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ABSTRACT 

 
A novel approach, based on a 3D difference pyramid structure with vector quantization error feedback, is proposed for 
microscopic volume image data compression. We have improved the coding performance relative to previous work. A 
finite-state vector quantizer (FSVQ) is introduced to exploit the correlation between neighbouring vectors to improve the 
coding efficiency. The effects of FSVQ in conjunction with thresholding are investigated. A distortion minimization 
algorithm selects both the setting of thresholds and size of state codebook. Experiments have been performed on data 
sets obtained by confocal laser scanning microscopy (CLSM) scans of human arteries. Results demonstrate that our new 
coding technique substantially improves the subjective and objective quality of the decompressed images over Moving 
Picture Expert Group (MPEG)-1 with more than 5dB gain. Compared to the state-of-the-art 3D volume coder 3D-Set 
Partition in Hierarchical Trees (SPIHT), our method also offers better coding performance with roughly 0.1 dB higher at 
high rate and more than 0.6 dB higher at very low bit rate. 

Keywords: Confocal Laser Scanning Microscopy, 3D Microscopic Image Compression, 3D Difference Pyramid, 
Vector Quantization, Finite-State Vector Quantization 

 
1. INTRODUCTION 

 

We have used confocal laser scanning microscopy (CLSM; single photon microscopy)[2] to collect 3D volumetric data. 
Serial optical sections (x, y plane) are collected at specific intervals down through the axial plane (z-axis) to produce a 
‘stack’ of optical planes which can be processed as a 3D volume. Processing, analysis and transfer of the resulting data 
volumes is time consuming and therefore a dedicated compression routine would be of great value for biomedical 
purpose. 

Different approaches may be considered for volumetric microscopic image compression. Since lossless coding 
approaches result in a small compression ratio, we consider lossy compression techniques, which would be attractive for 
non-diagnostic purpose, like reviewing. Among the main approaches developed, we can note: 

1. Methods, closed to the MPEG standard[4], using block-matching algorithm for motion estimation to code 2D 
image sequences[5, 6]. Such frame-by-frame algorithms are not adapted to the compression of real 3D medical 
images because of the artifacts introduced when quantizing the motion residual images along the third 
dimension which are not acceptable for static objects. 

2. Methods using subband decomposition. Such a decomposition takes the advantage of the voxel correlation in 
the three directions as the volumes produced from CLSM devices are isotropic. More recently, a 3D zerotree 
quantizer has been associated to such a subband decomposition[7]. Both the zerotree methods, like 3D-EZW and 
its enhanced version, like 3D-SPIHT[8] present good results for 3D medical image coding. 

3. Methods using 3D Discrete Cosine Transform applied to blocks[9]. 3D DCT-based techniques are not widely 
adopted, because unaccepted blocking artifacts distort the visual quality at low bit rate. 

This work continues from the ‘Advanced Compression for Microscopy Images’ project, in which we presented a 
technique combining vector quantization (VQ) with a 3D difference image pyramid data structure and demonstrated 
good coding performance at compressing volumetric confocal microscopic images[1]. In this study, we improve the 
previous work by applying adaptive block-based splitting thresholding on pyramid-transformed coefficients and 
introducing the finite-state vector quantization scheme to improve performance over ordinary VQ by exploiting the 
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correlation between neighboring vectors. Section 2 gives a brief review of pyramid decomposion and finite-state vector 
quantization for image coding. Section 3 describes the complete coding scheme of the enhanced 3D pyramid coder. 
Finally, in section 4, we present coding results on human arteries data set issued from CLSM devices using our approach 
compared with video coder MPEG-1 and the state-of-the-art image volume coder 3D-SPIHT. 

 
2. BASIC IDEA OF USING VQ IN IMAGE PYRAMID STRUCTURES 

2.1.  Image pyramid 
Image pyramids[10-16] provide a multi-resolution model of images and have been found attractive for compression, thanks 
to their good sub-band decomposition property, low computational cost and inherent characteristics of progressiveness. 
A difference pyramid (DP) is computed from an image pyramid (IP) to exploit the redundancy between each level of 
image pyramid, which is generated by taking the difference between the IP from the same level and the upsampled 
version of the IP from next above. A difference pyramid provides more efficient representation for transmission when 
combined with entropy coding. Figure 1 illustrates the construction of the image pyramid and the difference pyramid, 
and the procedure can be formulated as: 
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where N is the number of pyramid level. 

Generally, Freduce represents a decimation process, where an image is first lowpass filtered by a 2-D decimation filter, 
then subsampled by a factor of two horizontally and vertically. Fexpand represents an interpolation process, where we first 
upsample a decimated image by a factor of two horizontally and vertically, and then perform lowpass filtering of the 
upsampled image using an interpolation filter. 
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Figure 1. (a) Image pyramid and (b) difference pyramid construction. 

 
With all-unit quantization step sizes, the image pyramid can be perfectly reconstructed, warranting a lossless 
reconstruction[13-15]. In this case, nonexpensive pyramids, like reduced-difference pyramid, are more efficient in terms of 
overall rate for lossless coding compared to expansive versions, like difference pyramid, since the latter have larger 
number of coefficients to be encoded. When we choose larger step size or vector quantization (VQ) to encode the 
difference pyramid, the quantization errors will be taken into account. The effects of quantization noise on the entropy of 
Laplacian pyramids was firstly investigated in Burt’ s Laplacian pyramid[10], in which the overall distortion is shared 



between the various pyramid layers. The optimum rate and distortion allocation scheme of the Laplacian pyramid was 
discussed in[11]. Such techniques, however, can be used only for irreversible coding schemes. Therefore, schemes with 
quantization noise feedback have been introduced into pyramid structures when we compute the difference pyramids. 
They demonstrate better coding performance compared to the approaches without feedback[16, 12]. 

2.2. Finite-state VQ 
A memoryless VQ exploits the statistical redundancy between pixels within a vector[20, 21]. But each vector is 
independently encoded without using the high statistical correlation among its neighbouring vectors. Finite-state vector 
quantization (FSVQ) is designed for exploiting vector-to-vector correlation within the image to reduce the bit rate[20-22]. 
FSVQ selects a smaller state codebook from a large master codebook by the current encoder’ s state. Hence, a FSVQ can 
maintain the image quality of a large VQ codebook and achieve the bit rate efficiency of a small VQ codebook. 

A FSVQ (see Fig. 2) uses the previously encoded blocks to establish a uniquely defined state. For each state si, we select 
Nf codewords from the master codebook Y as the si’ s state codebook SCs. For encoding an input vector x, the encoder 
finds the current state s and then searches the state codebook SCs, not the master codebook Y, to find the best-matched 
codeword to x. The decoder will find the same current state s and the corresponding codeword in the same state 
codebook SCs according to the reproduction vector(s). In general, size of SCs is much smaller than that of Y. Hence, the 
FSVQ uses a large codebook for improving the image quality and uses the encoder state to select a smaller codebook for 
reducing the bit rate and the encoding time. The selected codeword may not be equal to the closest codeword that is 
selected by full searching the master codebook in which the closest codeword is found. 
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Figure 2. Finite-State VQ (a) encoder and (b) decoder. 

 
 

3. ENHANCED IMAGE PYRAMID CODER 
 
The 3D version of our algorithm is used to compress the sequence of slices obtained from CLSM devices. Unlike other 
3D image data, e.g. video sequence, each frame in the CLSM sequence presents one slice of an object at specific depth. 
The 3D pyramid coder treats the whole sequence as a 3D volume data and exploits the multi-dimensional redundancy 
with a single procedure. 

In Figure 3, we gave an example of constructing a four-level 3D pyramid. We incorporate block-based splitting 
thresholding scheme and FSVQ into the pyramid structures with vector quantization noise feedback. . In this case, the ith 
level of the difference pyramid is generated by taking the difference between the ith level of the original image pyramid 
and the i+1th level of the reconstructed version of the image pyramid. Therefore, errors introduced by the thresholding 
and quantization can be recovered at higher-resolution pyramid layers. We generalize the Freduce and Fexpand, previously 
used on 2D image data, to 3D voxel data. Tbb refers to block-based splitting thresholding. We can formulate the 
construction of 3D pyramid as follows (refer to Formula (1)): 
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where N is the number of pyramid level. 

Now we will describe the approach combining thresholding, FSVQ and distortion minimization scheme on the pyramid-
transformed coefficients to improved rate-distortion performance over the previously proposed 3D image pyramid 
coder[1]. 

0IP

1IP

2IP

3IP

original images

00 IPDP 0
’

0 IPIP

1DP

+
’

1IPLBG
+’

1DP
+

-

-
+

’
2IP

’
2DP +

+

-
+

’
3IP

’
3DP +

+

reconstructed
images

= Fshrink  by factor 8 = F expand  by factor 8

2DP

3DP

8

8

8 8

8

8

8

8

= =

BBT

LBG

LBG
+

FSVQ

BBT

BBT

BBT: Block-based thresholding

Out1

Out2

Out3

Out3

Out3

Out2

Out2

Out1: output bits for coding top level

Out2: output bits for coding eight-tree structures

Out3: output bits for coding LBG-VQ and FSVQ indices
 

Figure 3. Enhanced 3D image pyramid coder with the introduction of block-based splitting thresholding and finite-state vector 
quantization applied on bottom layer. 

3.1. Block-based splitting thresholding 
When thresholding the pyramid-transformed coefficients, a block-based splitting technique is applied on each level of 
the difference pyramid to discard a large part of insignificant coefficients and isolate smaller entities, containing the 



significant information. Such thresholding technique is based on three important observations from the properties of 
pyramid-transformed coefficients: 

1. Difference images in pyramid have the characteristics that most of the coefficients energies are concentrated 
around zero. 

2. The coefficients with larger magnitude are more important than smaller magnitude coefficients (low energy) 
because they contribute more to the decreasing of distortion after receiving by decoder. 

3. When an image is pyramid decomposed the intra-band variations will be smaller on lower pyramid level than 
on the higher pyramid level. 

A block will be regarded as significant if it has one or more coefficients whose magnitudes exceed a threshold T. The 
significant block will be split into eight sub-blocks and the same significant test will be applied on each sub-block until 
the sub-block’ s size reaches the predefined smallest sub-block’ s size. Such a block-based method can capture and 
separate the interesting objects from the uninteresting background, which is more suitable for images of medical purpose 
than the previously proposed thresholding method[1], which applies thresholding on VQ output indices, because a vector 
containing one significant coefficient might be discarded with a threshold by regarding it as a low energy vector. In Fig. 
4, the initial size of the block is 16 × 16 × 16 and the smallest sub-cubes have the size of 4 × 4 × 4. We will refer to these 
smallest sub-cubes as the leaf nodes. 
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Figure 4. When a significant pyramid coefficient is encountered, the cube (a) is spited into eight sub-cubes (b), and further on (c) up to 
the leaf node level (smallest sub-cube). The result is an eight-tree structure (d) (SGN = significant node; NS = non-significant node). 

3.2. Adaptive vector quantization 
We use vector quantizers to exploit the correlations between coefficients within the leaf nodes[17, 19]. We use small size 
vectors, for instance 2 × 2 × 2, to avoid the irritating blocky artefacts introduced by large size vectors. Since each level of 
difference signal contains the details of signal at different scales, we hypothesise these signals will have different 
frequency characteristics. We use different codebooks to quantize the coefficients from each layer. Each codebook is 
generated using LBG (a codebook designing algorithm proposed by Linde, Buzo and Gray) algorithm[18]. Such VQ is 
adaptive because we determine the shape of the vector according to the variations x, y and z of distribution of one 
layer of the difference pyramid along x-y planer (x and y) directions and depth (z) direction, respectively. Suppose the l-
th (l=N-2, …, 0) layer of the difference pyramid is of X, Y and Z in size, we can define the variations along three 
directions as: 
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If the distribution has low variations along a certain direction, we can expect to achieve better rate-distortion 
performance of VQ by increase the size of the vector along this direction. 

3.3. Surface-match FSVQ 
We use side match VQ[22], which is a kind of FSVQ which exploits contiguity across block boundaries to establish the 
state. In 2D images two-sided side match is commonly used because blocks are coded in the raster-scan order. The side 
information of upper BU, and left BL, neighbouring blocks produce the state codebook for each input vector B (see Fig. 
5.a). This kind of prediction may be poor if the correlation among BU, BL, and B is not high enough. We solve this 
problem by using all the neighbouring sides of an input block, which in 3D case it will be six surfaces from six 
neighbouring blocks as illustrated in Fig. 5.b). Here, 50% of input blocks will be precoded before using all adjacent 
surfaces to guide the match. Let the size of blocks be X×Y×Z. We present the measurement of surface match distortion 
dsm(y) of a codeword y in super codebook as the similarity of the outer surfaces of y to the inner surfaces forming by its 
six adjacent blocks. The suface match distortion dsm(y) is defined to be the summation of the surface match distortions dU 
from upper block BU, dBO from bottom block BBO, dL from left block BL, dR from right block BR, dF from front block BF 
and dBA from back block BBA, as 
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The state codebook SCs of state s consists of Nf codewords with the Nf smallest surface-match distortions that are 
selected in the super codebook C. 
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Figure 5. (a) Two-sided side match in 2D case, where side match distortion is determined by the upper block BU and left block BL of 

current block B; (b) six-surface surface match in 3D case, where surface match distortion is determined by all the adjacent blocks: BU, 
BBO, BL, BR, BF, BBA. 



In our method, FSVQ is applied on the pyramid coefficients on bottom level only. This is because firstly, the bottom 
pyramid level contains the majority of pyramid coefficients. Secondly, we noticed that when applied to higher pyramid 
levels, FSVQ performs worse than when applied to lower pyramid levels, because the variations of coefficients increase 
with pyramid level, and the inter-vector correlations will not be strong for data with high-variation distribution. Thirdly, 
as we introduced error feedback in our pyramid structure, the poor performance of FSVQ on higher pyramid levels will 
introduce more errors and increase the variation of coefficients on lower levels. Therefore, applying FSVQ to the bottom 
level is preferable to applying it on all levels. 

3.4. Distortion minimization algorithm 
We observed, however, that at a given rate, different settings of thresholds and state codebook size give different mean 
squared errors (MSEs) distortion D. Our task is to select the thresholds and size of state codebook to optimise the rate-
distortion performance under the constraint of a total number of coding bits R lower than a coding bit budget Rb. This is a 
minimization problem under a constraint given by )(DMin

bRR �

. 

We illustrate the procedure of such minimization on Fig. 6. We compute the (Ri
j, D

i
j) with ith thresholding scheme and jth 

state codebook size. Suppose the size of master codebook is 2N, the state codebook size can be chosen from the set {2j | 
j=1, 2, …, N-1). The thresholding values are selected with two constraints: 

x According to the observations described in Section 3.1, the lower the pyramid level l, the larger is the 
thresholding value: Thl > Thl+1. 

x Given a thresholding scheme {Th}, if R with 2N-1 state codebook size is smaller than Rb, we will regard this 
thresholds as ‘over-thresholded’ , and discard all the thresholding shemes which have the same and larger 
thresholds than {Th}; If R with 21 state codebook size is larger than Rb, we will regard this thresholds as ‘less-
thresholded’ , and discard all the thresholding shemes which have the same and smaller thresholds than {Th}. 

We compute all the possible (R, D) points, coming from all the combinations of (Ri
j, D

i
j). The optimal solution (Ropt, 

Dopt) is on the convex hull of the cluster of these points. With the constraint R�Rb, we use a Lagrangian cost function J 
which merges the rate and the distortion in the Lagrangian multiplier , and define J as: RDJ O�  to obtain (Ropt, 
Dopt) by searching opt. 
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Figure 6. The illustration of R/D optimisation method: we compute all the possible (R, D) points, coming from all the combinations of 
(Ri

j, D
i
j) with ith thresholding scheme from {Ti} and jth state codebook size from {Nj}. The optimal solution (Ropt, Dopt) is on the 

convex hull of the cluster of these points. 
 



4. RESULTS 
 
The coding experiments of the proposed coder are evaluated on a set of microscopic volumetric data obtained with 
CLSM device. This set of stacks describes the cellular organization through the vascular wall of small segments of 
human arteries, which are labelled as G××HG70[3]. Briefly, arterial segments are stained with fluorescent markers for the 
cell nucleus (propidium iodide 1µg/ml) Tissues are then slide mounted on the stage of a NORAN1 (nuclear work) 
CLSM. Serial optical sections (x, y plane) represented as 2D images are collected at interval of 1µm down through the 
axial plane (z-axis).  

We built a 4-level 3D pyramid (L=4) for each image stack of size X×Y×Z as described in Figure 3. The top layer l3 was 
encoded using LZ entropy coder. The coefficients from bottom layer l0 were encoded as 12-D intra-band vectors and 
other layers (li, i=1, 2) were encoded as 6-D intra-band vectors. The codebook for each layer had 256 codewords trained 
by the LBG algorithm. We choose from six kinds of vector-forming strategies for a 6-D vector and three kinds for a 12-
D vector as shown in Fig. 7 (a) and (b), respectively. An automatic pre-analysis of variations is used to determine which 
strategy will be preferable. Given the l-th (l=0, 1, 2) layer of the difference pyramid, we computed the variations of the 
probability distributions of coefficients along x, y and z directions using (3) and the shape of the vector is determined by 

x, y and z, such that the lower the variation along a direction, the larger the size of vector along this direction. For 
example, suppose at level l2, we have x� y� z, we will use strategy 6, having largest size along z direction and smallest 
size along x direction, to quantize this level. 

x

y

z

strategy 1 strategy 2 strategy 3 strategy 4 strategy 6strategy 5

(a)

strategy 1 strategy 2 strategy 3

(b)  
Figure 7. (a) Six kinds of 6-D vector-forming strategies and (b) three kinds of 12-D vector-forming strategies. 

 
The peak signal-to-noise ratio (PSNR) is measured on two stacks ‘G25HG70’  (256×256×144×8bits) and ‘G27HG70’  
(256×256×96×8bits) from data sets obtained from human arteries described above at six different bit-rates: 0.25, 0.2, 
0.16, 0.1, 0.08 and 0.04 bits-per-pixel (bpp), which correspond to 32:1, 40:1, 50:1, 80:1, 100:1 and 200:1 compression 
ratios. The PSNRs and the corresponding settings of thresholds and FSVQ at each bit-rate are listed in Table I. The 
settings of thresholds and the size of state codebook have been optimised by optimisation process described in Section 
3.4. 

Table I. Coding results of our method and the settings of thresholds and FSVQ at each bit-rate. 
G25HG70 G27HG70 

Bit-rate 
(bpp) 

PSNR 
(dB) 

Thresholds 
(l0, l1, l2, l3) 

State 
codebook 

size 

Bit-rate* 
(bpp) 

PSNR 
(dB) 

Thresholds 
(l0, l1, l2, l3) 

State 
codebook 

size 
0.2556 44.5992 (6, 2, 2, 0) 64 0.2463 43.0030 (8, 3, 2, 0) 128 
0.1959 43.9455 (7, 3, 2, 0) 32 0.2038 42.4830 (9, 4, 2, 0) 64 
0.1572 43.4897 (9, 3, 2, 0) 64 0.1603 41.9783 (11, 4, 2, 0) 64 
0.1003 42.5215 (11, 4, 2, 0) 64 0.1015 41.0920 (14, 5, 2, 0) 8 
0.0804 42.0845 (13, 5, 3, 0) 16 0.0800 40.5621 (17, 6, 3, 0) 64 
0.0400 40.6767 (22, 10, 4, 0) 64 0.0397 38.9130 (24, 14, 5, 0) 128 

* Sizes of codebooks were considered when computing the rate. 
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We compared the new 3D pyramid method (3D-PYR) with standard video coder MPEG-12 and the state-of-the-art 3D 
image coder 3D-SPIHT. The PSNRs for each coder are calculated at almost the same bit-rates on G25HG70 and 
G27HG70 respectively. The comparison results are illustrated in Fig. 8. We noticed that for these two stacks 3D-PYR 
outperforms the other coders at all rates. At higher rates above 0.1 bpp, the difference between 3D-PYR and 3D-SPIHT 
is not significant. For G27HG70, for example, the difference is of 0.12 dB and 0.10 dB at 0.16 bpp and 0.25 bpp 
respectively. However, at lower rates, like 0.04 bpp, the 3D-PYR yields a PSNR of 38.91 dB, which is 0.63 dB higher 
than 38.28 dB provided by the 3D-SPIHT. For G25HG70, the difference is not as significant as shown on G27HG70. 
This is because our surface-matching strategy applied on FSVQ is not optimal for stacks having low-variation 
distribution. A more suitable surface-matching scheme for 3D FSVQ will be investigated. Both methods have a superior 
quality compared to MPEG-1 with up to 6dB higher at low rate. This is because in 3D microscopy the raw data is 
digitised as a sequence of 2D images, but inherently the data is 3 dimensional. This contrasts with the data in a movie 
sequence, where the physical process is 3D surfaces moving in time, which are then projected onto the 2D image plane 
of the camera. Because of this, the higher order statistics of 3D microscopy data will differ from those of film. In 
particular as the block-matching process used in MPEG-1 depends upon finding similar luminance values, this can be 
confused by objects moving into shade or fades. 

Fig. 9 illustrates the visual performance of 3D-PYR, 3D-SPIHT, MPEG-1 for 45th slice taken from G27HG70. For 
MPEG-1, blocking artifacts distort the visual quality because of the block-based DCT technique. It is difficult to 
distinguish a visual quality difference between 3D-PYR and 3D-SPIHT. 

 

  
 

Figure 8. Coding results on G25HG70 (left) and G27HG70 (right) with 3D-PYR, 3D-SPIHT and MPEG-1. 
 
 

5. CONCLUSION 
 
In this study, we propose a new 3D pyramid coder by introducing FSVQ into the difference pyramids, which is an 
enhanced version of the previous work[1]. It is effective for microscopic volumetric data compression, especially for 
volumes having low spatial variations. Results show that our method using 3D difference pyramid structures combined 
with VQ techniques yields as good as or better rate-distortion performance than 3D wavelet coder and standard video 
coder. They also demonstrate the effectiveness in preventing visible artifacts, e.g., blocking and ringing, from being 
introduced into textured and homogeneous areas, even at very low rates. Moreover, we noticed the 3D techniques are 
suitable for coding volumetric images of high spatial resolution along the slice axis, while frame-by-frame compression 
schemes don’ t work well to take the advantage of such spatial correlations. 

 
 

                                                           
2 In our program, the MPEG-1 coder cannot achieve the rate as low as 0.04 bpp. 



(a.1) PSNR=40.02 (b.1) PSNR=39.90 (c.1) PSNR=37.10

(a.2) PSNR=37.73 (b.2) PSNR=37.46 (c.2) PSNR=30.84  

Figure 9. G27HG70 compressed at (1) 0.2 bpp and (2) 0.08 bpp using (a) 3D-PYR, (b) 3D-SPIHT, (c) MPEG-1. Slice 45 is depicted. 
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