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Summary 

The 3D pyramid compressor project at the University of Glasgow has developed a compressor for 

images obtained from CLSM device. The proposed method using a combination of image pyramid 

coder and vector quantization techniques has good performance at compressing confocal volume 

image data. An experiment was conducted on several kinds of CLSM data using the presented 

compressor compared to other well-known volume data compressors, such as MPEG-11. The results 

showed that the 3D pyramid compressor gave higher subjective and objective image quality of 

reconstructed images at the same compression ratio and presented more acceptable results when 

applying image processing filters on reconstructed images. 

1. Introduction 

The 3D pyramid compressor project at the University of Glasgow was funded by the Scottish 

Enterprise with a scheme of Proof of Concept Awards. The objective of this project is to provide a 3D 

compressor for confocal microscopic images. The basic concept of the 3D compressor is to read a 

stack of two-dimensional images, for example, a stack of microscopic images, sequentially into a 

three-dimensional array and compress the three-dimensional array. Here, we present a technique 

combining vector quantization (VQ) with a 3D differential image pyramid data structure for volume 

image data compression. 

Confocal laser scanning microscopy (CLSM; single photon microscopy) has been available to 

biomedical scientists for almost 20 years [Pawley (1995)]. However, it is only very recently that 

affordable computer power has enabled biologists to fully exploit the data contained within the large 

                                                
1 Moving Picture Experts Group (MPEG) is a working group of ISO/IEC in charge of the development of standards for coded 

representation of digital audio and video. MPEG-1 is designed for coding of moving pictures and associated audio for digital storage 

media at up to about 1.5 Mbit/s. 
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(>100Mb) image volumes. In this study we have used CLSM to collect 3D volumetric data describing 

the cellular organization and receptor protein distribution through the vascular wall of small segments 

of human and rat arteries.  Briefly, arterial segments are stained with fluorescent markers for the cell 

nucleus (propidium iodide 1ug/ml) or beta-adrenergic receptors (BODIPY2 CGP12177, 0.1-1uM).  

Tissues are then slide mounted on the stage of either a NORAN3 (nuclear work) or Leica4 (receptor 

work) CLSM.  Serial optical sections (x, y plane) are collected at intervals of 1um down through the 

axial plane (z-axis) to produce a ’stack’ of optical planes which can be processed as a 3D volume. 

Processing, analysis and transfer of the resulting data volumes is time consuming and therefore a 

robust non-lossy or low distortion lossy compression routine would be of great value for biomedical 

purpose, e.g. in studying vascular structure [Daly et al. (2002)]. Furthermore, the emergence of multi-

photon microscopy as a practical laboratory tool now enables even greater depth penetration within 

thick biological samples. This coupled with studies involving multiple fluorophores imaged over time 

results in the collection of data sets approaching 1Gb per experiment. Thus, the need for efficient 

compression becomes even more important. 

In 3D microscopy the raw data correspond to tracer densities at sub volumes in a 3D grid, with the 

size of the sub volumes constrained by the microscopy optics. The data is typically digitized as a 

sequence of 2D images, but this is an artificial presentation, inherently the data is 3 dimensional. This 

contrasts with the data in a movie sequence which is also captured as a sequence of 2D images, but in 

this case the generating physical process is 3D surfaces moving in time, which are then projected onto 

the 2D image plane of the camera. Because of this, we hypothesise that the higher order statistics of 

                                                
2 BODIPY FL-Prazosin (Molecular probes, PoortGebouw, Rijnsburgerweg 10 2333 AA Leiden, The Netherlands) 

3 NORAN (Formerly Noran Instruments - No longer in business) 

4 Leica (Leica Microsystems Heidelberg GmbH, D-68165 Mannheim, Germany) 
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3D microscopy data will differ from those of film. In particular planar motion normal to the camera 

axes – which motion compensation algorithms capture – has no corresponding generating physical 

process in microscopy. We thus hypothesise that the optimal compression strategy will differ from 

that used in film and video applications. 

In this paper, we describe the use of 3D pyramid data structures to compress microscopy data. 

These exploit the inherent redundancy associated with correlation between tracer densities in 3 

dimensions. We describe experimental results on several kinds vascular structural data. We compare 

the image quality with video coders currently in use. Finally, a brief conclusion is given in section 5. 

2. Previous Work 

2.1 Image Pyramid 

Image pyramid data structures were originally developed for 2D image lossless coding. In this 

data structure, a differential pyramid (DP) is generated from an image pyramid (IP), which provides 

multi-resolution model of image. In the image pyramid, an image is filtered producing a series of 

levels of images. The higher the level of image pyramid, the lower the resolution presented (see Fig. 

1-a) [Adelson (1984), Burt (1983)]. The scale factor for shrinking is usually 4. Fshrink and Fexpand are 

two image scale transformation filters, where Fshrink decreases the image size and Fexpand enlarges the 

image size. Many interpolation methods can be used for these two transformations, such as nearest 

neighbor, bilinear and bi-cubic. Image pyramid provides a reasonable solution for progressive 

transmission of images: the top level will be transmitted first to reconstruct the image with lowest 

resolution, and the following levels will refine the reconstructed image stage by stage. 
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The differential pyramid is computed from the image pyramid to exploit the redundancy between 

each level of the image pyramid, and provides more efficient representation for transmission when 

combined with entropy coding. Figure 1-b illustrates the construction of the differential pyramid. 

Suppose an IP and a DP with N-levels, we can formulate the construction as follows: 

®̄ �  
�   

� 0,,2),(

)(1,

1 �NiIPFIP

levelbottomNiimageoriginalIP
IP

ishrinki

i    (1)  

®̄ � � 
   

� 1,,1),(

)(0,

1 NiIPFIPDP

leveltopiIPDP
DP

iexpandii

ii

�

    (2) 

Image pyramid is a redundant subband decomposition. That means the decomposed subbands 

need more storage requirement than the original image. Given L (t 2) as the pyramid level, and s as 

the scale factor, number of pixels in pyramid will be 
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when compared with that of the original image. For instance, given L=5 and s=4, there’s nearly 1/3 

extra pixels in pyramid. However, since the histogram of the DP, as in lossless DPCM (differential 

pulse code modulation), is highly peaked around zero, some advanced entropy coding can take 

advantages of this. 

2.2 Burt’ Pyramid Coder 

In 1983, Burt and Adelson introduced quantization into the image pyramid structure and proposed 

a multi-resolution lossy compression technique [Burt (1983)]. Using a scalar quantizer, only the pixels 

with high energy are transmitted to the decoder side, and the entropy can be substantially reduced by 

quantizing the pixel values in each level of the differential pyramid. Figure 2 illustrates the block 
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diagram of Burt and Adelson’s pyramid coder. Their method, introducing quantization into a pyramid 

structure, has certain disadvantage. The quantization errors from upper levels would be magnified as 

they propagate down the pyramid during reconstruction. For example, an error affecting one pixel at 

the top of a three-level pyramid ends up corrupting 16 pixels at the bottom layer. This disadvantage 

means Burt and Adelson’s pyramid coding model does not give good results under high compression 

ratios, since increased errors are introduced when we set fewer quantization levels. In the next section, 

we extend the Burt’s pyramid by introducing vector quantization when constructing the Laplacian 

pyramid with quantization noise feedback. 

3. Proposed 3D Pyramid Coder 

3.1 3D Pyramid Structure 

The 3D version of our algorithm is used to compress the sequence of slices obtained from CLSM 

device. Unlike other 3D image data, e.g. video sequence, each frame in the CLSM sequence presents 

one slice of an object at specific depth. The 3D pyramid coder treats the whole sequence as a 3D 

volume data and exploits the multi-dimensional redundancy with only one procedure. 

In Figure 3, we gave an example of building a four-level 3D pyramid with VQ introduced. 

Wherein we generalize the Fshrink and Fexpand, previously used on 2D image data, to 3D voxel data. 

Each voxel of level n maps to 8 voxels at level n+1. We can formulate the construction of 3D pyramid 

as follows (refer to Formula (1) – (2)): 
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 There are several advantages of 3D pyramid structures. Firstly, they organize sequential images 

as 3D volume data. This can capture the correlation in 3 rather than 2 spatial dimensions. Another 

advantage is that although the 3D pyramid structure, like the 2D pyramid is redundant, when Fshrink 

and Fexpand are applied to 3D volume data, the scale factor in formula (3) would be 8, not 4. As a result 

the redundancy is only 1/7 rather than 1/3 for the 2D case. 

3.2 Vector Quantizing Differential Images 

Vector quantization is an efficient technique for image compression [Gray (1998), Nasrabadi 

(1988), Cosman (1996)]. It encodes a group of neighboring pixels together rather than individual pixel 

in scalar quantization. Since the neighboring pixels from an image are strongly correlated, according 

to Shannon’s rate-distortion theory [Shannon (1959)], a better performance is achievable by coding 

vectors instead of scalars. 

In a 3D pyramid, the output of the differential pyramid could either be scalar or vector quantized, 

we chose VQ rather than scalar quantization because of the higher compression ratio obtained at the 

same image quality. We use VQ to exploit the 3D correlations between voxels from intra-bands, which 

is different from the method using zero-tree structures that exploit the correlations between 

coefficients from the inter-bands at different scales [Chen (1996)]. The choice of intra-band coding 

rather than inter-band coding is based on the observation that the intra-band models capture most of 

the dependencies between the subbands coefficients, then exploiting intra-band redundancies offers a 

better coding gain than exploiting inter-band redundancies [Cosman (1996), Schelkens (2001)]. We 
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use LBG (a codebook designing algorithm proposed by Linde, Buzo and Gray) [Linde (1980)] 

algorithm for codebook training. The shape of a vector is specified by its width, height and depth. For 

instance, in Figure 4, we construct and eight-dimensional vector 2×2×2 (w×h×d) by sampling four 

neighboring pixels from frame i and four neighboring pixels at the same position from its next frame 

i+1. The shapes we typically use are 2×2×2 or 4×4×2, but the choice is programmable. In experiment, 

we observed that, for some image stacks like BxCGP/BxCGS, higher image quality can be achieved 

using vectors having larger size along the depth axis than that along planar axes, e.g., vectors of shape 

2×1×4 are preferable to those of shape 2×2×2. This is based on the fact that for these stacks, 

correlation in depth direction is higher than in planar direction, for reasons pertaining to microscope 

optics. 

3.3 Thresholding 

The thresholding algorithm is based on three important observations: 

1. Differential images in pyramid have the characteristics that most of the coefficients 

energies are concentrated around zero (see Fig. 45). 

2. The coefficients with larger magnitude (high energy) are more important than smaller 

magnitude coefficients (low energy) because they contribute more to the decreasing of 

distortion after receiving by decoder. 

3. When an image is pyramid decompositioned the energy in subbands increases as the 

resolution decreases, so the coefficients will, on average, be smaller in lower pyramid 

level than in the higher pyramid level. 

                                                
5 For illustration purpose, an offset of  128 has been added to every coefficient except those from top level. The zero-energy 

coeffiencts will be displayed as mid-gray. 
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The first two observations are exploited by the thresholding scheme by discarding a large part of 

the low energy blocks to yield a data stream suitable for entropy encoding. Assuming we have a 

codebook matrix M with n rows, and each row represents a code vector. When designing a codebook 

there will always be a vector in the codebook matrix with a minimum energy. In what follows we will 

assume that the codebooks are so designed that the minimum energy vector actually has zero energy. 

That is to say all elements are zero. We call this vector Z, and assuming it is the z-th row in codebook 

matrix. The thresholding algorithm scans each index i from the encoder and checks if | Mi |
2 > T where 

T is some energy threshold. If the answer is positive, the i is transmitted to the entropy encoder. If the 

answer is negative, the index i is replaced by z, which is the index of Z, before being transmitted to the 

decoder. An entropy encoder such as LZ, or a Huffman codec is placed downstream from the vector 

quantizer so that the vector quantizer data stream is, in most cases, mapped to a shorter bit stream 

containing the same information content. A corresponding LZ or Huffman codec is used at the decoder 

side to reconstruct the VQ data stream. 

According to the third observation, T is individual in each layer. We discard more coefficients 

from lower pyramid levels by assigning larger thresholding values. 

4. Experimental Results 

We have performed coding experiments on two kinds of gray scale CLSM image volumes with 8 

bits per pixel, which captured by the EC FP5 partnership for vascular imaging (VASCAN 20006). The 

first data sets from rat mesenteric artery are stained with BODIPY CGP12177 (a fluorescent beta-

adrenoceptor antagonist drug), which attaches to beta-adrenergic receptors. Therefore, the data sets 

show the distribution of CGP binding sites. On the outside of the vessel one can see the drug binding 

                                                
6 VASCAN 2000 is an EC project.  Daly and Briones acknowledge the support of the EC in the Acknowledgements. 
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to adventitial cells and nerves. In the middle one can see binding to the smooth muscle cells. Human 

resistance artery data show DNA staining. Therefore, only the nucleus of each cell is visible. The long 

thin nuclei are located within smooth muscle cells. Irregular shaped nuclei near the surface are within 

adventitial cells. Elongated nuclei deep within the volume are within endothelial cells. Table I 

describes these data sets. 

4.1 Rate-distortion performance 

We tested the rate-distortion (R/D) performance of a 3D pyramid compressor and listed the result 

in Table II. The data sets of human resistance arteries have many regions, in which there are very low 

variations between voxels. We can get compression ratio as high as about 150:1 on these data sets. 

Data sets of rat mesenteric artery have much more details. We can get about 15~20:1 compression 

ratio on these data sets with acceptable image quality. The Peak-Signal-to-Noise Ratio (PSNR) 

measure used in the table is defined by 

)(
255

log10
2

10 dB
MSE

PSNR         (8) 

where MSE is the mean-squared-error between the original and reconstructed images. 

We compared the R/D performance of proposed 3D image coder with standard JPEG image coder 

to examine how much improvement we can obtain using 3D based methods rather than using 2D 

based ones. We fed two stacks ‘B3CGP’  and ‘G27_HG70’  into JEPG coder, and we outputted the 

JPEG-coded images as the same quality as 3D pyramid-coded ones. For ‘B3CGP’  stack, the output bit 

rate we achieved was 0.382 bpp (bit-per-pixel) using 3D pyramid, while was only 0.875 bpp using 

JPEG. For ‘G27_HG70’  stack, we achieved 0.084 bpp using 3D pyramid, which roughly the half size 

of the output bit rate as 0.156 bpp using JPEG. 
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We also compared the performance of 3D pyramid method with two video compressors: MPEG-1 

and Indeo© Video Codec 5.10 manufactured by Ligos Corp7. MPEG-1 uses motion compensation and 

DCT techniques [Haskell (1997), Furht (1997)], while Indeo codec is based on hybrid wavelet 

compression technology. We used two data sets, one from rat mesenteric data and the other from 

artery human resistance arteries data. We specified the format of image sequence as ‘gray scale’  

images when encoding using MPEG-1 in Indeo codecs. This guaranteed that no color information 

would be taken in account. The comparison results show that the proposed method offers better image 

quality than MPEG-1 and Indeo Codec 5.10 at almost the same compression ratio. Figure 5 shows the 

compression results on B3CGP rat mesenteric data sets. The average PSNR for the 3D pyramid 

method is roughly 0.11 dB and 1.70 dB better than that of MPEG-1 and Indeo. Figure 5b-2 ~ 4 gave 

the decompressed results of the 47th frame using three codecs respectively. For 3D pyramid method, 

the histogram shows almost the same overall shape as in Figure 5b-1, but smoothed, indicating that 

noise has been filtered out. However the jaggedness are not removed with other two codecs. Figure 6 

shows the compression results on G27_HG70 human resistance arteries data set. For this data set, we 

also get better image quality using 3D pyramid with gains of 0.59 dB and 0.63 dB over MPEG-1 and 

Indeo. We recognized that for very low bit rate, the reconstructed images obtained by 3D pyramid 

scheme have blurring in some regions, while the images obtained by Indeo and MPEG-1 have 

blocking effects, which are more irritating to the human visual system (see Fig. 6b-2 ~ 4). Another 

point worth mentioning is that while MPEG-1's coding rate varies with every frame, 3D pyramid 

scheme has a fixed rate allocation over whole stack, which makes the PSNR curves of 3D pyramid 

more smooth than that of MPEG-1. 

                                                
7 Ligos Corporation, founded in 1997, is a software encoding company. Website: http://www.ligos.com 
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4.2 Image processible performance 

Microscopists need image processing techniques as useful tools for multiple purpose analysis. 

Post-processing results on decompressed data will be used as another criterion of a lossy coding 

technique. 

In Figure 8, we used sobel operators [Gonzalez (1987)] to perform edge-detection on the 

decompressed images using 3D pyramid, MPEG-1 and Indeo codec respectively. The blocky artifacts 

introduced using MPEG-1 and Indeo codec affect the processing results seriously, making the nuclei 

hard to be distinguished from the muscle cells. 

We set up another test to examine how much a codec will affect the measurements of interested 

areas (objects) on images. We choose the 41st frame from the G27_HG70 data set. The shapes of 

nucleus of each cell in this image are what people interested [Daly et al. (2002)]. We used 

Metamorph®, a powerful microscopy analysis tool from Universal Imaging Corporation8, to do the 

measurements on five categories: Pixel area, Perimeter, Length, Breath, Shape factor. Fig. 7 shows the 

pre-processed raw image and its corresponding post-processed image. Given a specific thresholding, 

totally 25 objects have been recognized and measured. 

We performed such measurements on the same frame from decompressed stacks coded by 3D 

pyramid, Indeo and MPEG-1 respectively. We illustrated the measurement results in Figure 8. These 

results have been normalized by computing the ratio to the measurement results of raw image. In this 

test, 3D pyramid coded image gave the best results in that its measurements distributions were more 

consistent with those of raw image than other two codecs did. We noticed the blocking artifacts in 

Indeo and MPEG-1 coded images affected the measurement results seriously. 

                                                
8 Universal Imaging Corporation, founded in 1983, provides high quality, cost effective and fully supported software and integrated 

imaging systems for cell biology and industrial applications. Website: http://www.image1.com/ 
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4.3 Computational expenses 

We examined the computational expense of the proposed codec on these data sets. The settings of 

the coder follow the specifications in Table II. We list the corresponding CPU times of encoding and 

decoding in Table III. The proposed coder is asymmetric in that more computing time is required for 

encoding than for decoding. This is because the encoding process involves many computations for 

codebook training and searching, whereas the VQ decoder simply generates image blocks according 

to the codebook indexing information received. Such asymmetry would be suitable for reviewing 

purpose, which requires the fast reconstruction of images while not cares much about encoding speed. 

Refer to Fig.3, we can view the encoding process as a series tasks. First of all, we construct the image 

pyramid by running filtering and subsampling operations from level to level. The CPU (central 

processing unit) time is proportion to the size of data sets. The second task is training a codebook from 

the vector set sampled from the differential image pyramid. We choose LBG as the codebook training 

method to ensure a locally optimal result. The computational expense for this task is affected by two 

factors: the size of training set (number of vectors in training set) and the size of vector. When we 

obtained a well-trained codebook, we fed the differential pyramid into vector quantizer. The codebook 

was unstructured, then a full-search method was used for VQ encoding. Here, we used a fast search 

technique [Soleymani (1987)] for speeding the full search of an arbitrary codebook. In our 

experiments, this method reduced the computational complexity of nearest neighbor search from 

)( 2NkO u  to roughly )( NkO u  of a codebook containing N k-dimensional codevectors. The final 

task is reconstructing the image pyramid. Compared to Burt’ s open-loop pyramid structure (see Fig.2), 

we build up a closed-loop pyramid. The quantization errors will be feedback to the encoder at the next 

pyramid level, which means the decoding process is included in the encoding process, so the 

reconstructing task in encoding process will be exactly the same as decoding process. This process 
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includes the reconstruction of the differential pyramid and interpolation of the image pyramid from 

top level to bottom level, and the CPU time is mainly determined by interpolation operations because 

of the very low computational cost for decoding vector quantized data [Nasrabadi (1988)]. 

5. Conclusion 

In this paper, a 3D lossy confocal microscopy image compression scheme, using 3D pyramid 

structures and vector quantization, is introduced. The 3D pyramid structures utilize the correlations 

between voxels in 3 spatial dimensions and decompose the source signal into a series of levels of 

subbands, which would be more suitable for quantization and entropy coding. 

The experimental results show that the 3D pyramid method provides good qualities of 

reconstructed images at 15~20:1 compression ratio on rat mesenteric data sets; and 100:1 or even 

higher compression ratio on human resistance arteries ones. Both offer better image quality than that 

using MPEG-1 and Indeo© Video Codec 5.10 at the same compression ratios. The following image 

processing results on reconstructed images also show the 3D pyramid coder is more acceptable, 

especially for compressing volume data having low variation between voxels, like G27_HG70 stack, 

at a high compression ratio. 
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TABLE I 

Description of CLSM data. 

Name Description Volume size (voxels) Data size (bytes) 

B1CGS 256 x 256 x 168 11,303,376 

B3CGP 256 x 256 x 178 11,976,196 

B4CGS 256 x 256 x 170 11,445,476 

B6CGS 

Rat mesenteric 
artery 

256 x 256 x 183 12,320,285 

G25_HG70 512 x 512 x 135 35,523,360 

G27_HG70 

Human 
resistance 

arteries 512 x 512 x 89 23,419,104 

 

TABLE II 

Performance of 3D pyramid compressor on 6 data sets 

3D Pyramid specifications 

Name 
Original data 

size (bytes) 

Output   
data size 
(bytes) 

Compression 
ratio (C/R) 

Ave. 
PSNR 
(dB) 

Pyramid 
levels 

Entries in 
codebook 

Vector 
shape 

(w �  h �  d) 

Thresholds (different 
between layers) 

B1CGS 11,303,376 712,666 15.86 30.8155 4 256 2 � 2 � 3 top- 0 : 0 : 1 : 4 -bottom 

B3CGP 11,976,196 566,132 21.15 33.2712 4 256 2 � 2 � 3 0 : 0 : 2 : 7 

B4CGS 11,445,476 608,267 18.82 33.5211 4 256 2 � 2 � 3 0 : 0 : 1 : 4 

B6CGS 12,320,285 750,093 16.43 31.8014 4 256 2 � 2 � 3 0 : 0 : 1 : 4 

G25_HG70 35,523,360 211,152 168.24 35.3181 5 256 4 � 4 � 4 0 : 0 : 1 : 4 : 16 

G27_HG70 23,419,104 246,371 95.06 35.7988 5 256 4 � 4 � 3 0 : 0 : 0 : 2: 8 

 

TABLE III 

CPU Times to encode and decode testing data sets (Pentium III® 1GHz) 

Encoding (s) 

Name build image 
pyramid 

codebook training 
(Num. Of vectors 

in training set) 

encoding 
differential 

pyramid 

reconstructing 
image pyramid 

Decoding 
(s) 

B1CGS 5.78 35.89 (49,384) 21.42 6.62 6.62 
B3CGP 5.25 27.00 (35,360) 15.16 6.19 6.19 
B4CGS 5.13 27.50 (35,787) 15.52 5.92 5.92 
B6CGS 5.33 30.83 (44,548) 20.80 6.44 6.44 

G25_HG70 13.07 83.14 (22,032) 26.81 14.97 14.97 
G27_HG70 10.56 59.58 (20,546) 25.75 11.67 11.67 
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Figure 1. Image pyramid and difference pyramid compositions 
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Figure 2. Block diagram of Burt’s pyramid coder 
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Figure 3. Architecture of proposed compression technique using VQ and 3D image pyramid. 
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Figure 4. An example of forming an intra-band vector from two successive frames. 
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(a)

(b-1) Original (b-2) 3D Pyramid, PSNR=29.88dB

(b-3) MPEG-1, PSNR=28.50dB (b-4) Indeo Video Codec, PSNR=27.24dB

 

Figure 5. (a) Compression results using 3D pyramid codec on B3CGP data set compared to 

MPEG-1 and Indeo© Video Codec 5.10 at almost the same compression ratio (CR), Peak Signal to 
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Noise Ratio for each frame. (b1-4) Slice 47 is depicted and the intensity histogram is 

superimposed on the lower part of the image. (b1) Original image and the histogram shows some 

jaggedness due to noise. (b2-4) The reconstructed image using (2) 3D pyramid codec, (3) MPEG-

1 and (4) Indeo Video Codec 5.10 repectively. On (b-2), there is no visible loss of quality, the 

histogram remains the same shape as the original but shows considerable smoothing. On (b-3 and 

4) the shape of histogram is biased from the original; the jaggedness still remains. 
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(a)

(b-1) Original (b-2) 3D Pyramid, PSNR=33.76

(b-3) MPEG-1, PSNR=32.01 (b-4) Indeo Video Codec 5.10, PSNR=32.91

 

Figure 6. Compression results using 3D pyramid codec on G27_HG70 data set compared to 

MPEG-1 and Indeo© Video Codec 5.10 at almost the same compression ratio (CR), Peak Signal to 

Noise Ratio for each frame. (b1-4) Slice 41 is depicted and an 128×128 area clipped from the 
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slice as shown on the top left corner. The result after applying edge-detection filter is shown on its 

right side. The histogram of the entire frame is shown on the lower part. (b2-4) The reconstructed 

image using (2) 3D pyramid codec, (3) MPEG-1 and (4) Indeo Video Codec 5.10 repectively. On 

(b-2) the edge-detection result wasn’ t affected by the compression. On (b-3 and 4), the blocky 

artifacts are visible on decompressed images and they affected the edge-detection results. 
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Figure 7. Totally 25 objects have been recognized and measurements are performed on five 

categories: Pixel area, Perimeter, Length, Breath, Shape factor. 

 

 

 

 

Figure 8. Each bar illustrates the range and the mean of distribution of 25 measured data in each 

category. Data have been normalized by computing the ratio to the raw measurements. 


