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Abstract 

 
Biological vision systems process signals extracted 

by a retina that reduces the dimensionality of visual 
information for processing by higher cortical areas. To 
date researchers in machine vision have not reported 
computing a biologically inspired artificial retina that 
can sample visual information without over-sampling the 
central foveal region or creating discontinuities in the 
retinal tessellation. We have implemented a space-
variant retina that has a uniform receptive field density 
in the central foveal region and becomes increasingly 
sparse in the surrounding periphery. 

The retina contains isotropic receptive fields and the 
responses from the retina were processed by machinery 
motivated by biological cortical circuitry. We introduce 
a cortical graph that enables us to compute space-
variant cortical filters that can sample irregular image 
information generated by the retina and thereby extract 
edge information and process colour opponent 
information. In this paper we briefly describe the self-
organising methodology we used to generate retinal 
tessellations and detail the construction of visual 
information processing layers in our architecture.  
 
 
1 Introduction 
 

We are developing a generic vision front-end for 
attention and recognition which is based on a space-
variant self-organised retina. The biologically inspired 
artificial retina extracts a visual information stream from 
the image which is then operated on by a hierarchy of 
units which are motivated by the processing in the 
human visual pathway. 

In this paper we will refer to biological 
computational units as cells while machine 
computational units will be referred to as filters or 
kernels. The term receptive field will be used with both 
biological and machine computational units and will 
refer to the area in the field of view where stimulation 
results in a response in the computational unit. 

The representation of visual information in a system 
which processes information from a space-variant retina 
is quite different from the representation used in 
conventional vision systems. Most current systems give 

equal processing emphasis to the whole field of view of 
the camera or image frame and work with visual 
information which can be stored in a uniform data 
structure. For example, greyscale information extracted 
by a conventional CCD imager in a digital camera can be 
stored in a rectilinear two dimensional array structure. 
Image processing operations for analysis and feature 
extraction can be easily applied to this array. 
Convolution operations are simple to implement by 
scanning a mask or kernel over the array and performing 
the necessary multiply and accumulate operations. 
Similarly the visual information can be easily sub-
sampled to reduce its resolution. Rotation and other 
translation operations are also trivial. This simply is 
because the local connectivity between adjacent nodes of 
information in the array is uniform. Pixels have 
equidistant neighbours above, below and to their left and 
right (except on the border of the array).  

However, space-variant imaging systems do not 
process the all visual information presented to the system 
equally. The central or foveal region of the retina has a 
very high acuity. The image is finely sampled by filters 
in this retinal region. As we increase eccentricity and 
move away from the central area of the retina, the acuity 
of the retina gradually reduces to the periphery where the 
image is only coarsely sampled. The output from this 
space-variant sampling needs to be stored in a plausible 
data structure for higher level operations in subsequent 
stages of the processing pathway of the system. 

Researchers [1, 2, 3, 4] have tried to find an 
analytical retino-cortical transform that can map 
locations in the field of view to a continuous cortical 
image, thereby creating a data structure that can store the 
extracted visual information. This is because the change 
in ganglion cell density with eccentricity in a primate 
retinae resembles the density needed for analytical 
transforms such as the complex-log transform [1, 2]. 
However the actual retinal tessellations or locations of 
retinal receptive fields that are needed to generate a 
continuous cortical image using these retino-cortical 
transforms are inadequate, exhibiting singularities and 
over-sampling the fovea or having discontinuities and 
distortions in the sampling mosaic. No analytic approach 
or geometric mapping that can describe the gradual 
change in topography of the retina between a uniform 
fovea and space-variant periphery has been reported in 
the computer vision literature.  



Therefore, we used a self-organisation methodology 
[5] to generate a retinal tessellation that while foregoing 
geometric regularity of the retinal mosaic had a 
continuity in sampling density. The structure of the retina 
(Figure 1) [6] locally resembles a pseudo-regular 
hexagonal lattice with sight deviations in the hexagonal 
topology in some locations while maintaining a sampling 
density continuum at a macroscopic level. The retina has 
a uniform foveal region which seamlessly coalesces into 
a space-variant periphery and the tessellation does not 
have a singularity in the fovea. In Figure 1 each point in 
the tessellation is a location for the placement of the 
centre of a receptive field.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1: Self-organised retinal tessellation.  

A space-variant retina that can sample an image was 
created by placing filters on the displayed retinal 
tessellation with receptive field size varying with the local 
node density of the tessellation. We placed simple 
difference of Gaussian filters[7] on the tessellation with 
sub-pixel accuracy. Difference of Gaussian filters were 
used because these isotropic bandpass filters resemble the 
receptive fields of retinal ganglion cells. The space-variant 
filter responses of the retina were extracted by multiplying 
the underlying image pixels with the (pre-computed) filter 
coefficients. The retina displayed in Figure 1 has 4096 
nodes and therefore filters placed on this retina would 
result in a sampling output of a 4096 by 1 vector. Because 
an explicit analytic mapping from the retina to a 
retinotopic cortical image data structure that could be used 
to store and manipulate extracted image information is not 
available for our self-organised retina, we had to devise a 
way of performing filtering operations on the visual data 
which is in effect a one dimensional vector. 

 In the human visual pathway retinal ganglion cells 
initially perform filtering with isotropic centre-surround 
receptive fields. Following this, nerve afferents carry 
visual information away from the retina and the 
achromatic information in the parvocellular pathway [8] 
(which carries information related to form, colour and 

texture) is processed by simple cells in the lower visual 
cortex. These simple cells [9] have been found to have 
anisotropic receptive fields. The receptive fields are 
elongated and are thought to be used to extract edge 
information from the isotropic responses emitted from 
the retina. The simple cells have oriented receptive fields 
at different orientations and scales and perform a great 
deal of processing on the visual information from the 
retina. It is hypothesised that anisotropic filtering of 
isotropic responses has evolved in nature because of 
computational efficiency. This is because the space-
variant filtering computed by the isotropic layer 
dramatically reduces the dimensionality of the visual 
information so that it can be efficiently operated on by a 
multitude of oriented anisotropic filters.  

It is thought that chromatic information in the 
parvocellular pathway is processed by double opponent 
cells [10]. These are circularly symmetric centre-
surround cells found in the “blob” regions of the primary 
visual cortex and are believed to help provide colour 
constancy to human vision.  

 The main contribution of this paper is the approach 
for implementing anisotropic sampling of the achromatic 
responses of isotropic filters placed on the irregular, 
pseudo-random retinal tessellation. We will detail the 
construction of a space-variant visual processing 
hierarchy based on a retinal sampling with a pseudo-
random receptive field tessellation.  

Similarly a multi-scale hierarchy using retinae with 
4096, 1024, 256, 64 and 16 receptive fields, creating a 
space-variant pseudo-random approximation to an octave 
pyramid was implemented.   
 

 
2 Related Work 

 
Laplacian pyramids [11] have been traditionally 

used in image processing to enhance salient image 
features. These can detect activity in an image at 
different spatial scales. Researchers frequently 
approximate the Laplacian operator by a difference of 
Gaussian kernel [12].  

Greenspan et. al. [13] constructed an oriented 
Laplacian pyramid by forming a Filter-Subtract-
Decimate Laplacian pyramid and modulating each level 
of the pyramid with oriented sine waves. They used this 
structure for rotation invariant texture classification.  

The data structures that were used for research 
discussed in this section have thus for been conventional 
rectilinear arrays. Wallace et. al. [14] considered image 
processing using space-variant structures. They used 
connectivity graphs to encode relations between nodes, 
where graph nodes represent sensor pixels and graph 
edges represent adjacency relations between pixels. This 
work dealt with retinal tessellations and sensors based on 
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analytical retino-cortical transforms [1, 2]. They formed 
cortical image data structures to store the extracted visual 
information. Wallace et. al. performed image 
transformations, pyramid operations and connected 
components analysis on the space-variant cortical 
images. They also performed simple edge detection by 
subtracting the pixel value of adjacent nodes from the 
pixel value of a node.  

Smeraldi and Bigun [15] have developed a facial 
landmark detection and face authentication system based 
on low-level features extracted using Gabor filters placed 
on a retina-like sampling grid. They used SVM 
classifiers to detect facial landmarks. The search for 
facial landmarks was conducted by centring their retina 
on the sampling point that resulted the in a local 
maximum of SVM output. This appears to be the most 
complete attempt where an active space-variant retina 
has been used for a vision task that is represented in the 
literature to date. However the retina Smeraldi and Bigun 
used contained just 50 receptive fields. They did not 
develop a vision hierarchy and the steering of anisotropic 
(Gabor) filters and other complex filters on the retina 
itself is inefficient. In this paper we detail the 
construction of a vision hierarchy that begins with 
elementary band-pass filtering in a multi-scale detailed 
retina and extends to orientated edge and colour 
detecting filters in higher levels of the processing 
pathway.  

 
 
3 The self-organised retina 
 

The pseudo-random retinal tessellation that we 
adopted was obtained by a self-organisation technique 
[5] that is based on stimulating the network weights by a 
stimulatory input that is derived by applying a composite 
transformation to the network weights themselves. When 
generating retinae, network weights will represent the 
two dimensional x and y coordinates of the retinal 
receptive fields. Therefore, for a network of N units, 
each characterised by a 2 dimensional weight vector 
xi(n), the input stimulus yi(n) at iteration n is calculated 
by the following, 

 

1( ) ( ) ( )i in n ny T x −=     (1) 
 

where xi (n - 1) is the i th network unit at iteration n - 1 
and 1 ≤ i ≤ N. In our work we used the T composite 
transformation (equation 1) which comprises of a 
random rotation between 0 and 2π, a dilation (increase in 
eccentricity) comprising of the exponent of a dilation 
factor which is random between 0 and log(8) and 
translations in the vertical, horizontal and radial (away 
from centre) directions random between 0 and f, where f 
is associated with the required foveal percentage of the 
resultant  retina.  

The network was initialised with a random weight 
configuration and iterated with the described composite 
transformation T and the following learning rule to find 
the updated weight vector xj(n):  
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contains the indices to the input stimuli yi(n) to 

which xj (n - 1) is the closest network vector. α(n) is a 
learning parameter which controls the stimulation of the 
network weights. Space limitation restrict our discussion 
of the self-organisation further, but the reader is referred 
to Balasuriya and Siebert [6] for further details regarding 
generating retinae and to Clippingdale and Wilson [5] for 
details regarding the self-organisation methodology. 
 
 
 
 

Figure 2 : Diagrammatic representation of the 
implemented low level vision hierarchy 

 
3.1 Receptive fields on the retina 

 
Overlapping receptive fields were placed on the self-

organis retina to retinally sample an image. The receptive 
fields were placed with sub-pixel accuracy by varying 
the filter coefficients to reflect the sub-pixel jitter.  

Receptive field sizes had to change with the 
eccentricity of the retina to generate a space-variant 
sampling. Filters in the periphery had to be much larger 
than those in the fovea. Since an analytic transform for 
the self-organised retina that gave explicit receptive field 
locations was unavailable, a strategy to define receptive 
field sizes on the irregularly tessellated retina was 
formulated. Retinal receptive field size was based on 
local node (receptive field centre) density and the 
following metric was used to determine the receptive 
field diameter di of retinal node i :  
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where Ai,j is the sorted Euclidean distance matrix of the 
retinal tessellation, k is the neighbourhood size for 
determining node density and s is a scaling constant. 
Because the receptive field size varies with what is 
essentially local node density, the receptive fields will be 
space-variant with retinal eccentricity. 
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 Since the circularly symmetric Gaussian 
distribution g(x,y) with two variables and standard 
deviation σ is  
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the difference of Gaussian filter was calculated by 
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where σs and σl are the standard deviations of the two 
Gaussian distributions that form the difference of 
Gaussians kernel. The following ratio between standard 
deviations was used  
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to make the difference of Gaussians kernel approximate 
the Laplacian which in turn resembles the receptive 
fields of biological retinal ganglion cells [12].   

Since a cortical image to display the output of the 
retina does not exist we visualised the sampling and 
processing of the system by reversing the processing 
operations to generate a reconstruction of the extracted 
responses in the image domain. These image domain 
responses of machine units may be considered analogous 
to the receptive fields of biological neurons found by 
neuroscientists like Hubel and Wiesel.    

 
 
 
 
 
 
 
 

Figure 3: (Left) Reconstruction using a 4096 node retina 
(Right) Superposition of the reconstructed responses 

after sampling using a retina pyramid  

Figure 3 contains the reconstruction of retinally 
sampling the grayscale Lena image using standard 
difference of Gaussian retinal receptive fields. The image 
on the right was constructed by sampling the Lena image 
with retinae with 4096, 1024, 256, 64 and 16 difference of 
Gaussian receptive fields and then reversing the process 
and summing the reconstructed images. Close examination 
of the images will reveal the space-variant nature of the 
retinal sampling. The reader is referred to Balasuriya and 
Siebert [6] for further details.  

In the human retina, chromatic information is 
encoded into red-green and blue-yellow colour opponent 
channels. This is done by type I and type II colour 

opponent retinal ganglion cells [16]. The processing of 
type II cells was approximated in machine vision by 
taking the difference between the responses of Gaussian 
filters which sampled the red and green channels 
separately. Chromatic filters were placed on the retina 
with overlapping receptive fields as we discussed earlier.  

The following figure illustrates the reconstruction of 
the responses of our type II filters on a 4096 node retina. 
Space-variant colour opponent receptive fields have 
extracted chromatic contrast information from the 
standard mandrill image. Our implementation of type I 
filters resulted in similar responses.  

 
 
 
 
 
 
 

 

Figure 4: Original mandrill image with reconstructed 
responses from red-green and blue yellow type II colour 

opponent retinal filters respectively. 

 
 
4 Processing an irregular tessellation 
 

The retinal output that we have described needs to 
be processed by filters in higher levels of the visual 
hierarchy. These filters will extract edge information and 
analyse colour information from the responses of the 
self-organised retina. 

Since the output of the retina is essentially a one 
dimensional vector, applying filtering operations on this 
data structure is not trivial. While the extracted feature 
vector is one dimensional, each location on the vector 
has a spatial semantic relationship with a corresponding 
location on the retinal tessellation (Figure 1). The 
problem of applying a filtering operation on the vector 
was addressed by calculating the support region and 
coefficients of the required filter at the location on the 
retinal tessellation that was associated with a position on 
the vector.  

We used the Quickhull algorithm [17] to perform 
Delaunay triangulation on coordinates of the generated 
retinal receptive field centres (retinal tessellation). This 
enabled us to define a cortical graph that would help us 
reason with the extracted visual information. Filter 
support regions for cortical filters using constant kernel 
sizes on the cortical graph results in space-variant 
cortical filter support regions on the image. The unit of 
distance was an edge between two nodes (associated 
with retinal receptive field responses) in the Delaunay 
triangulated tessellation (cortical graph).  

 



 
 
 
 
 
 
 
 
 

Figure 5 : The Delaunay triangulated cortical graph with 
two cortical filters highlighted to indicate space-variant 

filter support regions in the image domain 

The radius of the cortical filters highlighted in 
Figure 5 is a constant three edges on the cortical graph, 
but these have varying support regions on the image 
because of the space-variant tessellation of the cortical 
graph. The following was defined to calculate the 
neighbourhood Nk(vc) of a cortical filter with radius k 
edges on the cortical graph and centred on node vc.  

 

( ) when ( , )i k c i cv N v dist v v k∈ <   (8) 
 

where dist(vi,vc) is the graph distance or length of the 
graph geodesic (shortest path) along the cortical graph 
from node vi to node  vc. Coefficients need to be 
calculated at nodes vi for the cortical filter. While cortical 
filter neighbourhoods were defined on the cortical graph, 
the coefficients of the filters were calculated based on the 
normalised Euclidean displacement of the nodes in 
image space. This was more accurate than computing the 
coefficients of cortical filters based on the displacement 
of nodes on the cortical graph. Even in biology, 
ontogenesis will cause cortical filters to adapt to ideal 
receptive fields in the field of view and will not be solely 
affected by local inter-cortical distances between units.   
 
4.1 Anisotropic Orientated cortical filter layer 
 

A Gabor filter h(x,y) can be described as a sinusoidal 
plane (at a certain frequency and orientation) modulated 
by a Gaussian envelope. Gabor filter coefficients at the 
discrete locations of the cortical graph within a cortical 
filter’s spatial support need to be calculated. For a 
cortical Gabor filter of size k centred at vc(x0, y0) on the 
cortical graph the valid filter coefficients will lie on   
vi(x, y) in neighbourhood Nk(vc) (equation 8) where N is 
the set of neighbourhood points around (and including) 
point vc(x0, y0). Therefore, the Gabor filter coefficients 
for the cortical filter at vc(x0, y0) are given by 
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where σ is the standard deviation of the Gaussian 
envelope and U and V are the horizontal and vertical 
central frequencies of the Gabor filter.  

Because of the irregular positions of the nodes on 
the cortical graph, coefficients may be biased towards 
one of the two cortical filter subfields of the Gabor filter. 
For example there may be more cortical nodes on the 
positive subfield of the filter. This would result in a 
biased filter response and the cortical filter would even 
give a response to a uniform non-zero input. Therefore 
the two cortical filter subfields were balanced by 
normalising the coefficients on the positive and negative 
subfields. 

 
 
 

 

Figure 6 : Reconstruction after filtering of a cross 
stimulus (left) using difference of Gaussian (centre-left) 

and Gabor cortical filters oriented vertically (centre-
right) and at 45º (right). 

 
4.2 Double Opponent cortical filter layer 

 
For a double opponent cortical filter of size k 

centred at vc(x0, y0) on the cortical graph the valid filter 
coefficients will lie on vi(x, y) in neighbourhood Nk(vc) 
(equation 8) where N is the set of neighbourhood points 
around (and including) point vc(x0, y0). We may define a 
filtering operation ⊗ for the double opponent cortical cell 
dop(x0,y0) on cortical graph node vc(x0, y0) as the 
following:  
 

( , ) (( ), ( )) ( , )o o o odop x y dog x x y y I x y= − − ⊗ (10) 
 

where dog is a difference of Gaussians filter (equation 6) 
and I(x,y) are the retinal responses from the Type II 
colour opponent retinal filters. The following must also 
be defined for the double opponent cortical filter:  
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Different inputs are sampled in the difference of 
Gaussian’s positive and negative subfields. For example, 
for a double opponent filter sampling the output of the 
red-green opponent filters, I1 would be responses from 
the type II Red+Green- and I2 would be responses from 
the type II Red-Green+ colour opponent retinal filters[10]. 
As with the Gabor cortical filters, the filter subfields 
were normalised. 

 
 
 



 
 

 
 
 
 
 
 

 

Figure 7 : Responses of red-green (left) and blue-yellow 
(right) double opponent cortical filters displayed using 

difference of Gaussian filters.  

We hypothesise that the output of the double-
opponent cells should be analysed for edge information 
as there are distinct edge-like responses in this output. 
Little guidance is available in the psychophysics and 
neuroscience literature regarding the processing of 
responses from double opponent cells by higher cortical 
areas.   
 
 
5 Conclusion  
 

We have shown that a biologically motivated low 
level vision hierarchy can be constructed that processed 
the responses from a self-organised space-variant 
irregularly sampled retina. A cortical graph was 
introduced which enabled us to define cortical filters that 
had receptive fields with space-variant spatial support 
regions. The coefficients for cortical filters were 
calculated for nodes within the spatial support of the 
filter in the cortical graph. The actual filter coefficients 
were calculated based on displacement on the image or 
field of view. The resulting vision hierarchy was able to 
extract edge and colour information using these cortical 
filters and could be extended to higher layers of 
processing to extract complex features using the same 
methodology.  

Our current work focuses on implementing an object 
recognition engine that will process the output vectors of 
the vision hierarchy and drive a saccadic attention 
mechanism that will generate salient points for fixation 
by the retina.   
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