer for which 

@Ob) 

2345 

P -  1 EL 

v= 1 v = l  
2 a, < rzao < a, 

A rigorous proof of the fact that the pair (7, p) constructed 

according eq 21  may be regarded as having been drawn 
from the set of random pairs whose probability density 
function is P(7, p )  in (18) may be found in section VA of 
ref 1. Suffice it here to say that (21a) generates a random 
number 7 according to the probability density function 
P1(7) = a. exp(-ao7), while (21b) generates a random 
integer p according to the probability density function 
P2(p) = a /ao, and the stated result follows, roughly 
speaking, iecause P1(7)’P2(p) = P(7, p) .  

The generating procedure (21) is easy to code in Fortran. 
In particular, (21b) may be implemented simply by cu- 
mulatively adding the successive values al, a2, ... in a 
do-loop until their sum is observed to equal or exceed r2a0, 
whereupon p is set equal to the index of the last a, term 
added. 

Our algorithm for simulating the stochastic time evo- 
lution of a chemically reacting system should now be rather 
obvious (see Figure 2): 

Step  0 (Initialization). Input the desired values for the 
M reaction constants cl,. . .,cM and the N initial molecular 
population numbers XI,. . .,XN. Set the time variable t and 
the reaction counter n both to zero. Initialize the unit- 
interval uniform random number generator (URN). 

S t e p  1. Calculate and store the M quantities al = 
hlcl , ,  . , , U M  = h f i M  for the current molecular population 
numbers, where h, is that function of X1,. . .,XN defined 
in (15). Also calculate and store as a. the sum of the M 
a, values. 

S t e p  2. Generate two random numbers r1 and r2 using 
the unit-interval uniform random number generator, and 
calculate 7 and 1.1 according to (21a) and (2lb). 

S t e p  3. Using the T and p values obtained in step 2, 
increase t by 7, and adjust the molecular population levels 
to reflect the occurrence of one R, reaction; e.g., if R, is 
the reaction in (3a), then increase X 1  by 1 and decrease 
X 2  by 1. Then increase the reaction counter n by 1 and 
return to step 1. 

In returning to step 1 from step 3, notice that it is 
necessary to recalculate only those quantities a, corre- 
sponding to reactions R, whose reactant population levels 
were just altered in step 3; also, a. may be recalculated 
simply by adding to a. the difference between each newly 
changed a, value and its corresponding old value. 

Of course, somewhere in the 1-2-3 loop one will want 
to provide for writing out or plotting the (Xl,. . ., X N ,  t )  
values at‘regular intervals of either t or n. Also, one will 
want to make provisions for halting the calculations when 
either t or n reaches some predetermined value, or if a. 
should ever reach zero. 

If it is desired to estimate any of the moments X,(k)(t) 
of the grand probability function (see eq 8-10), then it will 
be necessary to make several simulation runs from time 
0 to the chosen time t ,  all identical with each other except 
for the initialization of the random number generator in 
step 0. Any moment X j k ) ( t )  3 ( X l k ) t  may then be esti- 
mated directly as the average of the hth power of the 
numbers found for X ,  at  time t in these runs. In a similar 
way, one can estimate various cross-correlation functions 
such as (X,X ) t  - (Xi),(X,),,  etc. The number of runs 
necessary to oktain adequate statistics in these estimates 
will vary with the situation. 

IIID. Remarks. After the simulation algorithm de- 
scribed above had been developed, several earlier simu- 
lation procedures were brought to the attention of the 
author. Two of these deserve to be mentioned here. 

First is the method used by Nakanishi’O in 1972 to 
simulate the oscillating Lotka reactions. Like the com- 
putational method described above, Nakanishi’s method 
is expressly designed to numerically simulate the stochastic 
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What does Gillespie do?

• Deals with integer populations of molecules

• Assumes the model is inherently stochastic (random)

C
k� ⇥

C|t=0 = 100
k = 0.1

• E.g. protein decay:
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• Deterministic model (ODE) can be solved 
analytically

• And tells us that:

C(t) = C0 exp{�kt}

at t = 20, C(20) = 13.5335

Ċ = �kC
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What does Gillespie do? II

In stochastic simulation, we are interested in distributions

p(C|t = 20) or p(C = 13|20)
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)Here is the distribution for t = 20 

created using Gillespie - we can see that 
the ODE (red square) in this case is in 
rough agreement with the most likely 

number of C molecules.

Unfortunately, for any remotely interesting model,  analytically computing these probabilities 
is impossible.  But, we can simulate...
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What does Gillespie do? III

The Gillespie algorithm allows us to generate samples from the stochastic model
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Each sample is a trajectory of the species’ populations through time
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What does Gillespie do? IV
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We may be interested in individual samples or computing empirical 
distributions from sets of samples...
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The Gillespie algorithm

N molecular species, M reactions

X1, X2, . . . .XNAt time t, population sizes (state) given by: 

We need to generate two things:

1. The time until the next reaction occurs
2. The type of reaction that occurs

For more details and derivations, refer to Gillespie’s paper.

Gillespie shows that the two can be de-coupled (we can sample the 
time and then sample which reaction takes place) resulting in a very 

simple procedure.

(Integers, >0)
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The Gillespie algorithm

For each of the M reactions compute: am = cmhm

Number of reactant combinations

At each iteration....

X1 + X2 � X3 X1X2

X1 + X1 � X3
1
2
X1(X1 � 1)

Reaction Number of combination, h

Reaction constant (analogous to k)

X1 + X2
k� X3
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The Gillespie algorithm II

a0 =
M�

m=1

amLet:

r1, r2 � U(0, 1)Generate:

� = (1/a0) ln(1/r1)Compute time to reaction:

Then....

Choose reaction v for which:

v�1�

m=1

am/a0 < r2 �
v�

m=1

am/a0
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Gillespie - Example

Two species, two reactions:

c1 = c2 = 0.1

A
c1� B

B
c2� ⇥

at t = 0, A = 100, B = 0
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Gillespie Example

It t A B h a/a0 Sum
1 0 100 0 [100,0] [1,0] [1,1]
2 0.4315 99 1 [99,1] [0.99,0.01] [0.99,1]
3 0.5528 98 2 [98,2] [0.98,0.02] [0.98,1]
... ... ... ... ... ... ...
32 2.8841 73 24 [73,24] [0.75,0.25] [0.75,1]
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Gillespie example

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

t

 

 
A
B

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

t

 

 
A
B

One simulation...Lots of simulations...
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Band distributions..
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Testing our assumptions

• As Gillespie is exact we can use it to test the 
assumptions we use in ODE models.

• As an example, lets test the assumptions used in 
the 3 species model already discussed.
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Lotka-Volterra

Recall the simple 

A + B � 2B + A

B + C � 2C

C � ⇥
Resulting in the following set of 

ODEs:
˙[A] = 0
˙[B] = k1 · [A] · [B]� k2 · [B] · [C]
˙[C] = k2 · [B] · [C]� k3 · [C]

k1

k2

k3
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Lotka-Volterra

• Run the Gillespie simulator using the 
lotka project with T=100
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Lotka-Volterra
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A + B � 2B + A

B + C � 2C

C � ⇥
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Lotka-Volterra

• ODE model predicts sustained oscillations (B>0).

• Stochastic model stops after a number of cycles 
(B=0) and never recovers.

• Very different interpretations!
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Limitations of Gillespie

• For large populations and fast reactions, Gillespie 
becomes computationally impractical.

• For example, dimerisation:

• Run this simulation (project: dimer) for T=100. How 
many reactions are simulated? Plot the results.

2X
1� Y

Y
2� 2X

X0 = 100, Y0 = 1
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Extensions to Gillespie

• Extensions have been proposed to speed things up:

• Exact methods:

• Tricks to make the sampling faster.

• Approximations:

• e.g. Tau-leaping:

• Choose a time, tau, to ‘leap’.  Compute how many reactions one 
would expect in that time jump.

• Key Assumption: State does not change much in tau.
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Extensions to Gillespie II
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In the dimerisation example, tau-leaping may be 
appropriate.

3744 reactions
insignificant change in state

mailto:simon.rogers@glasgow.ac.uk
http://www.dcs.gla.ac.uk/~srogers


simon.rogers@glasgow.ac.uk   www.dcs.gla.ac.uk/~srogers   @sdrogers

Hybrid models

• There is no reason why our model need be 
exclusively stochastic or deterministic.

• Mix and match:

• Use exact for slow, important reactions

• Use ODEs for fast, less critical reactions

• Example - Lotka-Volterra 2!
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Lotka-Volterra hybrid

A0 = 1, B0 = 50, C0 = 50, X0 = 200, Y0 = 0

A + B + Y
0.0025� 2B + A + Y

B + C
0.0025� 2C

C
0.125� ⇥

2X
1� Y

Y
2� X
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Lotka-Volterra hybrid

Standard Gillespie - 78,258 reactions
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Lotka-Volterra hybrid

As X and Y only change in dimerisation reactions, remove these and 
substitute X and Ypopulations by steady state from ODEs

(X=14 , Y=93).
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Same behavior - 5773 reactions (93% reduction!)
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Parameter estimation

• On Wednesday, we briefly mentioned 
parameter estimation for ODE models 

• Can the same be done with stochastic 
simulation? 

• Q: what kind of data? 

• Very computationally expensive (why?)
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Summary

• Exact stochastic simulation an an alternative to 
ODEs.

• More realistic.

• More computation!

• Can show us where ODEs breakdown.

• In large systems, stochastic simulation is not 
feasible.  Hybrid models show great potential.
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