
Chapter #

A LIGHTWEIGHT EXPERIMENT
MANAGEMENT SYSTEM FOR HANDHELD
COMPUTERS

Phil Gray, Joy Goodman and James Macleod
Department of Computing Science, University of Glasgow, Glasgow, UK

Abstract: This paper describes a system that helps HCI practitioners and researchers
manage and conduct experiments involving context-sensitive handheld
applications, particularly related to navigation assistance. The system provides
a software framework in which application, user interface and interaction
monitoring components can be plugged, offering a simple interconnection
protocol and minimising the programming overheads of implementation. We
have focused our attention on dealing with the challenges presented by the
limited memory and processing of handheld devices and the variety of data
sources for mobile context-sensitive applications. In this paper we give an
overview of the system’s functionality and architecture, discuss key challenges
of supporting field-based experiments on handhelds and consider further
developments of the system.

Key words: evaluation of user interfaces and tools, mobile applications, usage monitoring

1. INTRODUCTION

The use of mobile technologies has been growing rapidly, primarily of
mobile telephones but also of other handheld devices. Together with the
exploitation of new technologies such as GPS and 3G and improvements in
wireless capabilities, this has inspired the development of a wider and more
ambitious range of mobile applications. Additional challenges and
opportunities are posed by context-awareness, which can be used to provide
information related to the user’s current location, e.g., to aid navigation.

However, less is known about how to make the resulting applications and
devices usable. If this is to be achieved, usability experiments on handheld

2 Chapter #

devices are of key importance, both to test and improve the usability of
existing and developed devices, and to gain information on how such
devices can be designed in general, for example, by comparing alternative
interfaces. Such experiments are important for groups that can particularly
benefit from these devices but are most likely to be excluded by them -
disabled people and older age groups. The design of handhelds for the older
population is especially poorly understood and more work needs to be done
in this area. Experiments with older users themselves on different handhelds
and user interfaces are important to improving this understanding. It is
within this context that the work described in this paper takes place [3, 4].

Sadly, the management of such experiments can often be a time-
consuming and complicated task, as indicated in Table 1, meaning that
evaluations are often limited. However, this process can be improved using
software tools. Such tools have been shown to be of use in designing and
testing desktop applications in the past, and similar tools could prove useful
in mobile situations.

Table 1. Issues in managing experiments
Category Example Examples of

management issues
Examples of particular
issues with handhelds

Participants 16 participants aged
18-40 who don’t know
the area, gender-
balanced

Obtaining and keeping
track of participants,
assigning them to
conditions, coping with
them dropping out

Changes may have to be
made to the list of
participants in the field

Conditions Interface A is tested in
condition C1 and
interface B in condition
C2

The right interface
should be brought up at
the right point in the
experiment

Limited screen space and
memory, rendering storage
and selection of interfaces
less easy

Tasks 1. Find your way from
the library to the
butchers
2. Find your way from
the supermarket to the
school

The right tasks must be
matched with the right
conditions for each
participant to prevent
order and other effects

Familiarity with the area in
the 1st task should affect
the 2nd as little as possible.
Tasks may need to be
changed due to external
conditions, e.g., roadworks

Equipment A handheld computer
with the application, a
GPS receiver, consent
form, questionnaires,
notebook and pen

Ensuring that the right
equipment for each
participant and set of
conditions is available

Equipment must be
carried. This may include
equipment for several
participants if the
experimenter cannot return
to base between trials

Data
Collection

Start and end times for
each condition, notes of
when the participant
got lost and which
interface elements were
used and how often

The data must be
collected, collated and
stored

Limited storage space on
the device. Difficulties
taking notes while on the
move and trying to manage
several pieces of paper at
once.

#. A lightweight experiment management system for handheld
computers

3

There are many issues that such tools can support. Our eventual aim is to

create a tool that would support the entire experiment process, including all
the issues described in Table 1, as well as support for activities before and
after the actual experiments. This paper, however, describes a prototype of
an experiment management tool for mobile devices, incorporating support
for managing the user interfaces and collecting usage data. In Section 2 we
describe and discuss other experiment management tools and how this work
relates to them. In Section 3 we then describe in more detail what our system
does and how it works. We map out and discuss key challenges of
supporting field-based experiments on handhelds and consider further
developments of the system in Section 4, before concluding in Section 5.

2. RELATED WORK

Several experiment management tools exist for desktop applications and,
while they are not generally suitable for mobile devices, some of the
techniques used within them can be adapted to this setting. These tools have
usually focused on either support for generating the user interface (UI) or on
capturing data from the participants.

The system described in this paper does not provide support for
generating interfaces per se, such as in the work on automatic interface
generation. Rather it supports the process of generating different interfaces
for the same data and then swapping between them so that they can be easily
compared in an experiment. The emphasis is on aiding the running of
experiments, rather than on generating good interfaces for a finished
product. Worth mentioning here is the TAE Plus system [12] which, while
not aimed at supporting experiments, separates the user interface and the
program code making it easier to swap between interfaces.

Previous work on capturing experimental usage data has followed two
main avenues – video and screen capture and event logging.

Video capture (e.g., [9]) involves videoing the participant and/or the
screen during the experiment. This method is not easily transferred to the
mobile domain without specialist equipment and/or wireless communication
[10]. Screen capture (e.g., [1]) may be more feasible as it stores the images
appearing on the computer screen at regular intervals and therefore does not
require additional equipment. However, the resulting files are large and are
likely to take up too much memory for a mobile device. In addition, it does
not capture the context of use. Taken together with the simpler UIs on
mobile devices, this renders it not much more useful than event logging if
the latter is done at an appropriate level of detail.

4 Chapter #

Event logging systems [8] are potentially more useful for mobile studies,
but existing logging systems place heavy demands on processing, storage,
and communications. However, our understanding of interaction with mobile
devices is rather poor and many opportunities remain for carrying out useful
studies on or with relatively simple handheld user interfaces. Given the
limitations of handhelds, these opportunities depend on keeping processing,
memory and communication demands to a minimum. In addition, although
some current systems do allow the experimenter to choose the user actions to
be logged (e.g., [1]), this is complicated, and a simpler system is needed and
indeed possible for a mobile device.

In addition, mobile devices have a greater need for an integrated
experiment tool providing support for easily generating and swapping
between experimental conditions as well as easy data capture and analysis.
The limited memory and processing power of these devices and the
difficulties associated with moving the program and data around means it is
best to have a single program managing the experiment as a whole.

Although data capture and analysis have been integrated (e.g., [1, 7]),
less work has been done on combining support for the interface with support
for data capture. One example is UsAGE [13], which added event logging to
the UI development system, TAE Plus [12], although not as a single unified
program, and not for mobile devices.

3. SYSTEM FEATURES

3.1 An Example

The motivating example for the system described in this paper is the
navigation aid, a typical mobile application that provides directions to the
user to enable him or her to find a location. Such directions can be provided
in a wide variety of formats, including maps, photographs and arrows, as
well as using different modalities, but little work has been carried out
comparing these different approaches [2].

Let us imagine that we want to evaluate and compare three such
interfaces, shown in Figure 1. One way of doing this would be to write three
applications, one with each interface, and create data sets for each for the test
and pilot routes. We would then have to run the experiment, ensuring that
the right interface with the right route was brought up at the right time. Code
would have to be included in each application to monitor any usage data we
wanted collected, such as timings and button clicks or alternatively these
could be noted by hand by the experimenter.

#. A lightweight experiment management system for handheld
computers

5

Although this process is possible, it is rather complicated, and our system

aims to simplify and support it.

Figure 1. Three possible navigation aid interfaces

3.2 Supporting Adaptation

Our system supports the adaptation of a context-aware handheld
application to different experimental conditions, by separating application
data and operations, such as geographical information about the location or
context (the Model) from the user interface components used to present this
information to the user (the View). For example, in Figure 1, the same
Model is used (information is presented about the same route) but using
different Views (different interface methods).

It is possible to create very general models that contain enough
information for a variety of different views. In addition, the framework
supports more limited models, if less extensive surveying of the environment
is desired. However, these models may only be suitable for some views. For
example, the view shown in Figure 1(c) requires a model with images or
pointers to images of locations, while those shown in Figure 1(a) and (b)
only need to contain the directions to turn at particular coordinates. The
same reduced model could therefore be used for (a) and (b) but not for (c).

Our system matches model and view as well as possible, leaving spaces
in the resulting interface rather than crashing if they do not match
completely, so that reasonable interfaces can still be produced if the model
and view do not match but are not far apart.

This separation of model and view makes it easier to:
– create all of the experimental conditions. In context-aware applications

such as navigation aids, the conditions typically consist of all possible

6 Chapter #

combinations of the different test locations with the different interfaces
being tested. Using the method above, models can be shared between
views rather than having to create a separate application for each
combination;

– select the experimental condition to be tested. Rather than having to keep
track of which application corresponds to which combination of
conditions, the model and view can be chosen separately but at the same
time. Currently this is done through XML configuration files, as shown
in the example in Figure 2, which chooses a model called ArrowModel
and a view called ArrowView, generating the interface shown in Figure
1(a);

– move the experiment to different locations, which may be necessary due
to constraints outside the experimenter’s control, such as roadworks. In
this case, only the models need to be changed;

– test new interfaces by creating a new view for an existing model.
This process is further supported by the use of templates and C#

interfaces for the models and views, reducing the amount of coding
necessary to create new sets of location data and new interfaces.

Since we are working with complex and potentially unusual navigation
and map-based user interfaces, we chose to represent our design options in
term of parameterisable components. In particular, components can be linked
by identifying data values in models to be listened to (and potentially
updated by) view components. An alternative approach would be to employ
a user interface specification language, like UIML [14], from which the
actual user interface components could be generated by a “renderer”. While
this would increase genericity, there would be too high a cost in terms of the
complexity and usability of the specification and specification language,
especially given the potentially complex and non-standard character of
interaction in our target applications.

Figure 2. XML Configuration file for the data and view shown in Figure 1(a)

<?xml version="1.0" ?>
 <configuration
xmlns="http://tempuri.org/configuration.xsd">
 <Model>ArrowModel</Model>
 <View>ArrowView</View>
 <Data>
 <Item>ArrowChange</Item>
 <Item>LocationChange</Item>
 <Item>DirectionChange</Item>
 </Data>
 </configuration>
</xml>

#. A lightweight experiment management system for handheld
computers

7

3.3 Supporting Observation

The system supports experimental observation by collecting usage
runtime information. This may include, for example, information on which
buttons or other interface elements were selected, when they were selected,
when other important events occurred and the length of time taken for the
whole experiment. We log information at this level of complexity, rather
than lower-level actions and events, because we consider it to be the most
useful level for analysing the results of the experiment and because lower-
level events are of little use due to the reduced number of UI elements in a
handheld interface and the simplicity of the standard input methods.

Each item of loggable information is given a label in the code for the
model or the view. The experimenter can then use these labels to indicate
which information is to be logged, thus customising the experiment and only
collecting information of interest to that experiment. This reduces the sizes
of the logs and simplifies their later analysis.

The selection of items to be logged is given in the experiment’s XML
configuration file, as shown in the example in Figure 2. This example
generates the interface shown in Figure 1(a) and logs three events in addition
to the application’s starting and closing time. It logs when changes occur in
the displayed arrow, the sensed GPS location and the direction. This
particular interface doesn’t contain any interactive UI components. If it did,
their use could also be logged by generating suitable logging events in the
code for the view, labelling them and including their labels in the
configuration file.

3.4 System Architecture

We have created an implementation of our system written in C#, using
Microsoft’s .Net Compact Framework, which runs on PocketPC devices.

A runnable application consists of a single model object1, a single view
object, and an optional data collection object connected together and
managed by an overall manager component (see Figure 3). The
interconnection of the model, view and data collector is carried out with the
aid of event generation interfaces made available via class methods:
getDataItems() and getSchema(), which both return a set of identifiers from
the model and view. getDataItems() returns a set of identifiers of active
values that can be logged - “loggables” - and getSchema() returns a set of

1 The model object can also accommodate additional components, such as a GPS proxy

object.

8 Chapter #

identifiers of active values that form the model-view link (i.e., values that the
model reveals to the view and values that the view is capable of presenting
to a user for interaction) - “linkables”. The manager creates a working
application by:
– connecting the model and view by finding name matches in the value sets

returned by the model and view via getSchema() and using the results to
instantiate the actual user interface;

– determining what will be logged by finding name matches between the
value sets returned by the model and view via getDataItems() on the one
hand and the names of desired data to be logged located in the
configuration file on the other hand.
On startup the framework reads in an experiment configuration file, such

as that shown in Figure 2. The model and view classes specified in this file
are then loaded and instantiated, and a data collection object is also
instantiated. Using the name matching algorithms described above, event
listeners are created for each matched loggable and linkable, with a
predefined logging callback (see Figure 3).

Figure 3. The architecture of the system

The ability to construct running, loggable applications from simple

configuration files removes the need to pre-construct the several application
variants necessary for a comparative study. The cost to the developer lies in

#. A lightweight experiment management system for handheld
computers

9

the need to add into the source code the information used by the framework
manager to connect the components together, viz., the names of data items
that notify changes to their state. Such data items can be used to update
views or can be logged by a data collector component. Furthermore, model
and view operations that can change the state of these data items must
include in the relevant method a call to a method to fire an appropriate event.

Automatic linking of data items between model and view also demands
that the system can determine a unique and sensible mapping between model
and view. In the simple applications we currently envisage testing, such a
mapping is possible and not costly to embed in the source code. However,
this limits the generality of our automatic generation system and future
versions may have to explore semi-automated approaches [5, 6, 11].

4. KEY CHALLENGES AND SUGGESTIONS FOR
FURTHER DEVELOPMENT

The system as described above has been implemented in prototype form.
We have constructed several alternative models and views and used these
with configuration files to construct and run the simple navigation
applications described in section 3. We have yet to use it “in anger”,
however, as part of a usability study. This trial will be taking place in the
near future. Our study will investigate the relative effectiveness of several
different methods of providing navigation information to older users, such as
maps, sequenced landmarks and step-by-step directions. Consequently there
will be a number of combinations of models and views that must be trialled,
and it will also be necessary to change the configuration in the field with
each individual participant.

There are many ways in which our current relatively primitive system
might be enhanced, including making it easier to specify an experiment and
adding tool support for other aspects of the process of conducting an
experiment.

XML is a useful data interchange language, but not very easy to generate
or read. A tool is needed to support the initial specification of an
experimental platform that will hide the XML and that can present to an
experimenter lists of model and view components that can be combined and
the type of events that can be logged from each. Given that this information
is available from the components via reflection, it would be possible to build
a running example of the experimental application at design test. This
example could be used to test the configuration before using the application
in the experiment itself.

10 Chapter #

There are several additional aspects of the conduct of an experiment that
it would be useful to add to our system. Currently, the system only handles a
single trial. Typically data will be collected during a number of trials, with
different user participants and different conditions (e.g., counterbalanced
combinations of user, location and user interface version). We intend to add
to the framework an Experiment Manager component that holds this
information, read from an augmented experiment configuration file, so that
trials can be set up and run either automatically, in sequence, or via
experimenter selection. The Experiment Manager is distinct from the current
Manager component in the framework that can only handle a single trial.

As the amount of logged data increases, e.g., via multiple trials, one
might run into storage difficulties due to the limited memory of a handheld
device and the space occupied by other application data, such as a
geographic database. Our system will have to take appropriate action in such
cases, including compressing the logfiles during creation, transferring to
other devices if possible or alerting the experimenter to a possible loss of
data prior to data loss. In the latter case, this should occur between trials
based on an analysis of the amount of data logged in previous trials and the
current space available. This would give the experimenter adequate warning
to take action to make more memory available.

More ambitiously, we would like to add the ability to combine the logged
data with data collected concurrently by one or more observers. For
example, an observer might use a separate hand-held, entering time-stamped
notes or experimental protocols, or taking photos or videos or audio
recordings. These could be combined with the logged data later, if the timed
data can be suitably synchronized.

Indeed, if the experimenter is using a separate device in the field, such as
another handheld or a laptop, additional experimental support is possible.
For example, using a peer-to-peer wireless connection between the
participant’s handheld and the experimenter’s device, the experimenter may
be able to monitor the handheld application (see real-time logged data, view
a copy of the participant’s screen) or modify the application if necessary.
Also, it may be possible to shift data to the experimenter’s device as a
backup or to free memory on the participant’s handheld.

It would also be desirable to integrate additional tools for data archiving,
preparation and analysis in to the overall system. However, these operations
are unlikely to be performed on the handheld device and thus are not a
particular issue for the support of mobile-oriented experiments.

#. A lightweight experiment management system for handheld
computers

11

5. CONCLUSIONS

Interaction with mobile devices, such as handhelds, and the user
interfaces that support such interaction, remain less well understood than
with desktop applications. Ironically, it is more difficult to collect logged
data from handheld applications than from workstations. In addition,
although several experiment management tools exist for desktops, little has
been done in this area for the evaluation of handheld devices, with its
different characteristics and challenges. Experiments in the mobile domain
have a greater need for an integrated experiment environment and for
methods for managing multiple data sources and for coping with limited
memory and resources.

Our approach, as reported in this paper, has been to provide a relatively
simple tool that makes it easy for evaluators to construct experimental
prototypes and to log data from them. Although this system is in its early
stages, it provides a useful framework for managing experiments on
handhelds and a useful basis on which to build other features and tackle the
other challenges of this area.

ACKNOWLEDGEMENTS

This work was funded by SHEFC through the UTOPIA project (grant
number: HR01002), which is investigating the design and development of
usable technology for older people. We would also like to thank Kartik
Khammampad who built and evaluated a navigation system for us using an
interface similar to that shown in Figure 1(c) and Professor Steve Brewster
for his useful comments on an earlier draft.

REFERENCES

[1] Al-Qaimari, G. and McRostie D., KALDI: A computer-aided usability engineering tool
for supporting testing and analysis of user performance, in Blanford, A., Gray, P. and
Vanderdonckt, J., editors, Proceedings of IHM-HCI'2001, Lille, France, 2001, People
and Computers XV, Springer Verlag, pp. 153-169.

[2] Bradley, N.A. and Dunlop, M.D., Understanding contextual interactions to design
navigational context-aware applications, in Paternò, F., editor, Proceedings of Mobile
HCI 2002, Springer, LNCS 2411, 2002, pp. 349-353.

[3] Eisma, R., Dickinson, A., Goodman, J., Syme, A., Tiwari, L., Newell, A.F., Early User
Involvement in the Development of Information Technology-Related Products for Older
People, Universal Access in the Information Society, to appear, 2003.

12 Chapter #

[4] Goodman, J., Gray, P.D., A Design Space for Location-Sensitive Aids for Older Users, in

Schmidt-Belz, B. and Cheverst, K., editors, Proceedings of HCI in Mobile Guides,
workshop at Mobile HCI 2003, Sep 2003, pp. 12-16.

[5] Gray P.D., Draper, S.W.D., A Unified Concept of Style and its Place in User Interface
Design, in Sasse, M.A., Cunningham, J. and Winder, R.L., editors, Proceedings of
HCI'96, People and Computers XI, Springer, 1996, pp. 49-62.

[6] Griffiths,T., Barclay, P.J., Paton, N.W., McKirdy, J., Kennedy, J., Gray, P.D., Cooper,
R., Goble, C.A., Pinheiro da Silva, P., Teallach: a model-based user interface
development environment for object databases, Interacting With Computers, Vol. 14,
No.1, 2001, pp. 31-68.

[7] Hammontree, M., Hendrikson, J. and Hensley B., Integrated Data Capture and Analysis
Tools for Research and Testing on Graphical User Interfaces, in Bauersfeld, P., Bennett,
J. and Lynch, G., editors, Proceedings of CHI'92: Human Factors in Computing
Systems, ACM Press, 1992, pp. 431-432.

[8] Hilbert, D.M. and Redmiles D.F., Extracting Usability Information from User Interface
Events, ACM Computing Surveys, Vol. 32, No. 4, Dec 2000, pp. 384-421.

[9] Macleod, M., Bowren, R., Bevan, N., and Curson, I., The MUSiC Performance
Measurement Method, Behaviour and Information Technology, Vol. 16, No. 4-5, 1997,
pp. 279-293.

[10] Noldus Information Technology, Website accessible at http://www.noldus.com.
[11] Pribeanu, C., Vanderdonckt, J., Exploring Design Heuristics for User Interface

Derivation from Task and Domain Models, in Kolski, C. and Vanderdonckt, J., editors,
Proceedings of 4th Int. Conf. on Computer-Aided Design of User Interfaces
CADUI'2002 (Valenciennes, 15-17 May 2002), Kluwer Academics Pub., Dordrecht,
2002, pp. 103-110.

[12] Szczur, M. and Sheppard, S., TAE Plus: Transportable Applications Environment Plus:
A User Interface Development Environment, ACM Transactions on Information
Systems, Vol. 11, No. 1, Jan 1993, pp. 76-101.

[13] Uehling D. and Wolf K., User Action Graphing Effort (UsAGE), in Katz, I., Mack, R.
and Marks, L., editors, Proceedings of CHI'95: Human Factors in Computing Systems,
Companion volume, ACM Press, 1995, pp. 290-291.

[14] UIML website, http://www.uiml.org

