
simon.rogers@glasgow.ac.uk www.dcs.gla.ac.uk/~srogers @sdrogers

Systems Biology 2
Stochastic Modelling

mailto:simon.rogers@glasgow.ac.uk
http://www.dcs.gla.ac.uk/~srogers

simon.rogers@glasgow.ac.uk www.dcs.gla.ac.uk/~srogers @sdrogers

• Any questions from the lab?

mailto:simon.rogers@glasgow.ac.uk
http://www.dcs.gla.ac.uk/~srogers

simon.rogers@glasgow.ac.uk www.dcs.gla.ac.uk/~srogers @sdrogers

Today's lecture

• Deterministic modeling review.

• Stochastic simulation as an alternative.

• Stochastic Simulation - Gillespie algorithm.

• Gillespie - weaknesses and extensions.

mailto:simon.rogers@glasgow.ac.uk
http://www.dcs.gla.ac.uk/~srogers

simon.rogers@glasgow.ac.uk www.dcs.gla.ac.uk/~srogers @sdrogers

Deterministic models

Recall the simple model:

A + B � 2B + A

B + C � 2C

C � ⇥

Resulting in the following set of ODEs:

˙[A] = 0
˙[B] = k1 · [A] · [B]� k2 · [B] · [C]
˙[C] = k2 · [B] · [C]� k3 · [C]

k1

k2

k3

mailto:simon.rogers@glasgow.ac.uk
http://www.dcs.gla.ac.uk/~srogers

simon.rogers@glasgow.ac.uk www.dcs.gla.ac.uk/~srogers @sdrogers

Simulation

Initial Value Problem

An initial value problem is an ODE (or a system of ODEs) and values of variables at
t = 0.

8
>><

>>:

Ȧ = 0

Ḃ = k1 · A · B � k2 · B · C

Ċ = k2 · B · C � k3 · C

A|t=0 = 1 B|t=0 = 50 C|t=0 = 50
k1 = 0.25 k2 = 0.0025 k3 = 0.125

Solving an initial value problem means finding the function of dependent variables that
satisfies the initial condition and behaves by the law defined with the differential
equation.

Dr Vlad Vyshemirsky (University of Glasgow) Systems Biology 15 / 37

Given initial concentrations and constants:

We can simulate concentrations over time:

Initial Value Problem

8
>><

>>:

Ȧ = 0 A|t=0 = 1 k1 = 0.25

Ḃ = k1 · A · B � k2 · B · C B|t=0 = 50 k2 = 0.0025

Ċ = k2 · B · C � k3 · C C|t=0 = 50 k3 = 0.125

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

Time

C
o
n
c
e
n
tr

a
ti
o
n
s

[A]

[B]

[C]

Dr Vlad Vyshemirsky (University of Glasgow) Systems Biology 17 / 37

mailto:simon.rogers@glasgow.ac.uk
http://www.dcs.gla.ac.uk/~srogers

simon.rogers@glasgow.ac.uk www.dcs.gla.ac.uk/~srogers @sdrogers

All assumptions are wrong, some are useful...

• In order to construct these ODEs what
assumptions have we made?

• Deterministic

• Mass action kinetics

• Continuous values

• Closed system

• Well mixed

We have assumed that we can accurately model
based on some notion of average behavior.

mailto:simon.rogers@glasgow.ac.uk
http://www.dcs.gla.ac.uk/~srogers

simon.rogers@glasgow.ac.uk www.dcs.gla.ac.uk/~srogers @sdrogers

Exact simulation

• An alternative to ODE approaches is exact stochastic
simulation.

• Exact?

• We deal with populations rather than concentrations.

• We explicitly model each reaction.

• Not: “This is exactly what will happen”!

• Stochastic?

• Model the inherent uncertainty of the system.

• Particularly important for species with small populations.

mailto:simon.rogers@glasgow.ac.uk
http://www.dcs.gla.ac.uk/~srogers

simon.rogers@glasgow.ac.uk www.dcs.gla.ac.uk/~srogers @sdrogers

Exact stochastic simulation

• The most famous stochastic simulation algorithm
is the Gillespie algorithm:

2340

Exact Stochastic Simulation of Coupled Chemical Reactions

Daniel T. Gillesple

Danlel T. Gillespie

Research Department, Na Val Weapons Center, China Lake, California 93555 (Received May 72, 1977)

Publication costs assisted by the Naval Weapons Center

There are two formalisms for mathematically describing the time behavior of a spatially homogeneous chemical
system: The deterministic approach regards the time evolution as a continuous, wholly predictable process
which is governed by a set of coupled, ordinary differential equations (the “reaction-rate equations”); the stochastic
approach regards the time evolution as a kind of random-walk process which is governed by a single dif-
ferential-difference equation (the “master equation”). Fairly simple kinetic theory arguments show that the
stochastic formulation of chemical kinetics has a firmer physical basis than the deterministic formulation, but
unfortunately the stochastic master equation is often mathematically intractable. There is, however, a way
to make exact numerical calculations within the framework of the stochastic formulation without having to
deal with the master equation directly. It is a relatively simple digital computer algorithm which uses a rigorously
derived Monte Carlo procedure to numerically simulate the time evolution of the given chemical system. Like
the master equation, this “stochastic simulation algorithm” correctly accounts for the inherent fluctuations
and correlations that are necessarily ignored in the deterministic formulation. In addition, unlike most procedures
for numerically solving the deterministic reaction-rate equations, this algorithm never approximates infinitesimal
time increments dt by finite time steps At. The feasibility and utility of the simulation algorithm are demonstrated
by applying it to several well-known model chemical systems, including the Lotka model, the Brusselator, and
the Oregonator.

I. Introduction

In this paper we shall be concerned with the following
general problem: If a fixed volume V contains a spatially
uniform mixture of N chemical species which can inter-
react through M specified chemical reaction channels, then
given the numbers of molecules of each species present a t
some initial time, what will these molecular population
levels be at any later time?

The traditional way of treating this problem begins by
translating it into the mathematical language of ordinary
differential equations. More specifically, if we assume that
the number of molecules of the ith species in V a t time
t can be represented by a continuous, single-valued
function X , (t) (i = 1,. . .,N, and if we further assume that
each of the M chemical reactions can be regarded as a
continuous rate process, then we can easily construct a set
of coupled, first-order, ordinary differential equations of
the form

d X , / d t = f l (X 1 , . . . J N)

u Z / d t = fZ(X1,- * J N) (1)

a N / d t = f N (x 1 , . * . J N)

The specific forms of the functions fi on the right (which
are usually nonlinear in the Xi’s) are determined by the
structures and rate constants of the M chemical reaction
channels. These equations are called the “reaction-rate
equations”; solving them for the functions Xl(t) , . . . , X d t) ,
subject to the prescribed initial conditions, is tantamount
to solving the time-evolution problem posed earlier.
Analytical solutions to the reaction-rate equations can be
found only for rather simple systems, so it is usually
necessary t o solve these equations numerically on a
computer. As is evident from many of the papers in this
symposium series, the art of reliably solving reaction-rate
equations on a computer has been developed to an im-
pressive and sophisticated level.

*Address correspondence to the author at Code 3821, Naval
Weapons Center, China Lake, Calif. 93555.

Although the great importance and usefulness of the
differential reaction-rate equations approach to chemical
kinetics cannot be denied, we should not lose sight of the
fact that the physical basis for this approach leaves
something to be desired. This approach evidently assumes
that the time evolution of a chemically reacting system is
both continuous and deterministic. However, the time
evolution of a chemically reacting system is not a con-
tinuous process, because molecular population levels
obviously can change only by discrete integer amounts.
Moreover, the time evolution is not a deterministic process
either. For, even if we put aside quantum considerations
and regard the molecular motions to be governed by the
equations of classical mechanics, it is impossible even in
principle to predict the exact molecular population levels
a t some future time unless we take account of the precise
positions and velocities of all the molecules in the system.
In other words, although the temporal behavior of a
chemically reacting system of classical molecules is a
deterministic process in the full position-momentum phase
space of the system, it is not a deterministic process in the
N-dimensional subspace of the species population num-
bers, as (1) implies.

In many cases of course the time evolution of a
chemically reacting system can, to a very acceptable degree
of accuracy, be treated as a continuous, deterministic
process. However this should not always be taken for
granted, especially now that the attention of chemical
kineticists is increasingly being drawn to the study of
ecological systems, microscopic biological systems, and
nonlinear systems driven to conditions of chemical in-
stability. In some cases like these, the inability of the
reaction-rate equations to describe the fluctuations in the
molecular population levels can be a serious shortcoming.
Moreover, contrary to widespread belief, it is not even
guaranteed that the reaction-rate equations will provide
a sufficiently accurate account of the auerage molecular
population levels; for, except for very simple linear systems,
the average molecular population levels will not exactly
satisfy any closed system of equations such as (1).

The Journal of Physical Chemistry, Voi. 8 1, No. 25, 1977

Stochastic Simulation of Coupled Chemical Reactions

The expression for P(7, p) in (18) is, like the master
equation (13), a rigorous mathematical consequence of the
fundamental hypothesis (4). Notice that P(7, p) depends
on all the reaction constants (not just on c,), and on the
current numbers of molecules of all reactant species (not
just on the R, reactants).

IIIC. T h e Stochastic Simulation Algorithm. A t the
beginning of section IIIB, we observed that essentially what
is needed to simulate the time evolution of a chemically
reacting system is some way of specifying when the next
reaction will occur and what kind of reaction it will be. We
can now frame this requirement in more precise, math-
ematical terms: What is needed is a method for drawing
or “generating” a pair (7, p) from the set of random pairs
whose probability density function is P(7, p) in (18). It
turns out that there is a simple, rigorous way of doing this
on a digital computer, provided we have access to a reliable
“unit-interval uniform random number generator”.

A unit-interval uniform random number generator is a
computer subprogram which, when called, calculates and
returns a random (or more properly, a “pseudorandom”)
number r from the uniform distribution in the unit in-
terval; that is, the a priori probability that any generated
number r will fall inside any given subinterval [a, b] of the
unit interval [0, 11 is equal to b - a. Nowadays, virtually
every large digitial computer facility has one of these
subprograms in its library file that is fast, easy to use, and
sufficiently reliableas When called, the typical generator
subprogram calculates the required pseudorandom number
r by performing a few relatively simple operations on the
previous pseudorandom number that was calculated.
Thus, n successive calls will produce a “chain” of n
pseudorandom numbers. The f irst number of the chain
is determined by initializing the generator with a user-
chosen starter number; different starter numbers will
result in different but statistically equivalent chains.

Now, if our goal were to generate a random pair (7, p)

according to the probability density function

1 if O < T < 1 and 0 < p < 1

1 0 otherwise
P ’ h Y) =

then we could simply generate two random numbers r1 and
r2 using a unit-interval uniform random number generator
and take
r = rl

Y = r2

However, our objective here is to generate a random pair
(7 , p) according to the probability density function in (18),
not the probability density function in (20a). As it
happens, there exists a mathematically rigorous procedure
for taking two random numbers r1 and r2 from the unit-
interval uniform distribution, and constructing from them
a random pair (7, p) from a set described by any specified
pair probability density fun~ t ion .~ For the pair probability
density function in (20a), this construction procedure turns
out to be precisely (20b); for the pair probability density
function P(7, p) in (18), the construction procedure turns
out to be as follows:

With r1 and r2 two random numbers from the unit-
interval uniform distribution, take

7 = (l / a o) 1n (1/r1)

and take p to be that integer for which

@Ob)

2345

P - 1 EL

v= 1 v = l
2 a, < rzao < a,

A rigorous proof of the fact that the pair (7, p) constructed

according eq 21 may be regarded as having been drawn
from the set of random pairs whose probability density
function is P(7, p) in (18) may be found in section VA of
ref 1. Suffice it here to say that (21a) generates a random
number 7 according to the probability density function
P1(7) = a. exp(-ao7), while (21b) generates a random
integer p according to the probability density function
P2(p) = a /ao, and the stated result follows, roughly
speaking, iecause P1(7)’P2(p) = P(7, p) .

The generating procedure (21) is easy to code in Fortran.
In particular, (21b) may be implemented simply by cu-
mulatively adding the successive values al, a2, ... in a
do-loop until their sum is observed to equal or exceed r2a0,
whereupon p is set equal to the index of the last a, term
added.

Our algorithm for simulating the stochastic time evo-
lution of a chemically reacting system should now be rather
obvious (see Figure 2):

Step 0 (Initialization). Input the desired values for the
M reaction constants cl,. . .,cM and the N initial molecular
population numbers XI,. . .,XN. Set the time variable t and
the reaction counter n both to zero. Initialize the unit-
interval uniform random number generator (URN).

S t e p 1. Calculate and store the M quantities al =
hlcl , , . , , U M = h f i M for the current molecular population
numbers, where h, is that function of X1,. . .,XN defined
in (15). Also calculate and store as a. the sum of the M
a, values.

S t e p 2. Generate two random numbers r1 and r2 using
the unit-interval uniform random number generator, and
calculate 7 and 1.1 according to (21a) and (2lb).

S t e p 3. Using the T and p values obtained in step 2,
increase t by 7, and adjust the molecular population levels
to reflect the occurrence of one R, reaction; e.g., if R, is
the reaction in (3a), then increase X 1 by 1 and decrease
X 2 by 1. Then increase the reaction counter n by 1 and
return to step 1.

In returning to step 1 from step 3, notice that it is
necessary to recalculate only those quantities a, corre-
sponding to reactions R, whose reactant population levels
were just altered in step 3; also, a. may be recalculated
simply by adding to a. the difference between each newly
changed a, value and its corresponding old value.

Of course, somewhere in the 1-2-3 loop one will want
to provide for writing out or plotting the (Xl,. . ., X N , t)
values at‘regular intervals of either t or n. Also, one will
want to make provisions for halting the calculations when
either t or n reaches some predetermined value, or if a.
should ever reach zero.

If it is desired to estimate any of the moments X,(k)(t)
of the grand probability function (see eq 8-10), then it will
be necessary to make several simulation runs from time
0 to the chosen time t , all identical with each other except
for the initialization of the random number generator in
step 0. Any moment X j k) (t) 3 (X l k) t may then be esti-
mated directly as the average of the hth power of the
numbers found for X , at time t in these runs. In a similar
way, one can estimate various cross-correlation functions
such as (X,X) t - (Xi),(X,),, etc. The number of runs
necessary to oktain adequate statistics in these estimates
will vary with the situation.

IIID. Remarks. After the simulation algorithm de-
scribed above had been developed, several earlier simu-
lation procedures were brought to the attention of the
author. Two of these deserve to be mentioned here.

First is the method used by Nakanishi’O in 1972 to
simulate the oscillating Lotka reactions. Like the com-
putational method described above, Nakanishi’s method
is expressly designed to numerically simulate the stochastic

The Journal of Physical Chemlstty, Vol. 81, No. 25, 1977

mailto:simon.rogers@glasgow.ac.uk
http://www.dcs.gla.ac.uk/~srogers

simon.rogers@glasgow.ac.uk www.dcs.gla.ac.uk/~srogers @sdrogers

What does Gillespie do?

• Deals with integer populations of molecules

• Assumes the model is inherently stochastic (random)

C
k� ⇥

C|t=0 = 100
k = 0.1

• E.g. protein decay:

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

t

C

• Deterministic model (ODE) can be solved
analytically

• And tells us that:

C(t) = C0 exp{�kt}

at t = 20, C(20) = 13.5335

Ċ = �kC

mailto:simon.rogers@glasgow.ac.uk
http://www.dcs.gla.ac.uk/~srogers

simon.rogers@glasgow.ac.uk www.dcs.gla.ac.uk/~srogers @sdrogers

What does Gillespie do? II

In stochastic simulation, we are interested in distributions

p(C|t = 20) or p(C = 13|20)

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

C

p
(C

|t
=

20
)Here is the distribution for t = 20

created using Gillespie - we can see that
the ODE (red square) in this case is in
rough agreement with the most likely

number of C molecules.

Unfortunately, for any remotely interesting model, analytically computing these probabilities
is impossible. But, we can simulate...

mailto:simon.rogers@glasgow.ac.uk
http://www.dcs.gla.ac.uk/~srogers

simon.rogers@glasgow.ac.uk www.dcs.gla.ac.uk/~srogers @sdrogers

What does Gillespie do? III

The Gillespie algorithm allows us to generate samples from the stochastic model

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

t

C

Each sample is a trajectory of the species’ populations through time

mailto:simon.rogers@glasgow.ac.uk
http://www.dcs.gla.ac.uk/~srogers

simon.rogers@glasgow.ac.uk www.dcs.gla.ac.uk/~srogers @sdrogers

What does Gillespie do? IV

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

t

C

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

C

p
(C

|t
=

20
)

We may be interested in individual samples or computing empirical
distributions from sets of samples...

mailto:simon.rogers@glasgow.ac.uk
http://www.dcs.gla.ac.uk/~srogers

simon.rogers@glasgow.ac.uk www.dcs.gla.ac.uk/~srogers @sdrogers

The Gillespie algorithm

N molecular species, M reactions

X1, X2,XNAt time t, population sizes (state) given by:

We need to generate two things:

1. The time until the next reaction occurs
2. The type of reaction that occurs

For more details and derivations, refer to Gillespie’s paper.

Gillespie shows that the two can be de-coupled (we can sample the
time and then sample which reaction takes place) resulting in a very

simple procedure.

(Integers, >0)

mailto:simon.rogers@glasgow.ac.uk
http://www.dcs.gla.ac.uk/~srogers

simon.rogers@glasgow.ac.uk www.dcs.gla.ac.uk/~srogers @sdrogers

The Gillespie algorithm

For each of the M reactions compute: am = cmhm

Number of reactant combinations

At each iteration....

X1 + X2 � X3 X1X2

X1 + X1 � X3
1
2
X1(X1 � 1)

Reaction Number of combination, h

Reaction constant (analogous to k)

X1 + X2
k� X3

mailto:simon.rogers@glasgow.ac.uk
http://www.dcs.gla.ac.uk/~srogers

simon.rogers@glasgow.ac.uk www.dcs.gla.ac.uk/~srogers @sdrogers

The Gillespie algorithm II

a0 =
M�

m=1

amLet:

r1, r2 � U(0, 1)Generate:

� = (1/a0) ln(1/r1)Compute time to reaction:

Then....

Choose reaction v for which:

v�1�

m=1

am/a0 < r2 �
v�

m=1

am/a0

mailto:simon.rogers@glasgow.ac.uk
http://www.dcs.gla.ac.uk/~srogers

simon.rogers@glasgow.ac.uk www.dcs.gla.ac.uk/~srogers @sdrogers

Gillespie - Example

Two species, two reactions:

c1 = c2 = 0.1

A
c1� B

B
c2� ⇥

at t = 0, A = 100, B = 0

mailto:simon.rogers@glasgow.ac.uk
http://www.dcs.gla.ac.uk/~srogers

simon.rogers@glasgow.ac.uk www.dcs.gla.ac.uk/~srogers @sdrogers

Gillespie Example

It t A B h a/a0 Sum
1 0 100 0 [100,0] [1,0] [1,1]
2 0.4315 99 1 [99,1] [0.99,0.01] [0.99,1]
3 0.5528 98 2 [98,2] [0.98,0.02] [0.98,1]
...
32 2.8841 73 24 [73,24] [0.75,0.25] [0.75,1]

mailto:simon.rogers@glasgow.ac.uk
http://www.dcs.gla.ac.uk/~srogers

simon.rogers@glasgow.ac.uk www.dcs.gla.ac.uk/~srogers @sdrogers

Gillespie example

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

t

A
B

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

t

A
B

One simulation...Lots of simulations...

0 5 10 15 20 25 30 35 40 45
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

A
Band distributions..

mailto:simon.rogers@glasgow.ac.uk
http://www.dcs.gla.ac.uk/~srogers

simon.rogers@glasgow.ac.uk www.dcs.gla.ac.uk/~srogers @sdrogers

Testing our assumptions

• As Gillespie is exact we can use it to test the
assumptions we use in ODE models.

• As an example, lets test the assumptions used in
the 3 species model already discussed.

mailto:simon.rogers@glasgow.ac.uk
http://www.dcs.gla.ac.uk/~srogers

simon.rogers@glasgow.ac.uk www.dcs.gla.ac.uk/~srogers @sdrogers

Lotka-Volterra

Recall the simple

A + B � 2B + A

B + C � 2C

C � ⇥
Resulting in the following set of

ODEs:
˙[A] = 0
˙[B] = k1 · [A] · [B]� k2 · [B] · [C]
˙[C] = k2 · [B] · [C]� k3 · [C]

k1

k2

k3

mailto:simon.rogers@glasgow.ac.uk
http://www.dcs.gla.ac.uk/~srogers

simon.rogers@glasgow.ac.uk www.dcs.gla.ac.uk/~srogers @sdrogers

Lotka-Volterra

• Run the Gillespie simulator using the
lotka project with T=100

mailto:simon.rogers@glasgow.ac.uk
http://www.dcs.gla.ac.uk/~srogers

simon.rogers@glasgow.ac.uk www.dcs.gla.ac.uk/~srogers @sdrogers

Lotka-Volterra

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

400

t

A
B
C

0 20 40 60 80 100 120
0

50

100

150

200

250

t

A
B
C

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

t

A
B
C

130 140 150 160 170 180 190 200 210 220
0

5

10

15

20

25

30

t

A
B
C

A + B � 2B + A

B + C � 2C

C � ⇥

mailto:simon.rogers@glasgow.ac.uk
http://www.dcs.gla.ac.uk/~srogers

simon.rogers@glasgow.ac.uk www.dcs.gla.ac.uk/~srogers @sdrogers

Lotka-Volterra

• ODE model predicts sustained oscillations (B>0).

• Stochastic model stops after a number of cycles
(B=0) and never recovers.

• Very different interpretations!

mailto:simon.rogers@glasgow.ac.uk
http://www.dcs.gla.ac.uk/~srogers

simon.rogers@glasgow.ac.uk www.dcs.gla.ac.uk/~srogers @sdrogers

Limitations of Gillespie

• For large populations and fast reactions, Gillespie
becomes computationally impractical.

• For example, dimerisation:

• Run this simulation (project: dimer) for T=100. How
many reactions are simulated? Plot the results.

2X
1� Y

Y
2� 2X

X0 = 100, Y0 = 1

mailto:simon.rogers@glasgow.ac.uk
http://www.dcs.gla.ac.uk/~srogers

simon.rogers@glasgow.ac.uk www.dcs.gla.ac.uk/~srogers @sdrogers

Extensions to Gillespie

• Extensions have been proposed to speed things up:

• Exact methods:

• Tricks to make the sampling faster.

• Approximations:

• e.g. Tau-leaping:

• Choose a time, tau, to ‘leap’. Compute how many reactions one
would expect in that time jump.

• Key Assumption: State does not change much in tau.

mailto:simon.rogers@glasgow.ac.uk
http://www.dcs.gla.ac.uk/~srogers

simon.rogers@glasgow.ac.uk www.dcs.gla.ac.uk/~srogers @sdrogers

Extensions to Gillespie II

0.4 0.45 0.5 0.55 0.6
0

1000

2000

3000

4000

5000

6000

t

X
Y

In the dimerisation example, tau-leaping may be
appropriate.

3744 reactions
insignificant change in state

mailto:simon.rogers@glasgow.ac.uk
http://www.dcs.gla.ac.uk/~srogers

simon.rogers@glasgow.ac.uk www.dcs.gla.ac.uk/~srogers @sdrogers

Hybrid models

• There is no reason why our model need be
exclusively stochastic or deterministic.

• Mix and match:

• Use exact for slow, important reactions

• Use ODEs for fast, less critical reactions

• Example - Lotka-Volterra 2!

mailto:simon.rogers@glasgow.ac.uk
http://www.dcs.gla.ac.uk/~srogers

simon.rogers@glasgow.ac.uk www.dcs.gla.ac.uk/~srogers @sdrogers

Lotka-Volterra hybrid

A0 = 1, B0 = 50, C0 = 50, X0 = 200, Y0 = 0

A + B + Y
0.0025� 2B + A + Y

B + C
0.0025� 2C

C
0.125� ⇥

2X
1� Y

Y
2� X

mailto:simon.rogers@glasgow.ac.uk
http://www.dcs.gla.ac.uk/~srogers

simon.rogers@glasgow.ac.uk www.dcs.gla.ac.uk/~srogers @sdrogers

Lotka-Volterra hybrid

Standard Gillespie - 78,258 reactions

mailto:simon.rogers@glasgow.ac.uk
http://www.dcs.gla.ac.uk/~srogers

simon.rogers@glasgow.ac.uk www.dcs.gla.ac.uk/~srogers @sdrogers

Lotka-Volterra hybrid

As X and Y only change in dimerisation reactions, remove these and
substitute X and Ypopulations by steady state from ODEs

(X=14 , Y=93).

0 50 100 150 200
0

50

100

150

200

250

300

350

t

Same behavior - 5773 reactions (93% reduction!)

mailto:simon.rogers@glasgow.ac.uk
http://www.dcs.gla.ac.uk/~srogers

simon.rogers@glasgow.ac.uk www.dcs.gla.ac.uk/~srogers @sdrogers

Parameter estimation

• On Wednesday, we briefly mentioned
parameter estimation for ODE models

• Can the same be done with stochastic
simulation?

• Q: what kind of data?

• Very computationally expensive (why?)

mailto:simon.rogers@glasgow.ac.uk
http://www.dcs.gla.ac.uk/~srogers

simon.rogers@glasgow.ac.uk www.dcs.gla.ac.uk/~srogers @sdrogers

Summary

• Exact stochastic simulation an an alternative to
ODEs.

• More realistic.

• More computation!

• Can show us where ODEs breakdown.

• In large systems, stochastic simulation is not
feasible. Hybrid models show great potential.

mailto:simon.rogers@glasgow.ac.uk
http://www.dcs.gla.ac.uk/~srogers

