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1. Introduction 
In rate-distortion theory it has been shown that vector quantization (VQ) outperforms 
its counterpart, scalar quantization (SQ), consistently [Shannon, 1959], [GRAY, 
1998]. However the major problems that may prevent its wide acceptance in image 
compression applications is the computational complexity. The VQ compression 
system is highly asymmetry in that significantly more computing time is required for 
training and encoding than for decoding. This is because the training and encoding 
process involves many comparisons to look for the best representatives or codewords, 
whereas the decoder simply hashes the decoded vector according to the index of a 
codeword specifying its position in the codebook. 
 
Most of the VQ training algorithms, like LBG [Linde, 1980], are based on 
Generalized Lloyd Algorithm (GLA), a method that iteratively updates the partitions 
and the corresponding codewords [Lloyd, 1982]. It guarantees to find codewords as 
the locally optimum solution to the training set. The encoding involves exhaustively 
search the codebook to find the codeword having minimum distortion to the input 
vector. So its low distortion is achieved with the expense of very high computation 
complexities in both training and encoding. 
 
Therefore people were encouraged to investigate on fast design algorithms. They are 
either using non-iterative clustering techniques [Equitz, 1989]; or by training on a 
subset to find the codeword rather than the whole set, like tree-structured VQ (TSVQ) 
[Buzo, 1980]. Although they cannot guarantee to find the optimum solution and may 
suffer from some degradation of quality, their much reduced complexities make them 
a good candidate in many real-time image compression applications, for example 
real-time video coding [Cockshott, 1999]. Moreover in the latter category codewords 
are usually organized in a well-structured form in contrast with unstructured 
codebook in GLA. Fast encoding can be benefited from such structures while with 
some penalties that it cannot guarantee to find the ‘closest’ codeword to the input 
vector. 
 
In this report we proposed two new VQ training algorithms. Both generate a 
codebook by partitioning the hyper-dimensional vector space into sub volumes and 
choosing the probability weighted centroid of these sub volumes as the code vector 
(codeword). Both search the codebook using a binary tree. One uses partitioning by 
hyper-planes orthogonal to the axes of vector space (OAVQ), the other uses 
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partitioning by hyper-planes orthogonal to the primary principal component (PPC) of 
the data set (OPVQ). 

2. New Fast Vector Quantizer Design Algorithms 

2.1 OAVQ 

In OAVQ, the partitioning hyper-planes are always passing through the mean of the 
distribution of training set in current sub volume, and orthogonal to the axes of vector 
space, along which the distribution of training data in current sub volume has the 
greatest variance. Every ‘splitting’ operation will divide current sub volume into two 
new sub volumes, and we repeat the ‘splitting’ recursively on each sub volume until 
we obtain the same number of sub volume as that of codeword we desired, and using 
the centroid of training data in each sub volume to represent a codeword. Like TSVQ, 
the encoding process is to determine which sub volume an input vector x should 
belong to, and use the codeword associated to this sub volume to represent x. A 
balanced binary tree is used for simplifying the encoding process. The algorithm of 
OAVQ design and the growth of encoding tree can be described as follows (see Fig. 
1). 
 
Algorithm 1: OAVQ 
Step 1. Initialization: Set the Tr as the training set and KRTr � , a K-dimensional 

vector space. Set the global variable index of codeword ioc = 0; Set the depth of 
recursive dor = log2N, where N is the number of desired codeword in codebook; 
set the current tree pointer ctp = root of encoding tree. 

Step 2. If dor = 0, then compute the centroid of Tr associated with current sub 
volume and use it to represent a codeword which the index in codebook is ioc. 
Store ioc in the tree node pointed by ctp. Increase the ioc by 1. We trace back the 
recursive process to upper level. 

Step 3. Determine the means }1,,1,0,{ � Kimi �  of distribution of Tr in current 

sub volume along each axis. 

Step 4. Determine the variances }1,,1,0,{ � Kivi �  of distribution of Tr in 

current sub volume along each axis. 
Step 5. Partition the current sub volume into two (we name these as lower sub 

volume and upper sub volume for convenience), using a hyper plane normal to the 
axis of greatest variance passing through the mean along this axis. The 

hyper-plane can be expressed as: 0)(|{)(  ��� baxRxxH K , where a and b 

are vectors that a is the mean of distribution and b is the one of the basis of RK, 

along which vi has the greatest value: )
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Store the index of axis ioa = i and the mean of this axis mi in the tree node pointed 
by ctp. 

Step 6. Set leftctpctp o . Decrease dor by 1. Perform Steps 2 - 5 recursively on 

the lower sub volume. 

Step 7. Set rightctpctp o . Decrease dor by 1. Perform Steps 2 - 5 recursively 

on the upper sub volume. 
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Figure 1: Diagram of OAVQ design on 2-D vector space and growth of its encoding tree. 
 
Fig. 2 gives an example of encoding a 4-dimensional vector x using OAVQ having 8 
entries with its encoding tree. Totally, only log28 = 3 times comparisons are 
performed before we find the best matched codeword. The encoding complexity is 
linear to the log2N only, no relation to the dimensionality of input vector. This makes 
encoding performed much faster than the unstructured VQ and even most of the 
structured VQ, e. g., TSVQ. The sub volumes generated by OAVQ are always 
hyper-cuboids, such a shape doesn’ t ensure the reproduction vector is the closest to 
the input vector, therefore the speed is gained in the expense of degradation of quality. 
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Figure 2: An example of encoding 4-D vector using OAVQ. 

2.2 OPVQ 

From the previous discussion, we know that vectors sampled from images present a 
strong tendency for occurrences to be clustered along the diagonal of the vector space. 
If we partition the vector space using hyper-planes, the hyper-planes normal to the 
direction of this tendency and passing through the centroid of data set, we ensures that 
the split contributes the greatest amount to the minimisation of MSE. Principal 
component analysis (PCA) is used for determining the direction of this tendency, and 
the first/primary principal component (PPC) of the data set will be consistent with the 
direction. The encoding performed similar to OAVQ by determining with sub volume 
the input vector x should belong to, and using the centroid of training data in this sub 
volume to represent the x. A balanced binary is designed for encoding. We describe 
the algorithm of OPVQ as follows (see Fig. 3). 
 
Algorithm 2: OPVQ 
Step 1. Initialization: Set the Tr as the training set and KRTr � ; Set the global 

variable index of codeword ioc = 0; Set the depth of recursive dor = log2N, where 
N is the number of desired codeword in codebook; set the current tree pointer ctp 
= root of encoding tree. 

Step 2. If dor = 0, then compute the centroid of Tr associated with current sub 
volume and use it to represent a codeword which the index in codebook is ioc. 
Store ioc in the tree node pointed by ctp. Increase the ioc by 1. We trace back the 
recursive process to upper level. 

Step 3. Compute the centroid and the weight vector (PPC) of Tr associated with 
current sub volume. 
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Step 4. Partition the current sub volume into two (we name these as lower sub 
volume and upper sub volume for convenience), using a hyper plane normal to the 
weight vector wv passing through the centroid cv. Store the cv and the wv in the 
tree node pointed by ctp. 

®̄ d
!�

0)(,
0)(,

vfvolumeLower

vfvolumeUpper
v  

vectorcentroidcv
vectorweightwv

cvvwvvf
:
:

),()( ��         (1) 

Step 5. Set leftctpctp o . Decrease dor by 1. Perform Steps 2 - 4 recursively on 

the lower sub volume. 

Step 6. Set rightctpctp o . Decrease dor by 1. Perform Steps 2 - 4 recursively 

on the upper sub volume. 
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Figure 3: Diagram of OPVQ design on 2-D vector space and growth of its encoding tree. 
 

There are many methods for computing the principal components. Here we use 
singular value decomposition (SVD) technique [SVQ, Web] to find the largest 
eigenvalue of the covariance matrix of training set, and use its corresponding 
eigenvector as the primary principal component. We have noticed that the shapes of 
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sub volumes generated using OPVQ are very similar to those using TSVQ. 
Theoretically, in the case of using squared error as distortion measure, the shapes of 
sub volumes using OPVQ and TSVQ should be same, since both of them use 
hyper-planes for partition the sub volumes with the purpose of minimizing the 
average distortion error. 
 
In OPVQ, when encoding, one can using (1) to determine which sub volume an input 

vector KRx�  should belong to, and the computational complexity is about 2uK. 

While, in TSVQ, it is determined by comparing the distances of x to the two internal 
vectors, and the complexity is about 6uK. 

2.3 Conclusion 

We made a comparative study of OAVQ and OPVQ with LBG and PHVQ [Cockshott, 
1999] on two aspects: computational complexity of encoding and rate-distortion 
performance of vector quantizers. 

A. Complexity Analysis of Encoding 

Assume that we have trained vector quantizers using these four algorithms discussed 
above. The dimension of the codeword is 2l and the number of codebook entries is 2m. 
We use these four quantizers to compress a picture of dimension x, y which contains 
xy/2l vectors. For each vector v, we have  

)...,,,(
1210 �

 lvvvv . 

 
In LBG, we use exhaustive codebook searching method to get the best representative 
codeword for an input vector. We compute the order of LBG through following steps: 

a. The order of computing the square distortion error between two vectors 
according to Formula 4 is 2l. 

b. The order of finding the best representative codeword is 2l+m. 
c. The overall order of compressing a picture using LBG is 2mxy. 

 
In PHVQ, we use l lookup tables to map a given vector to the index of representative 
codeword in codebook. We compute the order of HVQ through following steps: 

a. The order of each lookup operation is 1. 
b. For each vector of dimension 2l, the lookup operation will repeat 2l-1 times. 
c. The overall order of PHVQ is (2l-1)xy/2l. 

 
In OAVQ, we use a balanced binary tree to get the index of representative codeword 
for a given vector. We compute the order of OAVQ through following steps: 

a. For each node in searching tree, we compare the vioa with mean (refer to Fig. 2) 
and determine which sub-tree we should traverse next. This step is of order 1. 
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b. The searching tree has the depth of m, and the Step a will repeat m times 
before we get the index of codeword to the given vector. This step is of oreder 
m. 

c. The overall order of the OAVQ is thus mxy/2l. 
 

In OPVQ, the traversing step of encoding tree is same as OAVQ, but there is more 
computation for each determination: 

a. For each node in searching tree, we compute the f(v) using Formula 17 for a 
given vector v, and compare f(v) with 0 to determine which sub-tree we should 
traverse next. This step is of order 2l. 

b. The searching tree has the depth of m, and the Step a will repeat m times 
before we get the index of codeword to the given vector. This step is of order 
2lm. 

c. The overall order of the OPVQ is thus mxy. 
 

Table I lists the experimental results of the CPU time for each algorithm on a 1 GHz 
Pentium III. The source images are 512 by 512 pixels. We use the codebook of 256 
entries and 4 by 4 – 16 dimensions of each codeword. 

 
Table I: Average CPU time taken on 30 sample images. 

Algor i t hm  CPU t im e (Ps/vec t o r) 

OAVQ 0.76 

PHVQ 1.62 

OPVQ 34.62 

LBG 175.57 

B. Rate-distortion Performance Comparison 

We examine the performance of these VQs by generating the codebook from a large 
set natural images and using ‘Lena’  as the test image (‘Lena’  is not in the train set). In 
this experiment VQs were designed as fixed-rate quantizers without entropy coding 
followed. Table II lists the compression of ‘Lena’  using these four VQs. We get the 
compression ratio of 1 bbp (bit per pixel) using codebooks of 256 entries and 8 
dimensions, and 0.5 bbp using codebooks of 256 entries and 16 dimensions.  

 
Table II: PSNR results for ‘Lena’  using four kinds of VQs. 

Rat io 
(bpp) 

LBG OPVQ OAVQ PHVQ 

1 32.29 31.03 30.52 30.66 

0.5 30.35 29.76 28.52 27.77 
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To obtain detailed results of comparison of LBG, PHVQ, OAVQ and OPVQ, we get 
results by designing VQs of different codebook entries and dimensions. The codebook 
entries are ranged from 2 to 256, it can be described as 2m, where m = 1, 2, …, 8. The 
codebook dimensions are ranged from 4 to 64, it can be described as 2l, where l = 2, 
3, …, 6. Fig. 4 demonstrates the surface of PSNR to m and l. 

 

 

Figure 4: Surfaces of PSNR to m and l of each VQ. 

 
We drew the conclusion from the experimental results. OAVQ has the advantage of 
low computational complexity in quantizer design and encoding. It can be used as a 
front end of other VQs, which can simplify their codebook design or encoding 
procedure. For example, we use OAVQ to produce an initial codebook for LBG, and 
it makes LBG converged in fewer iterations. In Fig. 5 we can see that codebooks 
generated by OPVQ are same as those by TSVQ, which are very close to those of 
unstructured VQ, e.g., LBG. The use of binary tree for encoding makes OPVQ much 
faster than unstructured VQ, and computation using (1) has lower complexity than 
computing the distortion measure between input vector and internal vector in TSVQ 
and therefore makes OPVQ more efficient. It worth emphasizing that both OAVQ and 
OPVQ can be designed for progressive transmission, like TSVQ. For example, in 
OAVQ, in addition to storing ioc and mean in the internal nodes, we store the 
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centroids of the distribution of train data in the sub volumes which are associated with 
each internal node (refer to TSVQ). 

 
Figure 5: The comparison of codebook patterns with 8x8 block and 64 entries generated by the four 

VQs. 

3. Fast Encoding Algorithm of Unstructured 

Codebook 
We also proposed an algorithm for speeding up the encoding process of unstructured 
codebook. This method uses effective ‘kick out’  operations to reduce the number of 
codeword should be compared before we obtain the best codeword with the minimum 
distortion error to the input vector. 



 

 - 10 - 

Technical Report – Dept. of Computing Science, Univ. of Glasgow 

3.1 Implementations 

Algorithm 3: Fast Encoding of Unstructured Codebook (FE-UC) 

A. Pre-processing 

The Euclidean distances between all paires of codevectors are precomputed and 
stored in a table. In practice, for each codeword c in the codebook, we create a sorted 
array. We store the index (idx) and the distance (dis) of other codewords to c, from 
near to far. The ‘distance’  we mentioned about is defined as squared root distance. 
Suppose we have a codebook of 256 entries, we’ ll get a 2D array of 256 rows and 255 
columns after pre-processing (See Fig. 6). 

.
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3

codeword
256

codeword
255

. . .1 2 255

In each element of
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Figure 6 FE-UC: pre-processing of unstructured codebook 
 

B. Fast Searching of the Codebook 

Step 1. Given an input vector v, and an initial codeword s assumed to be the closest 

codeword to v. If 
2
].1[

),(
diss

svd d , where diss ].1[  is the distance of closest 

codeword to s computed in the pre-processing (refer to Fig. 7 ‘Condition 1’ ), s is 
then the closest codeword we found, and we terminate the searching process; 
otherwise, we initialise the searching procedure by setting: 

i. scclosest  : the closest codeword to v we found so far. 

ii. ]1[scready  : the ready to compared codeword, ]1[s  is the first element of 

the array associated with s (refer to ‘Pre-processing’ ). 
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iii. i = 1: index. 

Step 2. Compute the square root distance of readyc  to v. 

Step 3. If any of the below 3 conditions is satisfied, we terminate our searching, we 

eventually found the closestc  as the closest codeword to v; otherwise, continue to 

Step 4. 
Termination conditions (refer to Fig. 7): 

i. The distance of readyc  to v is not more than the half of distance of readyc  to 

readyc ’ s closest codeword: 

2

].1[
),(

disc
cvd ready

ready d            (2) 

ii. The distance of readyc  to closestc  is greater than the 2 times of distance v to 

closestc : 

),(2),( closestready cvdcvd u!           (3) 

iii. readyc  is the last element of the array associated with closestc . 

Step 4. If ),(),( closestready cvdcvd � , we update: 

i. closestc  = readyc  

ii. ]1[closestready cc   

iii. i = 1; 
otherwise, continue to Step 5. 

Step 5. Set readyc  is the next codeword of the sorted array associated with closestc : 

i. i = i+1 

ii. ][icc closestready  , 

back to Step 2. 
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Figure 7: FE-UC: two termination conditions in the process of searching the closest codeword. 

 
We use two methods for finding the initial codeword s. One is first compute the 
means of each codeword and the input vector v, and then scalar quantize the v to the 
closest codeword s according to the mean. The other is finding the closest codeword 
in the neighbours of v, which are already encoded (see Fig. 8). We use these 
codewords associated with neighbours as a prediction of initial codeword s, and find s 
among these codewords which has the closest distance to v. Usually we encode an 
image in a raster-scan order, therefore, most of the vectors have four neighbours 
already encoded and at least one neighbour for the vectors at the corners and sides, 
except the only one vector at the left-top corner. For this vector, we use Method One 
to obtain initial codeword s; while using Method Two for all the other vectors. 
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Figure 8: FE-UC: Method Two of obtaining the initial codeword. 

3.2 Results 

We use a general codebook with 256 entries and 16 dimensions of each codeword to 
test its encoding efficiency on three test images. The results are listed in Table VI. 

 
 
 



 

 - 13 - 

Technical Report – Dept. of Computing Science, Univ. of Glasgow 

Table VI. The average number of codewords compared when encoding an input vector 

 Full Search Method FE-UC Method 
‘Lena’  
512u512u8 bits 

256 8.04 

‘Pepper’  
512u512u8 bits 

256 10.35 

‘Goldhill’  
512u512u8 bits 

256 12.35 
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