
Frontal View

Human Face Detection and Recognition

This thesis is submitted in partial fulfilment of the requirement for

the B.Sc.(Honours) degree in Computer Science.

Lalendra Sumitha Balasuriya

Department of Statistics and Computer Science

University of Colombo

Sri Lanka

May 2000

1

To my mother and father,

for opening my eyes to the world.

2

Declaration

I hereby certify that this thesis entitled "Frontal View Human Face Detection and

Recognition” is entirely my own work. It has not been submitted nor is it being currently

submitted for any other degree.

……………………

Candidate L. S. Balasuriya

Date ……………………

……………………

Supervisor Dr. N. D. Kodikara

Date: ……………………

3

Acknowledgements

I sincerely wish to express my appreciation for the valuable help, which I received during

the completion of the thesis by the following:

Dr. N. D. Kodikara, for supervising my project, guiding me throughout my research and for

his very informative lectures on Computer Graphics and Vision.

Dr. Ruwan Weerasinghe, for his interesting lectures on Intelligent Systems and Mr Gihan

Seneviratne, for his lectures on Neural Networks and for the many discussions we had on

network models.

Dr Saman Halgamuge, Damminda Alahakoon and Ajantha Atukorale, without whose help

and support at crucial times in my research could not have gone so far.

Doug Hundley, for guiding me though the mysterious world of Principal Component

Analysis.

Sir Arthur C. Clarke, for the inspiring discussion we had about my project.

Raditha Dissanayake, for lending me his digital camera without which this project would

not have been possible.

To all the 'test subjects' who (reluctantly) posed for my human face database.

To my father for drafting my figures and proof reading this dissertation, Rasini for

(carelessly) normalising the face database and my mother for her love, support and constant

supply of food at all hours.

Methmal, Asankha, Thushan, Sagara, Lilantha, Chanaka, Sulochana, Supun and all my

other colleagues and friends at the university for their help, comments and input during my

research.

4

5

Abstract

This thesis is an attempt to unravel the classical problem of human face recognition. The

researcher addressed the problem of automated face recognition by functionally dividing it

into face detection and face recognition. Different approaches to the problems of face

detection and face recognition were evaluated, and five systems were proposed and

implemented using the Matlab technical computing language.

In the implemented frontal-view face detection systems, automated face detection was

achieved using a deformable template algorithm based on image invariants. The

deformable template was implemented with a perceptron. Unsupervised learning using

Kohonen Feature Maps was used to create the Perceptron's A-units. The natural symmetry

of faces was utilised to improve the efficiency of the face detection model. The deformable

template was run down the line of symmetry of the face in search of the exact face location.

Automated frontal view face recognition was realised using Principal Component Analysis,

also known as the Karhunen-Loeve transform. Manual face detection was used to test the

implemented automated face recognition system. The frontal view face recognition system

is also expanded into a pose invariant face recognition system which is implemented and

tested on facial images for subjects with different poses.

The researcher gathered a face database of 30 individuals consisting of over 450 facial

images to test fully automated face detection without verification, fully automated face

detection with verification, manual face detection and automated face recognition, fully

automated face detection and recognition and pose invariant face recognition. Successful

results were obtained for automated face detection and for automated face recognition

under robust conditions. Fully automated face detection and recognition was not realised

because an eye detection system could not be implemented. Pose invariant face recognition

was also successfully implemented under controlled conditions.

6

Table of Contents

ACKNOWLEDGEMENT

ABSTRACT

TABLE OF FIGURES

1 INTRODUCTION 13

1.1 Face recognition systems 14

1.2 The difficulty of computer vision 15

1.3 Thesis Outline 17

2 ANALYSIS OF THE FACE RECOGNITION PROBLEM 19

2.1 Face detection. 20
2.1.1 Face detection in images 20

2.1.2 Real-time face detection 22

2.2 Face recognition 24
2.2.1 Face recognition using geometrical features 24

2.2.2 Face recognition using template matching 25

2.3 Problem scope and system specifications 26

2.4 Brief outline of the implemented system 27

7

3 FACE DETECTION 29

3.1 Introduction 30

3.2 Kohonen Feature Maps 32
3.2.1 Developing a suitable Kohonen Feature Map neuro-computational model 34

3.2.2 Grid space neighbourhood 36

3.2.3 Input space neighbourhood 38

3.2.4 Sensitivity 40

3.3 Deformable template algorithm 43

3.4 Development of the face search algorithm 44

3.5 Manual Face Detection 48

4 FACE RECOGNITION 51

4.1 A human's innate face recognition system 52

4.2 Principal Component Analysis 53

4.3 Understanding Eigenfaces 54

4.4 Recognition 59

4.5 Improving face detection using reconstruction 62

4.6 Pose invariant face recognition 64

5 LIGHTING INVARIENCY 66

5.1 Overcoming irregular lighting 67

5.2 Normalising 67

5.3 Histogram Equalisation 70

5.4 Order-Statistic Filtering 70

8

6 SYSTEM TESTING 72

6.1 Fully automated face detection 74
6.1.1 Fully automated face detection testing without verification. 75

6.1.2 Fully automated face detection testing with verification. 76

6.2 Automated face recognition 77
6.2.1 Manual face detection and automated face recognition 77

6.2.2 Fully automated face detection and recognition 78

6.2.3 Pose invariant face recognition 78

6.3 Standard face databases 79

7 FURTHER WORK 80

7.1 Extensions to the implemented systems 81

7.2 Transforming frontal view face images for pose invariant face recognition 83
7.2.1 3D modelling techniques 83

7.2.2 2D transformations 83

7.3 Support Vector Machines for pose invariant face detection 84

8 CONCLUSION 85

9 APPENDICES 89

Appendix A - User Manual 89

Appendix B - Code Listing 90

Appendix C - The most beautiful girl in the world? 101

10 BIBLIOGRAPHY 103

9

Table of Figures

Figure 1.1: Images of Albert Einstein. (Getty museum) 14

Figure 1.2: Polypedates eques in Eastern Sinharaja. (The Amphibian Fauna of
Sri Lanka, Wildlife Heritage Trust, 1996)

15

Figure 2.1: A successful face detection in an image with a frontal view of a
human face. Generated by the implemented fully automated face
detection system

20

Figure 2.2: Frame 1 from camera. Video frame captured by a Logitech
QuickCam.

22

Figure2.3: Frame 2 from camera. Video frame captured by a Logitech
QuickCam.

22

Figure 2.4: Spatio-Temporally filtered image. Generated using Matlab 5.3 22

Figure 2.5 Geometrical features (white) which could be used for face
recognition. From Brunelli and Poggio, (1993).

24

Figure 2.6 Whole face, eyes, nose and mouth regions which could be used in a
template matching strategy. From Brunelli and Poggio, (1993).

25

Figure 2.7: Implemented fully automated frontal view face detection model 27

Figure 2.8: Principal Component Analysis transform from 'image space' to
'face space'.

28

Figure 3.1: Average human face in gray scale. Generated using Matlab 5.3 30

Figure 3.2: Area chosen for face detection. Generated using Matlab 5.3 31

Figure 3.3: Basis for dark intensity invariant sensitive template 32

Figure 3.4: Basis for a bright intensity invariant sensitive template. 32

Figure 3.5 : Training a SOM. The 4 weight vectors of the network (light blue
cross), rotate towards the centres of the four clusters in the input
pattern. Generated using Matlab 5.3

33

Figure 3.6 Training a KFM. Winner chosen as node with weight closest to the
input vector

34

Figure 3.7 The weights of the winner and the weights of nodes in the winner's
predefined neighbourhood are updated.

34

Figure 3.8 Guassian neighbourhood function. Generated using Matlab 5.3 35

Figure 3.9 Plot of Ωc (x-wi) vs (x-wi). Generated using Matlab 5.3 35

Figure 3.10 Reducing neighbourhood as training progresses up to 10000
iterations

36

Figure 3.11 Kohonen Feature Map network model 36

10

Figure 3.12 Training a Kohonen Feature Map 37

Figure 3.13 Training a KFM using input space neighbourhood 38

Figure 3.14 All weights in the input vectors predefined neighbourhood are
updated.

38

Figure 3.15 Training a Kohonen Feature Map with an input space
neighbourhood

39

Figure 3.16 Training a Kohonen Feature Map with an input space
neighbourhood(contd)

40

Figure 3.17 Training an input space Kohonen Feature Map with node
sensitivity

41

Figure 3.18 Training an input space Kohonen Feature Map with node
sensitivity (contd)

42

Figure 3.19 Dark intensity sensitive template 42

Figure 3.20 Bright intensity sensitive template 42

Figure 3.21 Deformable Template 43

Figure 3.22 Checking correlation of vertical and horizontal pixel areas 44

Figure 3.23 Fully automated face detection procedure 46

Figure 3.24 Fully automated face detection examples 47

Figure 3.25 Average face in gray scale with manual face detection control
points.

48

Figure 3.26 Manual face detection procedure 49

Figure 4.1 A 7x7 face image transformed into a 49 dimension vector 54

Figure 4.2 Faces in image space 54

Figure 4.3 Faces in face space 55

Figure 4.4 Eigenfaces 1 to 9 generated from 30 frontal view face images 57

Figure 4.5 Eigenfaces 10 to 18 generated from 30 frontal view face images 58

Figure 4.6 Graphical representation of the vector of a face in face space. 59

Figure 4.7 The four possible results when projecting an image into face space.
Based on figure in Turk and Pentland(1991b)

60

Figure 4.8 Images and there reconstruction. 61

Figure 4.9 Face detection output 62

Figure 4.10 Pose invariant face recognition. 64

Figure 5.1 Frontal view face captured under real-world lighting conditions.
Captured using a Logitech QuickCam.

67

Figure 5.2 Face with a suitably scaled colormap. Generated using Matlab 5.3 68

11

Figure 5.3 Face after normalising vertically. Generated using Matlab 5.3 68

Figure 5.4 Face after normalising horizontally Generated using Matlab 5.3 69

Figure 5.5 Face after normalizing vertically then normalizing horizontally.
Generated using Matlab 5.3

69

Figure 5.6 Face under real-world lighting Generated using Matlab 5.3 69

Figure 5.7 Face after vertical normalization Generated using Matlab 5.3 69

Figure 5.8 Histogram Equalisation 70

Figure 5.9 Highlights from camera flash 71

Figure 5.10 After order statistic filtering 71

Figure 6.1 Face detection examples from Heisele and Poggio (1999) 74

Figure 6.2 The 6 good face segments from 27 condition A images 76

Figure 7.1 Eye detection 81

Figure 9.1 Average face from 30 test subjects 101

Figure 9.2 Average face from 18 male test subjects 102

Figure 9.3 Average face from 12 female test subjects 102

12

13

1 INTRODUCTION

1

Introduction

14

Introduction

1.1 Face recognition systems

Automated face recognition is an interesting computer vision problem with many

commercial and law enforcement applications. Mugshot matching, user verification and

user access control, crowd surveillance, enhanced human computer interaction all become

possible if an effective face recognition system can be implemented. While research into

this area dates back to the 1960's, it is only very recently that acceptable results have been

obtained. However, face recognition is still an area of active research since a completely

successful approach or model has not been proposed to solve the face recognition problem.

The inadequacy of automated face recognition systems is especially apparent when

compared to our own innate face recognition ability. We perform face recognition, an

extremely complex visual task, almost instantaneously and our own recognition ability is

far more robust than any computer's can hope to be. We can recognise a familiar individual

under very adverse lighting conditions, from varying angles or view points. Scaling

differences (a face being near or far away), different backgrounds do not affect our ability

to recognise faces and we can even recognise individuals with just a fraction of their face

visible or even after several years have past. Furthermore, we are able to recognize the

faces of several thousand individuals whom we have met during our lifetime.

Figure 1.1 Three different photographs of Albert Einstein, easily recognised as the eminent
physicist even though the photographs may vary greatly from our own recollection of him.

15

1.2 The difficulty of computer vision

Unfortunately it is not possible now, nor will it be possible in the foreseeable future to

make a computing machine that actually 'understands' what is sees. The level of vision and

understanding which is instinctive to us (humans) is still far out of the reach of our silicon

creations.

Figure 1.2 Polypedates eques in Eastern Sinharaja

The ability to understand that the above image is not just a collection of pixels but is of a

camouflaged frog on a log and to be able to identify exactly where the frog ends and log

begins on the image is truly incredible. The fact that half of a primates cerebral cortex is

dedicated to visual processing underlies the difficulty of this task (Zeki, 1993). This faculty

is a result of millions of years of evolution and it would be naïve to think that we can

enable computers to perform similar tasks.

But technically, why are computer vision problems so hard to solve? After all, while

laudable results have been obtained in other artificial intelligence areas such as natural

language processing, game theory, forecasting, control and even speech processing,

computer vision seems to have lagged behind.

The main difficulty in vision problems is that almost all of them are ill-defined. For

example, while segmenting (dividing) our image of Polypedates eques into areas of "frog",

16

"log" and "background" is intuitive and an innate ability to us (humans), it does not seem

possible to find a definite problem specification of this task that a computer would

understand.

Another factor is that even well defined computer vision problems may be ill-posed.

Hadamard (1923) defined a problem as well posed if

(1) a solution exists,

(2) the solution is unique,

(3) the solution depends continuously on the initial data (stability property).

Many computer vision problems are ill-posed because information is lost in the

transformation from the 3D world to a 2D image. Therefore, we cannot uniquely

reconstruct the 3D representation from the 2D image and multiple solutions are often

'correct'.

The complexity of computer vision problems is exacerbated by the fact that we are dealing

with huge chunks of data. A typical gray-scale image has 640x480 pixels, each with 8-bit

(256) intensity values (gray-levels). Therefore, the size of the whole image is

640x480x8 bits = 2,457,600 bits. Any algorithm with high complexity would be extremely

slow in computer vision and we must therefore make an effort to solve these problems

using very simple processing techniques.

However, even with all these constraints it is possible to get useful results in computer

vision by reducing a problem's generality. The computer vision application's problem

domain can be restricted to a well-defined structured environment and assumptions could

be made about lighting, types of object, etc.

Therefore, instead of trying to create a system that is suitable for all vision problems the

computer vision and artificial intelligence communities have concentrated on obtaining

useful results to real-world, limited applications in vision. Automated face recognition has

thus become the holy grail of computer vision artificial intelligence. It is probably the most

challenging and ambitious of the computer vision projects that are being studied and is not

just a fascinating theoretical problem, but there is a real-world need for such a system.

17

1.3 Thesis Outline

This report details the research and development of frontal-view human face detection and

recognition systems. Emphasis is even to the different computational and mathematical

models that were modified by the researcher to satisfy these specific problems.

Chapter Two is an analysis of the face recognition problem as a whole. Many possible

approaches to face detection and face recognition are discussed. The problem scope of the

project is decided which leads to the design of the outline of a frontal-view human face

detection and recognition model.

Chapter Three describes the development of the face detection model. Research was done

into unsupervised learning and Kohonen Feature Maps. By combining this research with an

efficient deformable template algorithm devised by the author and Rosenblatt's (1962)

perceptron model, a fully automated face detection system was implemented. A manual

face detection system was also implemented since a human operator's face detection ability

surpasses that of a computing machine.

Chapter Four is based around face recognition itself. A human's own innate face

recognition ability is discussed and a computational model for frontal-view face

recognition based on Principal Component Analysis is developed. The Principal

Component Analysis concept of 'reconstruction' is investigated and the face detection

algorithm is modified to use verify face detection. The frontal view face recognition system

is extended to a pose-invariant face recognition system.

Chapter Five discusses the image processing techniques which where necessary to provide

lighting invariency and robustness. The development of the lighting invariency model is

illustrated.

18

Chapter Six contains system tests and evaluation of all the proposed systems which were

implemented by the researcher. These systems were implemented on Matlab 5.3. The

following were tested

1) Fully automated face detection without verification

2) Fully automated face detection with verification

3) Manual face detection and automated face recognition

4) Fully automated face detection and recognition

5) Pose invariant face recognition

Chapter Seven discusses in detail further work that could be done to extend the capabilities

and robustness of the implemented system. Also, two essential research areas in the field of

face recognition are identified. The first is a system for transforming frontal view face

images for pose invariant face recognition using virtual views. The second is a system

using Support Vector Machines for pose invariant Face Detection.

Chapter Eight contains the author's conclusions on the work carried out on face detection

and recognition.

19

2 ANALYSIS OF THE FACE RECOGNITION PROBLEM

 2

Analysis of the face recognition problem

20

Analysis of the Face Recognition Problem

2.1 Face detection.

The problem of face recognition is all about face detection. This is a fact that seems quite

bizarre to new researchers in this area. However, before face recognition is possible, one

must be able to reliably find a face and its landmarks. This is essentially a segmentation

problem and in practical systems, most of the effort goes into solving this task. In fact the

actual recognition based on features extracted from these facial landmarks is only a minor

last step.

There are two types of face detection problems:

1) Face detection in images and

2) Real-time face detection

2.1.1 Face detection in images

Figure 2.1 A successful face detection in an image with a frontal view of a human face

Most face detection systems attempt to extract a fraction of the whole face, thereby

eliminating most of the background and other areas of an individual's head such as hair that

are not necessary for the face recognition task. With static images, this is often done by

running a 'window' across the image. The face detection system then judges if a face is

present inside the window (Brunelli and Poggio, 1993). Unfortunately, with static images

there is a very large search space of possible locations of a face in an image. Faces may be

21

large or small and be positioned anywhere from the upper left to the lower right of the

image.

Most face detection systems use an example based learning approach to decide whether or

not a face is present in the window at that given instant (Sung and Poggio,1994 and

Sung,1995). A neural network or some other classifier is trained using supervised learning

with 'face' and 'non-face' examples, thereby enabling it to classify an image (window in face

detection system) as a 'face' or 'non-face'.. Unfortunately, while it is relatively easy to find

face examples, how would one find a representative sample of images which represent non-

faces (Rowley et al., 1996)? Therefore, face detection systems using example based

learning need thousands of 'face' and 'non-face' images for effective training. Rowley,

Baluja, and Kanade (Rowley et al.,1996) used 1025 face images and 8000 non-face images

(generated from 146,212,178 sub-images) for their training set!

There is another technique for determining whether there is a face inside the face detection

system's window - using Template Matching. The difference between a fixed target pattern

(face) and the window is computed and thresholded. If the window contains a pattern which

is close to the target pattern(face) then the window is judged as containing a face. An

implementation of template matching called Correlation Templates uses a whole bank of

fixed sized templates to detect facial features in an image (Bichsel, 1991 & Brunelli and

Poggio, 1993). By using several templates of different (fixed) sizes, faces of different

scales (sizes) are detected. The other implementation of template matching is using a

deformable template (Yuille, 1992). Instead of using several fixed size templates, we use a

deformable template (which is non-rigid) and there by change the size of the template

hoping to detect a face in an image.

A face detection scheme that is related to template matching is image invariants. Here the

fact that the local ordinal structure of brightness distribution of a face remains largely

unchanged under different illumination conditions (Sinha, 1994) is used to construct a

spatial template of the face which closely corresponds to facial features. In other words, the

average grey-scale intensities in human faces are used as a basis for face detection. For

example, almost always an individuals eye region is darker than his forehead or nose.

Therefore an image will match the template if it satisfies the 'darker than' and 'brighter than'

relationships (Sung and Poggio, 1994).

22

2.1.2 Real-time face detection

Real-time face detection involves detection of a face from a series of frames from a video-

capturing device. While the hardware requirements for such a system are far more

stringent, from a computer vision stand point, real-time face detection is actually a far

simpler process than detecting a face in a static image. This is because unlike most of our

surrounding environment, people are continually moving. We walk around, blink, fidget,

wave our hands about, etc.

 Figure 2.2: Frame 1 from camera Figure 2.3: Frame 2 from camera

 Figure 2.4: Spatio-Temporally filtered image

23

Since in real-time face detection, the system is presented with a series of frames in which to

detect a face, by using spatio-temperal filtering (finding the difference between subsequent

frames), the area of the frame that has changed can be identified and the individual detected

(Wang and Adelson, 1994 and Adelson and Bergen 1986).

Further more as seen in Figure 2.4, exact face locations can be easily identified by using a

few simple rules, such as,

1) the head is the small blob above a larger blob -the body

2) head motion must be reasonably slow and contiguous -heads won't jump around

erratically (Turk and Pentland 1991a, 1991b).

Real-time face detection has therefore become a relatively simple problem and is possible

even in unstructured and uncontrolled environments using these very simple image

processing techniques and reasoning rules.

24

2.2 Face recognition

Over the last few decades many techniques have been proposed for face recognition. Many

of the techniques proposed during the early stages of computer vision cannot be considered

successful, but almost all of the recent approaches to the face recognition problem have

been creditable. According to the research by Brunelli and Poggio (1993) all approaches to

human face recognition can be divided into two strategies:

(1) geometrical features and

(2) template matching.

2.2.1 Face recognition using geometrical features

This technique involves computation of a set of geometrical features such as nose width

and length, mouth position and chin shape, etc. from the picture of the face we want to

recognize. This set of features is then matched with the features of known individuals. A

suitable metric such as Euclidean distance (finding the closest vector) can be used to find

the closest match. Most pioneering work in face recognition was done using geometric

features (Kanade, 1973), although Craw et al. (1987) did relatively recent work in this area.

Geometrical features (white) which
could be used for face recognition

Figure 2.5

The advantage of using geometrical features as a basis for face recognition is that

recognition is possible even at very low resolutions and with noisy images (images with

many disorderly pixel intensities). Although the face cannot be viewed in detail its overall

geometrical configuration can be extracted for face recognition. The technique's main

25

disadvantage is that automated extraction of the facial geometrical features is very hard.

Automated geometrical feature extraction based recognition is also very sensitive to the

scaling and rotation of a face in the image plane (Brunelli and Poggio, 1993). This is

apparent when we examine Kanade's(1973) results where he reported a recognition rate of

between 45-75 % with a database of only 20 people. However if these features are

extracted manually as in Goldstein et al. (1971), and Kaya and Kobayashi (1972)

satisfactory results may be obtained.

2.2.2 Face recognition using template matching

This is similar the template matching technique used in face detection, except here we are

not trying to classify an image as a 'face' or 'non-face' but are trying to recognize a face.

Whole face, eyes, nose and mouth
regions which could be used in a
template matching strategy

 Figure 2.6

The basis of the template matching strategy is to extract whole facial regions (matrix of

pixels) and compare these with the stored images of known individuals. Once again

Euclidean distance can be used to find the closest match. The simple technique of

comparing grey-scale intensity values for face recognition was used by Baron (1981).

However there are far more sophisticated methods of template matching for face

recognition. These involve extensive pre-processing and transformation of the extracted

grey-level intensity values. For example, Turk and Pentland (1991a) used Principal

Component Analysis, sometimes known as the eigenfaces approach, to pre-process the

gray-levels and Wiskott et al. (1997) used Elastic Graphs encoded using Gabor filters to

pre-process the extracted regions.

26

An investigation of geometrical features versus template matching for face recognition by

Brunelli and Poggio (1993) came to the conclusion that although a feature based strategy

may offer higher recognition speed and smaller memory requirements, template based

techniques offer superior recognition accuracy.

2.3 Problem scope and system specifications

The following problem scope for this project was arrived at after reviewing the literature on

face detection and face recognition, and determining possible real-world situations where

such systems would be of use. The following system(s) requirements were identified

• A system to detect frontal view faces in static images

• A system to recognize a given frontal view face

• Only expressionless, frontal view faces will be presented to the face detection

and face recognition systems

• All implemented systems must display a high degree of lighting invariency.

• All systems must posses near real-time performance.

• Both fully automated and manual face detection must be supported

• Frontal view face recognition will be realised using only a single known image

from each individual.

• Automated face detection and recognition systems should be combined into a

fully automated face detection and recognition system. The face recognition

sub-system must display a slight degree of invariency to scaling and rotation

errors in the segmented image extracted by the face detection sub-system.

• The frontal view face recognition system should be extended to a pose invariant

face recognition system.

Unfortunately although we may specify constricting conditions to our problem domain, it

may not be possible to strictly adhere to these conditions when implementing a system in

the real-world.

27

2.4 Brief outline of the implemented system

Fully automated face detection of frontal view faces is implemented using a deformable

template algorithm relying on the image invariants of human faces. This was chosen

because a similar neural-network based face detection model would have needed far too

much training data to be implemented and would have used a great deal of computing time.

The main difficulties in implementing a deformable template based technique were the

creation of the bright and dark intensity sensitive templates and designing an efficient

implementation of the detection algorithm.

Figure 2.7: Implemented fully automated frontal view face detection model

A manual face detection system was realised by measuring the facial proportions of the

average face, calculated from 30 test subjects. To detect a face, a human operator would

identify the locations of the subject's eyes in an image and using the proportions of the

average face, the system would segment an area from the image.

28

A template matching based technique was implemented for face recognition. This was

because of its increased recognition accuracy when compared to geometrical features based

techniques and the fact that an automated geometrical features based technique would have

required complex feature detection pre-processing.

Of the many possible template matching techniques, Principal Component Analysis was

chosen because it has proved to be a highly robust in pattern recognition tasks and because

it is relatively simple to implement. The author would also liked to have implemented a

technique based on Elastic Graphs but could not find sufficient literature about the model to

implement such a system during the limited time available for this project.

Figure 2.8: Principal Component Analysis transform from 'image space' to 'face space'.

Using Principal Component Analysis, the segmented frontal view face image is

transformed from what is sometimes called 'image space' to 'face space'. All faces in the

face database are transformed into face space. Then face recognition is achieved by

transforming any given test image into face space and comparing it with the training set

vectors. The closest matching training set vector should belong to the same individual as

the test image.

Principal Component Analysis is of special interest because the transformation to face

space is based on the variation of human faces (in the training set). The values of the 'face

space' vector correspond to the amount certain 'variations' are present in the test image.

29

3 FACE DETECTION

3

 Face Detection

30

Face Detection

3.1 Introduction

While some may regard face detection as simple pre-processing for the face recognition

system, it is by far the most important process in a face detection and recognition system.

However face recognition is not the only possible application of a fully automated face

detection system. There are applications in automated colour film development where

information about the exact face location is useful for determining exposure and colour

levels during film development. The are even uses in face tracking for automated camera

control in the film and television news industries.

In this project the author will attempt to detect faces in still images by using image

invariants. To do this it would be useful to study the grey-scale intensity distribution of an

average human face. The following 'average human face' was constructed from a sample of

30 frontal view human faces, of which 12 were from females and 18 from males. A suitably

scaled colormap has been used to highlight grey-scale intensity differences.

scaled colormap scaled colormap (negative)
Figure 3.1: Average human face in grey-scale

31

The grey-scale differences, which are invariant across all the sample faces are strikingly

apparent. The eye-eyebrow area seem to always contain dark intensity (low) gray-levels

while nose forehead and cheeks contain bright intensity (high) grey-levels. After a great

deal of experimentation, the researcher found that the following areas of the human face

were suitable for a face detection system based on image invariants and a deformable

template.

scaled colormap scaled colormap (negative)
Figure 3.2 Area chosen for face detection (indicated on average human face in gray scale)

The above facial area performs well as a basis for a face template, probably because of the

clear divisions of the bright intensity invariant area by the dark intensity invariant regions.

Once this pixel area is located by the face detection system, any particular area required can

be segmented based on the proportions of the average human face

After studying the above images it was subjectively decided by the author to use the

following as a basis for dark intensity sensitive and bright intensity sensitive templates.

Once these are located in a subject's face, a pixel area 33.3% (of the width of the square

window) below this area will be segmented.

32

Figure 3.3: Basis for dark intensity invariant
sensitive template

Figure 3.4: Basis for a bright intensity
invariant sensitive template.

Note the slight differences which were made to the bright intensity invariant sensitive

template (compare Figures 3.4 and 3.2) which were needed because of the pre-processing

done by the system to overcome irregular lighting (chapter six).

Now that a suitable dark and bright intensity invariant templates have been decided on, it is

necessary to find a way of using these to make 2 A-units for a perceptron, i.e. a

computational model is needed to assign neurons to the distributions displayed in Figures

3.3 and 3.4.

3.2 Kohonen Feature Maps

Kohonen (1995) in his famous book Self Organising Maps stated that SOMs (i.e. Self

Organising Maps) are not intended for pattern recognition but for clustering, visualisation,

and abstraction. Out of the many different models described in Self Organising Maps are

Kohonen Feature Maps (KFMs), also known as Kohonen self-organizing networks or

topology-preserving maps, were found to be amazingly suitable for the problem of creating

A-units for a perceptron.

Self-Organizing Maps are competitive networks that provide a "topological" mapping from

the input space to the clusters (Kohonen, 1995). These were inspired by the way in which

various human sensory impressions are neurologically mapped into the brain such that

33

spatial or other relations among stimuli correspond to spatial relations among the neurons.

So in SOMs, patterns in the input space near to each other will be mapped to output units

near to each other. SOMs are one of the many neuro-computational models that use

unsupervised learning. Unlike a typical Neural Network (which uses supervised learning),

the training data for SOMs does not consist of input and desired output pairs. Training data

consists of a set of input patterns and the topology of the SOMs adapts conforming to these

patterns.

According to Krose and van der Smagt (1996) the main applications for SOMs are for,

• clustering: the input data may be grouped in 'clusters' and the data processing system

has to find these inherent clusters in the input data. The output of the system should

give the cluster label of the input pattern (discrete output);

• vector quantization: descretising continuous space. The inputs are n-dimensional

vectors and the output is a discrete representation of the input space. The system has to

find optimal discretisation of the input space;

• dimensionality reduction: the input data must be grouped in a subspace which has lower

dimensionality than the original dimensionality of the input data. The system has to

learn an optimal mapping, such that most of the variance in the input data is preserved

in the output data;

• feature extraction: the system has to extract features from the input signal. SOMs are

able to extract features without external supervision (no desired output specified).

Feature extraction is similar to dimensionality reduction described earlier.

Figure 3.5 : Training a SOM. The 4 weight vectors of the network (light blue cross), rotate
towards the centres of the four clusters in the input pattern

34

3.2.1 Developing a suitable Kohonen Feature Map neuro-

computational model

In Kohonen Feature Maps (KFMs) the topological properties of the input pattern are

directly reflected in the weights of the neurons in the output units (Jang et al., 1997). A

similarity measure or mapping is selected between the input pattern and network units and

a winning unit is considered to be the network unit with the closest distance to the mapped

vector. Then KFMs update the winning unit's weight as well as then weights of the units

within a predefined neighbourhood around the winning unit. These weights are usually

updated by bringing them closer to the input vector. The following figures should help the

reader better understand training KFMs.

Figure 3.6 Training a KFM. Winner chosen
as node with weight closest to the input
vector

Figure 3.7 The weights of the winner and
the weights of nodes in the winner's
predefined neighbourhood are updated.

In the above figures, the KFM is simulated with an input vector (black dot). A 'winner'

(node with red arrow) is chosen as the node whose weight has the closest Euclidean

distance to the input vector. If the winning node's weight is wc and the input vector is x,

|| x-wc || = min || x - wi || ∀i.

35

Then, the weight of the winner (red arrow) and the weights (blue arrows) of all the nodes in

the winner's predefined neighbourhood (yellow area) are updated. The degree that the

weights are updated is proportional to their distance from x and η, the networks learning

rate at that instance. So the weight update function is,

∆wi = η (x-wi), where i ∈ winners neighbourhood

Since it would be computationally expensive to calculate each winner's neighbourhood

each time an input vector is submitted, neighbourhood function around the winning unit (c)

is used to update wi. Therefore using a Gaussian (Ω) neighbourhood function around c, the

weight update function becomes,

∆wi = η Ωc (x-wi), where i ∈ winners neighbourhood

In which the Gaussian (Ωc) is

where, pi and pc are the positions of the winning node (c) and node (i) on the network grid,

while σ reflects the predefined size of the neighbourhood. The Gaussian is a suitable

neighbourhood function since because of its unique shape, it can be made to decrease

sharply where we want to specify our neighbour size.

Figure 3.8 Guassian neighbourhood function.

σ =0.4
Figure 3.9 Ωc (x-wi) vs (x-wi)

Interestingly the weight update can never cause the weight to go past the stimulating input

vector because as shown in Figure 3.9, the weight update function contains,

Guassian x (distance from input vector)

36

The weight update function therefore decreases when it nears zero (note that the learning

rate η is always less than zero), thereby not causing the node's weight to go pass the

stimulating input vector.

Generally to achieve better convergence when training KFMs, and in fact almost all other

SOMs, network models initially start with large neighbourhoods (σ) and gradually

decrease their size as training progresses. The learning rate (η) is also gradually reduces

when training the KFM or SOM. If these two principles are not followed, the network may

get stuck in a local optima and not converge to resemble the input pattern's topology.

Figure 3.10 Reducing neighbourhood as
training progresses up to 10000 iterations

Figure 3.11 Network model of a KFM also
known as a Kohonen self-organizing network

3.2.2 Grid space neighbourhood

The following network was created using the standard KFM algorithm. The neighbourhood

of the winner was determined from the grid space (neighbouring nodes in network).

However, the author decided to stray from the norm and use a uniform initial weight

distribution as it was found to be better than a random distribution since the former spanned

the whole input space and thus better suited the problem at hand.

37

Figure 3.12 Training a Kohonen Feature Map

38

Note how the weight topology changes (figure 3.12) as the Kohonen Feature Map adapts to

the stimulating input pattern. A random input pattern was generated to test the network.

When one examines figure 3.12 it is apparent that the KFM does not map the input

distribution topology to an accuracy, which would enable us to create a face template. The

author experimented with different neighbourhood and learning rate parameters to no avail,

the network weights would not perfectly map the input pattern. Clearly the KFM algorithm

would have to be modified. Although there are no network models specified in the

literature that optimises KFMs, there are several concepts that are used for SOMs that may

prove useful improve the performance the KFM model.

3.2.3 Input space neighbourhood

In the KFM algorithm that was used thus far, the neighbourhood was determined from the

nodes around the winning node. In other words a network grid space neighbourhood was

used. It is also possible to use an input space neighbourhood. Here all nodes with weights

lying inside a predefined neighbourhood around the input vector are updated. So the weight

update function for node i becomes,

∆wi = η Ωx (x-wi), ∀ i

where x is the stimulating input vector. Notice that the Gaussian function is centred around

input vector. This creates a neighbourhood around x and all the weights in the network are

updated.

Figure 3.13 Training a KFM using an input
space neighbourhood

Figure 3.14 All weights in the input vectors
predefined neighbourhood are updated.

39

Figure 3.15 Training a Kohonen Feature Map with an input space neighbourhood

40

Figure 3.16 Training a Kohonen Feature Map with an input space neighbourhood(contd)

Using an input space neighbourhood, many of the network node's weights have very

accurately mapped to the input pattern. Yet an interesting feature can be noticed in the

above figures. As the learning rate and neighbourhood sizes decreased during training some

weights had stopped being stimulated. This is especially apparent in the large area on the

lower left-hand side of the weight space. This is clearly unacceptable. The author reminds

the reader that the intention is to create the A-units of a perceptron for a deformable

template algorithm for face detection.

3.2.4 Sensitivity

The obvious solution to this problem is to increase the sensitivity of neurons that are not

being stimulated. The author's implementation of node sensitivity is as follows. Using our

standard notation, the weight update formula becomes,

∆wi = η Ωc (x-wi) τ si

where τ determines the effect of the sensitivity si. At each iteration si decremented by ∆wI,

si = si - ∆wi

and the affect of time (T) on sensitivity is incremented at each iteration to si

si = si + T
A typical value for T would be between 0.2 and 0.3. The following figure depicts the

training of a Kohonen Feature map with an input space neighbourhood with node

sensitivity.

41

Figure 3.17 Training an input space Kohonen Feature Map with node sensitivity

42

Figure 3.18 Training an input space Kohonen Feature Map with node sensitivity(contd)

Having closely mapped the KFM to the input pattern, a suitable network model has been

finally found to create the deformable template. In fact the following two figure show the

actual KFM maps which where generated for the face detection system. The reader is

encouraged to compared these templates with the distributions that are being to mapped

(Figures 3.3 and 3.4).

Figure 3.19 Dark intensity sensitive
template

Figure 3.20 Bright intensity sensitive
template

43

3.3 Deformable template algorithm

The dark and bright intensity invariant templates which have been created can be

implemented in a deformable template algorithm. For example, if a 100x100 template is

needed to check whether a certain 100x100 pixel area contains a face, the weight vectors in

the dark and bright templates have to be simply multiplied by 100. Now the pixels in the

areas that are indicated by the templates can be sampled to see if they match the dark and

bright patterns

Figure 3.21 Deformable Template

However since individually sampling pixels for the templates is expensive, an efficient,

simple implementation of a deformable template is needed. Remember that computer

vision problems are by nature computationally expensive. Therefore, very simple

algorithms to implement the system must be found.

Since computers are efficient at array indexing, it occurred to the author that this would be

an ideal way to implement the deformable template. Once the deformable template has

been expanded to match a particular window (for example, 100x100), the weight vectors of

each template are converted to array indexes. Then the elements in the image (i.e. 100x100

pixel area), which can be regarded as a 2-dimensional array are extracted.

image(indexes) = (pixel intensities at indexed positions)

44

Therefore, to keep the face detection algorithm simple, extracted pixel intensities could be

merely added. As a result, if the total added pixel intensities from the bright intensity

invariant template is high and the total added intensities from the dark intensity invariant

template is low, a high heuristic value will be output by the perceptron.

3.4 Development of the face search algorithm

An exhaustive search of an image for a face is clearly impossible since there are almost an

infinite number of possible places where a face may be. A face may be anywhere from the

upper left to the lower right corner of the image, scaled to almost fit the whole image or far

away in the distance. An efficient search algorithm is essential for face detection in near

real-time.

One possible way of reducing the search space in static images is to use the fact that frontal

view faces are symmetrical (Saber and Tekalp, 1996). If this (vertical) line of symmetry

can be found, the deformable template can be used only along this line of symmetry. After

experimentation, it was discovered that trying to find a high correlation coefficient of pixel

areas on either side of the line of symmetry was a suitable model to reduce the search

space.

 Figure 3.22 Checking correlation of vertical and horizontal pixel areas

45

Using correlation as a statistic of similarity is preferable to comparing the two pixel areas

on the left and right of the (tested) line of symmetry. This is because the correlation

coefficient measures the strength of the relation between the two pixel areas (Frank and

Althoen, 1994) and is therefore less sensitive to lighting variations between the left and

right halves. The element (i,j)of the correlation coefficient matrix is related to the

corresponding element of the covariance matrix (C) by,

Where the covariance matrix C is.

X and Y are the two pixel regions on either side of the (tested) line of symmetry.

To find the best line of symmetry (highest correlation coefficient) a window is run from left

to right on the upper edge of the image and the window position, which resulted in the

highest correlation coefficient, was regarded as containing the best line of symmetry. A

threshold value could have been used here to reduce the search space. If a correlation

coefficient value higher than a certain threshold value was obtained then the search could

have been stopped at that particular window position. However, the researcher did not want

to use a threshold value since there is a wide range in the best correlation coefficient value

obtained from different frontal view face images.

After experimenting with this model it was found that there may be several areas in an

image which display a high degree of symmetry around a vertical axis. Often a plain (even)

background would result in a undesirable line of symmetry. Therefore it was decided to

look for areas (window positions) with high correlation around a vertical axis and low

correlation around a horizontal axis (figure 3.22).

46

Start of search for symmetry End of search for symmetry

Successful symmetry search Face detection in progress

End of face detection process Successful face detection

Figure 3.23 Fully automated face detection procedure

When searching for a face's line of symmetry the particular pixel window that is considered

has to be moved from the upper left to upper right of the image. The optimal distance that

the window is moved has to be determined. There is a speed versus accuracy trade off here,

with small 'jumps' of the window finding a the exact line of symmetry while large 'jumps'

47

being much faster in finding an approximate solution since less pixel windows are being

evaluated. A perfect face detection algorithm which takes an hour to finish processing

would have no real-world application. These decisions should be made depending on the

platform the face detection system is implemented.

Once the line of symmetry has been found, the deformable template is used to determine

the optimal face location. The size of the deformable template is reduced after each

progression down the line of symmetry. Once again the amount by which the window size

is decremented and size of the small 'jumps' or 'hops' of the window down the line of

symmetry have to be determined. The window location, which caused the highest heuristic

value (or 'faceness value') from the deformable template, is determined to contain a face.

Once again, the decision was made not to use a threshold value since the very best face

location and a high degree of accuracy was needed. Therefore an exhaustive search (limited

only by the maximum and minimum pixel window sizes) was done down the line of

symmetry. Some face detection examples are given below:

Figure 3.24 Fully automated face detection examples

48

It is obvious that the face detection output, on the lower right of Figure 3.24 is inaccurate.

Here the best 'faceness' heuristic value does not correspond to the best face location,

therefore an incorrect pixel area was segmented. The other three testing results are accurate

to a high degree and may be called successful frontal view face detections. In chapter four

the face detection system will be further optimised to reject false face detections and

improve face detection accuracy.

3.5 Manual Face Detection

Besides a fully automated frontal view face detection system, a manual frontal view face

detection system was also implemented. This was done because of the obvious improved

accuracy a human operator could provide to the face detection process. In the system, the

operator is asked to manually locate positions just under the subject's eyes, and the system

thereby determines the exact face location.

In the ideal frontal view

segmented facial image for face

recognition, the lower edge of

each eye is 27% from the top of

the image and the left and right

eyes (operator's view point) are

20% and 80% from the left

border of the image respectively

Figure 3.25 Average face in gray scale with manual face detection control points.

The ideal facial area to segment using manual face detection (Figure 3.25) was determined

by examining the average face of 30 test subjects (the same average face was used to

develop the deformable template). This segmented pixel area, which should be better than

that obtained using fully automated face detection, can be used for automated face

recognition

49

Operator instructed to click under eye on the left Click under eye on the right

Image is rotated to make eyes perfectly
horizontal. The system zooms in for
increased accuracy and procedure repeated.

Operator clicks under both eyes again. From
these locations the subject's frontal view face
area is calculated.

Segmented face area

Figure 3.26 Manual face detection procedure

50

It would also have been possible to use more control points to determine the position of a

subject's face in an image. For example, an operator can be instructed to click just under a

subject's left and right eye, and then on the left and right edges of the subjects nose etc.

However, the researcher decided to just use a single statistic (vector between lower edge of

eyes) so as not to lose the natural variation between human faces. For example, if

individual A has a long nose and individual B has a short nose, and if a manual face

detection system centres and normalises face images based on eye width and nose length, a

large part of the variation between the individual A's and B's faces is lost. Using a single

statistic this does not occur. However, when one uses several control points to manually

detect a face, the segmented face area would probably be more exact and the reader is

encouraged to experiment with different combinations and test the face recognition

accuracy of the segmented pixel area.

51

4 FACE RECOGNITION

 4

Face Recognition

52

Face Recognition

4.1 A human's innate face recognition system

Face recognition and the retention or memory of faces must be a crucial skill for our

survival or evolution would not have given us these amazing abilities. We seem to have a

natural preference for face like images and even a few weeks after birth, a new-born baby

is attracted to face-like stimuli.

Much research has been done on the human face recognition system, and perceptual,

developmental, neuro-psychological, neuro-physiological, and functional neuro-imaging

studies have indicated that face recognition in primates is a specialised capacity in the

ventral portions of occipito-temporal and frontal cortices and in the medial temporal lobes

(Rodman et al., 1993). In fact, there is a condition called prosopagnosia, which is caused by

brain injury, strokes or genetic factors. Suffers are unable to recognize faces while object

recognition and other visual skills are largely unimpaired (Gauthier et al., 1999). Similarly

there are patients with visual object agnosia, who are impaired at recognizing objects but

who have normal face recognition abilities (Moscovitch et al., 1997). These findings seem

to corroborate the theory that there are specialized areas in the brain that perform face

recognition.

Although the areas of our brain, which perform face recognition, are known, the

methodology of our innate face recognition system is not completely understood.

The most popular hypothesis among neuro-psychologists is that all of us have an average

face prototype, assembled from all the faces we have seen throughout are lifetime. We then

categorise each face we come across according to that particular face's variation from our

average face prototype (Haxby et al.,1996 and de Haan et al., 1998). Work using

caricatures of faces has collaborated this theory. When the Euclidean distance of an

individual's face from the average face prototype is increased creating a caricature or

exaggerated face, it was found that test subjects displayed increased recognition of that

individual (Deffenbacher, 1998 and Brennan, 1982).

53

It occurred to the author that there might be other evidence to confirm the average face

prototype hypothesis. For example, if an individual who has never been to China arrives at

Shanghai, he would not be able to differentiate between the many oriental faces surround

him. While after sometime our traveller would begin to notice differences among the faces

of his Chinese friends. This may be because his initial average face prototype and the facial

differences that he noticed, could not effectively describe variation among oriental faces.

Any two Chinese faces would therefore seem similar. As our traveller stayed in Shanghai,

his average face prototype and the variations he notices evolves to be able to differentiate

between Chinese faces.

The statistical technique, which is used in this thesis for automated face recognition will be

of special interest because it closely resembles our own innate face recognition system.

This model promises recognition accuracy far in excess of a basic template matching

technique, which involves comparing raw pixel intensity values.

4.2 Principal Component Analysis

Principal Component Analysis (or Karhunen-Loeve expansion) is a suitable strategy for

face recognition because it identifies variability between human faces, which may not be

immediately obvious. Principal Component Analysis (hereafter PCA) does not attempt to

categorise faces using familiar geometrical differences, such as nose length or eyebrow

width. Instead, a set of human faces is analysed using PCA to determine which 'variables'

account for the variance of faces. In face recognition, these variables are called eigenfaces

because when plotted they display an eerie resemblance to human faces.

Although PCA is used extensively in statistical analysis, the pattern recognition community

started to use PCA for classification only relatively recently. As described by Johnson and

Wichern (1992), 'principal component analysis is concerned with explaining the variance-

covariance structure through a few linear combinations of the original variables.' Perhaps

PCA's greatest strengths are in its ability for data reduction and interpretation. For example

a 100x100 pixel area containing a face can be very accurately represented by just 40 eigen

values. Each eigen value describes the magnitude of each eigenface in each image.

54

Furthermore, all interpretation (i.e. recognition) operations can now be done using just the

40 eigen values to represent a face instead of the manipulating the 10000 values contained

in a 100x100 image. Not only is this computationally less demanding but the fact that the

recognition information of several thousand

4.3 Understanding Eigenfaces

Any grey scale face image I(x,y) consisting of a NxN array of intensity values may also be

consider as a vector of N2. For example, a typical 100x100 image used in this thesis will

have to be transformed into a 10000 dimension vector!

Figure 4.1 A 7x7 face image transformed into a 49 dimension vector

This vector can also be regarded as a point in 10000 dimension space. Therefore, all the

images of subjects' whose faces are to be recognized can be regarded as points in 10000

dimension space. Face recognition using these images is doomed to failure because all

human face images are quite similar to one another so all associated vectors are very close

to each other in the 10000-dimension space.

Figure 4.2 Faces in image space

55

Therefore classification of a new vector (image) would be a very sensitive process since

even a slight change in the image would cause it to be nearer another face image than the

subject's face in the face database.

The original variables (vectors) which described the face (pixel intensity at [1,1], pixel

intensity at [1,2], ……) are highly correlated. With PCA, the researcher tried to find a

better representation of faces by finding the specific vectors that account for the

distribution of face images. These vectors will define the subspace of face images

(sometimes called 'face space'). Face space will be a better representation for face images

than image space which is the space which containing all possible images since there will

be increased variation between the faces in face space (O'Toole et al. 1993).

Figure 4.3 Faces in face space

The vectors that describe faces in face space are eigenfaces. These are in fact the

eigenvectors of the covariance matrix of a set of mean subtracted face images (subtract the

average face from each of the face images). Since a typical face image used in this thesis is

100x100 (therefore associated vectors 10000x1), and if there are 30 face images in the

training set for PCA, the covariance matrix (C) would be:

C = X XT

Here X, is a 10000x30 matrix containing the mean subtracted face images. Therefore, the

covariance matrices dimensions would be 10000x10000. Calculating this matrix would be

56

an impossible task for most modern computers. This is one of the problems of using PCA

in pattern recognition since high dimension vectors (i.e. images) are used. A

computationally feasible method must be found to calculate eigenfaces.

When calculating eigenfaces, the number of faces (data points, i.e. 30) that are used will

always be less than the dimension of the images (10000). Even if the reader wanted to

recognize the whole population of China, just a few hundred Chinese faces (hopefully a

representative sample) can be selected for Principal Component Analysis. Therefore

instead of calculating C=X XT, calculate

c=XT X,

find c's eigenvectors, and thereby deduce the eigenvectors(eigenfaces) of C. In a PCA with

30 images (30 data points), c will be 30x30 and can easily be calculated.

Then the matrix of eigenvectors(v) and matrix of eigenvalues(λ) for c are a vectors and

scalars that satisfy,

c v = λ v

All the eigenvectors, which were calculated, need not be used. Further, dimensionality

reduction can be done by sorting the eigenvectors according to their associated eigenvalues

and just taking (say 40) eigenvectors with the largest eigenvalues. These describe the

greatest variation in human faces. Now that the eigenvectors of c have been found, the

eigenvectors of C (eigenfaces) are in the matrix U where,

U=X v

Any face can be described using these eigenfaces. For a detailed description of Principal

Component Analysis for face images the reader is encouraged to refer Turk and Pentland

(1991a). Further details and proofs of the PCA results used in this thesis can be found in

highly enjoyable, specialised mathematics textbooks such as Dunteman(1989), and

Narayanaswamy and Raghavarao(1991) .

The following figures contain the first 18 eigenfaces calculated from 30 frontal view face

images.

57

Eigenface 1 Eigenface 2 Eigenface 3

Eigenface 4 Eigenface 5 Eigenface 6

Eigenface 7 Eigenface 8 Eigenface 9

Figure 4.4 Eigenface 1 to 9 generated from 30 frontal view face images

58

Eigenface 10 Eigenface 11 Eigenface 12

Eigenface 13 Eigenface 14 Eigenface 15

Eigenface 16 Eigenface 17 Eigenface 18

Figure 4.5 Eigenfaces 10 to 18 generated from 30 frontal view face images

59

When a face is projected from image space to face space, its face space vector consists of

values corresponding to each eigenface.

 = 4.0719 * - 0.1874* + 0.7253*

+ 0.0392* - 0.1725* + …….…..

Figure 4.6 Graphical representation of the vector of a face in face space.

Increasing the number of eigenvectors (or eigenfaces) that are used to describe a face, as

well as normalising the face space vector, will improve the accuracy and classification

performance of the face recognition system.

4.4 Recognition

The transformation of a face from image space (I) to face space (f) involves just a simple

matrix multiplication. If the average face image is A and U contains the (previously

calculated) eigenfaces,

f = U * (I - A)

This is done to all the face images in the face database (database with known faces) and to

the image (face of the subject) which must be recognized. The possible results when

projecting a face into face space are given in the following figure.

60

Figure 4.7 The four possible results when projecting an image into faces space. The face
space is formed by just two eigenfaces (u1 and u2) and contains the faces of three known
individuals (Ω1, Ω2 and Ω3)

There are four possibilities:

1. Projected image is a face and is transformed near a face in the face database

2. Projected image is a face and is not transformed near a face in the face database

3. Projected image is not a face and is transformed near a face in the face database

4. Projected image is not a face and is not transformed near a face in the face

database

While it is possible to find the closest known face to the transformed image face by

calculating the Euclidean distance to the other vectors, how does one know whether the

image that is being transformed actually contains a face? Since PCA is a many-to-one

transform, several vectors in the image space (images) will map to a point in face space

(the problem is that even non-face images may transform near a known face image's faces

space vector).

Turk and Pentland (1991a), described a simple way of checking whether an image is

actually of a face. This is by transforming an image into face space and then transforming it

back (reconstructing) into image space. Using the previous notation,

I' = UT *U * (I - A)

Where I' is the reconstructed image. Then the Euclidean distance between (I'+A) and I can

be calculated to find out if I actually is of a face. The following figure describes this well.

61

0.8235
0.0661
-0.8786
-0.4727
-0.0646
0.6642
-0.4840
-0.4501
-0.2506
0.1591
0.3359
0.0048
0.0745

………..

Hippo in image space Hippo in face space Reconstructed hippo in image space

0.7253
-0.0392
0.2896
-0.1725
-0.2642
-0.0014
-0.0814
-0.0054
-0.0623
-0.0965
-0.0879
0.0745
-0.0261

…………

Face in image space Face in face space Reconstructed face in image space

Figure 4.8 Images and there reconstruction. The Euclidean distance between a face image
and its reconstruction will be lower than that of a non-face image

With these calculations it is possible to verify that an image is of a face and recognise that

face. O'Toole et al. (1993) did some interesting work on the importance of eigenfaces with

large and small eigenvalues. They showed that the eigenvectors with larger eigenvalues

convey information relative to the basic shape and structure of the faces. This kind of

information is most useful in categorising faces according to sex, race etc. Eigenvectors

with smaller eigenvalues tend to capture information that is specific to single or small

subsets of learned faces and are useful for distinguishing a particular face from any other

face. Turk and Pentland (1991a) showed that about 40 eigenfaces were sufficient for a very

good description of human faces since the reconstructed image have only about 2% RMS.

pixel-by-pixel errors.

62

4.5 Improving face detection using reconstruction

Reconstruction cannot be used as a means of face detection in images in near real-time

since it would involve resizing the face detection window area and large matrix

multiplication, both of which are computationally expensive. However, reconstruction can

be used to verify whether potential face locations identified by the deformable template

algorithm actually contain a face. If the reconstructed image differs greatly from the face

detection window then the window probably does not contain a face. Instead of just

identifying a single potential face location, the face detection algorithm can be modified to

output many high 'faceness' locations which can be verified using reconstruction. This is

especially useful because occasionally the best 'faceness' location found by the deformable

template algorithm may not contain the ideal frontal view face pixel area.

 Output from Face detection system

 Heuristic x y width

978 74 31 60

1872 74 33 60

1994 75 32 58

2125 76 32 56

2418 76 34 56

2389 79 32 50

 2388 80 33 48

 2622 81 33 46

2732 82 32 44

 Best heuristic location (94,65,20) 2936 84 33 40

2822 85 58 38

2804 86 60 36

2903 86 62 36

3311 89 62 30

3373 91 63 26

3260 92 64 24

3305 93 64 22

3393 94 65 20

 Actual face location (85,58,38) Figure 4.9 Face detection output

63

Potential face locations that have been identified by the face detection system (the best face

locations it found on its search) are checked whether they contain a face. If the threshold

level (maximum difference between reconstruction and original for the original to be a

face) is set correctly this will be an efficient way to detect a face. The deformable template

algorithm is fast and can reduce the search space of potential face locations to a handful of

positions. These are then checked using reconstruction. The number of locations found by

the face detection system can be changed by getting it to output, not just the best face

locations it has found so far but any location, which has a 'faceness' value, which for

example is, at least 0.9 times the best heuristic value that has been found so far. Then there

will be many more potential face locations to be checked using reconstruction. This and

similar speed versus accuracy trade-off decisions have to be made keeping in mind the

platform on which the system is implemented.

Similarly, instead of using reconstruction to check the face detection system's output, the

output's correlation with the average face can be checked. The segmented areas with a high

correlation probably contains a face. Once again a threshold value will have to be

established to classify faces from non-faces. Similar to reconstruction, resizing the

segmented area and calculating its correlation with the average face is far too expensive to

be used alone for face detection but is suitable for verifying the output of the face detection

system.

64

4.6 Pose invariant face recognition

Extending the frontal view face recognition system to a pose-invariant recognition system

is quite simple if one of the proposed specifications of the face recognition system is

relaxed. Successful pose-invariant recognition will be possible if many images of a known

individual are in the face database. Nine images from each known individual can be taken

as shown below. Then if an image of the same individual is submitted within a 30o angle

from the frontal view he or she can be identified.

Nine images in face database from a single known individual

Unknown image from same individual to be

identified

Figure 4.10 Pose invariant face recognition.

Pose invariant face recognition highlights the generalisation ability of PCA. For example,

when an individual's frontal view and 30o left view known, even the individual's 15o left

view can be recognised.

65

Although good results can be obtained for pose invariant face recognition under controlled

conditions, pose invariant face detection is extremely hard and successful template

matching or traditional neural network strategy to deal with the problem has still not been

proposed. Furthermore, gathering multiple views of an individual for a face database is not

realistic since in most situations only a single known face for each subject is available.

Since the face was not isolated in the image, variations in the subject's clothing, hairstyle or

the background would adversely effect recognition performance. The pose invariant face

database and testing images gathered in this thesis were obtained under highly controlled

conditions since the pose invariant face recognition system is not as robust as the frontal

view system.

66

5 LIGHTING INVARIENCY

 5

Lighting Invariancy

67

Lighting Invariancy

5.1 Overcoming irregular lighting

Very rarely will a face recognition system be presented with perfect lighting conditions

with ambient lighting not causing distinct irregular shadows on a subject's face. If a face

recognition system were to be used in real-world environments, under varying light

conditions, it must be able to overcome irregular lighting. Therefore the following image

processing techniques where used during the author's research to provide a degree of

lighting invariency.

5.2 Normalising

The following image was captured under lighting conditions which to a human's visual

system, do not seem that adverse for face recognition

Figure 5.1 Frontal view face captured under real-world lighting conditions

However by examining this image under a suitably scaled colormap it is evident that there

is extremely irregular lighting prevalent (Figure 5.2).

68

These conditions would adversely affect the performance of the whole face recognition and

detection system and therefore must be adjusted.

Figure 5.2 Face with a suitably scaled colormap

The worst case scenario is when there is a single directional light source on one side of the

subject's face, similar to the above figure. Furthermore, most lighting irregularities in the

real world are with a light source on either side of the subject. Because of the inherent

contours of a human face vertical differences in lighting do not seem to affect the frontal

face image a great deal. After examining many image processing techniques it was found

that normalising the columns of the image matrix (normalising the image in the vertical

direction) was an effective method of overcoming irregular lighting (Figure 5.3).

Figure 5.3 Face after normalising vertically

69

Normalising horizontally and even normalising horizontally after normalising in the

vertical direction was found to give unsatisfactory results (Figures 5.4 and 5.5)

Figure 5.4 Face after normalising

horizontally

Figure 5.5 Face after normalizing vertically

then normalizing horizontally.

Notice the horizontal bands that appear along rows with high intensity areas. Horizontal

normalisation should not be used in similar computer vision problems.

Figure 5.6 Face under real-world lighting Figure 5.7 Face after vertical normalization

The original and vertically normalised images are shown above using the normal grey scale

colormap. Although they both look similar to the human visual system the image on the

right is far superior for reasoning using computer vision and for face recognition purposes.

70

5.3 Histogram Equalisation

The digital camera, which the author used to assemble the face database, had an automatic

exposure, which unfortunately adversely affected the face images. Many of the images

were too dark and not suitable for face recognition. Histogram equalisation equitably

spreads the pixels of an image among the grey-level intensities thereby increasing the

contrast of the image.

A very dark image. All grey-level intensities

are low and close together

Histogram equalised image. Pixels were

gathered into 20 grey-level intensities

Figure 5.8 Histogram equalisation

5.4 Order-Statistic Filtering

A serious error was made by the author when assembling the main face database. While the

images in section 6.1.1 were captured without a flash, the author used digital camera with a

flash when photographing subjects for this project's main face database. Using the flash

frequently caused highlights in the subjects eyes which affected the vertical normalization

pre-processing as described in the previous section and also adversely affected face

recognition accuracy. Since over 450 photographs were taken in the main face database, re-

taking the whole database was not an option. Also, the author did not want to manually

alter the face images since this would detract from the value of the overall system. An

image processing technique was needed to isolate and remove the highlights.

71

Figure 5.9 Highlights from camera flash Figure 5.10 After order-statistic filtering

A 2 dimensional order statistic filter, which replaces each element in a 3x3 neighbourhood

with the minimum element in the neighbourhood was found to provide satisfactory results.

Order-statistic filtering encompasses many useful image processing techniques including

the popular median filter. The reader is encouraged to read refer Haralick and Shapiro

(1992) for further details.

72

6 SYSTEM TESTING

 6

System Testing and Evaluation

73

System Testing

The following systems were implemented using Matlab 5.3 and tested on an Intel Pentium

233 MMX, with 64MB of RAM running Windows '95. This platform should be considered

as the minimum hardware requirement since the face detection and recognition algorithms

could have been modified for increased accuracy on a more powerful testing platform.

1) Fully automated face detection with verification

2) Fully automated face detection without verification

3) Manual face detection and automated face recognition

4) Fully automated face detection and recognition

6) Pose invariant face recognition

450 images from 30 test subjects were obtained to test the above systems. The data for

testing the fully automated face detection system, manual face detection and automated

face recognition system and the fully automated face detection and recognition consists of

4 frontal view images per test subject. The first image was taken under 'good' conditions

with relatively constant lighting conditions on a white background. This would be used as

the known frontal view face image in the face recognition system. The environment

condition of the image was categorised by the researcher as 'A'.

The other three frontal view images were taken under worsening conditions with adverse

lighting conditions and sometimes with a black background. These would be used as test

images for the frontal view face recognition system. An effort was made to vary the

lighting as much a possible in the environment which the images were gathered to test the

systems' robustness. The environment condition of the image was categorised as 'B'.

Data for the pose invariant face recognition was gathered as follows. Nine known images

from each individual were collected and three (unknown) images taken when the subject

was posing in intermediate angles between the nine known images. The nine known images

were taken with the test subject posing as in figure 4.10. Since pose invariant face

recognition is not as robust as frontal view face recognition this data was gathered under

very controlled conditions

The images from three test subjects had to be rejected since many of these had been very

adversely affected by the automatic exposure of the digital camera used to obtain the face

images. A subset of the face database can be found on the compact disk accompanying this

thesis.

74

6.1 Fully automated face detection

The output of the face detection system (segmented face area) is subjectively evaluated to

fall into the following categories:

1) Successful detection, Excellent face segment.

2) Successful detection, Good face segment

3) Failure

These are realistic categorisations since even Heisele and Poggio (1999) considered the

following as face detections.

Figure 6.1 Face detection examples from Heisele and Poggio (1999)

75

6.1.1 Fully automated face detection testing without verification.

First, the fully automated frontal view face detection system was tested without verifying

its results (without using reconstruction or correlation with the average face). The

following table contains the testing results:

Condition of images Total tested Successful detection Failures

Excellent Good

A 27 17 (62%) 8 (29%) 2 (7%)

27 25 (92%) 2 (7%)

B 60 27 (45%) 24 (40%) 9 (15%)

60 51 (85%) 9 (15%)

Condition A refers to frontal view images taken with a plain white background under

relatively controlled lighting conditions, while condition B images are those randomly

taken from the set of images that were taken under worsening lighting conditions and

sometimes with a black background. When considering all the trade-offs that were made,

the adverse environment conditions and the degradation to the images caused by the digital

camera's automatic exposure, the successful detection rate is quite high. While the

successful detections with a good segment area will probably require modest alterations in

the face window location to be done by the face recognition system, the excellent face

segments will need little adjustment. The PCA recognition is extremely sensitive to scale

and position variations so small adjustments to the face detection output will always be

needed. Unfortunately the segmented areas from the face detection failures are totally

useless for face recognition. These errors occurred when the best 'faceness' heuristic did not

coincide with the actual best face location.

76

6.1.2 Fully automated face detection testing with verification.

Here correlation with the average face is used to verify the potential face locations

proposed by the fully automated face detection system. Condition A and B images are as

with the previous test.

Condition of images Total tested Successful detection Failures

Excellent Good

A 27 21 (78%) 6 (22%) 0 (0%)

27 27 (100%) 0 (0%)

B 81 64 (79%) 17 (21%) 0 (0%)

81 81 (100%) 0 (0%)

This has proved to be a very efficient automated face detection system. The deformable

template effectively narrowed down the search space and then correlation with the average

face identified the best face location. Furthermore, there were no detection failures when

we used correlation to verify the output of the face detection system. The 6 good face

detection results from condition A images are given in the following figure.

Figure 6.2 The 6 good face segments from 27 condition A images. All other face detections
resulted in excellent face segments. Many of the above were not segmented perfectly
because the subject's head was slightly at an angle or like in the lower right figure, the
subject was not perfectly symmetrical.

77

6.2 Automated face recognition

6.2.1 Manual face detection and automated face recognition

These tests will investigate the robustness and accuracy of the Principal Component

Analysis frontal-view face recognition system. The 27 images of condition A (as described

earlier) were manually face detected and PCA transformed, creating a face database of

known images. The author divided the condition of images submitted for recognition into

three types,

1) Perfect conditions - the known images are submitted again

2) Good conditions - manual face detection(again) of condition A images

3) Normal/Adverse conditions - manual face detection of condition B images.

The faces in the images were of different sizes, positions and many subjects had even

slightly rotated their heads. Further more, lighting conditions were intentionally varied by

the researcher to strain the recognition system.

Condition of images Total tested Successful recognition Recognition failures

Perfect 27 27 (100%) 0 (0%)

Good 27 25 (93%) 2 (7%)

Normal/Adverse 80 58 (73%) 22 (27%)

While the face recognition system's performance is strong on 'perfect' and 'good' images its

performance on 'normal/adverse' condition images could be better. This is probably

because only 27 eigenfaces could be used in the fully automated face recognition system.

Turk and Pentland (1991a) recommend using at least 40 eigenfaces for face recognition.

Unfortunately because of the limited number of testing subjects this was not possible. Since

according to O'Toole et al. (1993), low eigenvalue eigenfaces are the most useful for

recognition, increasing the number of eigenfaces should improve performance considerably

and a recognition accuracy of over 90% is expected.

78

6.2.2 Fully automated face detection and recognition

Simply attempting the recognition of the output of the fully automated face detection

system resulted in a recognition rate close to zero (0%). Principal Component Analysis is

extremely sensitive to even slight variations in scale, position and rotation so it is extremely

unlikely that the extracted segment would be suitable for recognition.

Slightly moving the extracted segment around in the hope of getting better recognition

results was viewed as a crude solution to the problem and also was too computationally

expensive to implement on the testing platform.

The author investigated using the Hough transform after edge detection on the extracted

segment as a means of eye detection. Detecting the eyes would enable normalising the face

(in fact, extracting the exact face position from the segment) thus vastly improving

recognition accuracy. Eye detection would let us rotate the face to make the eye horizontal

and scale the face exactly to match the calculated average face. Unfortunately sufficient

literature was not available to understand and implement such a system.

6.2.3 Pose invariant face recognition

Pose invariant face recognition was tested without any detection what so ever. This was

possible because the face images were carefully gathered by the researcher under controlled

conditions. Testing results follow:

Testing condition Total tested Successful recognition Recognition failures

controlled 92 86 (93%) 6 (7%)

There is a very high recognition rate, even higher that the frontal view face recognition

system with face detection. The sole reason of the strong performance of the system was

the controlled environment that the images taken. This is in total contrast to the frontal

view images which were intentionally taken under adverse conditions. These testing results

underline the fact that creating a computer vision system that performs in a controlled

domain is far easier then producing a very robust vision system.

79

6.3 Standard face databases

The author would have liked to compare these testing results with that of other face

detection and face recognition studies but such a comparison would be deceptive and may

even reflect adversely on the author's system. This is because one cannot compare systems

tested using different face databases. The author again emphasises the fact that the

performance of these vision systems depend on the conditions under which they were

tested.

There are two facial image databases (containing both training and test data) which are

widely used by researchers to test face detection and recognition systems. These enable

systems to be tested on an even footing. The NATO'97 database is one that was created

during the NATO Advanced Study Institute (ASI) on Face Recognition. The other database

is the famous FERET (Face-Recognition Technology) database of the US Army Research

Laboratory (ARL). FERET is in fact an on-going major program funded by the ARL and

ARPA. The author was not able obtain any of these or any other standard face database, so

was unable to compare the implemented systems with those of other researchers'.

80

7 FURTHER WORK

 7

 Further Work

81

Further Work

7.1 Extensions to the implemented systems

The face database of the implemented system should be expanded to as many individuals as

possible. Face recognition using Principal Component Analysis promises to be highly

scalable so recognition of even over 10000 individuals should be possible. This is in

contrast to a traditional neural network based technique. However, the real-world problems

that arise when expanding the face database can only be found out by actually

experimenting with a large face database.

Additional test subjects are also needed because there were insufficient eigenfaces

calculated to perform recognition accurately. As we increase the size of the face database

the recognition accuracy of the system should increase. In the author's opinion a minimum

of 40 eigenfaces should be used for face recognition.

An eye detection system should be implemented to further normalise the area segmented by

the face detection system. If the subject's eyes were accurately identified, the image could

be transformed to make the eyes horizontal and the face scaled to a constant proportion of

the segmented pixel area. This would let us implement a fully automated face detection and

recognition system since PCA is far too sensitive to scale, rotation and shift, to perform

recognition with the raw output from a face detection system. Fortunately there are well

known techniques for circle detection which can also be used for eye detection.

Segmented Area from Face Detection system After edge detection using Sobel operators

Figure 7.1 Eye detection

82

Once the segmented area has been edge detected, the Hough transform can be used to

identify the locations of circles in the image. The two large circles near the top of a

segmented face would be the eyes. Due to the limited time available for this project the

author could not implement an eye detection system.

Only the whole-face template was used for frontal view face recognition. The template

matching strategy that was used can be expanded to use the whole face, left eye, right eye,

nose and mouth templates for recognition. The problems associated in extracting these

template areas and assigning weights to the Euclidean distances found by each template

(closest known left eyes, closest known right eyes, etc) can be investigated.

If a real-world implementation of this system is needed, the face detection system should

be optimised to suit the specific platform. There are several speed versus accuracy trade-off

decisions which will have to be reconsidered depending on each computing environment

that is used.

Besides the pose invariant recognition scheme that was implemented, recognition even with

facial expressions is possible by taking multiple images of each known individual with a

range of facial expressions.

The classification ability of PCA can be tested on other problems. While the recognition of

human faces is an innate ability, we may not be able to differentiate between data points in

other problems. PCA can then be used to find relationships which are not obvious to us. For

example, perhaps PCA can be used in an automated orang-utan face recognition system!

83

7.2 Transforming frontal view face images for pose

invariant face recognition

While the results for pose invariant face recognition were quite strong, the face database

contained nine known faces for each individual to be identified. With more known data

points in face space, recognition performance increased sharply. Unfortunately having nine

known images per individual is not realistic (in most real-world situations only a single

frontal view face image is presented as the known image), and therefore a great deal of

research has been done on transforming frontal view face images to create 'virtual views' of

the other poses. These 'virtual views' can then be added to the face database as additional

known faces of an individual from different poses. There are two approaches to

transforming or rotating human faces.

7.2.1 3D modelling techniques

These involve transforming the facial image to a 3D model, rotating the model and

transforming the face back into a (2D) image. It is a 2D to 3D to 2D transformation. While

this technique produces accurate results many implementations of this strategy require a

frontal and a profile image per individual to create the 3D model (Lee and Thalmann, 1998)

and is therefore once again not practical..

7.2.2 2D transformations

The other approach to the problem is to use a 2D to 2D parallel deformation to rotate the

(2D) frontal view face image. Beymer and Poggio (1995) used an example based strategy

to create prototype transformations from a frontal view face to a angled pose. These were

then used in a pose invariant face recognition system

84

7.3 Support Vector Machines for pose invariant face

detection

While traditional neural network based techniques are not ideally suitable for pattern

recognition and computer vision problems, a new learning strategy has been proposed to

enable neural networks to achieve high face recognition and face detection accuracy even

though only a few examples (i.e. a small training set) were used for training (Osuna et al,

1997). This was done by using Support Vector Machines (SVM), which were developed by

V. Vapnik and his team at the AT&T Bell Labs for training polynomial, neural network, or

Radial Basis Functions classifiers.

A pose invariant face detection system could be attempted using SVMs, their ability to

perform strongly even with a small training set would make them an ideal network model.

A pose invariant face detection system together with a system for transforming frontal view

face images would enable us to create a pose invariant face recognition system using only a

single known frontal view face image per individual.

If all the above systems were implemented, not only would a fully automated face detection

and recognition system be possible, but also a fully automated pose invariant face detection

and recognition system. Further, even a fully automated real-time automated pose invariant

face detection and recognition system could be realised by also using spatio-temporal

filtering.

85

8 CONCLUSION

 8

 Conclusion

86

Conclusion

The computational models, which were implemented in this project, were chosen after

extensive research, and the successful testing results confirm that the choices made by the

researcher were reliable.

The system with manual face detection and automatic face recognition did not have a

recognition accuracy over 90%, due to the limited number of eigenfaces that were used for

the PCA transform. This system was tested under very robust conditions in this

experimental study and it is envisaged that real-world performance will be far more

accurate.

The fully automated frontal view face detection system displayed virtually perfect accuracy

and in the researcher's opinion further work need not be conducted in this area.

The fully automated face detection and recognition system was not robust enough to

achieve a high recognition accuracy. The only reason for this was the face recognition

subsystem did not display even a slight degree of invariance to scale, rotation or shift errors

of the segmented face image. This was one of the system requirements identified in section

2.3. However, if some sort of further processing, such as an eye detection technique, was

implemented to further normalise the segmented face image, performance will increase to

levels comparable to the manual face detection and recognition system. Implementing an

eye detection technique would be a minor extension to the implemented system and would

not require a great deal of additional research.

All other implemented systems displayed commendable results and reflect well on the

deformable template and Principal Component Analysis strategies.

The most suitable real-world applications for face detection and recognition systems are for

mugshot matching and surveillance. There are better techniques such as iris or retina

recognition and face recognition using the thermal spectrum for user access and user

verification applications since these need a very high degree of accuracy.

87

The real-time automated pose invariant face detection and recognition system proposed in

chapter seven would be ideal for crowd surveillance applications. If such a system were

widely implemented its potential for locating and tracking suspects for law enforcement

agencies is immense.

The implemented fully automated face detection and recognition system (with an eye

detection system) could be used for simple surveillance applications such as ATM user

security, while the implemented manual face detection and automated recognition system is

ideal of mugshot matching. Since controlled conditions are present when mugshots are

gathered, the frontal view face recognition scheme should display a recognition accuracy

far better than the results, which were obtained in this study, which was conducted under

adverse conditions. Furthermore, many of the test subjects did not present an

expressionless, frontal view to the system. They would probably be more compliant when a

6'5'' policeman is taking their mugshot!

In mugshot matching applications, perfect recognition accuracy or an exact match is not a

requirement. If a face recognition system can reduce the number of images that a human

operator has to search through for a match from 10000 to even a 100, it would be of

incredible practical use in law enforcement.

The automated vision systems implemented in this thesis did not even approach the

performance, nor were they as robust as a human's innate face recognition system.

However, they give an insight into what the future may hold in computer vision.

88

89

9 APPENDICES Appendices

Appendix A - User Manual

"Big Brother - Frontal View system"

All possible operations of the "Big Brother - Frontal View system" are listed below

• Load Image - load an image into the system.

• Manual Face detection - the operator must manually detect the face according to

the instruction given by the system. Since operator skill plays a great part in a

manual face detection and automated face recognition system, the following

figure are given as a guideline to the user.

The operator of the manual face recognition system must carefully mark the

given point when the eye is in the particular position given above.

Unfortunately, even slight deviations from this point will affect subsequent

recognition accuracy.

• Automated Face Detection - the system will detection the face in the loaded

image.

• Recognize - the system will attempt to recognize the manually or automatically

detected face. The face database must be loaded into the system before face

recognition can be carried out. The face of the closest known face in the

database will be displayed. The user has the option of viewing the details of the

next closest known face.

• Add to Face Database - the current face is added to the face database

• PCA - Compute eigenfaces of faces in the face database.

Similar functionality can be found in ""Big Brother - Pose Invariant system" except no

face detection takes place and face recognition is with faces from different angles.

90

Appendix B - Code Listing

Mathwork's Matlab 5.3 is required to use the Matlab functions that follow. All the

functions used in this thesis and a subset of the face database can be found on the compact

disk enclosed with this thesis.

Training a Kohonen Feature Map

function mykfm;
% By L.S.Balasuriya
% Based on original by Jang et al.(1997)
% Training a KFM

% Initial Parameters ***
side = 10; % size of network
pattern_n = 30; % pattern_n is the number of input patterns
iteration_n = 100; % no. of iterations in training

% Input Data ***
x = rand(pattern_n, 1);
x=x+ sqrt(-1)*x;

% Rectangle
ix = 1:pattern_n;
x = x(ix);

% SOM learning parameters ***
init_eta = 0.8; % Initial value of eta(learning rate)
final_eta = 0.1; % Final value of eta
init_sigma = side/2; % Initial value of sigma(neighbourhood)
final_sigma = 1; % Final value of sigma

% Initial weights matrix **
w = (rand(side) + j*rand(side))/10 + 0.45*(1+j) ; % weight matrix

% Input data distribution ***
snapshotH = genfig('Snap shots of Kohonen feature map');
clf;
subplot(2,4,1); plot(x, '.'); axis square; axis([0 1 0 1]);
title('Data distribution');
title('(a)');
subplot(2,4,2); plot([w w.']); axis square; axis([0 1 0 1]);
title('Initial weights');
title('(b)');

91

% Initial animation objects **
animationH=genfig('Animation for Kohonen feature map');
lineH = plot(nan*real([w w.']), nan*imag([w, w.']), 'erase', 'back');
axis square; axis([0 1 0 1]);
set(gca, 'xtick', [], 'ytick', []);
titleH = text(0.5, 1.05, '');
set(titleH, 'erase', 'xor', 'horizontal', 'center');
xlabelH = text(0.5, -0.05, '');
set(xlabelH, 'erase', 'xor', 'horizontal', 'center');
if matlabv==4,

inputH = line(nan, nan, 'erase', 'back', 'linestyle', '.', ...
'markersize', 25, 'color', 'c');

elseif matlabv==5,
inputH = line(nan, nan, 'erase', 'back', 'marker', '.', ...

'markersize', 25, 'color', 'c');
else

error('Unknown MATLAB version');
end
titleH = get(gca, 'title');
xlabelH = get(gca, 'xlabel');
[xx, yy] = meshgrid(1:side, 1:side);

% ====== main loop ===
for k = 1:iteration_n

eta=init_eta+(k-1)*(final_eta-init_eta)/(iteration_n-1);
sigma=init_sigma+(k-1)*(final_sigma-init_sigma)/(iteration_n-1);

input = x(rem(k, pattern_n)+1); % a value from x (sequentially step k)
xw = input - w; % Euclidean distance matrix (from input)

% (IM,JM) is the coordinates of the winning unit.
dist = abs(xw); % magnitude(matrix) of the complex elements of xw.
min_dist = min(min(dist)); % minimum Euclidean distance to weight
[IM, JM] = find(dist==min_dist); % coordinate of winner

% The neighbourhood function NB is centered around (IM, JM)
TMP = xx-IM + (yy-JM)*sqrt(-1);
NB = exp(-TMP.*conj(TMP)/sigma);
NB = NB.';

% update weights of the winning unit and its neighbourhood
w = w + eta*NB.*xw;

% update animation objects
tmp = [w, w.'];
for i = 1:size(lineH),

set(lineH(i), 'xdata', real(tmp(:, i)), ...
'ydata', imag(tmp(:, i)));

end
set(inputH, 'xdata', real(input), 'ydata', imag(input));
title_str = ['eta = ',num2str(eta),' sigma = ',num2str(sigma)];
count_str = ['count = ',int2str(k),'/',int2str(iteration_n)];
set(titleH, 'string', title_str);
set(xlabelH, 'string', count_str);

92

drawnow;

% ====== snapshots
if k == 30,

figure(snapshotH);
subplot(2,4,3); plot([w w.']);
axis square; axis([0 1 0 1]);
title(['Wts. after ' int2str(k) ' updates']);
title('(c)');
drawnow;
figure(animationH);

elseif k == iteration_n,
figure(snapshotH);
subplot(2,4,4); plot([w w.']);
axis square; axis([0 1 0 1]);
title(['Wts. after ' int2str(k) ' updates']);
title('(d)');
drawnow;

end
end

%===

Training a Kohonen Feature Map with Input Space Neighbourhood

function mykfm2;
% By L.S.Balasuriya
% Traing a KFM with a input space neighbourhood

% Initial Parameters ***
side = 20;
pattern_n = 20; % pattern_n is the number of input patterns
iteration_n = 500;

% Input Data ***
x(1:pattern_n) = rand(pattern_n, 1) + sqrt(-1)*rand(pattern_n, 1);

% SOM learning parameters ***
init_eta = 0.5; % Initial value of eta(learning rate)
final_eta = 0.1; % Final value of eta
init_sigma = 1/10; % Initial value of sigma(neighbourhood)
final_sigma = 0; % Final value of sigma

% Initial weights matrix **
[wi, wj] = meshgrid(1:side, 1:side);
w=(wi/side)-(0.5/side)+sqrt(-1)*((wj/side)-(0.5/side));

93

% Intial Plots***

figure;
plot(x, 'o'); axis square; axis([0 1 0 1]);
title('Data distribution');

figure;
plot([w w.']); axis square; axis([0 1 0 1]);
title('Initial weights');

% Main loop ==
for k = 1:iteration_n

eta=init_eta+(k-1)*(final_eta-init_eta)/(iteration_n-1); %reduce%learning rate
 sigma=init_sigma+(k-1)*(final_sigma-init_sigma)/(iteration_n-1);
 % reduce neighbourhood

 input = x(rem(k, pattern_n)+1); % a value from x (sequentially step k)
 xw = input - w; % Euclidean distance matrix (from input)

 %(IM,JM) is the coordinate of the winning unit.
 dist = abs(xw); % magnitude(matrix) of the complex elements of xw.

 for p=1:side
 for q=1:side
 guass=exp(-(dist(p,q)^2)/(2*(sigma^2))); % guassian function
 w(p,q)=w(p,q)+eta*guass*xw(p,q); % updated weighhts
 end
 end

% snap shots **
if k==iteration_n,
 figure;
 plot(w,'*');axis square; axis([0 1 0 1]);
 title(['after ' int2str(k) ' iterations']);
else if 0 == mod((k/iteration_n)*100,10),

figure;
plot(w,'.'); %plot([w w.']);
axis square; axis([0 1 0 1]);
title(['after ' int2str(k) ' iterations']);

 end
end
end
% ===

94

Training a Input Space Neighbourhood Kohonen Feature map with node Sensitivity

function [w,s]=mykfm21;
% Returns final weights(s) and sensitivity matrix(s) of training
% KFM with a input space neighbourhood and node sensitivity

% Initial Parameters ***
side = 10;
pattern_n = 12; % pattern_n is the number of input patterns
iteration_n = 500;

% Input Data ***
x(1:pattern_n) = rand(pattern_n, 1) + sqrt(-1)*rand(pattern_n, 1);

% SOM learning parameters ***
init_eta = 0.12; % Initial value of eta
final_eta = 0.01; % Final value of eta
init_sigma = 1/12; % Initial value of sigma
final_sigma = 1/side; % Final value of sigma
theta = 0.5; % affect of sensitivity matrix
timefactor = 1.05;

% Initial weights matrix ***
[wi, wj] = meshgrid(1:side, 1:side);
w=(wi/side)-(0.5/side)+sqrt(-1)*((wj/side)-(0.5/side));

% Initial sensitivity matrix **
s=ones(side,side);

% Initial plots ***
figure;
plot(x, 'o'); axis square; axis([0 1 0 1]);
title('Data distribution');

figure;
plot([w w.']); axis square; axis([0 1 0 1]);
title('Initial weights');

% Main loop ===
for k = 1:iteration_n
 eta=init_eta+((k-1).*(k-1).*(k-1))*...

95

 (final_eta-init_eta)/(iteration_n-1)^3; % reduce learning rate
 sigma=init_sigma+((k-1).*(k-1).*(k-1))...
 *(final_sigma-init_sigma)/(iteration_n-1)^3; % reduce neighbourhood

 input = x(rem(k, pattern_n)+1); % a value from x (sequentially step k)
 xw = input - w; % Euclidean distance matrix (from input)

 % (IM,JM) is the coordinate of the winning unit.
 dist = abs(xw); % magnitude(matrix) of the complex elements of xw.

 for p=1:side
 for q=1:side
 guass=exp(-(dist(p,q)^2)/(2*((sigma+s(p,q))^2)));%guassian function
 movement=eta*guass*xw(p,q); % delta weights
 w(p,q)=w(p,q)+movement; % hopefully the updated weights
 s(p,q)=s(p,q)*(1-guass);
 end
 end

 s=s*timefactor;

% snapshots **
 if mod(k,fix(iteration_n/8))==0,
 figure;
 plot(w,'.'); axis square; axis([0 1 0 1]);
 title(['after ' int2str(k) ' iterations']);
 elseif k == iteration_n,
 figure;
 plot(w,'b*'); axis square; axis([0 1 0 1]);
 title(['after ' int2str(k) ' iterations']);
 end
end

%end Main loop ==

Face Detection

function coordinates=face_detection(input_image);
% By L.S.Balasuriya
% Find face in input_image and return its location

%********load templates ***
load dark_weight9; dark_weights=dark_weight9;

96

load light_weight9; light_weights=light_weight9;

load gray255map;

%********size of weight matrix ***
[ignor,gridsize]=size(dark_weights);

%********height and width of input image ******************************
[height,width]=size(input_image);

%********Initial parameters ***
int_image=im2double(input_image);

max_face=0.7; % max percentage size of face in input image
min_face=0.2; % min percentage size of face in input image

queue=0;t=1; % queue for faceness values

big=min(height,width); % get largest value
max=round(big*max_face);% max pixel width/height of face in input image
max=max+mod(max,2); % make even for facedec
min=round(big*min_face); % min pixel width/height of face in input image

increment= 0.2; % increment of moving window
jump= round(width*0.015); % increment in pixels
jump= jump+mod(jump,2); % make even for facedec

%********Initial graphics handles & display initial image ***************
colormap(gray255map);
image(input_image); % image is now displayed properly
hold on; % make graphics go on top of image

%********Initial rectangle position *************************************
y=0; x=0;
r=rectangle('Position',[x,y,max,max]);
set(r,'EraseMode','xor');

%********End Initial graphics handles **********************************

detection=-10; % highest value for faceness that have obtained
faceness=-10; % value returned by facedec
winsize=max; % biggest winsize (max)

%********Search for the line of symmetry *******************************
y=1; % top y (1)
x=1; % left x (1)

while x+winsize<width & faceness<lazy_threshold
 set(r,'Position',[x,y,winsize,winsize]);
 drawnow; % Update window position
 faceness=symmetry(int_image,x,y,winsize);
 queue(t)=faceness;t=t+1;

97

 if faceness>detection % try to get the best window
 detection=faceness;
 coordinates=[detection,x,y,winsize];
 end
 x=x+jump; % next x
end

%********End of the search for the line of symmetry *******************

symmetry=round(coordinates(2)+coordinates(4)/2);
detection=0;
faceness=0;

%********Search for Best face **

winsize=max; % biggest winsize (max)

while (winsize>=min)
 y=1; % top y (1)

 %********make big/small to fit window size
 %********remember weights point to locations in window
 dark_positions=(dark_weights*winsize);
 light_positions=(light_weights*winsize);

 %********turn weight positions into matrix indicies
 index_dark_weights=round(real(dark_positions)-1)...
 *winsize+round(imag(dark_positions));
 index_light_weights=round(real(light_positions)-1)...
 *winsize+round(imag(light_positions));

 x=symmetry-winsize/2;

 while y+winsize<height & faceness<lazy_threshold
 set(r,'Position',[x,y,winsize,winsize]);
 drawnow; % Update window position
 faceness=facedec(int_image,x,y,winsize,...
 index_dark_weights,index_light_weights);
 queue(t)=faceness;t=t+1;
 if faceness>detection % try to get the best window
 detection=faceness;
 coordinates=[detection,x,y,winsize];
 end
 y=y+jump; % next y
 end
 queue(t)=0;t=t+1;
 winsize=winsize-jump; % next winsize

98

end

%********end of the Search for Best face *******************************

%********Draw best faceness window
set(r,'Position',[coordinates(2),coordinates(3),coordinates(4),coordinates(4)]);
drawnow;

%===

Return Heuristic for Pixel Area's Vertical Symmetry

function sym=symmetry(int_image,x,y,winsize);
% by L.S.Balasuriya
% return heuristic for vertical symmetry

%********segment face detection window *********************************
window=int_image(y:y+winsize,x:x+winsize);

%********increase difference between highs.lows and normalise **********
norm_window=window-min(min(window));
norm_window=norm_window/max(max(window));

%********check vertical symmetry **************************************
left=window(1:winsize,round(winsize/2): -1:1);
right=window(1:winsize,round(winsize/2)+1:winsize);
up=window(round(winsize/2): -1:1,1:winsize);
down=window(round(winsize/2)+1:winsize,1:winsize);
c=corrcoef(left,right)-corrcoef(up,down);
sym=c(1,2);

Return Heuristic for Pixel Area's 'Faceness'

function faceness=facedec(int_image,x,y,winsize,...
 index_dark_weights,index_light_weights);

99

% By L.S.Balasuriya
% return 'faceness' of the face detection window in int_image
% dark weights and light weights are the dark and
% bright templates respectively
% x,y,winsize are details about the location and
% size of the face detection window

%********segment face detection window **********************************
window=int_image(y:y-1+winsize,x:x-1+winsize);

%********normalise
norm_window=window/max(max(window));

%********add intensities of pixels indicated by dark and bright templates
darkness=sum(sum(1-window(index_dark_weights)));
lightness=sum(sum(window(index_light_weights)));

%********faceness value ***
faceness=(lightness+darkness);

Principal Component Analysis

function [U,R,E] = pcabigFn(X);
% By L.S. Balasuriya
% Achnowledgements to Doug Hundley
% Based on original by Marian S. Bartlett.
% Computes principal component analysis of mean subtracted matrix X
% Returns eigenfaces in U
% Facespace vectors of X in R
% Eigenvalues of Eigenvectors in E

%********get size of matrix ***
[N,P] = size(X);

%********subtract mean **
mb=mean(X');
X=X-(ones(P,1)*mb)';

%********Find eigenvectors of B'B *************************************
[V,D] = eig (1/(P-1)*(X'*X));

%********Sort eigenvectors ***
eigvalvec = max(D);
[seigvals, index] = sort(eigvalvec);
Vsort = V(:,[fliplr(index)]);

%********Deduce eigen vectors of BB' ***********************************
U = X*Vsort;

100

%********Give eigvecs unit length. ************************************
length = sqrt (sum (U.^2));
U = U . / (ones(N,1) * length);

R = B'*U;
E = fliplr(seigvals);

Face Recognition

function closeness=recognition(input_image,U,R);
% By L.S. Balasuriya
% Returns closeness of known face vectors in R to unknown image input_image
% R contains the Eigenfaces

%********image to vector ***
vinput=reshape(input,[10000 1]);

%********recognition **
facespace=voutput'*U;

%********Eucleadian distance **
[p,ignor]=size(R);
distance_vecs=R-repmat(facespace,[p 1]);
distance=sum(abs(distance_vecs)')';

%********order of closeness to unknown face ***************************
[ignor,closeness]=sort(distance);

Manual Face Detection

function output_image=manual_facedec(input_image);
% By L.S.Balasuriya
% Returns segmented pixel area from input_image containing the face
image(input_image);

%********straighten face **
%********operator clicks under eyes *************************************
[Lx,Ly]=nngetclk('Click lowest edge of Left Eye');
[Rx,Ry]=nngetclk('Click lowest edge of Right Eye');

width=(Rx-Lx)/0.6;
y=(Ly+Ry)/2;

left=round(Lx-width*0.4);

101

top=round(y-0.54*width);
width=round(width*1.4);

%area near face segmented ***
input_image=input_image(top:top+width,left:left+width,:);

%image rotated to straighten eyes and zoomed in *************************
angle=atan((Ly-Ry)/(Rx-Lx))*180/pi;
input_image=imrotate(input_image,-angle,'crop');

image(input_image);

%********manual face detection **
%********operator clicks under eyes *************************************
[Lx,Ly]=nngetclk('Click lowest edge of Left Eye');
[Rx,Ry]=nngetclk('Click lowest edge of Right Eye');

width=(Rx-Lx)/0.6;
y=(Ly+Ry)/2;

left=round(Lx-width*0.2);
top=round(y-0.27*width);
width=round(width);

%image turned into gray scale ***
input_image=rgb2gray(input_image);

%face segmented and displayed ***
output_image=input_image(top:top+width,left:left+width);
output_image=imresize(output_image,[100 100],'bicubic');
imagesc((output_image));
colormap(jet); colorbar;

Appendix C - The most beautiful girl in the world?

One of the interesting calculations of a face recognition system based on Principal

Component Analysis is the average human face. Because there are several theories on the

association between the average face and facial attractiveness, the author decided to

investigate further.

102

Figure 9.1 Average face from 30 test subjects (from both male and female subjects)

A study was conducted by Francis Galton in the 1870's to find out what the typical criminal

looked like. Mugshots of hideous criminals were photographically blended to produce an

average criminal's face. Much to Galton's surprise the face he produced was of a good-

looking gentleman.

Over a century later, the most widely held theory about Galton's findings is that

attractiveness is largely a matter of being close to the average (AAFPRS, 1997). While this

may seem quite strange, it must be realised that having a face close to the average face is

rare, since almost no one will have average eyes and an average nose and an average

mouth etc. Almost all of us have some feature that is not average (for example, a long

face). Averageness being attractive makes sense when one realises that being abnormal and

having abnormal genes is usually harmful.

Besides an average face, men also seem to instinctively prefer women with full lips and a

small jaw since these are a sign of high estrogen production and women prefer men with a

strong jaw and a wide chin-as these are the result of high testosterone production. Further

more, since the average faces each of us has assembled differs slightly from one another,

our attraction to a certain individual may vary.

It seems that beauty really is in the eye of the beholder.

103

Figure 9.2 Average face from 18 male test
subjects

Figure 9.3 Average face from 12 female test
subjects

104

10 BIBLIOGRAPHY

BIBLIOGRAPHY

Adelson, E. H., and Bergen, J. R. (1986) The Extraction of Spatio-Temporal Energy in

Human and Machine Vision, Proceedings of Workshop on Motion: Representation and

Analysis (pp. 151-155) Charleston, SC; May 7-9

AAFPRS(1997). A newsletter from the American Academy of Facial Plastic and

Reconstructive Surgery. Third Quarter 1997, Vol. 11, No. 3. Page 3.

Baron, R. J. (1981). Mechanisms of human facial recognition. International Journal of Man

Machine Studies, 15:137-178

Beymer, D. and Poggio, T. (1995) Face Recognition From One Example View, A.I. Memo

No. 1536, C.B.C.L. Paper No. 121. MIT

Bichsel, M. (1991). Strategies of Robust Objects Recognition for Automatic Identification

of Human Faces. PhD thesis, , Eidgenossischen Technischen Hochschule, Zurich.

Brennan, S. E. (1982) The caricature generator. M.S. Thesis. MIT.

Brunelli, R. and Poggio, T. (1993), Face Recognition: Features versus Templates. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 15(10):1042-1052

Craw, I., Ellis, H., and Lishman, J.R. (1987). Automatic extraction of face features. Pattern

Recognition Letters, 5:183-187, February.

Deffenbacher K.A., Johanson J., and O'Toole A.J. (1998) Facial ageing, attractiveness,

and distinctiveness. Perception. 27(10):1233-1243

105

Dunteman, G.H. (1989) Principal Component Analysis. Sage Publications.

Frank, H. and Althoen, S. (1994). Statistics: Concepts and applications. Cambridge

University Press. p.110

Gauthier, I., Behrmann, M. and Tarr, M. (1999). Can face recognition really be dissociated

from object recognition? Journal of Cognitive Neuroscience, in press.

Goldstein, A.J., Harmon, L.D., and Lesk, A.B. (1971). Identification of human faces. In

Proc. IEEE, Vol. 59, page 748

de Haan, M., Johnson, M.H. and Maurer D. (1998) Recognition of individual faces and

average face prototypes by 1- and 3- month-old infants. Centre for Brain and Cognitive

Development, Department of Psychology, Birkbeck College.

Hadamard, J. (1923) Lectures on the Cauchy Problem in Linear Partial Differential

Equations , Yale University Press

Haralick, R.M. and Shapiro, L.G.. (1992) Computer and Robot Vision, Volume I. Addison-

Wesley

Haxby, J.V., Ungerleider, L.G., Horwitz, B., Maisog, J.M., Rapoport, S.I., and Grady, C.L.

(1996). Face encoding and recognition in the human brain. Proc. Nat. Acad. Sci. 93: 922 -

927.

Heisele, B. and Poggio, T. (1999) Face Detection. Artificial Intelligence Laboratory. MIT.

Jang., J., Sun, C., and Mizutani, E. (1997) Neuro-Fuzzy and Soft Computing. Prentice Hall.

Johnson, R.A., and Wichern, D.W. (1992) Applied Multivariate Statistical Analysis.

Prentice Hall. p356-395

106

Kanade, T. (1973) Picture processing by computer complex and recognition of human

faces. Technical report, Kyoto University, Dept. of Information Science.

Kaya, Y. and Kobayashi, K. (1972) A basic study on human face recognition. In S.

Watanabe, editor, Frontiers of Pattern Recognition, page 265.

Kohonen, T. (1995), Self-Organizing Maps, Berlin: Springer-Verlag, p. VII

Krose, B., and van der Smagt, P. (1996), An Introduction to Neural Networks. The

University of Amsterdam.

Langlois, J.H. and Roggman, L.A. (1990).Attractive faces are only average. Psychological

Science, 1(2) 115-121.

Lee, W. and Thalmann, N.M. (1998) Head Modelling from Pictures and Morphing in 3D

with Image Metamorphosis based on triangulation. MIRALab, CUI, University of Geneva.

Moscovitch, M., Winocur, G. and Behrmann, M. (1997) What is special about face

recognition? Nineteen experiments on a person with visual object agnosia and dyslexia but

normal face recognition. Journal of Cognitive Neuroscience, 9, 5, 555-604.

Narayanaswamy, C.R. and Raghavarao, D. (1991) Principal component analysis of large

dispersion matrices. APSTAG 40:2. pp309-316.

Osuna, E., Freund, R. and Girosiy, F. (1997) Training Support Vector Machines: an

Application to Face Detection. Proceedings of CVPR, Puerto Rico.

O'Toole, A.J., Abdi, H., Deffenbacher, K.A., and Valentin, D. (1993) A low-dimensional

representation of faces in the higher dimensions of the space. Journal of the Optical Society

of America A, 10, 405-411.

Rodman, H.R., Gross, C.G., and Scalaidhe, S.P.Ó. (1993) Development of brain substrates

for pattern recognition in primates: physiological and connectional studies of inferior

107

temporal cortex in infant monkeys. In B. de Boysson-Bardies, S. de Schonen, P. Jusczyk, P.

MacNeilage, and J. Morton, Eds., Developmental Neurocognition: Speech and Face

Processing in The First Year of Life. Dordrecht: Kluwer Academic, pp. 63 - 75.

Rosenblatt, F. (1962). Principles of Neurodynamics: Perceptrons and the Theory of Brain

Mechanisms. New York: Spartan.

Rowley, H., Baluja, S. and Kanade, T. (1996) Neural Network­Based Face Detection.

Computer Vision and Pattern Recognition.

Saber, E. and Tekalp, A., (1996). Face Detection and Facial Feature Extraction Using

Color, Shape and Symmetry Based Cost Functions, International Conference on Pattern

Recognition (C8E.5)

Sinha, P. (1994) Object Recognition via Image Invariants: A Case Study. In Investigative

Ophthalmology and Visual Science, volume 35, pages 1735-1740, Sarasota, Florida, May.

Sung, K. (1995) Learning and Example Selection for Object and Pattern Detection. PhD

thesis, Massachusetts Institute of Technology, Cambridge, MA

Sung, K. and Poggio, T. (1994) Example-based learning for view-based human face

detection. In Proceedings from Image Understanding Workshop, Monterey, CA

Turk, M. and Pentland, A. (1991a). Eigenfaces for recognition. Journal of Cognitive

Neuroscience, 3(1), 71-86.

Turk, M. and Pentland, A. (1991b). Face recognition using eigenfaces. Proceedings of the

IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June

Maui, Hawaii, p 586-591

Wang, J.Y.A., and Adelson, E.H. (1994) Spatio-Temporal Segmentation of Video Data

Proceedings of SPIE on Image and Video Processing II, 2182:120-131 San Jose; February.

108

Wiskott et al. (1997) Wiskott, L., Fellous, J., Krüger, N., and Malsburg, C. Face

Recognition by Elastic Bunch Graph Matching. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 19(7):775-779

Yuille, A., Hallinan P., and Cohen ,D. (1992) Feature Extraction from Faces using

Deformable Templates. International Journal of Computer Vision, 8(2):99-111

Zeki, S. (1993). A vision of the brain. Oxford: Blackwell.

