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Abstract 
 

In this paper we present a means to generate a receptive field tessellation for an artificial 
retina using a self-organisation methodology. The approach addresses the problem of creating 
a receptive field tessellation that seamlessly changes from the uniform fovea to the space-
variant periphery of a retina. We sampled and reconstructed images by placing overlapping 
space-variant receptive fields on this retinal tessellation and scaling the field size according 
to the local node density. The results of sampling and reconstructing images using the above 
self-organising retina tessellation are presented.  
 

 
1 Introduction 
 
An artificial retina that can sample an image or 
scene in a space-variant manner is an essential 
front end to a biologically inspired machine 
vision system. This sampling defines the 
information content, representation and 
processing of the entire vision system. 
Researchers have reported problems computing 
plausible retinae that sample an image without 
over-sampling the central foveal region or 
creating discontinuities in the retinal tessellation 
as the spatial distance between sampling points 
increases with eccentricity (refer section 3).  

Conventional approaches for creating 
retinal tessellations have been based on analytic 
transforms. However, the authors question the 
tractability of the problem, from an analytic 
perspective, that meets the constraints of a 
continuous regular (in the fovea) to log-polar (in 
the periphery) sampling regimen.  

This paper describes the design, 
implementation and initial evaluation of a space-
variant, continuous retina with receptive field 
locations that were determined by self-
organisation. This is essentially an artificial 
(software) sensor that can be used to sample an 
image. Simple difference of Gaussian receptive 
fields (Marr, 1982) with varying receptive field 
sizes were placed on the generated retinal 
tessellation to extract visual information 
channels from an input image that correspond to 
the distinct layers of the X visual pathway. This 
multi-resolution, multilayer representation of the 
input image has been structured to form a space-

variant image pyramid (Burt and Adelson, 1983). 
We have demonstrated the inverse process of 
superimposing the retina-space image 
reconstructed from each layer of our pyramid to 
regenerate a foveated version of the original 
input image. 
 
 
2 Motivation and Approach 
 
The physiology of the primary visual cortex 
comprises uniform units of neurological 
machinery that processes the whole visual field 
of view (Hubel and Wiesel, 1979) arriving from 
the retina. Therefore, a biologically motivated 
artificial retina should be capable of extracting 
visual information such that it can be processed 
by uniform computational machinery in an 
artificial cortex. 

Wilson (1983) showed that retinal 
structures could extract information such that the 
uniform cortical machinery would output an 
‘ensemble of messages’ that does not change 
with differences in scale and orientation of an 
object for a given point of fixation. The 
implementation of such a system can then result 
in the coding of an object irrespective of its scale 
and orientation. 

In order to achieve image coding 
uniformity, it is necessary to implement a retina 
tessellation model that similarly preserves 
sampling continuity. However, real retinas 
appear to exhibit an almost uniform hexagonal 
receptor packing structure in the fovea that 
transforms seamlessly into an exponential 



sampling structure (log-polar retino-cortical 
transformation) towards the peripheral field. 
While the exponential sampling strategy of the 
retina periphery appears to have many desirable 
properties, capable of ameliorating subsequent 
visual information processing (Schwartz, 1977 
and Wilson, 1983), it must transform into a 
uniform fovea without generating discontinuities 
to allow a single set of uniform ‘coding units’ to 
be constructed in the cortex. These coding units 
would then be able to represent the local (multi-
resolution) image features (together with their 
topographic relationships) to generate Wilson’s 
“ensemble of messages”. Subsequent higher 
analysis might take the form of dynamic link 
matching (von der Malsburg, 1981), classical 
graph matching or more radical schemes such as 
spike coding (Thorpe and Gautrais, 1997). 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: The standard Lena input image that 
was used for all image processing operations in 
this paper. 
 
 
While continuity in the sampling strategy is the 
key to achieving a uniform coding strategy, the 
nature of the particular form of space-variant 
sampling adopted is also an issue. Exponential 
sampling provides the means to achieving quasi-
scale invariance and a conformal retina-to 
cortical mapping ensures that local codings retain 
their approximate invariance to scale changes. 

The retina model itself can be implemented 
within a filter-sample scheme, where bandpass 
filters are located at locations defined by the 
exponential sampling strategy and these filters 
are scaled spatially to ensure that the output 
cortical image does not contain aliasing 
components. In other words, a frequency shift 
(frequency normalisation) is taking place in the 
sampled retinal image with respect to sampling 
eccentricity that results in uniform cortical 

(radial) spatial frequencies for exponentially 
increasing retinal (radial) spatial frequencies. 

A foveated, space-variant extraction of 
visual information from an image prevents the 
combinatorial explosion of information and 
computational processing suffered by 
conventional approaches where the whole image 
is given equal processing emphasis. A retina will 
reduce the dimensionality and bandwidth of the 
image data that is being sampled and processed. 
When the retina is fixated at a salient object in 
the image the important foveal region of the 
image is sampled with a very high sampling 
density while the less important peripheral region 
is given less emphasis.  

Researchers have not been able to define a 
retina with the above properties that can extract 
visual information from an image without over-
sampling the image or creating discontinuities in 
the retina tessellation (section 3). In fact, there 
are few examples of full vision systems that 
classify or conduct recognition tasks with 
information extracted from a space-variant retina 
(Smeraldi et. al., 1998). 

Solving the problem of generating a viable 
retina model will allow biologically motivated 
vision to progress and therefore if we can 
construct a continuous retinal tessellation that 
circumvents the mentioned limitations, this can 
drive attentional structures which are part of an 
overall vision system.  

The objective of this paper is to present an 
approach to create a retina for such an artificial 
visual pathway. 
 
 
3 Previous retina models 
 
Most space-variant retinae used in conventional 
machine vision systems are based around a log-
polar sensor. The mapping from image space to 
what is called a ‘cortical space’ is computed 
according to the log(z) model proposed by Eric 
Schwartz (1977). If z = x + jy is the location (in 
complex coordinates) of a receptive field centre 
in the image plane, then the location of its output 
in the artificial cortex is given simply by log(z) 
where, 
 
    log(z)  = log(|z|) + j arg(z)  
 

  = log(eccentricity) + j (angle) 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
Figure 2: A retina with receptive field locations 
based on the log(z) model (left). A cortical 
images created by sampling the standard Lena 
image with Gaussian receptive fields placed on 
the retina (right). 
 
 
Higher level processing can now be conducted 
on the cortical image (figure 2) as this is a space-
variant, foveated representation of the image. 
Because an image has an underlying minimum 
spatial frequency any attempts to sample an 
image at higher spatial frequencies would result 
in a highly correlated output. This super-Nyquist 
sampling can be observed in the foveal region of 
the log(z) retina (figure 2). In fact a large 
percentage of the cortical image is highly 
correlated information and the sampling process 
has not optimally reduced the dimension of the 
extracted visual information.  

The log(z+α) model by Schwartz(1980) 
tried to avoid the singularity at the fovea and 
reduce the over-sampling in the foveal region, 
however the highly correlated foveal region in 
the cortical image can still be seen for realistic 
values of α (figure 3). Furthermore the log(z+α) 
retinal tessellation has an anisotropic fovea 
which is elongated vertically. An interesting 
feature of the log(z+α) model is that the cortical 
image is split along the vertical meridian into 
two visual hemispheres as in biology. 

 
 

 
 
 
 
 
 
 
Figure 3: A schematic representation of receptive 
field locations based on the log(z+α) model 
(left). A cortical images created by sampling the 
standard Lena image with Gaussian receptive 
fields using the log(z+α) model (right). 

Researchers have also tried to separate the foveal 
and peripheral regions of the retina (Bolduc and 
Levine, 1998) and thereby uniformly sample the 
foveal region while sampling the peripheral 
region with a space-variant tessellation. However 
one can see that this creates a distinct 
discontinuity in the sampling between the fovea 
and periphery (figure 4).  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: A plot of the receptive field centres 
from a retina with a uniform foveal region.  
 
 
We haven’t found any analytic or geometric 
mapping that can describe the change in 
topography of the receptive field centres between 
the fovea and periphery. However by forgoing 
geometric regularity in the retinal structure, a 
self-organisation methodology (Clippingdale and 
Wilson, 1996) has enabled us to build retinal 
tessellations that instead exhibit continuity in 
sampling density. The final structure of such a 
retina locally resembles a pseudo-regular 
hexagonal lattice with sight deviations in the 
hexagonal topology in some locations.  
 
 
4 Generating a self-organised 

tessellation 
 
The retinal tessellations in Section 5 were 
created using Clippingdale and Wilson’s (1996) 
‘self-similar neural network’ model. The 
tessellations derived using this model have 
uniform foveal regions which seamlessly merge 
into the space-variant periphery of the retina 
(figures 6 and 7). The 2-dimensional coordinates 
of the receptive field centres of the tessellations 
are represented in the network as ix  network 
weights which are stimulated by an input 
stimulus which is derived by applying a random 
transformation to the network weights 
themselves.  



Therefore, for a network of N units, each 
characterised by a 2 dimensional weight vector, 
the input stimulus ( )i ny  at iteration n  is 
calculated by the following, 
 
 1( ) ( ) ( )i in n ny T x −=   
 
where 1( )i nx − is the i th network unit at 
iteration 1n −  and 1 i N≤ ≤ . In our work we 
used the following T composite transformation: 
 

(i) A random rotation between [0, 2 )π  
 
(ii) A dilation (increase in eccentricity) 

comprising of the exponent of a 
dilation factor which is random 
between [0, log(8))  

 
(iii) Translations in the vertical, horizontal 

and radial (away from centre) 
directions random between [0, )f , 
where f is associated with the 
required foveal percentage of the 
resultant  retina. 

 
Any input stimuli ( )i ny  which lie outside the 
bounds of the retina were culled before the 
network weights 1( )i nx −  were stimulated to 
calculate ( )i nx . 
 The network was initialised with a random 
weight configuration and iterated with the above 
transformations and the following learning rule:  
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( )j nΛ contains the indices to the input stimuli 
( )i ny  to which 1( )j nx −  is the closest network 

vector. )nα(  is a learning parameter which 
controls the stimulation of the network weights. 
We linearly reduced (annealed) α  from 0.1 to 
0.001 throughout the self-organisation to 
increase convergence.  
 Intuitively, one can visualise each network 
unit being updated individually by the input 

stimuli that are closer to that unit than any other 
unit in the network. This training methodology 
causes the network to evolve a regular 
tessellation which is governed by the composite 
transformationsT . 
 The retinae that evolved using self-similar 
neural networks tend to have a regular hexagonal 
packing tessellation or mosaic. 
 
  
 
 
 
 
 
 
 
 
 
Figure 5: Magnified areas of a self-organised 
retina that show different packing mosaics. 
 
 
This is not surprising as a hexagonal tessellation 
is the approximate pattern in which receptive 
fields are found in biological retinae (Polyak, 
1941).  In fact this is a pattern commonly found 
throughout nature (Morgan, 1999). Receptive 
fields placed on this tessellation would then be 
equidistant from their immediate neighbours and 
Dudgeon and Mersereau (1984) showed that 
such a hexagonal tessellation is the optimal 
sampling scheme for a 2D space. 

Close inspection of the tessellation (figure 
5) shows that at some locations in the retina the 
tessellation undergoes an intermediate transition 
phase. In these locations the packing mosaic 
deviates slightly from a hexagonal cell 
construction (figure 5, right). These deviations 
occur relatively frequently in the region between 
the fovea and periphery of the retina where the 
retinal tessellation is changing from a uniform to 
a space-variant packing while maintaining 
regularity of the node mosaic. 

Further details about self-similar neural 
networks and a discussion of their convergence 
properties are given by Clippingdale and Wilson 
(1996). 
 
 
5 Results of the self-

organisation process 
 
Figure 6 contains a retinal mosaic that was 
created using self-similar neural networks with 
translations in the horizontal and vertical 



directions up to 20% 0.2( )f =  of the radius of 
the retina (refer section 4). As in Clippingdale 
and Wilson (1996) no radial translations were 
used to create input stimuli. The tessellation 
comprises of 4096 network nodes and was self-
organised for 250000 iterations. This tessellation 
was self-organised for an extremely long period 
in comparison to our other experiments and the 
high iteration count let the network converge to a 
remarkably regular mosaic.  

The foveal region of the tessellation has a 
distinctly square shape which was caused by 
limiting translations to the horizontal and vertical 
directions. We therefore decided to experiment 
with different translation approaches to generate 
a more plausible retina. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: A plot of a self-organised retina with 
translations made in horizontal and vertical 
directions. 
 
When we translated a 4096 node network 
radially instead of in the horizontal and vertical 
directions we obtained the pattern in figure 7. 
The radial translation was up to 20% 0.2( )f =  
of the radius of the retina (section 4) and the 
network was self-organised for 20000 iterations.  

This approach resulted in a mosaic with a 
higher packing density in the fovea. However the 
centre of the fovea is approximately uniform and 
does not reach singularity (figure 8). 

We were able to create a tessellation with a 
large uniform foveal region which was isometric 
by self-organising a network with a composite of 
horizontal, vertical and radial translations.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: A plot of a self-organised retina with 
translations made radially. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: A magnified view of the fovea from the 
retina illustrated in figure 7 (the radius of the 
retina is 1 unit). 
 
 
Figure 9 contains the mosaic that was obtained 
after self-organising with a radial translation that 
was up to 20% 0.2( )f =  and horizontal and 
vertical translations which were up to 6.6% 

0.066( )f =  of the radius of the retina. The 
network consists of 4096 nodes and was 
annealed for 20000 iterations. 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: A plot of a self-organised retina with 
translations made horizontally, vertically and 
radially. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10: A magnified view of the fovea from 
the retina illustrated in figure 9 (the radius of the 
complete retina is 1 unit). 
 
 
Figure 11 contains a plot of the node density of 
the retina in Figure 9 with eccentricity. The 
nodes were binned according to eccentricity into 
50 bins and the resulting histogram frequency 
was calculated. The plot reflects the topography 
of the retina with a node density reaching a 
plateau in the fovea. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11: Node density of the retina in figure 9. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12: Standard deviation of the distance to a 
node’s immediate neighbours in the retina in 
figure 9. 
 
The standard deviation (figure 12) of the retina 
increases in the foveal region and the authors’ 
hypothesise that this is due to the tessellation 
trying to maintain regularity while being subject 
to increased stimulatory forces in the fovea. 

Further experiments revealed that the node 
density and variance values of retinae exhibit 
less variability as one increases the number of 
iterations during self-organisation. 
 
 

6 Placing receptive fields on 
the self-organised tessellation 

 
We constructed retinae out of the self-organised 
tessellations by placing overlapping receptive 
fields (or filters) at the calculated node locations. 
The receptive fields were placed on the 
calculated node locations with sub-pixel 
accuracy by altering the coefficients of the filters 
to reflect the sub-pixel jitter. The size of a 
receptive field was calculated based on the mean 



distance to its nearest neighbouring nodes scaled 
by a suitable scaling factor (we used 6). This let 
us create space-variant, overlapping  receptive 
fields. The retina was then scaled to an image 
such that the mean distance between closest 
nodes in the fovea was equal to one pixel. Figure 
17 is a reconstruction of a cross stimulus that 
clearly illustrates the space-variant receptive 
field sizes in the retina. Difference of Gaussian 
(DoG) receptive fields were used in these 
experiments to resemble the processing of a 
simplified retinal ganglion cell layer.   

An approximation to a space-variant octave 
Laplacian pyramid was constructed by sampling 
an image with retinae constructed from several 
self-organised tessellations (figure 16). The 
number of nodes in the tessellations was reduced 
by a factor of 4 between resolution levels of the 
octave pyramid. 
 
 

7 Results of sampling with the 
retina 

 
All the following results are from retinae that 
were constructed using self-organised 
tessellations that were translated horizontally, 
vertically and radially (figure 9). The 
reconstruction images are reversals of the 
sampling operations of the retina on an image. 
The low dimensional extracted responses from a 
retinal sampling (for example a 4096x1 
dimensional vector in the case of a 4096 node 
retina) were distributed over the respective 
receptive fields of the retina to form the 
reconstruction. 

Figure 15 contains the reconstruction of the 
sampling of the greyscale Lena image by a 4096 
node retina with difference of Gaussian receptive 
fields. Since the receptive fields near the point of 
fixation are small, these have sampled and 
reconstructed higher spatial frequencies than in 
the periphery where there is reduced acuity in the 
reconstruction. The retina has a restricted field of 
view and therefore has not sampled the entire 
Lena image. This was because we scaled the 
retina to the image as described in section 6.  

Figures 13 and 14 contain the 
reconstructions from retinae with 64 and 256 
nodes respectively. We similarly constructed 
retinae with 16 and 1024 nodes and used all 
these retinae to construct a superposition of the 
reconstructions of the Lena image which were 
sampled by retinae with 4096, 1024, 256, 64 and 
16 difference of Gaussian receptive fields (figure 
16). The vector that was used for the 

reconstruction is just 5456x1 (4096+1024+ 
256+64+16) yet we still obtained a detailed 
space-variant representation of the Lena image. 

 
 

8 Conclusion 
 
We have created a plausible artificial retina with 
a regular receptive field tessellation and 
continuity between foveal and peripheral regions. 
While the tessellation was locally pseudo-
random it maintained a sampling density 
continuum at a macroscopic level, though at the 
price of sacrificing (analytic) geometric 
uniformity. 

Despite the pseudo-random nature of the 
tessellation, it is still possible to conduct useful 
computation on this visual representation. To 
demonstrate this, space-variant difference of 
Gaussian receptive fields were placed on the 
generated retinal tessellation to simulate 5 layers, 
i.e. 5 separate spatial frequency bandpass 
channels, of simplified ganglion cells. We then 
successfully used the resulting retina to sample 
image information and reconstruct a space 
variant version of the original input. 
 
 

9 Future Work 
 
The visual information extracted using this 
retinal front end will need to undergo further 
processing in subsequent stages of a visual 
pathway. However performing image processing 
operations on visual information extracted using 
an irregular sampling regimen is not trivial. 
Wallace et. al. have proposed connectivity 
graphs for reasoning with space variant images 
(Wallace et. al., 1995). Since the retina we used 
was not based on an analytical transform such as 
the log(z) type mappings in Wallace et. al. 
(1995), we recently adopted Delaunay 
triangulation (Barber et. al. 1996) to define a 
‘topological cortical space’ which we were able 
to further transform by applying image filtering 
operations.  

To perform a convolution with any 
arbitrary filter we calculated the coefficients of 
the filters at topological cortical space node 
locations. We have already been able to filter 
oriented image features from the responses 
extracted from the retina by placing Gabor 
receptive fields on the topological cortical space 
and hope to demonstrate the uniform coding of 
visual information across the entire visual field 
when using our representation. 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13: Reconstruction of the sampling of the 
greyscale Lena image using a 64 node retina with 
difference of Gaussian receptive fields.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14: Reconstruction of the sampling of the 
greyscale Lena image using a 256 node retina 
with difference of Gaussian receptive fields. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15: Reconstruction of the sampling of the 
greyscale Lena image using a 4096 node retina 
with difference of Gaussian receptive fields.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16: Reconstruction of the sampling of the 
greyscale Lena image by the superposition of the 
image pyramid individual resolution layers 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 17: Input cross stimulus (top) and the 
reconstruction of the cross stimulus using a 4096 
node retina with difference of Gaussian receptive 
fields (bottom). 
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