
Deadline-Driven Auctions for NPC
Host Allocation in P2P MMOGs

Lu Fan, Phil Trinder, and Hamish Taylor
School of Mathematical and Computer Sciences

Heriot-Watt University, Edinburgh, UK
{lf16, h.taylor, p.w.trinder}@hw.ac.uk

Abstract—This paper presents the design, implementation and
evaluation of Deadline-Driven Auctions (DDA), a novel task map-
ping infrastructure for heterogeneous distributed environments.
DDA is primarily designed to support the hosting of Non-Player
Characters (NPCs) in P2P Massively Multiplayer Online Games
(MMOGs). Experimental and analytical results demonstrate that
DDA provides four significant advantages. It is self-organising as
the infrastructure can be automatically assembled and managed.
It efficiently allocates computing resources for large numbers
of real-time NPC tasks in a simulated P2P MMOG with the
better part of 1000 players. It supports gaming interactivity
by keeping the communication latency among NPC hosts and
ordinary players low. Finally, it supports flexible matchmaking
policies, and with a friendly incentive policy, can establish a
cooperative economic model that helps motivate participants to
contribute their resources to the system.

I. INTRODUCTION

A Virtual Environment (VE) is a computer simulated envi-
ronment for its users to inhabit and interact via avatars. Many
VEs are Massively Multiplayer Online Games (MMOGs).
Conventionally, VEs and MMOGs have been implemented
using Client/Server (C/S) architectures, because they are rel-
atively easy to implement and secure [1]. However, they
also exhibit various drawbacks in reliability and cost [2],
hence Peer-to-Peer (P2P) MMOGs are becoming increasingly
attractive as an alternative [3].

To adapt MMOGs to P2P architectures, many key issues
have to be addressed. A MMOG is different from a typical
VE in that it features considerable numbers of non-player
characters (NPCs). These NPCs need to be hosted by peers
to be run [4], [5], [3]. A NPC is an AI-controlled virtual
actor, which drives storylines in a game, or combats player
characters (PCs) as a monster. MMOGs have to supply their
game worlds with large numbers of NPCs as required by
game scenarios. Traditionally, NPCs are hosted by game
servers, consuming significant processing power and network
bandwidth. Therefore, one of the prerequisites for realizing a
P2P MMOG is to provide a mechanism that hosts such NPCs
using resources available on game participant machines.

Conceptually, a NPC object is an indivisible, computational
and interactive task, because:

1. It can only be efficiently hosted by a single computer.
2. It consumes processing power, as a NPC is associated

with an AI program that determines the NPC’s actions. For
example, a monster NPC may determine its move by examin-
ing the position of nearby players.

3. It needs to interact with players. For example, a monster
NPC may engage in combat with a set of players, and
exchange real-time gaming events with them.

A mechanism that schedules NPC tasks on game participant
machines is referred to as NPC host allocation. The responsi-
bilities of such a mechanism include the discovery of potential
resource providers, the selection of suitable NPC hosts, and
the migration of related AI program and state information for
a NPC. Among them, the most important one is the selection
of a suitable host. Firstly, the selected host must have adequate
computing resource, such as CPU cycles, memory and network
bandwidth. Secondly, it should also offer a low communication
latency to guarantee the gaming experiences of other players
that interact with the NPC. This determination must be made
in due course, because the fast pace of a MMOG requires a
NPC to appear at a specific position and start working in the
order of seconds.

The contribution of this paper is to present the design
(Section III), analysis (Section IV), extensions (Section V),
implementation using Pastry [6] (Section VI), and evaluation
(Section VII) of Deadline-Driven Auctions (DDA). DDA sup-
ports real-time NPC host allocation in P2P MMOGs using a
heterogeneous task mapping mechanism. DDA’s infrastructure
is a self-organised super-peer network on top of a structured
P2P overlay. This infrastructure is provided by our previous
research on the Mediator framework [2].

Experimental results demonstrate that DDA provides the
following advantages:

1) Self-Organisation: DDA’s infrastructure can be automat-
ically assembled and managed. As the system evolves, NPC
tasks will be distributed to suitable participants automatically
(Section VII-A).

2) Real-time Resource Allocation: DDA efficiently pro-
cesses large numbers of tasks within a few seconds, and is
able to support a simulated P2P MMOG with the better part
of 1000 players (Section VII-B).

3) QoS Desiderata: DDA minimises the communication
latency among a NPC host and ordinary players, so as to
improve interactivity for a P2P MMOG (Section VII-B).

4) Cooperative Economic Model: DDA supports flexible
resource selection policies, and it conveniently establishes a
cooperative economic model that shares NPC tasks among
competent resource providers fairly (Section V-B).

Match-making Auction

bootstrapping

zone structure
maintenance

local
resource
provider
selected

latency
discovery

local
scheduling

RAds
updated

game event
anticipation

final
resource
provider
selected

stale RAds
removed

bid

task

PlayerBM

ZM

RM IMM

Mediator
framework

DDA task
mapping

Fig. 1. The Mediator framework & DDA.

II. RELATED WORK

Existing NPC host allocation schemes can be classified into
static region based approaches and dynamic virtual distance
based approaches. The former [7], [8] partition a game world
into multiple regions, and assign each region a super-peer,
which works as an authoritative server and hosts all the NPCs
within the region. They have several drawbacks. Because only
one super-peer is selected to take charge of a region, they
might incur excessive computation and communication work-
loads on the super-peer. Their proposed super-peer selection
criteria are also overly simple, as they do not take into consid-
eration peers’ actual resource availabilities. Furthermore, the
approaches cannot guarantee to fulfil the QoS requirement for
game interactivity.

In contrast, dynamic virtual distance based approaches
distribute NPC objects to all game participants, where the key
idea is to allocate a NPC to the machine of the player, whose
avatar is closest to the NPC. Because a player that is closest
to a NPC is most likely to interact with it, if the player is
hosting the NPC by itself, there is no need for the player to
communicate with a remote third party. It has been suggested
that this is optimal for minimizing interactive latency and
communication overhead [4].

Colyseus [4] has demonstrated the feasibility of virtual
distance based object hosting in Quake II. The game object
manager of Colyseus allocates mutable objects, e.g. NPCs,
doors and weapon items, to the closest players. Similarly,
AtoZ [5] allocates each player avatar a “priority field”, which
is analogous to the Mahalanobis distance in the domain of
quadratic discriminant analysis [9] to decide which player can
access a shared object in the shortest time. Furthermore, the
Voronoi diagram discussed in [3] seems inherently suitable for
virtual distance based NPC host allocation. A Voronoi diagram
partitions a game world into multiple non-overlapping regions
that contain exactly one player avatar in each region. In this
case, it is natural for each player to host the NPC objects
within its own Voronoi cell.

Compared to static region based approaches, dynamic vir-
tual distance based approaches are better at utilizing the

computing resources of more participant machines. However,
they also have the following disadvantages:

1. Some NPCs like shop owners may only need to be
present to one player at a time. This might be enforced by
environments that limit the NPC’s visability and interactivity
to one player at a time. Such NPCs would be best hosted by a
player’s own machine. However, most NPCs are not like this.
They can have a real-time effect on players on several hosts at
a time. In this case, all the players need to communicate with
the NPC host, and virtual distance based approaches cannot
ensure that the latency for each player is equally low.

2. The computation of accurate NPC host allocation can be
expensive, and because a large proportion of the players in a
MMOG are constantly moving, switches of host may be fre-
quent. Therefore, the overall computation and communication
overhead may be still high.

3. Cheating may become easier for unscrupulous players
who might abuse their hosting of NPC objects to their own
advantage. Even worse, because no third party is required in
a local interaction, it is rather hard to detect such a breach.

The DDA infrastructure adopts a task mapping mechanism
that is different from all the related work. DDA is good
at load-balancing, because it takes into consideration each
game participant’s actual resource availability and ensures
that NPC tasks are always allocated to capable hosts. Also
once a NPC is allocated to a game participant, the hosting
relationship remains stable, unless the NPC is destroyed, or
the host needs to leave the system. Therefore, NPC task
migration among hosts is less frequent than in virtual distance
based approaches. Furthermore, because a player is unlikely
to host a NPC for itself, cheating is relatively harder in DDA.
DDA also provides several additional advantages such as self-
organisation, real-time resource allocation, QoS support and a
cooperative economic model.

III. DDA DESIGN

A. Overview

The system model for DDA involves two different parties:
a work source and a set of resource providers. The work
source is the virtual game world that constantly generates NPC
tasks. The resource providers are game participants that have
spare resource on their machines. The key idea in DDA is
to bridge between resource requirements and their availability
using distributed matchmaking via resource matchmakers.

Because a P2P system lacks centralized configuration, a
self-organizing mechanism is needed to set up DDA’s working
infrastructure. Previous work on the Mediator framework [2]
supplies such an infrastructure. It automatically organizes
application participants into a hierarchical super-peer network
using a structured P2P overlay [6]. Four super-peer roles
have been defined in the framework, Boot Mediator (BM),
Zone Mediator (ZM), Resource Mediator (RM) and Interest-
Management Mediator (IMM).

The collaboration among the Mediator roles is illustrated by
Figure 1. Firstly, the entire game world is partitioned into mul-
tiple game zones, and a BM is selected in each zone for boot-

IMMRM1 RTT

RM3

RMn

RM2

Task Ti

Bid Rx

... ...

R1

R2

Rx

...

...

T1

T2

Ti

...

Ta
sk

 Q
ue

ue
 (E

D
F)

R
es

ou
rc

e
Q

ue
ue

Auctioneer

Bidder 1

Bidder 2

Bidder 3

Bidder n

Fig. 2. DDA zone-level scheduling.

strapping purposes. Secondly, the BM promotes a resource-
rich peer from existing zone members to be the ZM for that
zone with responsibility for zone structure maintenance, e.g.
the selection and monitoring of the IMM and multiple RMs.
Thirdly, an IMM is essentially a gaming event anticipator. By
running a hybrid interest-management scheme, e.g. MOPAR
[10], the IMM respawns NPC objects and updates other zone
members with forthcoming gaming events. Finally, RMs serve
as matchmakers that facilitate real-time resource discovery.
For load-balancing and performance reasons, multiple RMs
are selected in each game zone and work in parallel. Once a
NPC is about to be respawned, the IMM notifies the RMs in
the game zone, and each RM replies with a locally optimised
resource provider as a “bid”. When the IMM has received their
bids, or the deadline for the spawning task is sufficiently near,
the IMM closes the “auction” and determines which resource
provider hosts the NPC.

B. Local Scheduling

Local scheduling refers to the activities carried out by a peer
to manage its local computing resources, and to contribute
spare resource to the system. Typical local scheduling activ-
ities include finding out communication latencies with other
zone members, and updating resource availabilities at an RM.

DDA resorts to incentive mechanisms to convince partici-
pants to contribute their resources. DDA uses DCRC [11] to
quantify peers’ contributions, so free-riders can be identified
and discouraged. DDA charges peers in term of credits,
according to the time that they play the game. Ideally, a
peer that actively contributes usable resources to the system
should be able to earn enough credits to pay for its playing
time. However, if resource-rich peers eagerly volunteer for
tasks, less competitive peers will be starved of opportunities
for earning credits. As a result, some virtuous peers may
become poorer and poorer, and finally be regarded as free-
riders. To cope with this problem, DDA adopts a friendly
matchmaking policy (Section V-B) that fairly shares credit
earning opportunities among all competent resource providers.

Furthermore, only to quantify available resources is not
sufficient. In order to fulfil the QoS requirement for game
interactivity, a peer also needs to qualify its resources by
finding out its communication latencies with other peers.
For zone structure maintenance purposes, the ZM for each
game zone publishes heartbeat messages periodically. Such

messages carry a list of existing zone members, so that a peer
can check whether new zone members have shown up. If so,
the peer sends out a set of Ping messages to them, and they
reply with Pong messages, so that communication latencies
among them can be measured.

DDA adopts a matchmaking approach similar to Condor
[12], and represents both the resource offers and NPC tasks
using ClassAds [13]. A peer periodically reports its local
resource quantity and quality to an RM using a Resource Ad
(RAd), and an IMM notifies related RMs about a NPC task
using a Job Ad (JAd). Detailed structures for a RAd and a
JAd can be found in [2].

Currently, cheating mitigation is not a primary focus of
DDA’s design, but obviously it is possible for unscrupulous
peers to cheat on local scheduling. For example, in order to
earn more credits, a peer may lie about the spare computing
resource it can provide. As a result, the peer will be allo-
cated tasks that are beyond its capability, which consequently
damages other peers’ gaming experiences. One avenue of
future work is to enhance DDA’s security by discouraging
disadvantageous peer behaviour using a reputation system.

C. Zone-Level Scheduling

Figure 2 depicts DDA’s zone-level scheduling, where an
IMM works as an auctioneer, and multiple RMs serve as
bidders. Each RM maintains two queues: a resource queue
(RQ) for storing RAds from resource providers, and a task
queue (TQ) for buffering JAds given by the IMM. A TQ suits
being made a priority queue, where tasks are ordered on an
earliest deadline first (EDF). The processing cycle of the RM
involves selecting the task with the shortest deadline from
the TQ, scanning the RQ to find the most adequate resource
provider, and returning it to the IMM as a bid. From the
IMM’s perspective, every task Ti must be completed within
its deadline Di. This requirement is captured in Equation 1,
in which C(Ti) means the completion time for task i.

∀i∈1...n•C(Ti) < Di (1)

According to Figure 2, C(Ti) comprises two periods of
time: the round-trip time (RTT) between the IMM and an RM,
and the time that an RM takes to discover a locally optimised
resource provider. To simplify the analysis, it is assumed
that by carefully selecting super-peers from candidates, each
RM has an equally short RTT with the IMM. Furthermore,
the RQs maintained by different RMs are equally long, each
containing l RAds. If it takes t milliseconds for an RM to
match one RAd to the JAd, it will take l∗t milliseconds in total
for the RM to complete matching all the RAds to decide which
one is the best. Some preordering of RAds might reduce the
search time a little, but would incur the overhead of computing
a preordering for every new RAd received. So, for task Ti:

∀i∈1...n•C(Ti+1) = RTT + i ∗ l ∗ t (2)

Variable Meaning Nominal Value

P zone population

R NPC : PC ratio 5 : 1

TTL NPC life time expectation 300 (second)

r event triggering rate 1/60 (per second)

Int respawning interval

RTT round trip time 0.5 (second)

l RM resource queue length 50 (RAds)

t matchmaking time 1 (ms per RAd)

Fig. 3. DDA variables & nominal values.

IV. DESIGN ANALYSIS

The respawning algorithm used in a MMOG is important
to estimate the reasonable scale of i in Equation 2. Currently,
well-known commercial MMOGs [14], [15] employ a timer-
based approach that respawns NPCs to keep the number of
NPCs and PCs to a stable ratio. Suppose that the number of
players in a game zone is P , the NPC to PC ratio is R, and
on average a NPC’s life time is TTL seconds, P∗R

TTL NPCs
should be respawned every second. Accordingly, if a timer is
set to respawn NPCs every Int th second (i.e. the respawning
interval), each time P∗R∗Int

TTL NPCs are respawned. In fact, the
respawning interval determines the deadline for a set of NPC
tasks. If the last task can be processed before its deadline,
previous tasks can meet their deadlines as well. In this case,
Equation 1 is changed to:

C(Tlast) = RTT +
P ∗R ∗ Int ∗ l ∗ t

TTL
< Int (3)

In the Mediator framework a player may also trigger other
events that require resource providers to be located. Assuming
that each player triggers r such events in every second,
there would be r ∗ P events in total. It is likely that the
player-triggered events have shorter deadlines than regular
respawning events, and correspondingly, tasks for the former
have higher priorities in an RM’s TQ. The worst case is that
in every respawning interval, the RM needs to complete all
player-triggered tasks before handling the last respawning task,
so Equation 3 is changed to:

RTT + (
P ∗R

TTL
+ r ∗ P) ∗ Int ∗ l ∗ t < Int (4)

Figure 3 lists all the key parameters of the DDA model,
together with nominal values typical of commercial MMOGs
[14], [15]. Applying the nominal values to Equation 4 creates
Equation 5, and let us draw the following inferences:

(600− P) ∗ Int > 300 (5)

• Based on these assumptions, DDA can support up to 600
peers in each game zone, which corresponds to a zone
size of around 500 peers in many typical MMOGs.

• When implementing a P2P MMOG with a zone size of
500 peers, the minimal respawning interval is 3 seconds.

• On average a peer may obtain a task in every 10 respawn-
ing intervals, so the credits rewarded for running a task

T2 T3 T4T1 T5 T6 T8 T10T7 T9 T14T12T11 T13

Rx p
ro

po
se

d Rx rejected

RM

IMM

......

RTT = 10 * l * t
10 RAds pending

Fig. 4. The resource tie-up problem.

should cover the payment charged for corresponding
playing time.

V. DDA ADD-ONS

A. Multilevel Feedback Delay Queue

Though theoretically DDA supports up to 600 peers in each
game zone, the actual population might be smaller, especially
when dynamic zoning is supported. Suppose that there are only
200 peers in a zone, and a respawning interval of 6 seconds
is used. Hence, at the beginning of every interval, the IMM
sends out 20 tasks to the RMs, specifying the deadline as 6
seconds. For T1, RM Alice proposes RAd Rx to the IMM
as a bid, then carries on processing T2. Unfortunately, at the
IMM end, Ry proposed by RM Bob is better than Rx, so
Rx is rejected and returned to Alice. In spite of the time
for IMM’s decision making, it will take at least RTT time
before Alice finds out that her bid has been rejected. Here,
a potential problem is that in expression 2, l ∗ t is too small
compared to RTT . Figure 4 demonstrates this “resource tie-
up” problem, in which 10 RAds are tied up throughout every
respawning interval. To address this problem, an RM may need
to slow down its matchmaking, but still guarantee that all tasks
meet their deadlines. This can be achieved with a multilevel
feedback delay queue (MFDQ).

A MFDQ is similar to a multilevel feedback queue for Unix
process scheduling, where the main difference is that in the
MFDQ, each run queue is executed only when its delay has
expired. If the inter run queue delay is d, then a MFDQ
comprises n = ceil(Int/d) run queues in total. Each run
queue represents a different urgency level. Queue Instant
buffers the most urgent tasks. Other run queues are arranged
in a circle, with a Head pointer indicating the queue to be
executed next. A MFDQ mainly supports two operations:

1) offer(Task t) — the enqueue operation:
offer(Task t){

t.enqueue_deadline = t.original_deadline-RTT-l*t;
t.urgency_level = floor(t.enqueue_deadline/d);
if(t.urgency_level == 0)
Instant.add(t);

else if(t.urgency_level >= (n-1))
Tail.add(t);

else
getQueue((t.urgency_level+Head.index)%n).add(t);

}

The algorithm recalculates a task’s enqueue deadline by
subtracting RTT and l ∗ t from its original deadline. Then, it
evaluates the task’s urgency level. If the task is not able to bear

one inter-queue delay, the task is added to queue Instant.
Otherwise, the task is added to a run queue.

2) poll() — the dequeue operation:
poll(){

int to_move = ceil(total_number_of_tasks/n);
int done = 0;
for(each Task t in Head){
Instant.add(Head.remove());
done++;

}
Head = getQueue((Head.index+1)%n);
int current = Head.index;
while(done < to_move){
if(! getQueue(current).isEmpty()){

Instant.add(getQueue(current).remove());
done++;

}
else

current = (current+1)%n;
}

}

The algorithm firstly moves all tasks in queue Head to
queue Instant. Because each run queue may have a differ-
ent length, it moves the same number of tasks each time. If
less tasks are moved from Head to Instant, more tasks in
lower level queues are moved as well. If a task’s deadline can
be satisfied in a common EDF queue, the MFDQ can satisfy
its deadline as well.

B. Matchmaking Policies

A matchmaking policy is the set of criteria that an RM
uses for selecting locally optimised resource providers (by
default, the term “optimised” refers to minimised communica-
tion latency). In the Mediator framework, an IMM anticipates
forthcoming gaming events in a game zone, as discussed in
Section III-A. So, an IMM is able to provide in a JAd a
list of target players which are able to interact with a newly
respawned NPC. At matchmaking time, an RM takes out every
available RAd from its resource queue, matching it to the
JobAd using two conditions:
• Does the resource provider have adequate computing

resource for running the task?
• Is the mean communication latency among the resource

provider and the target players the shortest?
Because this policy strictly selects the resource provider

that provides minimum latency, it is called a “strict incentive
policy”. However, a problem is that less competitive peers are
likely to be starved of opportunities for earning credits, and
finally to be regarded as free-riders, as discussed in Section
III-B. To stop this problem from happening, a factor τ can be
introduced to relax the selection criteria as below:
• Does the resource provider have adequate computing

resource for running the task?
• Is the mean communication latency within the range of

shortest ∗ τ?
• Is the resource provider low on credit?
This policy favours the poorest peer providing a latency

that is not greater than shortest∗τ , and making it a “friendly
incentive policy”. Experimental results demonstrate that with
τ = 1.2, DDA shares tasks among the peers more fairly
than using the strict incentive policy of τ = 1 (Section
VII-C). Actually, DDA allows flexible matchmaking policies

to be adopted. For example, when a reputation mechanism is
brought into effect in future work, it will allow policies that
favour more dependable resource providers.

VI. IMPLEMENTATION

Currently, a proof-of-concept prototype for DDA has been
implemented using FreePastry 2.1, an open-source implemen-
tation of Pastry [6]. The RM’s matchmaking mechanism has
been implemented using ClassAds 2.2 [12]. Furthermore, to
evaluate the prototype, a test-bed application has been devel-
oped, which simulates a P2P MMOG using a 2-dimensional
game world and hundreds of virtual player avatars moving
according to a random way point algorithm.

The test-bed employs the Direct discrete event simulator
integrated in FreePastry. The simulator takes in a network
topology model generated by GT-ITM, and simulates Internet
scale communication latencies among peers in a P2P network.
Each peer is assigned some virtual computing resource, e.g.
CPU cycles and network bandwidth, and local scheduling
activities are simulated by virtual resource managers.

VII. EXPERIMENTAL RESULTS

A. Implementation Adequacy
On a workstation with 2.4GHz Intel Core2 Duo CPU and

2GB memory the test-bed simulates game sessions with 800
players. The maximum population supported in the experiment
is mainly limited by the scalability of the Direct simulator.
Experimental results show that during the bootstrapping time,
various super-peer roles are selected successfully. Further-
more, under an average churn rate of 5% per minute, game
zone structures are maintained correctly, and the leaving of
both super and common peers are handled properly.

B. Real-time Resource Allocation
Figure 5 depicts the distribution of communication latencies

among resource providers located by DDA, and corresponding
resource consumers. Firstly, the experimental results demon-
strate that for all the tasks that have been measured, none of
them missed their deadlines. DDA is capable of processing
large number of tasks, whose deadlines vary between 3 and
8 seconds. So, DDA seems able to satisfy the real-time
requirement on resource discovery and allocation needed by a
P2P MMOG.

Secondly, the “Network Latency” curve demonstrates the
actual communication latency distribution for the network
topology used by the Direct simulator. By default, the distribu-
tion is approximately a Gaussian distribution N(350, 100). If
resource providers are randomly selected, the latency distribu-
tion for DDA should be similar to the default curve. However,
as demonstrated by Figure 5, when RMs schedule tasks using
an EDF queue, around 90% of the latencies are below mean
latency. Furthermore, a MFDQ increases the probability for
DDA to discover optimal resource providers. As a result,
around 95% of the latencies are below mean latency. So, by
carefully selecting resource providers, DDA is able to satisfy
the QoS requirement on interactive NPC tasks needed by a
P2P MMOG.

5

10

15

20

25

30

35

40

45

50

0 100 200 300 400 500 600 700

La
te

nc
y

P
er

ce
nt

ag
e

(%
)

Communicaton Latency (ms)

DDA Latency Distribution (200 peers per zone, 4 zones, 10000 tasks)

Network Latency
Strict Incentive (MFDQ)

Strict Incentive (EDF)
Friendly Incentive (1.2)
Friendly Incentive (2.0)

Fig. 5. DDA latency distribution.

5

10

15

20

25

30

Less-300 -200 -100 0 100 200 300 400 500More

C
re

di
t P

er
ce

nt
ag

e
(%

)

Credit Points

DDA Credit Distribution (200 peers per zone, 4 zones, 10000 tasks)

Strict Incentive (MFDQ)
Strict Incentive (EDF)

Friendly Incentive (1.2)
Friendly Incentive (2.0)

Fig. 6. DDA credit point distribution.

C. Cooperative Economic Model

Figure 6 depicts the distribution of credits earned by the
800 players after 10000 tasks. With the strict incentive policy,
the gap between the richest and poorest players is wide.
Specifically, around 5% of the players have earned more than
500 credits, but around 20% other players are in debt to the
system for -300 credits. In contrast, with a friendly incentive
policy (τ = 1.2), the gap between the rich and poor can be
significantly narrowed (some peers are still in debt, due to
their inability to provide usable resources).

The impact of different incentive policies on resource qual-
ity is displayed in Figure 5. Using the strict incentive policy,
only 5% of resource providers are selected when their latencies
are higher than the mean. However, this ratio increases to
about 30% using the friendly incentive policy (τ = 1.2).
Similarly, when τ is more relaxed, e.g. τ = 2.0, the gap
can be further narrowed in Figure 6, but the resource quality
becomes worse. A P2P MMOG can use τ to customize its
own cooperative economic model to strike a balance between
fairness in task sharing and QoS for maintaining acceptable
gaming experience.

VIII. CONCLUSION & FUTURE WORK

This paper presents Deadline Driven Auctions, a novel task
mapping infrastructure for heterogeneous environments. The
strength of DDA is to support self-organised real-time NPC

host allocation in P2P MMOGs, as well as to meet the QoS
requirements for game interactivity.

A prototype for DDA and a test-bed application have been
implemented (Section VI). Experimental results show that,
compared to previous work (Section II), DDA has four main
advantages. Firstly, DDA is self-organising. Its infrastructure
can be automatically assembled and maintained as peers join
and leave the system (Section VII-A). Secondly, DDA is able
to process large numbers of real-time NPC tasks and to support
a simulated P2P MMOG with 800 players effectively (Section
VII-B). Thirdly, DDA satisfies the QoS requirement for game
interactivity by keeping the communication latency among
NPC hosts and ordinary players low, e.g. 95% of the latencies
are below mean latency (Section VII-B). Fourthly, by applying
a friendly incentive policy, DDA can establish a cooperative
economic model that shares tasks among application partici-
pants fairly (Section VII-C).

In future work DDA’s security will be enhanced by a
distributed reputation system, and a new resource matchmak-
ing policy will take into consideration a resource provider’s
trustworthiness and dependability. Furthemore, though DDA is
primarily designed to support NPC host allocation, it may also
apply to general P2P applications with real-time computational
or interactive tasks. In future work DDA’s potential usage for
other application types will be explored.

REFERENCES

[1] J. Mulligan & B. Patrovsky, Developing Online Games - An Insiders
Guide. New Riders Pub., ISBN: 1592730000, 2003.

[2] L. Fan, H. Taylor & P. Trinder, “Mediator: A Design Framework for
P2P MMOGs,” in Proc. of NetGames. ACM, 2007, pp. 43–48.

[3] S.-Y. Hu, S.-C. Chang & J.-R. Jiang, “Voronoi State Management for
Peer-to-Peer Massively Multiplayer Online Games,” in Proc. of CCNC.
IEEE, 2008, pp. 1134–1138.

[4] A. Bharambe, “Colyseus: A Distributed Architecture for Online Multi-
player Games,” in Proc. of NSDI. USENIX, 2006, pp. 3–6.

[5] T. Yonekura, Y. Kawano & D. Hanawa, “Peer-to-peer networked field-
type virtual environment by using atoz,” in Proc. of CW. IEEE, 2004,
pp. 241–248.

[6] A. Rowstron & P. Druschel, “Pastry: Scalable, Decentralized Object
Location and Routing for Large Scale Peer-to-Peer Systems,” in Proc.
of Middleware. ACM, 2001, pp. 329–350.

[7] H. Lu, B. Knutsson, W. Xu & B. Hopkins, “Peer-to-Peer Support for
Massively Multiplayer Games,” in Proc. of INFOCOM. IEEE, 2004,
pp. 7–11.

[8] T. Iimura, H. Hazeyama & Y. Kadobayashi, “Zoned Federation of Game
Servers - a Peer-to-peer Approach,” in Proc. of NetGames. ACM, 2004,
pp. 116–120.

[9] T. W. Anderson, An Introduction to Multivariate Analysis 2nd Edition.
John Wiley & Sons, 1984.

[10] A. P. Yu & S. T.Vuong, “MOPAR: a Mobile Peer-to-Peer Overlay
Architecture for Interest Management of Massively Multiplayer Online
Games,” in Proc. of NOSSDAV. ACM, 2005, pp. 99–104.

[11] M. Gupta, P. Judge & M. Ammar, “A Reputation System for Peer-to-
Peer Networks,” in Proc. of NOSSDAV. ACM, 2003, pp. 144–152.

[12] M. Litzkow, M. Livny & M. Mutka, “Condor - A Hunter of Idle
Workstations,” in Proc. of ICDCS, 1988, pp. 104–111.

[13] R. Raman & M. Livny, “Resource Management through Multilateral
Matchmaking,” in Proc. of HPDC. IEEE, 2000, pp. 290–291.

[14] “World of Warcraft,” worldofwarcraft.com, Blizzard Ent., 2001.
[15] “World of Legend,” woool.sdo.com, Shanda Ent., 2004.

