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ABSTRACT 

 
Three-dimensional image compression methods outperform their two-dimensional counterparts in the sense of higher 
rate-distortion performance for compressing volumetric image data. The state-of-the-art transform-based 3D 
compressors, such as 3D-SPIHT and 3D-DCT, are characterized for their rate control ability, where the qualities of the 
image, although are adjustable with respect to rates, are not explicitly controllable. A novel method, based on vector 
quantization in an enhanced image pyramid with error feedback, has been proposed, where the quality of the 
decompressed image only depends on the encoding of coefficients from the finest band and therefore a distortion-
constraint transform coding is achieved. Compared to the previous image pyramid transform coders, its coding efficiency 
has been improved by using a cross-band classified vector quantizer (CBCVQ), where the encoding of current band will 
benefit from the encoding result from previous bands. Two explicit bit-allocation schemes, one is regarding the bit 
allocation across bands and the other is across the sub vector quantizers within each band, have been applied to minimize 
the total rate under the constraint of specified distortion. Evaluations have been performed on several data sets obtained 
by confocal laser scanning microscopy (CLSM) scans for vascular remodeling study. The results show that the proposed 
method has competitive compression performance for volumetric microscopic images, compared to other state-of-the-art 
methods. Moreover the distortion-constraint feature offers more flexible control than its rate-constraint counterpart in 
bio-medical image applications. Additionally, it effectively reduces the artefacts presented in other approaches at low bit 
rates and therefore achieved more subjective acceptance. 

Keywords: Volumetric (3D) Image Compression, 3D Difference Pyramid, Vector Quantization, Bit Allocation, 
Confocal Laser Scanning Microscopy (CLSM) 

 
1. INTRODUCTION 

 
The development of digital imaging, especially the three-dimensional (3D) scanning in medical imaging, has increased 
image dimensions greatly, outstripping growth of storage media. Thus the gains to be had from compression are now 
more important than they were previously. Possible areas of application for compression of medical images have 
proliferated. They include wireless emergency medical services, battlefield and shipboard surgery and medicine, 
progressive browsing of databases, medical teaching archives and others. The distortion-rate performance of 
compression algorithms has improved enormously over the past decade [23], and a variety of volumetric image 
compressors have been proposed and investigated. 

The first attempts to code a sequence of medical images were to hypothesize the collection of these images in time 
domain and methods similar to video coders, like MPEG, were used [12]. However it has been shown that that such 
algorithms are not adapted to the compression of 3D CLSM images because images are obtained as optical sections at 
different locations along the optical axis [19] and the motion compensation techniques cannot effectively capture the 
pixel-intensity correlations across consecutive frames [8]. Methods based on three-dimensional transforms, such as 3D-
Discrete Cosine Transform (3D-DCT) [1, 17] and 3D-Discrete Wavelet Transform (3D-DWT) [16, 21], have received 
increased attentions. These real three-dimensional methods offer excellent coding efficiency by treating the whole 
sequence as a 3D volume data and capturing the inter-pixel correlations, no matter whether they are arranged in the same 
frame or across frames, within one procedure. 

We noticed that in these state-of-the-arts 3D compressors, such as 3D-SPIHT [16] and 3D-DCT [21], although users can 
precisely control the bit rate or compression ratio, the image qualities are not explicitly controllable, where as in medical 
image applications the latter are more important than the former. In this case what an expected user concerns is the 
reconstructed image quality rather than the compressed image file size since the quality, describing how much 
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information has lost, may affect their diagnostic results [3]. Consider a compression task like achieving target quality, it 
may be inefficient using the standard approaches. For instance specifying the encoder a target rate, which produces 
acceptable image quality on an image with large stationary distributions, may lead to unacceptable quality due to 
artefacts and loss of information on another image with lots of non-stationary distributions. Users have to manually 
balance the compression rate and image quality without explicit constraints from the encoder and therefore the 
compression must be performed multiple times to achieve target image qualities. Actually as it has been shown [24, 25] 
that the distortion measure, say mean-squared-error measures, between the original coefficients and their decoded 
versions in transform domain are not the same as that measured in the original image domain. Therefore these methods 
are inherently more like a rate-constraint system than a distortion-constraint system. 

In this light, closed-loop image pyramids have been found attractive for their characteristics in strongly upper-bounding 
the reconstruction error due to the quantization error feedback scheme [2]. Compared to open-loop image pyramid, such 
as Burt’s pyramid [4] and its variants [27, 14], they feed back the quantization error coming from previous pyramid level 
to the current level. The distortion of the decompressed image depends only on the quantization in the bottom level, and 
not on those in the other pyramid levels, and therefore the quality can be directly controlled by how well we encode the 
bottom level. 

Since the image pyramid transform resembles subband decomposition, the coefficients in difference pyramids exhibit 
many statistical properties, among which the most significant characteristics are non-stationary intra-band distribution 
and similar distribution of inter-band coefficients along same orientation. A hybrid vector quantizer referred as CBCVQ 
was proposed and investigated. It can capture these dependencies by using a classification scheme for intra-band non-
stationary distributions and a cross-band class decision rule for inter-band correlations. 

In a closed-loop image pyramid the encoding across bands is dependent and the bit allocation problems should be 
investigated. In our method, it includes two aspects. One is the bit-allocation across pyramid bands or layers. In the sense 
of distortion-rate performance this can also be expressed as how we decide the quality profiles when encoding each 
pyramid level to minimize the total number of bits. The other aspect is how we allocate bits among sub quantizers to 
minimize the rate when encoding intra-band coefficients, under the constraint of distortion solved in the former problem. 

This paper is organized as follows. In Section 2 an enhanced image pyramid transform is proposed where we improve 
the band decomposition performance by using an alternative to the conventional Burt’s kernel; our three-dimensional 
image pyramid coder will then be introduced based on the enhanced kernel; the first bit-allocation problem will be 
discussed and the optimum solution to the quality profile for each pyramid level will be derived. In Section 3 a hybrid 
vector quantizer is introduced to exploit the dependencies among pyramid coefficients, the solution to the second bit-
allocation problem will be derived. Finally, in section 4, we present coding results of coding of several CLSM image 
data sets, discuss and compare these with those of the state-of-the-art image volume coder 3D-SPIHT and 3D-DCT. 

 
2. ENHANCED 3D IMAGE PYRAMID DECOMPOSITION 

2.1. The Enhanced Image Pyramid Transform with Improved Band Filters 
The motivation of the image pyramid transform is the decomposition of signals into several band components with 
minimal frequency overlap, so the original signal can be reconstructed from these components. It follows the basic 
theory in subband coding [29]. Consider an N-level pyramid decomposition, where subscript i denotes the pyramid level 
with i=N-1 for bottom level and i=0 for top level, the results after image pyramid transform are two pyramids. One is an 
image pyramid {IPi} consists a series of low-pass filtered half-resolution approximations, computed from next lower 
level IPi+1 using a low-pass half-band filter fR and subsampling, of which the detailed features and the resolution is 
recursively reduced from the bottom level to the top. The other is a difference pyramid {DPi} consists of the coarsest 
approximation of the original IP0 and a series of high-passed components corresponding to each layer in image pyramid, 
which are computed by taking the difference between the two consecutive layers, IPi and IPi-1, in image pyramid after 
upsampling IPi-1 to align the same number of coefficients as that in IPi and removing the folding frequency due to 
upsampling using an interpolation filter fE. This process can be formulated as, 
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An example of four-level (N=4) image pyramid decomposition is illustrated in Fig. 1. The efficiency of image pyramid 
transform is determined by the band-pass and band-stop performances of the band filter for reduction fR and for 



expansion fE as discussed above. In ideal cases frequency responses of these two band filters would be rectangular 
shaped, where the decomposed components are orthogonal with each other without frequency overlapping. However, it 
is impossible to implement such ideal filter since it requires convolving with an infinite function – sinc(·). The 5-tap 
parametric Burt’s kernel has been widely used in the literature [4, 14, 2] as an alternative to the ideal filter. 
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Figure 1: An example of four-level image pyramid decomposition. 

It resembles a Gaussian-like kernel in both time domain and frequency domain and therefore the image pyramid 
generated using such kernel is often referred as Gaussian pyramid. Such Gaussian-like band-pass filters, although easy to 
implement and have very low computation complexity, are not well behaved in the sense of bandpass due to its shallow 
shape in the frequency domain. We therefore turned to derive the reduction filter fR from an ideal sinc filter. Its general 
form )()1( ⋅RF  is a sinc function h(·) multiplied by a same-size hamming function φ(·), as formulated in (2). An 11-tap 
halfband lowpass filter (Eq. 3) has been eventually exploited in our image pyramid transform. We made this decision 
based on the tradeoff between the performance and the computational complexity. Its impulse response and the spectrum 
is illustrated in Fig. 2. We also illustrates the Burt’s kernel in the same figure for comparison purpose, where the 
generating parameter a=0.6 corresponding to the best performance in the sense of minimizing the equivalent entropy of 
the difference pyramid (refer to Eq. 11 in [2]). 
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Figure 2: The impulse response and its spectrum of (a) the 11-tap filter )1(

Rf , compared to (b) the Burt’s kernel )1(
Burtf , with a=0.6. 

Comparing with the Burt’s kernel the 11-tap filter outperforms Burt’s kernel since more energy will be stopped at cut-off 
frequency (0.5). People [28, 5] have shown that the failure to fully suppress the stopband, usually known as frequency 



leakage, allows the offending frequencies to fold over into the passband range and tends to be more serious since they 
actually corrupt the components in the original signal and are visually perceived more readily. Therefore the folded high-
frequency energy will eventually affect the difference pyramid and decrease the coding efficiency. 

As to the interpolation filter fE, the 7-tap halfband parametric kernel proposed in [2] has been considered. They 
demonstrated that this kernel has same computational cost as for 5-tap Burt’s kernel, thanks to the null coefficients, but 
the performance is improved. We choose b=0.6 in our implementation, which has been verified in their works that this 
value would minimize the equivalent entropy of the difference pyramid. 
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2.2. Three-dimensional Image Pyramid Coding with Quantization Noise Feedback 
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Figure 3: An example of encoding using four-level three-dimensional image pyramids with compression noise feedback. 

An example of three-dimensional image pyramids coding for volumetric image data with compression noise feedback is 
illustrated in Fig. 3 and we generalized the coding process in Equation (5)-(8). 
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We extended the one-dimensional reduction kernel )1(
Rf and the expansion kernel )1(

Ef  to three dimensions by computing 
the cross-product of three identical one-dimensional band filters, 

)1()1()1(
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and 
)1()1()1(

EEEE ffff ⊗⊗=           (10). 

Due to the separability of fR and fE, the convolution with the three-dimensional filter can be computed as three individual 
convolution with one-dimensional filter, and thus reducing the computation cost greatly. The reduction operator f×8 
consists of a lowpass filtering using fR followed by subsampling in each dimension; while the expansion operator consists 
of an up-sampling operation followed by interpolation filter fE. 



As we can see in Fig. 3 the quantization error from next upper level is presented in the reconstructed difference pyramid 
and eventually in the reconstructed image pyramid (the light orange part). Therefore using the reconstructed image 
pyramid to compute the difference will feed the error from previous encoding state back to current encoding state. Such 
error-feedback scheme can guarantee a flexible control of decompressed image quality. Consider encoding a four-level 

image pyramid as illustrated in Fig. 3 3P̂I is the reconstruction version of IP3, which is the original image. The difference 
between them is a kind of quality measure decompressed images. By rewriting (6), we will have: 
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Therefore the decompressed image quality is only determined by how well we encode DP3 and the quality can be 
controlled if we have designed a coder Q with distortion constraint. 

2.3. Rate-minimizing Cross-band Distortion Control 
The problem regarding the bit allocation among layers in a closed-loop image pyramid has been investigated [13, 2, 20]. 
Among these works, they describe this problem in the context of pyramid coding as determining the average number-of-
bit per sample (or rate) ri for each level which would minimize the distortion D between the reconstructed image and the 
original while under the constraint that the overall rate R is no more than a predefined value R0, 
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where )()( ⋅d
iδ  is the rate-distortion function corresponding to the encoding of coefficients in ith level. Horn [13] found 

the solution a closed-loop pyramid, and they described it in the following form, 
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where Mi and 2
iσ  are the number of samples and their variance, in the ith level of difference pyramid in the opened-loop 

form as illustrated in Fig. 1, respectively; α is referred as the power transfer factor indicating how much energy from 
previous level has been propagated to the current level, which is only determined by the interpolation filter fE. 

Their works cannot be directly applied in our case since the vector quantizers we designed were not explicitly 
determined by the rates allocated to each pyramid level. Alternatively we solved the bit-allocation problem with respect 
to distortion control scheme rather than conventional rate control schemes. Therefore the problem in our case is to 
determine the distortion profile di for encoding each level of pyramid which would minimize the overall rate R while 
under the constraint that the final reconstructed distortion D is no more than a predefined value D0. Compared to the 
optimum rate scheme, we can describe the problem of optimum distortion scheme as, 
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where )()( ⋅r
iδ is the distortion-rate function for coefficients in level i. Thanks to the inter-changeability between )()( ⋅r

iδ  

and )()( ⋅d
iδ , and follow the same assumption in [13, 2] that the samples in difference pyramid can be modeled as a zero-

mean Laplacian distribution such that, 
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Considering the power gain interpolation filter (Eq. 4), which can be computed according to [2] as 
32 )4
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we substituted (15) and (16) into (13) and then derived the solution for (14) as, 
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Now we can find out the optimum distortion scheme for each layer with four steps: (1) building the opened-loop 
difference pyramid according to Fig. 1; (2) specifying the distortion d0 for level 0, which would determine the final 
reconstructed quality; (3) specifying the distortion dN-1 for top level (in our implementations, we always set dN-1=0); and 
finally (4) computing the distortion profile for other layers, from N-2 to 1, using Eq. 17. 

 
3. A CROSS-BAND CLASSIFIED QUANTIZER 

 
Because of the subband decomposition properties of image pyramid transform and the non-stationary distribution of 
image pixels, coefficients in the difference pyramid are correlated. There are two types of dependencies which could be 
considered and exploited by the encoder to improve the coding efficiency. One is the non-stationary distribution of intra-
band coefficients; and the other is the similar distribution of inter-band coefficients crossing bands along the same 
directions. A hybrid vector quantizer has been proposed. The intra-band coding is based on classification according to 
the statistical properties of samples in each level, where an intra-band vector is firstly associated with a sub-VQ by the 
corresponding classification map, and then this sub-VQ is used to encode the vector based on a nearest-neighbor 
mapping rule. The inter-band coding is achieved by building the current-level classification map based on the encoding 
information from previous levels, and therefore the side information for classification map don’t need to be explicitly 
transmitted to the decode side, but can be derived when the decoding of the previous levels is finished. 

3.1. Quantizer Design 

 

Figure 4: The block diagram of the cross-band classified VQ encoding. 

From Fig. 4 we can see that the cross-band encoding can be basically divided into two parts, as indicated with the dashed 
line. The first part (above the dashed line) includes the encoding of vectors in level N-2, the first high-pass band in the 
difference pyramid. Moreover its intermediate outputs will be used to derive the classification maps for encoding its 
lower levels. The second part (below the dashed line) consists of several classified-VQ encoders with each for every 
level below N-2. The overhead bits of classification information of vectors from these levels are not explicitly 
transmitted to the decoder, but implicitly obtained from the same intermediate outputs in part one. 

Such a cross-band encoding scheme has been investigated in [6], where they encoded LN-2 using a LBG-VQ [18] with 
codebook size of NC to generate the classification map thanks to its clustering property, so the vectors from LN-2 will be 
grouped into NC classes. However we found that the choice of NC has a significant impact on the coding efficiency. A 
large value of NC, like 256 in [6], will improve the reconstructed quality, but the classification efficiency will decrease 
since sometimes the vectors would be ‘over-classified’ which lead to too few vectors in a class. Therefore we introduced 
a two-stage multi-stage vector quantizer (MSVQ) [15], in which a LBG-VQ with small codebook size, e.g. 8 or 16, was 
used in the first stage. It will on one hand produce the residual signals for the second-stage encoding; and on the other 



hand generate indices associated with each vector, which can be used to derive classification map of the following levels. 
Moreover, we have observed that the LBG-VQ in the first stage in MSVQ doesn’t achieve good classification gain for 
low-variation vectors, which would expect to contain a major part of samples than the high-variation vectors in the 
difference pyramid. Therefore a two-class classifier was preceded before MSVQ and thus a vector is firstly characterized 
as a low-variation vector or a high-variation vector by comparing its variance with a preset threshold Tv, then MSVQ is 
used for high-variation vectors only and a LBG-VQ for low-variation vectors. The outputs from the two-class classifier 
together with the indices from the LBG-VQ in the first stage in MSVQ would be used as the class identifiers for the 
following levels. 

After the encoding on level N-2, each vector in this level will be associated with a class identifier, either from the two-
class classifier or the indices from the LBG-VQ in the first stage in MSVQ, which would be used for the following 
levels. Consider a vector with size vx×vy×vz at the location (x, y, z) in level N-2 is associated with class ci, we apply the 
cross-band classification rule on level i (i≥N-3) such that samples, within block with size τvx×τvy×τvz (τ=2N-2-i, the scaling 
factor between level i and N-2) at the location (τx, τy, τz)corresponding to the same orientation as that in level N-2, will 
be associated with class ci. An example of this classification rule on level N-3 is illustrated in Fig. 5. 

 

Figure 5: The cross-band classification rule applied on level N-3, the next lower level to N-2. 

Once we obtained the classification map for every level below N-2, the encoding on these levels would be similar as a 
ordinary classified-VQ. One should notice that the vector size on these levels doesn’t need to be the same as the block 
size for classification, but the block size has to be in multiple with vector size to make sure that samples within a vector 
are all belong to a unique class. Actually a similar vector forming technique as proposed in [22] was exploited, where we 
modified the decision rule to account for the classification such that the vector shape is determined by the variance of 
samples belonging to class ci along each direction, not by that of the entire intra-band samples in previous work. 

3.2. Distortion-constraint Intra-band Bit Allocation 
It has been recognized that the distortion profile for each level is pre-determined before intra-band encoding, and thus the 
quantization on each level is constrained by the corresponding distortion. The sub-VQs associated with each class are 
basically LBG quantizers but under the distortion constraint and will be referred as distortion-constraint LBG (DC-
LBG). Consider there are C sub-VQs, for example two for level N-2 and Nc+1 for other levels, designed as DC-LBG, the 
distortion profile for the ith level, di, doesn’t explicitly specify the maximum distortion di,j allowed for each sub-VQ, but 
they should satisfy that the average distortion is no greater than the distortion profile: 
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where Mi,j denotes the number of sample in level i belonging to class j. Therefore the bit allocation problem in this case is 
to minimize the average rate for encoding level i while under the constraint as Eq. 18. Since the encoding of each sub-
VQ is independent we can find the solution based on the ‘equal-slope’ method, which is well-known in economics as 
‘Pareto Optimality’ [26] and widely used in compression applications [7]. Its intuitive explanation can be briefly 
described as follows: Suppose you are operating on a variety of quantizers with each individually encoding a part of a 
source without overlapping. Each quantizer, which operates at different rates, yields a spread of possible distortions and 
rates for its corresponding sub-source. If the channel allows you to increase your overall rate slightly, which quantizer 
should you choose to increase? The one that produce maximum normalized distortion reduction among these quantizers 
would be chosen, which means its normalized rate-distortion curve at current rate profiles has the maximum magnitude 
of slope among others’. Consider a ki,j-dimensional sub-LBGVQ qi,j is designed at rate λ, its normalized magnitude of 
slope εi,j at rate λ can be computed by taking the difference of distortion of qi,j at rate λ and λ+1, corresponding to the 
codebook size 2λ and 2λ+1, respectively; and then normalized by its percentage in the entire samples in this level: 
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Algorithm 1: Optimum intra-band bit allocation for level i under overall distortion constraint 

� Step-1 (Initialization) Initialize each sub-VQ at rate λi,j=0 with codebook size = 1. Compute εi,j(λi,j) for each sub-
VQ according to Eq. 19. Store εi,j(λi,j) in an one-dimensional array Ε with E[j]=εi,j(λi,j). 

� Step-2 (Stopping rule) Compute the overall average distortion di’ as 
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If di’<di we continue to Step-3; otherwise stop, with each sub-LBGVQ qi,j designed at rate λi,j. 

� Step-3 (Find the sub-VQ with the maximum magnitude of slope) Search Ε to obtain the index jmax 
corresponding to the maximum magnitude of slope produced by qi,j at rate λi,j. 

� Step-4 (Allocate bit to the sub-VQ
max, jiq ) Re-build the sub-VQ

max, jiq by doubling its codebook size from 

max,2 jiλ to 1
max,2

+jiλ . Update its rate as 1
maxmax ,, += jiji λλ . 

� Step-5 (Update E and iteration) Replace E[jmax] with )(
maxmax ,, jiji λε . Go back to Step 2. 

 
4. RESULTS AND DISCUSSION 

4.1. Image Acquisition 
The coding performance of the proposed coder is evaluated on three data sets obtained from CLSM device. They are 
captured by the EC FP5 partnership (VASCAN2000) for vascular imaging and vascular remodeling studies [3, 10]. Each 
data set has typical statistical characteristics that are different from others, and therefore they were chosen as prototypes 
of CLSM images for the purpose of evaluating compression performance. For instance B3CGP and C5 data sets are 
characterized as high-variation distribution and detailed features, while Hum_Glt_C data set has many smoothed and 
low-variation regions. All the three groups of data sets are captured with Fluorescent-CLSM, either optical laser-
scanning confocal microscopy or multi-photon laser-scanning microscopy. Specimens are tissues from human gluteal 
arteries and rat mesenteric arteries. They are fixed on the stage such that the imaging plane is parallel to the direction of 
blood flow. Specimens are stained with single type of fluorophore (single-labeled) and therefore images have one color 
channel and generated as 256 gray levels for each pixel, or 8 bits per-pixel. The imaging properties for each data set are 
listed in Table 1. 

Table 1: Imaging properties for each data set. 

Data set labels1 Description 
Image acquisition 

specifications 
Image dimensions 

(pixel) 
Pixel dimensions 

(µm/pixel) 

B3CGP rat mesenteric artery stained with fluorescent BODIPY-
CGP12177 to illustrate the distribution of cells and nerves 

ImT1: Confocal 
Obj2: ×40 

X=Y= 256 
Z(frames) = 178 

X=Y= 0.98 
Z= 0.35 

C5 
rat mesenteric artery stained with propidium iodide dyes 
(nuclear dyes) to illustrate the distribution of nuclei of 
adventitial cells, smooth muscle cells and endothelial cells 

ImT: Two-photon 
Obj: ×20 

X=Y= 256 
Z= 147 

X=Y= 1.0 
Z= 1.0 

Hum_Glt_C 
human gluteal artery with propidium iodide dyes (nuclear 
dyes) to show the shape of nuclei of the same three types 
of cells 

ImT: Two-photon 
Obj: ×20 

X=Y= 512 
Z= 82 

X=Y= 0.6 
Z= 1.0 

1: ImT: imaging technique used for capturing - optical laser-scanning confocal microscopy or multi-photon laser-scanning 
microscopy. 
2: Obj: objective magnification factor. 

4.2. Objective Evaluations 
The most important feature of the proposed method is the precise control of decompressed image quality. Therefore in 
our method what a user specified is the expected quality or distortion rather than the expected rate or compression ratio 



in those rate-parameterized compressors. Moreover high distortion-rate performances are achieved thanks to the image 
pyramid transform, inter-/intra-band quantization and optimum bit allocation schemes. For instance consider a user-
specified profile as MSE=40, the encoding process can be completed in the following steps: (1) building an N-level 
image pyramid and the difference pyramid according to Fig. 1 with filters specified by Eq. 4 and 5; (2) specify the 
distortion for bottom level as d0=40; (3) find out the distortion profiles for other layers according to Eq. 17; (4) 
Recursively building and encoding the difference pyramid from top to bottom according to Fig. 3 and Eq. 5~8; (5) 
individually encoding intra-band coefficients from level N-2 to level 0 using the cross-band classified vector quantizer 
and intra-band bit-allocation scheme (Algorithm 1); (6) and finally gradually allocating bits (Algorithm 1) to level 0 to 
decrease the distortion until its MSE measure becomes less than 40. 

With the distortion-parameterized algorithms in our method the distortion-rate performance, is computed by measuring at 
four different quality profiles: PSNR=30dB, 33dB, 35dB and 40dB, which corresponding to MSE=65.54, 32.85, 20.72 
and 6.55 respectively. The level of image pyramid has been considered such that the image size on top level is 32×32 in 
x-y plane. So we built a 4-level pyramid for B3CGP and C5 data sets; while a 5-level pyramid for Hum_Glt_C data set. 
The codebook size for the first stage MSVQ Nc is 16 and the high-variation/low-variation threshold Tv is 30. As we 
discussed above a small value can not well capture the non-stationary property of intra-band signal while a large value 
may lead to an over-classified effect, both will decrease the coding efficiency. Actually these two parameters are signal 
dependent, here, however, we didn’t consider their adaptabilities to different data sets and we empirically choose Nc=16 
and Tv=30 for all the data sets. 

A comparison study has been performed by comparing our distortion-constraint method with the state-of-the-art 3D 
image coder 3D-SPIHT [16] and 3D-DCT [21]. We noticed that these methods are basically rate-parameterized and 
don’t have distortion-control functionality. The performance at above PSNRs were obtained by first computing their 
rate-distortion curves with respect to six different rates, then find the rates on these curves which are corresponding to 
the desired PSNRs and finally delicate adjustments around these rates to make the actually PSNRs approach to the 
desired values as much as possible, for instance falling into the range of %2±  of the expected value. Table 2 lists the 
actual PSNRs and corresponding rates for three methods measured at four desired PSNRs for each data set. We also 
indicated the number of encoding attempts performed before the compressor can output the desired distortion, where for 
rate-parameterized methods it consisted of the average number of attempts to compute the rate-distortion curve and the 
number of attempts to refine the output. 

Table 2: Distortion-rate measures of three methods for each data set. 

Distortion-constraint Pyramid Coder 3D-SPIHT 3D-DCT 
Data set 

Expected 
PSNR (dB) Actuall PSNR (No. 

of Attempts) 
Rate (bpp) Actuall PSNR Rate Actuall PSNR Rate 

30 30.00 (1) 0.12 29.96 (3.5) 0.13 30.07 (4.5) 0.21 
33 33.00 (1) 0.25 33.09 (2.5) 0.27 33.02 (4.5) 0.39 
35 34.87 (1) 0.39 35.03 (2.5) 0.42 34.97 (3.5) 0.58 

B3CGP 

40 40.10 (1) 1.04 40.02 (3.5) 1.08 39.96 (3.5) 1.33 
30 29.97 (1) 0.08 29.97 (3.5) 0.09 29.99 (3.5) 0.11 
33 33.00 (1) 0.16 33.01 (2.5) 0.18 33.02 (3.5) 0.23 
35 35.02 (1) 0.28 35.08 (2.5) 0.30 34.93 (3.5) 0.34 

C5 

40 39.98 (1) 0.90 40.01 (3.5) 0.95 40.18 (3.5) 1.01 
30 30.30 (1) 0.026 30.31 (4.5) 0.03 30.09 (4.5) 0.06 
33 33.16 (1) 0.05 33.18 (4.5) 0.06 32.95 (3.5) 0.10 
35 34.91 (1) 0.083 34.88 (3.5) 0.09 35.56 (4.5) 0.16 

HUM_GLT_C 

40 39.80 (1) 0.263 40.04 (4.5) 0.27 40.37 (4.5) 0.38 
 

From Table 2 we found that in the distortion-constraint pyramid coder the overall distortion can be effectively controlled 
by the closed-loop pyramid structures and the distortion-constraint quantizer and bit-allocation algorithm, where the 
PSNRs of the actual outputs are restricted within the range of %1± of the expected values. So the decompressed image 
quality can be directly controlled in our method. However it is a different case in 3D-SPIHT and 3D-DCT, where the 
control of distortion is implicit and actually it is achieved by pre-computing the rate-distortion curve and delicately 
controlling the bit rates. For instance 3D-SPIHT averagely needs 3.5 attempts of pre-computation before it reaches the 
target distortion, and the attempts are even more in 3D-DCT since its bit-allocation scheme is not as accurate as that in 



3D-SPIHT. Therefore to meet the requirement like compressing at the desired image quality, our distortion-
parameterized method significantly outperforms the rate-parameterized methods in the sense of flexibility and simplicity. 

Figure 6 illustrates the distortion-rate curves of three methods for each data set. We can see that our pyramid coder has 
comparable performances to the state-of-the-arts methods for volumetric images having different statistical 
characteristics. Moreover the advantages of our method become more significant at moderate qualities, like 
PSNR=33~35. This is consistent with the reports from previous works [22] as thanks to the error feedback scheme in 
image pyramid structures and the high rate-distortion performance of vector quantization at low rates [11]. 

(a) (b)

(c)
 

Figure 6: Distortion-rate performances of three methods, Distortion-constraint pyramid, 3D-SPIHT and 3D-DCT, evaluated on (a) 
B3CGP, (b) C5 and (c) Hum_Glt_C data sets, respectively. 

Additionally from the decompressed images we noticed that these methods suffered from different types of artifacts and 
presented different visual quality at same objective measurement, say MSE, especially at low bit rates. Fig. 7 illustrates 
the 31st frame from Hum_Glt_C data set compressed at quality PSNR=30 by three methods respectively. Both the 
pyramid method and the 3D-SPIHT present blurring artifact, moreover unexpected high frequency components are 
apparent in 3D-SPIHT within the smooth regions around the nuclei. As to 3D-DCT the shapes of the interested regions, 
such as nuclei, are distorted by the blocking artifacts, which as discussed in [8] may worse to be acceptable in vascular 
remodeling studies. Therefore as stated by [9] objective measurement is not enough to qualify the decompressed image 
quality in medical applications. More issues regarding the subjective measurements and consistency tests, whose 
purposes are investigating the effect of compression approaches on results of the diagnostic tasks, including 
measurement of structures, detection of lesions and interpretation of texture, should be considered. They will be 
investigated in our future work. 



 

Figure 7: Coding results of Hum_Glt_C data set. A region of 200×200 from the 31st frame is illustrated. (a) The original image; (b) 
Compressed by Distortion-constraint pyramid; (c) 3D-SPIHT and (d) 3D-DCT. The pixel intensities are inversed for better 

visualization. 

 
5. CONCLUSION 

 
It has been indicated that the control of image quality plays a more important role in medical image application than that 
of compression ratio, where most of the state-of-the-art methods are rate-parameterized and cannot achieve target quality 
directly. We investigated this problem and proposed a novel method based on closed-loop image pyramid and vector 
quantization. The solution is simple and explicit thanks to the error feedback scheme in image pyramid structures and the 
distortion-constraint vector quantization on each pyramid layer. The evaluation results on several microscopic volumetric 
data sets show that our method is effective in flexible control of decompressed image quality. The distortion-rate 
performances have been improved by the using of enhanced image pyramid transform, cross-band classified vector 
quantization and optimum inter-band and intra-band bit allocation schemes. They are comparable to 3D-SPIHT and 3D-
DCT. Moreover we noticed that the visual qualities of the decompressed images may be different and depends on the 
signal and the compression algorithm given the same objective criterion; and our method present more acceptable visual 
quality due to its effective reduction of artefacts. 
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