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Abstract 
 

Biological and artificial systems that use a space-variant strategy to extract visual 
information from a scene using a retina face the problem of targeting their sensor so that the 
central high acuity foveal region inspects salient regions in the scene. At the same time the 
coarse peripheral region of the retina must extract visual information over a wide field of 
view to find new interesting locations for future detailed examination with the fovea. This 
paper describes the saccadic exploration of an image using an artificial retina with a space-
variant pseudo-random receptive field tessellation. A space-variant vision hierarchy extracts 
visual information and accumulates space-variant saliency data to determine the location for 
the next saccadic fixation. 

 
 

1. Introduction 
 

This paper reports an investigation into a vision architecture that supports machine sensors which 
resemble the space-variant sampling characteristics found in human retinae. These artificial retinae 
have a very high acuity in their central or foveal region and have increasingly reduced acuity towards 
the retina’s periphery. Such a retina will therefore have a wide field of view but only a limited high 
resolution centre. In a human retina only a tiny fraction of the field of view is sampled with the fovea. 
Ballistic eye movements called saccades are used to target different scene locations such that we 
perceive a seamless integrated whole and are rarely consciously aware that our visual system is based 
on a space-variant sensor.  

Biological and artificial systems that use a space-variant strategy to extract visual information from 
a scene face the problem of targeting the retinal sensor so that the central high acuity foveal region 
inspects important or salient regions in the field of view. This is not a trivial task, as it is not possible 
to know a priori with confidence whether a region is useful before looking at it in detail with the 
fovea. An effective attention model that can concentrate limited sampling and processing resources on 
useful scene points is an integral part of a space-variant vision system.  

 
2. Background 

 
Previous work on machine attention and saccadic control using space-variant visual information can 
be found in the computer vision literature. Swain et al. (1992) used low resolution colour cues to drive 
attention of their system in an object search task. They did not use a retina but instead used a coarse 
version of the image to mimic the low resolution periphery of a retina. The colour cues in the coarse 
image were used to search for the object. Rao (1994) also did not explicitly use a retina but instead 
used the log-polar mapping (Schwartz, 1977) to represent the sampling of a retina. Gaussian 
derivatives at five different scales were used and the goal (target) image was used to create a saliency 
map in an object search task.  

Itti (2000) developed an attention model for focus of attention using centre-surround and double-
opponent receptive fields to generate saliency maps, and inhibition-of-return was used to move the 
focus of attention. While Gaussian pyramids were used to process multiple scales, each layer of the 
pyramid was not space-variant, i.e. the whole image was sampled independent to the focus of 
attention. This paper differs from Itti’s work by using a pseudo-random space-variant retina to extract 
visual information and compute space-variant saliency. In our work, inhibition-of-return does not just 
suppress the saliency of the current fixation point but also causes the artificial retina to fixate on 
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another salient location of the image, thereby extracting novel visual information with the high acuity 
fovea. 

Recently a face authentication system was developed by Smeraldi and Bigun (2002) using a coarse 
log-polar tessellation with Gabor receptive fields. Support Vector Machines were used as a classifier 
for the detection and authentication of facial landmarks. However space-variant receptive fields were 
not used and the system lacked biological plausibility as orientated receptive fields were placed 
directly on the retinal sensor itself.  

 
3. The Artificial Retina 

 
A space-variant retinal sampling of a scene or image provides a dramatic reduction in the 
dimensionality of the visual information that must be processed and reasoned with by a biological or 
machine vision system. We generated an artificial retina by creating a retinal tessellation using a self-
organisation methodology called Self-Similar Neural Networks (Clippingdale and Wilson, 1996), and 
placing overlapping space-variant receptive fields on the retinal mosaic to sample visual information 
from the image at varying spatial resolutions depending on retinal eccentricity. Difference of 
Gaussian filters were used to extract achromatic contrast information and filters resembling colour 
opponent type II retinal ganglion cell receptive fields were used to extract two channels of chromatic 
contrast information from the image. The reader is referred to Balasuriya and Siebert (2003a,2003b) 
for details about the construction of the self-organised artificial retina and its receptive fields.  
 
 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 1. (a) Tessellation of a pseudo-random artificial retina with 4096 receptive fields. The coarsely sampled 
peripheral region of the retina gives the system a wide field of view, while the fovea provides a high resolution 
detailed sampling at the centre of the retina. (b) Cortical graph receptive fields associated with a retina consisting of 
1024 receptive fields. There is a cortical receptive field centred at each node over the retinal tessellation resulting in 
a cortical graph with an equal number of nodes. Two cortical receptive fields with constant radius of three edges on 
the cortical graph yet varying spatial support in the image domain are highlighted.  

 
4. Higher Level Feature Extraction 

 
The features extracted by the circularly symmetric filters on the artificial retina were analysed further 
for complex features suitable for reasoning. A cortical graph structure (Figure 1b) was used to define 
cortical filters that are uniform in size in the artificial cortex and space-variant in the image domain. 
Delaunay triangulation was used to create topological relationships between nodes in the graph. Edge 
features were extracted by processing the achromatic difference of Gaussian output from the retina 
with Gabor cortical filters. The chromatic opponent information output from the retina was processed 
using chromatic double opponent cortical filters. Details about the cortical graph and the construction 
of cortical filters can be found in Balasuriya and Siebert (2003b).  

A winner-take-all scheme was used to select the dominant Gabor response orientation from each 
location on the cortical graph. These responses were accumulated within a Gaussian neighbourhood at 
each orientation and were cycled to a canonical orientation (orientation with the largest response) to 

   (a)      (b) 
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make the extracted information invariant to rotation in image plane. Processing resources of the 
system were economised by only calculating cortical filters at locations (nodes on the cortical graph) 
which were co-located with a significant retinal response.  
 
5. Space-Variant Saliency and Saccade Generation 

 
A saliency map was computed by aggregating the absolute values of the responses from the co-
located achromatic and chromatic cortical filters. The system accumulates saliency by assimilating 
saliency information from the current fixation into an evolving saliency map. However the saliency 
values need to be incorporated into the saliency map reflecting not only the degree or significance of 
the saliency value but also the spatial scale of the represented salient region.  
  This was achieved by distributing the saliency values from the current saccade using the artificial 
retinal tessellation itself. Gaussians blobs were placed on a null image with amplitude corresponding 
to the associated saliency value and with size (i.e. Gaussian standard deviation, σ) corresponding to 
the co-located retinal receptive field. Therefore the saliency map, Current_Smap, generated solely 
from the current fixation would be    
 

Current_Smap(x,y)= 
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where Or is the aggregated response (saliency value) from cortical filter r centred on (xr ,yr) and the 
accumulated saliency map Smap was calculated as 
 

Smap(x, y) = Current_Smap(x,y)    if Current_Smap(x,y) > Smap(x,y)    
 
  In most applications there is no direct advantage in the fovea re-inspecting locations when 
examining a static image. Therefore an inhibition-of-return map was used to prevent the retina 
repeatedly re-fixating upon highly salient locations on the image. The inhibition-of-return map Imap 
was generated by placing Gaussians (with problem specific standard deviation σi and scaling factor A) 
at each saccadic fixation point ( xf

 ,yf ) as the retina examines the image. 
 

Imap(x,y) = Imap(x,y)+
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The next fixation point in the image (xf,yf) for the retina was determined by,   
Smap(xf,yf) - Imap(xf,yf) ≥ Smap(x,y)- Imap(x,y)   where  xf ∈   x and yf ∈  y              

 
and the system was instructed to saccade until, 
  Smap(x,y) - Imap(x,y) < 0   for  ∀  x ∀  y      
                

 
 
Figure 2. (a) Mandrill colour image with the first five retinal fixations. The retina was initially fixated upon the 
centre of the image. (b) Inhibition-of-Return map after 17 fixations. (c) Saliency information from a fixation at the 
centre of the image. The retina almost spans the whole image when it fixates on the centre and space-variant 
saliency information, detailed in the fovea and coarse in the periphery, can be observed. (d) Accumulated saliency 
map after 17 fixations. It is interesting to note that the system found the mandrill’s eyes and nostrils to be highly 
salient.  

        (a)           (b)        (c)          (d) 
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Figure 3. (a) A plot of Smap-Imap of the next fixation point when the retina was examining the Mandrill image. 
The retina stopped saccading when this value was below zero. (b) Salience value at the point of fixation. The 
system does not know the true salience of a location until it is examined with the fovea. Therefore the salience 
value at the point of fixation may not monotonically decrease as the retina examines the image.  

 
6. Conclusion and Future Work 

 
An approach for generating saccades for a pseudo-randomly tessellated space-variant retina was 
presented. The retina would serially fixate on highly salient image locations, accumulating saliency 
information reflecting the degree of saliency and the space-variant characteristics of the vision 
system.  
  We plan to extend this approach to accommodate top-down attention into the saliency calculation 
in object recognition and object search tasks using the implemented visual hierarchy. The impact of 
extracting visual information using a pyramid of retinae that samples space-variant information at 
several scales will also be investigated. A simplified implementation of lateral inhibition will be used 
to sparcify low level visual information.  
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