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Abstract
Clustering is a descriptive data mining task aiming to group the data into homogeneous groups. This paper presents a novel evolutionary

algorithm (NOCEA) that efficiently and effectively clusters massive numerical databases. NOCEA evolves individuals of variable-length

consisting of disjoint and axis-aligned hyper-rectangular rules with homogeneous data distribution. The antecedent part of the rules includes an

interval-like condition for each dimension. A novel quantisation algorithm imposes a regular multi-dimensional grid structure onto the data space

to reduce the search combinations. Due to quantisation the boundaries of the intervals are encoded as integer values. The evolutionary search is

guided by a simple data coverage maximisation function. The enormous data space is effectively explored by task-specific recombination and

mutation operators producing candidate solutions with no overlapping rules. A parsimony generalisation operator shortens the discovered

knowledge by replacing adjacent rules with more generic ones. NOCEA employs a special homogeneity operator that enforces quasi-uniform data

distribution in the space enclosed by the candidate rules. After convergence the discovered knowledge undergoes simplification to perform

subspace clustering, and to assemble the clusters. Results using real-world datasets are included to show that NOCEA has several attractive

properties for clustering including: (a) comprehensible output in the form of disjoint and homogeneous rules, (b) the ability to discover clusters of

arbitrary shape, density, size, and data coverage, (c) ability to perform effective subspace clustering, (d) near linear scalability with the database

size, data and cluster dimensionality, and (e) substantial potential for task parallelism (speedup of 13.8 on 16 processors). A real-world example is a

detailed study of the seismicity along the African–Eurasian–Arabian plate boundaries.

# 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The importance of collecting data related to business or

scientific activities to achieve competitive advantage is widely

recognised. Driven by advances in data collection and storage,

increasingly large and high dimensional datasets are being

stored. ‘‘Data expands to fill the space available for storage’’

(Parkinson’s law of data). In fact, data doubles about every year,

but useful information seems to be decreasing [14]. Without

special tools, human analysts can no longer make sense of such

enormous volumes of data that require processing to make

informed decisions. The area of knowledge discovery on

databases (KDD) has arisen over the last decade to address this
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problem, and it has become not only an important research area,

but also one with large potential in the real world [14,19,28].

Intelligent data mining (DM)—the core stage of KDD—tech-

niques are being developed to semi-automate the process of

mining nuggets of hidden knowledge from massive databases,

and extract them in forms that can be readily utilised in areas

such as decision support.

Clustering—perhaps the most challenging descriptive DM

task—aims to find the intrinsic structure of a collection of data

points by partitioning them into homogeneous clusters based

on the values of their attributes [32,35]. Clustering high

dimensional data is especially challenging mainly due to the

inherent sparsity of the dataspace. Most clustering techniques

suffer from the infamous curse of dimensionality phenomenon:

in moderate-to-high dimensional spaces almost all pairs of

points are about as far away as average [3,9] and the density of

points inside a fixed-volume region is about as the average.

Under such circumstances the data are ‘‘lost in space’’ and the
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effectiveness of clustering algorithms that depend critically on

distance or density measures, degenerate rapidly with increas-

ing dimensionality [30]. Emerging DM applications place

specific requirements on clustering techniques such as effective

treatment of high dimensionality, end-user comprehensibility

of the results, good scalability with database size and dimen-

sionality, the ability to discover clusters of arbitrary geometry,

size and density, detection of relevant features to clustering

(subspace clustering), noise tolerance, insensitivity to initi-

alisation and order of data input, and minimal requirements for

domain knowledge [19,28].

Evolutionary algorithms (EAs) are optimisation techniques

inspired by the abstractions of Darwinian evolution [7,8,24,39].

In nature, individuals best suited to competition for scarce

resources survive. The driving force of evolution is the

combination of natural selection and genetics. Natural selection

leads to the survival and reproduction of the fittest organisms,

while natural genetics are the mechanisms that introduce

random variation in the population, e.g. cross breeding and

mutation. EAs are iterative and stochastic processes that utilise

the collective learning of a population of individuals. An

individual represents a potential solution in some problem

space through a suitable coding. Each individual is assigned, by

means of a fitness function, a measure of its performance with

respect to the target problem. Individuals are selected for

reproduction with a probability proportional to their fitness.

New points in the search space are sampled using various

genetic operators, such as crossover and mutation. To maintain

a fixed-size population a replacement policy selects the best

individuals for survival in the next generation. The whole

process is repeated until some termination criterion is satisfied.

Since highly fit individuals have more chances of surviving and

attracting mates their characteristics conveying a high fitness

will spread, and eventually dominate successive generations.

EAs are a promising technique for DM clustering as

population-based searches have intrinsic search parallelism,

their stochastic nature avoids local optima and recovers from

poor initialisation. Additionally, EAs do not make presumptions

about the problem space, and they have no prerequisites on any

type of auxiliary information, except the fitness function. From

an implementation viewpoint, EAs are highly parallel proce-

dures and can be easily and conventionally used in parallel

systems. Since EAs are made up from several tasks involving a

group of individuals rather than the entire population, several

processors can work simultaneously on the same task, thereby

improving scalability.

1.1. Feature space and clustering rules

Let A ¼ fA1; . . . ;Adg be a set of attributes with bounded,

totally ordered numerical domains and F ¼ A1 � � � � � Ad

be a d-dimensional feature or data space, where A1; . . . ;Ad

are the features, attributes, variables, or dimensions of F , and

d denotes the dimensionality of F . The input, N � d pattern

matrix P = {p1, . . . , pN} consists of a set of d-dimensional

records or points, while N denotes the size of P. Each data

point pi, is a vector containing d numerical values
pi = [pi1, . . . , pid] such that pij is drawn from the domain

[aj, bj] of A j attribute.

IF-THEN clustering rules are intuitively comprehensible

for most humans since they represent knowledge at a high level

of abstraction involving logical conditions rather than point-

based cluster representations. In this paper a clustering rule R
defined in the continuous space F is knowledge representation

in the form:

R : IFcond1 ^ � � � ^ condd THEN cluster label

The antecedent (IF) part of R consists of a logical conjunction

of d conditions, one for each feature, whereas the conclusion

(THEN) part contains the cluster label. The semantics of this

kind of clustering rule is: if all the conditions specified in the

antecedent part are satisfied by the corresponding feature values

of a given data point, then this point is assigned to (or covered

by) the cluster, identified by the consequent. Each condition is

in the form of a right-open feature-interval pair, e.g. (10,000

� income < 25,000). Formally, a clustering rule R is a subset

of the feature space FðR�FÞ and can be geometrically

interpreted as an axis-parallel hyper-box R = [l1, u1) � � � �
� [ld, ud), i = 1, . . . , d, where li, ui 2R denote the lower and

upper bounds of R in the ith dimension, respectively.

1.2. Our contributions

This paper proposes a novel rule-based EA methodology for

DM clustering with the following three phases: firstly, a

sophisticated quantisation algorithm (TSQ) (Section 5) imposes

a uniform multi-dimensional grid onto the dataspace to reduce

the search combinations for clustering. TSQ determines an

appropriate grid resolution that enables the discrimination of

clusters, while preserving accuracy and acceptable computa-

tional cost. Secondly, a novel rule-based EA (NOCEA) (Section

6) discovers high quality hyper-rectangular clustering rules using

several novel semi-stochastic genetic operators, an integer-

valued encoding scheme, and a simple data coverage max-

imisation fitness function. Each individual comprises a variable

number of disjoint and axis-aligned hyper-rectangular clustering

rules with homogeneous data distribution. Both TSQ and

NOCEA rely on a novel statistical analysis (UDA) (Section 4)

identifying flat density regions (U-regions) in univariate

histograms. U-regions detected in orthogonal univariate projec-

tions are ‘‘signatures’’ of clusters existing in higher dimensional

spaces. Thirdly, a post-processing simplification phase (Section

7) that performs subspace clustering and assembles the clusters.

The paper also explores task parallelism (Section 6.7) for several

genetic operations to improve scalability.

The proposed methodology meets the following desiderata

for DM clustering:
� E
ffective treatment of high dimensionality and exceptional

resistance to the curse of dimensionality; precise discrimina-

tion of clusters even in very sparse high-dimensional spaces.
� E
nd-user comprehensibility of the results.
� A
bility to discover clusters embedded in arbitrary subspaces

of high dimensional data.
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� L
inear scalability with database size, and both data and

cluster dimensionality.
� S
ubstantial potential for task parallelism achieving a speed up

of 13.8 on 16 processors.
� A
bility to discover homogeneous clusters of arbitrary density,

geometry, and data coverage.
� I
nsensitivity to initialisation and order of data.
� S
ubstantial resistance to uniform noise.
� M
inimal requirements for a priori knowledge (e.g. automatic

determination of the optimal number of clusters and the

subspace where each cluster is embedded) and no presump-

tions of any canonical distribution for the input data.
� O
perating on the full dimensional space guards against

artifacts formed by the joint projection of multiple clusters

in lower dimensional spaces.
� I
ntroduction of a simple non-distance or density based

clustering criterion.
� S
tochastic traversal of the search space that easily avoids

local optima.
1.3. Structure

The remainder of the paper is organised as follows: Section

2 surveys related work in DM and EA literature. Section 3

overviews briefly NOCEAs architecture. Section 4 presents

UDA. In Section 5, a new quantisation algorithm (TSQ), is

proposed. Section 6 describes in depth various aspects of

the evolutionary optimisation within the NOCEA system.

Section 7 presents post-processing routines that simplify the

discovered knowledge and form the genuine clusters. Section

8 discusses the parameter settings. The experimental results

are reported in Section 9. Finally, our conclusions and

directions for future research are presented in Section 10. A

more detailed discussion of the work presented in this paper

can be found in [47].

2. Related work

2.1. Conventional clustering algorithms

Clustering techniques for DM have been studied extensively

in recent years, e.g. [13,17,28,29,32,33,35]. Existing clustering

algorithms can be broadly classified into four categories:

partitioning, hierarchical, density-based, and grid-based.
� P
artitioning techniques organise the data into k clusters so as

the distance of each point to the closest cluster representative

point (k-means) is minimised [33,35,42]. Despite being

popular, partitioning algorithms: (a) are not suitable to

discover non-convex clusters, (b) are sensitive to the outliers

and the initial selection of cluster seeds, (c) require the

number of clusters in advance, (d) cannot deal with clusters of

different sizes and densities, and (e) produce poor quality

cluster descriptors.
� H
ierarchical techniques produce a nested sequence (den-

drogram) of clusters. The hierarchy can be formed in top-

down (divisive) or bottom-up (agglomerative) fashion. Each
iteration involves merging or splitting clusters based on some

distance function that measures the similarity between

clusters. The main disadvantages of hierarchical techniques

are their inability to perform corrections once a decision (split

or merge) has been executed and their high computational

complexity, typically, quadratic in the number of data points

(N). BIRCH [57] is a divisive clustering algorithm with

complexity O(N) that can work with limited amount of

memory. However, BIRCH is sensitive to the order of data

input and does perform well only when the clusters are hyper-

spherical and have similar sizes. CURE [25] is an

agglomerative method with O(N) complexity that is achieved

using a combination of random sampling and partitioning.

The representative points of a cluster are generated by

selecting a fixed number of well-scattered points from the

cluster and shrinking them towards the center of the cluster by

a specified fraction. CURE has the ability to discover non-

spherical clusters of different sizes and densities, but is

sensitive to the input parameters. Similar to CURE,

CHAMELEON [34] is an agglomerative clustering algo-

rithm, which tries to improve the clustering quality using

more elaborate criteria (inter-connectivity and closeness of

clusters) when merging two clusters. Experimental results

have shown that CHAMELEON is more effective than CURE

in discovering arbitrary-shaped clusters but it has quadratic

O(N2) complexity.
� D
ensity-based techniques group neighbouring data points

into clusters based on a local condition of density rather than

the distance between data points. DBSCAN [15] seeks for

core objects, that is, points whose e-neighbourhood (e:

radius) contain at least MinPts points. A sequence of core

objects with overlapping e-neighbourhoods define the

skeleton of a cluster. Non-core points lying inside the e-

neighbourhood of core objects represent the boundaries of the

clusters, while the remaining are considered as noise.

DBSCAN, can discover arbitrary-shaped clusters, is insensi-

tive to outliers and order of data input, while its complexity

is O(N2). If a spatial index data structure is used the

complexity can be improved up to O(N log N). DBSCAN

does not work well in high-dimensional spaces and is quite

sensitive to the user-defined parameters e and MinPts.

OPTICS [6], an extension of DBSCAN, creates an ordering

of points in the databases and stores some additional distance

information, allowing the extraction of all density-based

clustering for any lower value of the user-specified radius e.

OPTICS has the same complexity as that of DBSCAN.

DENCLUE [31] uses an influence function to describe the

impact of a point about its neighbourhood while the over all

density of the data space is the sum of influence functions

from all data points. Clusters are determined using density

attractors that are local maxima of the overall density

function. To compute the sum of influence functions a grid

structure is used. DENCLUE (a) scales well (O(N)), (b) can

find arbitrary-shaped clusters, and (c) can deal with noise, but

it is quite sensitive to the input parameters.
� G
rid-based techniques quantize the data space into a multi-

dimensional grid and aggregate the points into cells. The
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basic idea is to discard low-density cells, and then combine

adjacent high-density cells to form clusters. The classical

tradeoff is between resolution and complexity. These

methods are reasonably fast for low-to-moderate dimen-

sional datasets and can discover arbitrary-shaped clusters.

However, since the number of cells grows exponentially

with the dimensionality it is both difficult and expensive

to find high-density adjacent cells in high dimensional

spaces. CLIQUE works with high dimensional datasets by

building clusters in appropriate subspaces of the original

data space [5]. Each dimension is divided into equal-width

bins resulting a uniform grid. A cell is dense if it contains

more than a user-specified number of points. CLIQUE

adopts a bottom-up approach of discovering q-dimensional

dense cells based on (q � 1)-dimensional dense cells.

CLIQUE scales linearly with the size of the dataset and

quadratic with the dimensionality. MAFIA [41], is a

modification of CLIQUE that runs faster and finds better

quality clusters. The main modification is the introduction

of an adaptive interval size based on the actual data

distribution. Due to adaptive intervals MAFIA scales

linearly with the size and dimensionality of the dataset

and delineates cluster boundaries more accurately than

CLIQUE. WaveCluster [52], a multi-resolutional techni-

que, maps the data onto a multi-dimensional grid, it then

applies a wavelet transformation to the original feature

space and finally finds dense regions in the transformed

space. The wavelet transformation makes the clusters more

distinguishable and removes outliers. WaveCluster (a)

detects clusters at various levels of accuracy, (b) handles

large datasets efficiently, (c) finds arbitrary-shaped clusters,

and (d) is insensitive to noise/outliers and order of data

input. WaveCluster is suitable only for low-dimensional

datasets.
Fig. 1. Architecture of NOCEA.
2.2. Clustering with EAs

There have been many attempts to use EAs for clustering,

e.g. [16,18,23,26,38,49,48,50,54]. An excellent introductory

discussion regarding the application of EAs in clustering can

be found in [20]. In [26] the individuals represent the

coordinates of the centers of the k desired clusters and the

evolutionary algorithm, called GGA, relocates the cluster

centers in a way that the k-means (HCM) and fuzzy k-means

(FCM) criterion functions are minimised. Experimental results

have shown that GGA achieves both avoidance of local

extreme and minimal sensitivity to initialisation, but its

execution time can take up to two orders of magnitude more

than FCM/HCM. To improve both efficiency and effectiveness

various hybrid methods have been proposed [50,16]. These

methods either use the best solution obtained by a complete

run of EA as initial seed for an iterative method such as

HCM/FCM, or use special mutation operators that perform

few standard HCM/FCM iteration steps to obtain a locally

optimised offspring. Finally, it is worth noting that EAs have

also been used to discover more comprehensible cluster

descriptors such as ellipsoids and boxes [23,48,49,54].
3. NOCEA overview

Non-overlapping clustering with evolutionary algorithms

(NOCEA) utilises the powerful search mechanism of EAs to

efficiently and effectively mine highly-homogeneous clustering

rules from large and high dimensional numerical databases.

The abstract architecture of NOCEA is shown in Fig. 1.

NOCEA includes several pre-and post-processing stages to

prepare the raw data and simplify the discovered knowledge,

respectively. NOCEA evolves individuals of variable length

comprising disjoint and axis-aligned hyper-rectangular rules

with homogeneous data distribution. The antecedent part of the

rules includes an interval-like condition for each dimension.

Initially, the TSQ quantisation algorithm (Section 5) impo-

ses a regular multi-dimensional grid onto the dataspace to

reduce the search combinations. Thereby, the bounds of rules

are encoded as integer values. Like most EAs, NOCEA begins

with an initial population of individuals whose chromosomes

are independently initialised with a single, randomly generated

rule. Next, a task-specific genetic operator, the repair operator

(Section 6.6) shrinks the boundaries of rules or split candidate

rules, if necessary, to ensure the space enclosed by each feasible

rule is uniformly filled with data points. The evolutionary

search is guided by a simple fitness function (maximisation of

total point coverage) (Section 6.2), unlike the commonly used

distance-based functions. Next, some of the repaired indivi-

duals are selected according to the fitness to form a new

generation, e.g. the higher the fitness value, the more chance an

individual has to be selected for reproduction. Variation in the

population is introduced by conducting genetic operations on

the selected individuals including: crossover (Section 6.5),

generalisation (Section 6.3), and mutation (Section 6.4).

Various constraints are imposed during these semi-stochastic

operations to ensure that the resultant individuals always

comprise rules that are syntactically valid, disjoint, and axis

aligned. During crossover, two individuals are selected from the

mating pool at random and carefully selected part(s) of rules are

exchanged between them to create two new solutions. The

individuals of this new population are then subject to a

parsimony operator, called generalisation, that attempts to

minimise the size of the rule set, reducing thus computational

complexity and improving comprehensibility. The mutation
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operator, in turn, grows existing rules at random and creates

new candidate rules, according to a certain small probability.

Next, the newly generated offspring are repaired and

evaluated. After the new offspring have been created via

the genetic operators the two populations of parents and

children are merged to create a new population. To maintain a

fixed-sized population only the appropriate number of

individuals survive based on some replacement strategy.

The individuals of this new generation are, in their turn,

subjected to the same evolutionary process for a certain

number of generations. After convergence, a post-processing

routine performs subspace clustering (Section 7.1) removing

redundant conditions from the antecedent part of the rules.

Finally, adjacent rules with similar densities are grouped

together to assemble (Section 7.2) clusters, and report them

in disjunctive normal form (DNF) expressions.

4. Uniform-region discovery algorithm—UDA

This section presents the novel uniform-region discovery

algorithm (or UDA) to analyse smooth univariate density

histograms. The goal of UDA is to identify axis-parallel

cutting planes from univariate density histograms that produce

cleanly separable regions of flat quasi-uniform (or U-region)

data distribution. A U-region is defined as a set of contiguous

bins whose histogram values exhibit only a marginal variation.

UDA combines standard histogram smoothing techniques,

i.e. Kernel density estimation, with new heuristics that perform

a fine localised analysis of the data distribution. Neighbouring

U-regions co-existing at different density levels are of great

importance as they indicate the existence of distinct cluster

structures in higher dimensional spaces. Often, univariate

U-regions help to generate accurate cluster ‘‘signatures’’, as

their boundaries coincide with the edges of the actual clusters.

UDA is extensively used for both data quantisation (Section 5)

and clustering (Section 6).
Fig. 2. Motivati
For instance, consider the density histograms of the candidate

ruleR, as shown in Fig. 2. Undoubtedly,R is non-homogeneous

as it encloses four distinct clusters, in addition to noise.

Examination of the horizontal-axis histogram reveals that there

are six well-separated U-regions in that dimension. Further-

more, it can be easily observed that high quality cutting planes

(dashed lines) pass through the boundaries of U-regions.

A high quality cutting plane passes through a bin (valley)

whose density is significantly lower compared to the histogram

value of the most densely-populated bin (peak) and the valley

bin is located at the borders of the region containing the highest

peak. A valid cutting plane need not necessarily be surrounded

on both sides by bins of significantly-higher density. This is

simply because the goal of UDA is to identify all U-regions

regardless of their density. Notice that the valley with the lowest

histogram value may not always be the best splitting point

since such an approach is prone to over-splitting low density

U-regions that adjoin U-regions of higher density.

Let us assume that the ith feature-gene [lij, uij] of jth rule

covers k bins (uij � lij + 1 = k). Additionally, let fli j ; . . . ; fui j be

the k smoothed histogram values, i.e. number of points

contained in each bin, that corresponds to the ith dimension of

jth rule. The partitioning of the histogram into U-regions is

performed recursively as follows.

Initially, there is a single region D = [lij, uij] comprising all

bins. UDA proceeds by finding the most densely populated bin

inside D, and sets a so-called upper control limit (UCL) to the

histogram value of the highest peak, UCL ¼ maxð fli j ; . . . ; fui jÞ.
The baseline lower control limit (LCL), which specifies the

splitting density level is then computed as:

LCL ¼ Th � UCL (1)

where the user-specified homogeneity threshold Th 2 (0, 1]

controls the desired degree of uniformity. If all histogram

values exceed LCL then D is deemed U-region and it is kept

intact. For instance, UDA detects only one U-region along the
on of UDA.
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vertical-axis in Fig. 2. Notice that a U-region detected in a

uni-dimensional histogram may be the result of the joint

projection of multiple clusters. If UDA found at least one

bin whose histogram value falls bellow LCL, then D is split

into three contiguous regions, namely, DL, DC, and DR. This

case can be seen along the density histogram that corresponds

to the horizontal-axis of rule R in Fig. 2. Initially, the central

segment DC comprises only one bin with the highest density.

DC is then grown as much as possible in both directions until

finding the closest bin (if any) with density less than LCL.

Valid cutting planes would pass through such bins. If cpL and

cpR denote the left and right cutting planes, respectively, then

the newly formed regions are DL = [lij, cpL], DC = [cpL + 1,

cpR � 1], and DR = [cpR, uij]. Depending on the data distri-

bution the boundary regions DL and DR may be empty. DC is

then deemed U-region and it is not analysed further. The

above procedure is recursively applied to each newly formed

boundary region independently until no more splitting sites

occur. In essence, as UDA proceeds, U-regions are gradually

detected at decreasingly low level of density. To suppress the

subsequent formation of sparse rules and to reduce computa-

tion, UDA instantly discards all sparse regions including

those that are U-regions. A region is sparse if it covers less

than NTs points, where N is the total number of points and

Ts is the sparsity threshold (Section 8).

5. Two stage quantisation algorithm—TSQ

Grid-based clustering techniques include a pre-processing

step, called quantisation that imposes a multi-dimensional

grid structure onto the data space [5,41]. The grid is formed by

partitioning the domain of each dimension into non-over-

lapping intervals or bins of uniform or variable size [28,29].

Quantisation reduces the search combinations by aggregating

together points mapping into the same cell, and the classical

tradeoff is between computational complexity and resolution,

where the latter greatly determines the quality of the clustering

results. Since, multi-dimensional analysis is prohibitively

expensive due to the exponential growth in computational

complexity as dimensionality increases, the data space is

quantised by considering each dimension independently.

Unfortunately, any uni-dimensional analysis can only produce

an approximation of the optimal resolution simply because it

disregards all inter-attribute correlations existing in higher

dimensional spaces. Most grid-based techniques regard

clusters as unions of connected high-density cells. To reduce

computational complexity while locating adjacent dense cells

in high dimensional spaces, grid-based techniques adopt

coarse resolutions at the expense of the accuracy of the

clustering results.

In this section, a two stage quantisation algorithm (TSQ)

(Sections 5.1 and 5.2), is proposed to support the clustering of

large and high dimensional numerical datasets. The quantised

data are subsequently analysed by the evolutionary-based

clustering algorithm NOCEA. TSQ quantizes the dataspace

using a novel statistical analysis of uni-dimensional density

histograms. It determines an appropriate grid resolution that
enables the discrimination of clusters, while preserving

accuracy and acceptable computational cost. It combines

standard statistical techniques like Kernel density estimation,

with new heuristics that reflect the local distribution. Unlike

other grid-based techniques, TSQ has no specific bias toward

coarse resolutions, because NOCEA can operate on relatively

fine grids as it attempts to produce highly homogeneous rather

than highly dense clusters.

The choice of the width of the bins in each dimension has

an enormous impact on both complexity and quality of the

results. For very coarse grids, more points reside in the same

cell and thus the probability of assigning to the same cell points

belonging to different clusters increases (under-quantisation).

On the other hand, for very fine resolutions, the data tend to be

separated in different cells, which may cause the discovery of

many unnecessary and very small clusters (over-quantisation).

Terrell [55] suggested a practical data-based rule for setting

the upper bound on bin width for univariate histograms. In

particular, the bin width w should be directly proportional to the

standard deviation s of the univariate sample and inversely

proportional to N1/3, N: sample size [51,55]:

w � 3:729sN�1=3 (2)

A naive quantisation would be to directly apply Eq. (2) in each

dimension independently to derive an over-smoothed estimator

of the bin width. While simple, this approach has weaknesses.

In particular, although w changes at a rate inversely propor-

tional to N1/3, this rate is much faster for relatively small

datasets, e.g. N < 50,000. However, for moderate-to-large

datasets the factor N�1/3 exhibits only a marginal variation.

Given that massive datasets are common in DM, and w is more

sensitive to changes in s compared to N, it becomes clear why

the effect of s on w is crucial.

A major limitation of Eq. (2) is the strong dependency of w
on s, which in turn is sensitive to extreme values (or outliers).

For univariate samples, outliers are observations lying far from

the central part of the distribution and can greatly influence the

standard deviation of the sample. Formally, the limits (or

fences) of outliers lie 1.5IQR below the first (Q1) and above the

third (Q3) quartile, where IQR = Q3 � Q1 denotes the inter-

quartile range of the sample [27]. Very coarse resolutions

attributed to the harmful effect of outliers in formulae (2), can

make it difficult or even impossible to discriminate closely

adjacent clusters or to produce accurate cluster descriptors.

Terrell’s quantisation rule has another serious drawback as it

does not take into consideration the essential shape of the

distribution. For instance, significant multi-modal structures

indicating large-scale data discontinuities are not utilised by

formulae (2). Furthermore, the local density of points is also

ignored. In essence, the more isolated the clusters are, the larger

the s, and thereby, the coarser the grid resolution. In other words,

significant data discontinuities, e.g. noise regions surrounding

clusters, may have a substantial impact on s, hence, increasing

the probability of under-quantisation.

Intuitively a robust quantisation algorithm must guard

against outliers and at the same time must utilise information
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regarding the local density. These issues are addressed in

Sections 5.1 and 5.2.

5.1. Gross statistical analysis

5.1.1. Step 1: removal of outliers

To guard against the harmful effects of outliers in highly

skewed distributions, TSQ ignores them. This simply entails

limiting the statistical analysis in the central part of the

distribution whose boundaries are delineated by the outliers

fences. Hence, TSQ focuses on data lying inside the outlier-free

interval E [27] rather than the entire domain [a, b]:

E ¼ ½maxða; ðQ1 � 1:5IQRÞÞ;minðb; ðQ3 þ 1:5IQRÞÞ� (3)

where Q1, Q3, and IQR = Q3 � Q1 denote the first quartile, third

quartile, and inter-quartile range of data along the given

dimension, respectively.

5.1.2. Step 2: computation of provisional resolution

For departures from normality or uniformity such as multi-

modality or heavily skewed distributions descriptive statistics

such as central tendency (e.g. arithmetic mean) or dispersion

(e.g. standard deviation) are not sufficient to describe the esse-

ntial structure of the distribution. In other words, it is difficult to

detect and quantify very low-density valleys, e.g. noise regions,

located in the main part of the distribution using descriptive

statistics. Similar to outliers, significant data discontinuities

easily cause under-quantisation if using Eq. (2) due to the impact

on s. Hence, it is vital to guard against significant data

discontinuities. TSQ relies on the entropy of the data sample E

to implicitly quantify the scale of such data discontinuities.

Entropy is a widely used concept to quantify information

and in principal measures the amount of uncertainty of a

random discrete variable X. Let x1, . . . , xk be the set of all

possible outcomes of X and p(x) be the probability mass

function of X. The entropy H(X) is then defined as [11]:

HðXÞ ¼ �
Xk

i¼1

pðxiÞ log2 pðxiÞ (4)

Let b1, . . . , bk be the set of all bins in a particular dimension

and di denotes their density, i.e. percentage of total points N

lying inside each bin. In analogy to the entropy of a random

discrete variable, the entropy along the given dimension is:

H ¼ �
Xk

i¼1

di log2 di (5)

When the probability of X is uniformly distributed, we are

most uncertain about the outcome and thus the entropy is

the highest. On the other hand, when the probability mass

function is highly concentrated around the modes the result

of a random sampling is likely to fall within a small set of

outcomes around these modes, so the uncertainty and thus

entropy are low. Intuitively, when univariate data points are

uniformly distributed we are most uncertain in which bin a

data point would lie and therefore the entropy is the highest.
In contrast, the more densely populated and closely located the

univariate clusters are, the smaller the uncertainty and thus

entropy, as a given point is highly likely to fall within bins

belonging to a cluster. This fundamental property of entropy

is utilised by TSQ to quantify significant data discontinuities

in univariate samples. If the data in E from formulae (3) is

uniformly distributed, then a small fraction d (i.e. d = 0.5% of

the total points N) of them is expected to be found inside an

interval whose length (e) will approximately be:

e ¼ d

�
N

NE

�
lE (6)

where lE = min(b, (Q3 + 1.5IQR)) � max(a, (Q1 � 1.5IQR))

and NE denote the length and number of points in E, respec-

tively.

Using e as initial resolution, TSQ constructs two conven-

tional density histograms, one for the target dimension and one

for a uniform distribution both defined in E. The density

histogram is a step function with height for each bin being the

proportion of the sample E contained in that bin. It then

computes the entropy for both histograms using Eq. (5). To

obtain the entropy ratio rH 2 (0, 1] the entropy of the actual

points in E is divided by the entropy of the corresponding

uniform distribution.

The value of rH is a quantitative measure of the difference

between the actual data distribution in E and a uniform

distribution with the same number of points and range of

values. Indeed, densely populated regions separated from one

another by widespread low-density regions are implicitly

detected through small values of rH and vice versa.

Clearly, any packing of points into tight clusters requires a

smaller bin width than the uniform distribution. TSQ incor-

porates quantitative information related to both data disconti-

nuities and concentration by modifying e by a factor rH:

e0 ¼ rHe (7)

where e0 denotes the modified value of e.

The provisional bin width e0 is a particularly robust estimator

of the lower bound of bin width w because (a) it is resistant to

outliers, (b) it is relatively cognisant of the essential shape of the

distribution, and (c) it provides fine resolution since it reflects

the spreading of a very small percentage (d) of the total data

points (N).

5.1.3. Step 3: smoothing via Kernel density estimation

The next step is to construct a smooth frequency histogram

for the data falling inside the interval of interest E using the

binned KDE with the boundary correction as discussed in

Appendix A. The practical implementation of the KDE

method requires the specification of the bandwidth h, which

controls the smoothness of the frequency histogram. A simple

solution would be to directly use the automatic normal scale

bandwidth selection rule [formulae (A.2)]. However, for non-

normal data distributions, e.g. multi-modal or heavily skewed

distributions, the statistical performance of formulae (A.2)

is poor [51,53,56].
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TSQ reaches a compromise between highlighting import-

ant features in the data and good scalability using a local

adaptation of the normal bandwidth rule. The new methodol-

ogy relies on dividing the interval E into a finite set of disjoint

intervals containing a relatively small percentage, e.g. 5%, of

the total (N) points. Then the normal reference rule is applied

to each interval independently.

The division of the domain into intervals isolates local

characteristics of the data distribution and guards against

outliers or data discontinuities. To retain to some extent

important features of the distribution at different data localities

while having a global bandwidth over the entire domain, a

weighted sum method is used.

In particular, let us assume that the interval E of jth

dimension is partitioned into k sub-intervals of approximately

equal data coverage, while hij denotes the local bandwidth

computed by the normal reference rule (see Eq. (A.2)) for the

ith interval in jth dimension. The set of locally obtained

bandwidths hij is scalarised into a single bandwidth (hj) by

pre-multiplying each local bandwidth with a specific weight

and then forming their sum. The weight of an interval is simply

the percentage of total points of E(NE) lying inside that interval.

Hence, the TSQ bandwidth scalarisation is:

h j ¼
Xk

i¼1

�
Ni j

NE

�
hk j (8)

where k is the number of intervals in the jth dimension, while

Nij denotes the number of points in the ith interval. It can be

easily observed that the weights are normalised, that is,Pk
i¼1 Ni j=NE

� �
¼ 1.

5.2. Detailed statistical analysis

5.2.1. Step 1: detection of quasi-uniform regions

Let us assume that during the gross statistical analysis stage

the outlier-free interval E is partitioned into m uniform bins of

size e0 determined by Eq. (7). TSQ then employs the UDA

(Section 4) algorithm to obtain all non-sparse U-regions along

the smoothed frequency histogram of E.

5.2.2. Step 2: quantisation of quasi-uniform regions

The rationale of partitioning the original smoothed histo-

gram with UDA is to enable a more detailed analysis within the

U-regions identified. In particular, Terrell’s quantisation rule

(Eq. (2)) can now be safely applied to each U-region inde-

pendently, because both outliers and significant data disconti-

nuities affecting s have been removed.

As Scott elaborated ‘‘. . .in principle, there is no lower bound

on bin width (w) because the unknown density can be arbitrarily

rough. . .’’ [51]. However, an extremely fine resolution

computed by Eq. (2), even if it is valid from a statistical point

of view, incurs high computational costs for clustering,

especially for high dimensional datasets [5,41]. Therefore, it

is necessary to set a lower bound on w that yields a reasonable

compromise between efficiency and effectiveness. Recall that

the provisional bin width e0 given by Eq. (7) is a particularly
robust estimator of the lower bound of w. Hence, TSQ balances

computation and quality of the clustering results by setting the

bin width wi j for the ith U-region of jth dimension as follows:

wi j ¼ maxðe0; ð3:729si jN
�1=3
i j ÞÞ (9)

where Nij and sij denote the number and standard deviation of

points in the ith U-region of the jth dimension, respectively.

In contrast, other quantisation techniques, e.g. MAFIA,

create a single bin for each U-region, which may yield poor

quality results if the projection of multiple clusters with very

different densities overlap in that region. Finally, for discrete

or even continuous attributes of finite precision, it is inappro-

priate to select a bin width that is smaller than the step of the

natural precision of the data.

5.2.3. Step 3: scalarisation of local resolutions

Ideally, each U-region would keep its own bin width

leading to a non-uniform grid, which may delineate cluster

boundaries more accurately since it reflects the local

distribution. However, this idea increases substantially the

complexity of NOCEA. Therefore, TSQ uses a simple

weighted-sum method to scalarise the set of locally optimal

bin widths into a single global value. The weights are chosen

in a way so as to make the sum of all weights equal to one. One

of the ways to achieve this is to normalise each weight by

dividing it by the sum of all the weights. In particular, TSQ

assigns a specific weight to each U-region that is proportional

to the number of points in that region with respect to the total

number of points covered by all U-regions in the same

dimension. Hence, the domain [aj, bj] of jth dimension is

partitioned into disjoint equisized intervals of length w j that

is determined by the following weighted-sum expression:

w j ¼
Xk

i¼1

�
Ni j

totalN j

�
wk j (10)

where k is the number of U-regions in the jth dimension, while

totalN j ¼ N1 j þ � � � þ Nk j denotes the total number of points

covered by these U-regions. It can be easily observed that the

weights are normalised so as
Pk

i¼1 Ni j=totalN j

� �
¼ 1.

6. Evolutionary optimisation in NOCEA

This section describes in depth the part of NOCEA system

that is responsible for the evolutionary optimisation. In

particular, Section 6.1 presents the semantics of the individual

representation and explains why NOCEA adopts an integer

encoding scheme instead of binary or floating. The fitness

function that measures the quality of candidate solutions is

presented in Section 6.2. Section 6.3 presents the generalisation

operator that strives to produce shorter rule-sets. Sections 6.4

and 6.5 describe the mutation and recombination operators,

respectively, that are responsible to introduce variation in the

population. Section 6.6 presents the repair operator that

enforces the formation of homogeneous rules. Finally, Section

6.7 describes a preliminary parallelisation of NOCEA to

improve scalability.
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6.1. Individual representation

Since clustering is all about summarising data distri-

butions, we adopt clustering rules (Section 1) as a readily

interpretable structure to describe the discovered knowledge.

NOCEA evolves individuals of variable-length, which consist

of disjoint and axis-aligned hyper-rectangular rules. Each

fixed-length rule, in turn, is composed of d feature genes, where

each gene encodes an interval-like condition related to one

feature. The ith feature-gene (i = l, . . . , d) of jth rule is

subdivided into two fields, namely lower (lij) and upper (uij)

bound. During quantisation, the domain [ai, bi], i =1, . . . , d, of

the ith dimension is partitioned into mi disjoint intervals of

uniform length wi. The boundaries for the intervals of the rules

in ith dimension (i = 1, . . . , d) are encoded as integer values

from the discrete domain [0, . . . , (mj � 1)]. Two d-dimen-

sional rules R1 and R2 are disjoint if there is at least one

dimension, say c, such that the upper bound of the first rule

is less than the lower bound of the second or the opposite,

i.e. (uc2 + 1) � lc1 or (uc1 + 1) � lc2. The obvious advantage of

the variable-length genotype is the transfer of control over the

optimal number of rules from humans to the genetic search

mechanisms. Additionally, since rules are disjoint there is no

need to encode the consequent part.

Fig. 3(a) depicts a hypothetical distribution in a two

dimensional space defined by the continuous features income

and expenditure that are bounded in the range [500, 1300] and

[0, 340], respectively. Additionally, let wIncome ¼ 25 and

wExpenditure ¼ 20 be the bin width for income and expenditure,

respectively. Fig. 3(b) shows the structure of the genotype
Fig. 3. Integer-valued repr
corresponding to the candidate solution of Fig. 3(a) that has

three rules R1;R2; andR3. Fig. 3(c) depicts the conventional

binary representation of these rules using five-bit precision for

both dimensions.

There are several reasons for using an integer-valued

representation rather than floating-point or binary. Although a

real-valued representation enables arbitrary-precision solutions

to be found, it generates prohibitively large search spaces for

problems of high dimensionality. There are also several reasons

to abandon binary encoding in NOCEA. One difficulty with

conventional binary encoding is the presence of Hamming cliffs

associated with certain strings, e.g. 01111 and 10000, where the

transition to a neighbouring solution in the grid space requires

the alteration of many bits. Hamming cliffs hinder fast local

fine-tuning. For instance, in Fig. 3(a), an evidently simple one-

bin extension of the upper income bound of R1 requires the

simultaneous alteration of all five-bits, while with integer

encoding this is achieved in one step. An l-bit substring

encoding a particular variable has a total of 2l different states. If

a discrete variable can only take on an exact finite set of values

whose size is different from some power of 2, then there is

redundancy in the representation. For instance, given that the

expenditure domain is partitioned into 17 bins, as shown in

Fig. 3(a), NOCEA needs at least five bits to cover this range.

However, a five-bit length binary encoding yields 32 possible

states in total, from which 15 are redundant—correspond to

non-existing bins. Clearly, extra computational effort is

required to prevent the formation of individuals with erroneous

bit combinations. In contrast, integer-valued representations do

not suffer from such problems because the possible states that a
esentation in NOCEA.
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rule bound can take are from a minimum length integer-valued

sequence 0, . . . , (m � 1), where m denotes the number of bins

in each dimension.

In this paper, a feasible solution always complies with the

following requirements: (a) the upper bound of all rules must

be at least equal to its associated lower bound for all dimen-

sions, (b) all hyper-rectangular rules are axis-aligned and

disjoint, (c) the d-dimensional region enclosed by a feasible

rule must have a relatively homogeneous distribution of points

(Section 6.6). For example, rule R2 in Fig. 3(a) is not

homogeneous, even though it is semantically valid and axis-

parallel, and (d) the point coverage of a feasible rule must be

statistically significant to minimise the risk of over-fitting

(i.e. to cover very few instances) the data. Hence, sparse rules

(Section 4) are eliminated, because they reflect spurious

relationships that are unlikely to occur in unseen data.

6.2. Fitness function

In a typical EA, each individual in the population is

assigned, by means of a fitness function, a ‘‘figure of merit’’ that

reflects the performance of the individual in solving the target

problem [24,39]. This value is the quantitative information the

EA uses to guide the search. The fitness of an individual

determines the probability that the given individual will survive

into and be selected for reproduction in succeeding genera-

tion(s). In general, the choice of the fitness function is closely

related to the problem at hand.

In this paper a simple and robust fitness function is proposed

to guide the evolutionary search. In our clustering context, the

fitness function f: S ! (0, 1] (S: the set of all possible feasible

solutions) simply maps to the data coverage, i.e. the proportion

of the dataset covered by the disjoint rules of the individual. In

particular, the fitness of a feasible individual (I ) is the fraction

of total points N that are covered by the rules of I :

f ðIÞ ¼
�

1

N

Xk

i¼1

Ni

�
(11)

where, k denotes the number of rules in I , and Ni is the number

of points covered by the ith rule.

NOCEA has a simple well-defined goal, which, however,

provides enough quality information to drive the selective

pressure of the EA: maximise the total point coverage with an

arbitrary-length feasible rule-set. Aiming to maximise data

coverage with feasible rules, is a particularly robust fitness

function, well suited for high dimensional datasets where the

concepts of density and proximity are vague. The salient features

of f are:
� N
ot a distance-based clustering criterion. Since individuals

are assessed on the basis of point coverage with no distance

bias, f neither favours the formation of hyper-spherical

clusters of similar sizes nor is affected by outliers and noise,

as opposed to distance-based techniques.
� N
ot a density-based clustering criterion. Density-based

clustering techniques require that the point density of a
cluster must exceed some user-defined threshold. Depending

on the choice of the threshold, it is likely to miss low-density

clusters. In NOCEA, by contrast, rules can ‘‘grow’’ to

arbitrarily large sizes and in as many dimensions as required.

This is simply because the utility of a rule is not assessed on

the basis of density.
� R
esistance to curse of dimensionality. The curse of

dimensionality phenomenon (Section 1) has no impact on

f because the concepts of sparsity and point proximity are not

encapsulated in f .
� B
ounded range. Due to the disjointness of rules in the

chromosome, the range of the fitness function is always

bounded in the interval (0, 1]. In contrast, the extreme

values for other clustering criterion functions, e.g. square-

error, are not known a priori and more importantly, are

very much data dependent. Knowing the range of f helps

monitor the progress of the evolutionary search and tuning

various clustering related parameters, e.g. rule sparsity

threshold Ts.
� N
o preference bias with respect to the structural character-

istics of a clustering solution. Clearly, formulae (11) does not

incorporate any preference bias being associated with the

structural characteristics of an individual, e.g. number, size,

geometry, and density of rules. This is a deliberate choice

mainly due to the difficulty of balancing such incommen-

surable concepts. This also allows the exploration of more

search combinations. Additionally, evaluating solutions

solely on the basis of data coverage provides the ground

for a fair and straightforward comparison between cluster-

ing solutions with differences in the number, size, density,

and point coverage of candidate rules. Other techniques, e.g.

k-means, require that each individual contain the same

number of rules.
6.3. Generalisation operator

This section presents generalisation, a novel genetic

operator that delivers end-user comprehensibility and simpli-

fication of the clustering results. Generalisation has a

parsimony pressure because it strives (a) to minimise the

length of individuals by replacing pairs of adjacent rules with a

single and hopefully more generic rule, and (b) to encourage the

discovery of generic rather than specific rules because a

relatively generic rule is more likely to detect irrelevant features

(Section 7.1). Two d-dimensional rules are adjacent if they have

a common face, i.e. there are d � 1 dimensions where there is

an intersection between them and additionally, there is one

dimension where they are contiguous.

Generalisation, also improves scalability because computa-

tion heavily depends on the total number of rules that are

processed in each generation. Generalisation is applied with a

small probability to a pair of adjacent rules at time satisfying

some conditions, and produces a single and hopefully more

generic rule. Let us assume that the pair of ith and jth rules

undergo generalisation along the gth dimension. The original

rules are put together in an incomplete generalisation G that

must not overlap with neighbouring rules. To achieve this, the
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Fig. 4. Generalisation principle. (a) Before; (b) expansion; (c) after.
operator firstly determines the backbone of the rule G that will

eventually replace the two rules. The lower (lk) and upper (uk)

bounds of G are:

lk; uk½ � ¼ minðlki; lk jÞ;maxðuki; uk jÞ
� �

; if k ¼ g
maxðlki; lk jÞ;minðuki; uk jÞ
� �

; otherwise

	
(12)

Having determined the incomplete generalisation G, the

operator proceeds dimension by dimension in a random order.

More precisely, G is gradually expanded along every

dimension, apart from g, so that no overlapping with

neighbouring rules occurs. The growing of G to the left and

to the right in kth ðk 6¼ gÞ dimension is bounded by min(lki, lkj)

and max(uki, ukj), respectively. However, it is likely that the

expansion will be limited if there are rules that may overlap

with a fully expandable G.

For instance, the generalisation of adjacent rulesR1 andR2

shown in Fig. 4(a) yields initially the incomplete generalisation

G shown as grey-shadowed region in Fig. 4(b). Concerning the

vertical axis, G is clearly expandable up to the left vertical

bound of R3 rather than to the right-vertical bound of R2,

because such a growing operation will cause overlapping

between G andR3. After generalisation completes the resultant
Fig. 5. Pitfalls of unconst
solution in Fig. 4(c) comprises fewer and more generic rules

compared to the solution in Fig. 4(a).

Generalisation is subject to some constraints that help to

prevent the formation of rules that are non-homogeneous and/or

have significantly lower data coverage compared to the

aggregated coverage of the two original rules. To explain the

nature of these constraints consider the generalisations in

Fig. 5(a–c), where the relative darkness indicates the density of

the clusters. In the first case—Fig. 5(a), the density of rulesR1

and R2 differs significantly and hence the resulting general-

isation, which inherits this difference, is non-homogeneous. In

the second case—Fig. 5(b), although the rulesR3 andR4 are of

similar density and geometry, their centers are not properly

aligned and consequently the large regions at the top-right and

bottom-left corners with unknown density that are added in the

generalisation produce a non-homogeneous rule. In both cases

the generalisation is unsuccessful as it generates non-

homogeneous rules requiring repairing.

Perhaps the most severe drawback of unconstrained

generalisation occurs when there are large differences between

the sizes of rules, e.g. R7 and R8 under generalisation and

additionally there exist other rules, e.g. R5 and R6 in close

proximity, as shown in Fig. 5(c). In such cases, it is likely to lose

substantial parts of the rules under generalisation to avoid

overlapping with rules nearby. As a result, an unconstrained

generalisation can substantially degrade the performance of the

individual, which in turn, poses a strong obstacle for NOCEA to

converge into an optimal solution.

To reduce the severity of the side-effects associated with

generalisation, NOCEA allows the operation to proceed only

if the rules under generalisation have similar densities,

sizes, and proper alignment. In particular, the pair of adjacent
rained generalisation.
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rules Ri and R j, are generalised only if the following

conditions are true for every dimension l = 1, . . . , d, excluding

g (g: touching dimension for Ri and R j):

minðDi;D jÞ
maxðDi;D jÞ

� Th and
Rli \Rl j

ulm � llm
� Tg; m2fi; jg (13)

where Di, Dj denote the density of ith and jth rule, respectively,

while Rli \Ri j ¼ minðuli; ul jÞ �maxðlli; ll jÞ þ 1 is the length

of the intersection between the two rules in lth dimension. The

homogeneity Th and generalisation Tg 2 (0, l] thresholds are

discussed in Section 8. The first condition prevents generalising

rules with very different densities, while the second permits

generalisation only when rules have proper alignment and

similar sizes.

6.4. Mutation operators

Mutation serves to prevent premature loss of population

diversity by randomly sampling new points in the search space

[7]. Typically, the positions in the string to undergo mutation

and the new values for the mutated genes are determined at

random regardless of what happens at other positions in the

string. NOCEA has two novel semi-stochastic mutation

operators, namely, Grow- and Seed-Mutation.

6.4.1. Grow-Mutation

The Grow-Mutation, as implied by its name, is primarily

used to grow existing rules in an attempt to increase their data

coverage, making, thus, the individuals fitter [48,49]. Given

that comprehensibility is a desired property for the discovered

knowledge, it seems reasonable to focus on the discovery of as

few and as generic rules as possible. Due to its nature, Grow-

Mutation has a parsimony pressure for small and generic rule-

sets, improving thus comprehensibility and reducing computa-

tional complexity. The general form of Grow-Mutation can be

written as:

m ¼ m0 þ U (14)

where m0 and m denote the value of a gene, i.e. left or right

bound, before and after Grow-Mutation, respectively, where

U is a uniform discrete random variable in [0, mmax] for the

upper bound, and [�mmax, 0] for the lower bound. mmax

represents the maximum amount of modification for a valid

expansion that does not produces overlapping rules. Fig. 6
Fig. 6. Computing mmax for an upper Grow-Mutation.
depicts the algorithm for determining mmax if the upper bound

uij of jth rule is grow-mutated in ith dimension. The derivation

of mmax for the lower bound is the dual procedure.

Fig. 7 clearly demonstrates the effectiveness of Grow-

Mutation as a mechanism to perform local fine-tuning. Let us

assume that the upper bound of rule R1 undergoes Grow-

Mutation along the horizontal axis. After having determined

mmax with the algorithm in Fig. 6, R1 is randomly expanded to

the right within the rectangle (abcd) that is demarcated by the

dashed lines, as shown in Fig. 7(b). Notice that, although the rule

R5 is located in the same hyperplane where the Grow-Mutation

is taking place, it does not constrain this operation because there

is no intersection with R1 in the vertical axis. Since the new

values for the rule boundaries are randomly chosen from a

window of predefined size (mmax), Grow-Mutation may create

non-homogeneous rules, e.g. R1 in Fig. 7(b). In such cases, the

repair operator (Section 6.6) enforces feasibility on the

candidate solutions, as depicted in Fig. 7(c). Clearly the data

coverage of R1 has been increased by the Grow-Mutation.

6.4.2. Seed-Mutation

Due to the constraint of evolving disjoint rule-sets, Grow-

Mutation is incapable of assuring that every uncovered region

of the feature space F is accessible to NOCEA. This limitation

is evident in Fig. 8(a) where NOCEA has reached a deadlock in

increasing the coverage of the individual. This is because, no

Grow-Mutation can explore the rectangular region (abcd) that

is enclosed by the four rules, R1;R2;R3; andR4. NOCEA

escapes from such a local optimum using Seed-Mutation.

In short, Seed-Mutation is applied with a very small fixed

probability, e.g. 0.005, to a single bound of a rule at a time, and

generates, when it is possible, a new rule within a specific

region, hereafter called bounding box, that is fully determined

from the parent rule. Similarly to Grow-, the Seed-Mutation

produces variations at random, yet the resulting offspring

contain no overlapping rules.

Assuming that the upper bound uij of the jth rule (R j)

undergoes Seed-Mutation in the ith dimension the operation

proceeds as follows: initially, the algorithm determines the

lower (lb) and upper (ub) boundaries of the axis-aligned hyper-

rectangular bounding box that corresponds to uij (mk: total

number of bins in the kth dimension):

lbk; ubk½ � ¼ ðui j þ 1Þ; ðmk � 1Þ
� �

; if k ¼ i
lk j; uk j

� �
; otherwise

	
(15)

If the bounding box contains at least one uncovered cell

the algorithm selects randomly one, and creates a new rule, the

seed. In the case that no empty space exists or the bounding

box itself is empty, the operation is aborted. The next step is

to grow the seed in every dimension, both to the left and to

the right, as much as possible without causing overlapping

with other rules. The expansion is performed dimension-

by-dimension in a random order. The bounds in a specific

dimension are also processed in a random order. The rationale

behind the large-scale expansion of the seed is to increase the

probability of locating a non-sparse rule.
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Fig. 7. Local tuning with Grow-Mutation/repairing. (a) Before Grow-Mutation; (b) after Grow-Mutation; (c) after repairing.
Fig. 8(b–d) shows how NOCEA breaks the deadlock (perform

both local fine-tuning and discovery of new clusters) using Seed-

Mutation in the right bound of ruleR1 along the horizontal axis.

In this case Seed-Mutation creates a new rule (light-grey

rectangle in Fig. 8(c)) inside a previously unreachable region.

The subsequent repairing of the expanded seed yields two new

homogeneous rules R5 and R6 as shown in Fig. 8(d).

6.4.3. Scheduling Grow- and Seed-Mutation

During the mutation stage, an individual consisting of k

rules can be viewed as a vector of 2dk integer values, where
Fig. 8. Seed-Mutation example. (a) A limitation of Grow-Mutation to explore the rec
each element corresponds to a rule bound in a particular

dimension. A mutation event is regarded as a four part entity

MEvent = [Rule, Feature, Bound, Type], where Rule 2 [1, k],

Feature 2 [1, d], Bound 2 [lower, upper], denote the rule,

feature, and bound, respectively, undergoing mutation whose

type is specified in the field Type 2 [grow, seed]. The list of

mutation events is shuffled to assure randomness in the order by

which bounds, features and rules are processed. Notice that a

scheduled mutation event may be heavily affected or even

prevented by preceding mutation(s). This is because, any form

of mutation must yield non-lethal variations, i.e. solutions with
tangular area abcd; (b) seed-generation; (c) seed-expansion; (d) seed-repairing.
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Fig. 9. Scheduling and executing mutations in NOCEA.

Fig. 10. ORC recombination example.
disjoint and syntactically valid rules. In NOCEA, mutations are

scheduled and executed in the following manner (Fig. 9).

6.5. Recombination operator

The aim of recombination or crossover in EAs is to combine

the best characteristics of highly fit individuals in the hope of

creating even better solutions [7,8]. As the EA is unaware of

what characteristics account for the good performance, the best

it can do is to recombine characteristics at random. However,

due to the selective pressure of EAs, poorly performing

offspring will not survive for long. NOCEAs fitness function

has no bias towards rules of specific type, e.g. generic or highly-

dense, and consequently each rule can be viewed as an

important building block or good schema. This is because each

rule contributes to the fitness, regardless of its size, geometry,

and data coverage. Thus, crossover must not simply preserve

and propagate intact rules from parents to offspring, but at the

same time must blend them with rules present in other parents

in the hope of producing even fitter solutions. The obvious

caveat is that the manipulation of the genetic material by

crossover must always yield non-lethal individuals, i.e. a

solution comprising non-sparse, semantically valid, and

disjoint rules. In analogy to binary EAs where disruption

means the breaking up of critical schemata (bit combinations)

conveying high fitness, in this paper disruption after crossover

is the splitting of parental rules to create non-lethal offspring.

This section presents NOCEAs novel recombination

scheme, the overlaid rule crossover (ORC) operator whose

functionality is geared towards: (a) minimisation of disruption

of the genetic material, (b) elimination of positional bias, (c)

minimisation of distributional bias, and (d) generation of non-

lethal offspring. Instead of stochastically exchanging chromo-

some fragments, i.e. rules, between the parents, ORC initially

creates a clone of each parent and then overlays it with the rules

from the other parent. Those parts of rules from the second

parent that do not intersect with the rules from the first parent

are directly copied in the offspring while the rest are discarded.

The principles of ORC are explained with the help of the

example depicted in Fig. 10, where the colour of a rule indicates

its parental origin. ORC operates on two parent solutions at

time and creates two non-lethal offspring in a way that rule

disruption is minimised. The main stages in ORC are:
(1) C
Fig. 11. Algorithm for resolving rule overlapping in ORC.
loning parents. Initially, each parent transmits intact its

rules to one of the generated offspring. Henceforth, the

parent that is initially cloned to create an offspring is termed

as the primary parent of that offspring, while the other

parent is termed secondary parent. By firstly cloning the
parents, ORC achieves propagating each rule present in the

parental chromosomes in at least one offspring. For

instance, Fig. 10 shows that each offspring inherits all

rules from its primary parent.
(2) E
xchanging disjoint rules. In the next stage, the genetic

material of each offspring is enhanced by directly copying

all rules from its secondary parent that do not intersect with

the rules of the offspring. For instance, offspring A, in

Fig. 10, receives unaltered rule B3 from its secondary parent

B, since such an operation yields a non-lethal solution. ORC

proceeds then by identifying, for each offspring, those rules

in its secondary parent that are fully covered by rule(s) in

the chromosome of the offspring, e.g. rule B1 in respect of

offspring A. These rules (if any) are effectively omitted

from further processing because the d-dimensional regions

that are enclosed by them, are entirely ‘‘known’’ to the

target offspring. So far, no disruptive effect is evident,

meaning that the resultant offspring at this stage are at least

fit as their primary parents. Notice that up untill now ORC

has a purely deterministic behaviour.
(3) R
esolving rule overlapping. What follows next is the

splitting algorithm of Fig. 11 that stochastically resolves all

instances of overlapping between an offspring and the

remaining rules of its secondary parent. Let V be a vector

containing the rules of the secondary parent that partially

intersect with the offspring. In essence, during a single

iteration, a randomly selected ruleR from V is split along a

randomly selected cutting plane passing through a proper
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bound of an offspring rule that intersect with R. A single

splitting operation yields a set of new rules where one of

them is disjoint with the offspring rule. After the splitting

algorithm completes all the newly formed non-sparse rules

(if any) are copied into the offspring, enriching its genetic

material and consequently improving its performance.
From an exploratory viewpoint, ORC is of limited power in

the sense that the resultant variations are proper subsets of the

union of the parental rules. In other words, although crossover

can introduce new rules that are not present in the current

population, the new genetic material represents regions in the

feature space F that were previously identified by at least

one parent. However, provided that the union of two parental

chromosomes assembles the optimal solution, NOCEA has the

exceptional ability to reach this optimal point of the search

space in a single ORC operation.

In short, the salient features of ORC are:
� N
on-lethal variations. Despite its semi-stochastic function-

ality, ORC always guarantees the generation of non-lethal

offspring.
� B
eneficial variations. ORC improves the mean performance

of the population since the offspring are always at least as fit

as their primary parents.
� N
o positional bias. ORC has no positional bias [7] because

the transmission of rule-genes to offspring is absolutely

independent of their relative positions on the parental

chromosomes.
� D
istributional bias. ORC has a distributional bias [7] in the

sense that the expected number of rules that are transmitted

to an offspring is bounded minimally by the number of rules

of its primary parent. Concerning the secondary parent,

the variation associated with the number of transmitted rules

is expected to be relatively large during the early stages of

the search, provided of course that individuals were initia-

lised randomly. However, the variation reduces as the search

progresses because the individuals become increasingly

more similar. No other distributional bias is present.
6.6. Homogeneity operator

This section describes a task-specific genetic operator, the

repair or homogeneity operator. The repair operator manip-

ulates, when necessary, candidate rules so that the space

enclosed by the resultant variations, i.e. rules, have quasi-

homogeneous data distribution. The repair operator relies on

the UDA algorithm (Section 4) to identify U-regions along the

orthogonal uni-dimensional projections of candidate rules.

Recall that a U-region is defined as a set of contiguous bins

with small histogram value variation. The repair operator exp-

loits the observation that cleanly separable univariate U-regions

are ‘‘signatures’’ of clusters in higher dimensional spaces

[4,5,10,40,41]. Finally, the repair operator considers only non-

sparse U-regions to suppress the subsequent formation of

spurious rules over-fitting the data and to reduce computation.

A U-region is deemed as non-sparse if its data coverage (i.e.
percentage of total points falling onto that region) exceeds the

standard input sparsity threshold Ts 2 (0, 1]. NOCEAs fitness

function is totally blind to the quality of the clustering results,

solely seeking to maximise data coverage. In particular, the

proposed fitness function lacks any bias that would yield:
� e
ffective discrimination of clusters,
� s
eparation of the clusters from the noise regions,
� p
recise approximation of clusters, and
� h
omogeneous data distribution in the space enclosed by

candidate rules.

In essence, since there is no constraint to prevent rules from

growing arbitrarily, NOCEA would easily produce super-

solutions, e.g. highly-fit individuals covering substantial parts

of the feature space F , or in the worst case all of F . Under

such circumstances the meaningfulness of clustering may be

easily called into question. For instance, recall the candidate

rule R, as shown in Fig. 2. Undoubtedly, R is non-homog-

eneous, hence infeasible, as it encloses four distinct clusters,

in addition to noise.

Unlike other operators, e.g. mutation, recombination, and

generalisation that are used to traverse the search space, the

repair operator concentrates on yielding high quality rules

with homogeneous data distributions. The natural interpreta-

tion of an homogeneous rule is the absence of any strong inter-

attribute correlation for the points covered by the rule. As a

result, the boundaries of such a rule, along with its data point

coverage and density, accurately describe the data distribu-

tion. In contrast, the descriptor of a non-homogeneous rule

must be accompanied with the types and localities of

correlations occurring within the given rule.

From a statistical viewpoint, a d-dimensional rule R is

homogeneous if each cell that is enclosed by R contains

approximately the same number of points. However, creating a

histogram that counts the points contained in each cell is

infeasible in high dimensional spaces because the number of

cells is exponential with the dimensionality. As a result of the

sparsely filled space it is impossible to determine the type of

distribution with sufficient statistical significance [30]. Notice

that the number of available points cannot grow exponentially

with the dimensionality, which, in turn, means that the vast

majority of points map into different cells and there are many

empty cells. The only thing that can be easily verified is that any

axis-parallel projection of a set of uniformly generated points

follows a quasi-uniform distribution. This observation, along

with the fact that clusters become separated because of the

different extent of point concentration (density) motivated the

design of the repair operator. The repair operator applies several

statistical tests to each candidate rule independently. In

particular, all dimensions of a candidate rule R undergo the

following processing stages with a random order.

6.6.1. Construction of smoothed frequency histogram

Initially, NOCEA computes the smoothed frequency

histogram along the orthogonal univariate projection of the

current dimension using the binned Kernel density estimation
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(KDE) with the boundary correction as described in

Appendix A. It is vital to construct histograms that allow both

the detection of significant differences in density and that have

smoothed out local data artifacts.

Unlike the classical frequency and density histograms

[51,53,56], the KDE method is insensitive to the placement of

the bin edges and creates a reasonably smooth approximation of

the real density. The latter property is essential for low-to-

moderate density rules where the traditional frequency

histogram tends to be very jagged making thus difficult to

locate non-sparse U-regions. To improve scalability when

constructing the smoothed frequency histograms, NOCEA

employs a binned version of the KDE method as explained in

Appendix A. Henceforth, the term density or frequency

histogram will refer to a binned KDE histogram as defined

in Appendix A, unless otherwise stated.

The practical implementation of the KDE during the

repairing stage requires the specification of the bandwidth h,

which controls the smoothness of the frequency histogram. A

simple solution would be to directly use the automatic normal

scale bandwidth selection rule [formulae (A.2)] as described in

Appendix A. However, for non-normal data distributions, e.g.

multi-modal or heavily skewed distributions, the statistical

performance of formulae (A.2) is poor [51,53,56].

We propose here a modification of the automatic bandwidth

selection algorithm of Appendix A to adapt h to the local

characteristics of the data distribution. The algorithm for a

dimension is:
(i) S
plit dimension into k (e.g. k = 4) equi data coverage

segments.
(ii) A
pply the oversmoothing normal reference rule [formulae

(A.2)] for each segment independently to obtain the local

bandwidths, hðiÞ ¼ 1:144sðiÞN
�1=5

ðiÞ , where N(i) and s(i)

denote the number of points and the standard deviation of

data in the ith segment, respectively.
(iii) C
ompute a provisional bandwidth h by scalarasing the

local bandwidths as weighted-sum h ¼
Pk

i¼1 NðiÞ= Nð1Þ
��

þ � � � þ NðkÞÞÞhðkÞ.

(iv) U
sing the bandwidth found in step (iii), construct a smooth

frequency histogram based on the binned KDE with

boundary correction as explained in Appendix A.
(v) A
pply the UDA (Section 4) to the smooth frequency

histogram obtained in step (iv) to locate non-sparse U-

regions.
(vi) I
f no non-sparse U-regions can be found in step (v), set the

bandwidth (h) to the value found in step (iii) and exit.

Otherwise, repeat steps (iii)–(iv) to the newly formed U-

regions to compute the final bandwidth.
Having determined the smoothing bandwidth (h), NOCEA

builds the final smooth frequency histogram for the current

dimension.

6.6.2. Detection of cutting planes/histogram splitting

Then, the repair operator reapplies UDA to the smooth

frequency histogram to detect valid cutting planes. If no
splitting points were found the repair operator proceeds with

the next, randomly selected, dimension. Otherwise, the original

ruleR is split along the cutting planes of the current dimension,

and is discarded. Each newly formed rule undergoes the same

processing stages, as described in Sections 6.6.1–6.6.2,

recursively in all dimensions. If there is a dimension with no

non-sparse U-regions the original rule R is simply discarded

without creating new ones. Finally, if no splitting sites are

detectable along any dimension the original rule R is finally

deemed homogeneous and is not processed further.

An example of repairing is shown in Fig. 12, where the

candidate non-homogeneous rule R of Fig. 12(a) is hierarchi-

cally decomposed into a set of disjoint-feasible rules

(Fig. 12(b)) using axis-aligned cutting planes that are denoted

by dashed lines. Evidently, as repairing progresses the refined

rules become increasingly more homogeneous.

6.7. Task parallelism—pNOCEA

This section explores the use of task parallelism to speed

up NOCEA when the data to be mined is massive [20,21]. The

core idea of parallel version of NOCEA (pNOCEA), is to

maintain a single population of individuals in a central

coordinator machine, and to distribute the execution of

expensive genetic operations to remote machines. pNOCEA

achieves a speedup of 13.8 on 16 processors (Section 9.10.5).

Fig. 13 depicts the architecture of pNOCEA, where several

processor–memory–disk units are attached on a communica-

tion network, and coordinated by a central master machine.
� D
ata placement. pNOCEA implements a share-nothing

architecture where each remote processor (PE) has direct

access only to its local memory (M), as shown in Fig. 13.

Currently each local memory contains a replica of the entire

dataset (D). There is no need to migrate incomplete tasks

between PEs because all tasks involving access to the data,

i.e. generalisation, recombination, and repairing, can be

completed on a single PE.
� G
ranularity. Typically, a thread is a sequential unit of

computation that is entirely executed in a single PE without

interruption. Granularity, in parallel processing, is the average

computation cost of a thread. A parallel program is called fine-

grained, if it consists of threads with only small pieces of

computation compared to the total amount of computation.

pNOCEA adopts a relatively coarse-grained approach by

inheriting the natural partitioning of computation generated by

an EA-based system into individual genetic operations. In

other words, each individual genetic operation, e.g. the

complete mutation of a solution, constitutes a sequential thread

of computation that is entirely executed in a single PE.
� L
oad balancing. The main challenge for the load balancing

model is to efficiently and effectively distribute the available

work, i.e. threads, to ensure that all processors are utilised,

without imposing additional load on the system. pNOCEA

uses a centralised passive load balancing policy where idle

PEs have to explicitly ask for work. During the various

stages of a single generation, the coordinator machine
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Fig. 12. The repairing of a non-homogeneous rule.

Fig. 13. Parallel pNOCEA architecture.
maintains a pool of instructions, i.e. threads that are being

queued for execution. In the beginning of each stage, the

coordinator generates the entire workload for that stage, and

adds the corresponding threads into the pool. When a remote

machine becomes idle it asks for work, and then the

coordinator selects randomly a thread from the pool and

forwards an appropriate execution message to that PE,

which is immediately marked as busy. Each message

encapsulates the group of individuals being involved in that

genetic operation while the response message includes the

result, i.e. group of individuals, yielded by that operation.

No load information is exchanged between processors. This
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mechanism tries to minimise the number of messages

required for load balancing.
� C
ommunication model. It is vital to minimise the commu-

nication cost in a parallel system. Due to the coarse-grained

granularity of pNOCEA, the average computation cost of

threads is significantly higher compared to transmission

cost. Furthermore, since each thread is entirely executed in

one PE without interruption, the master machine has to

forward each thread only once. After a thread finishes its

execution in a remote machine that PE returns the result to the

coordinator machine with one transmission. The actual

communication is modelled via message passing, i.e. remote

method invocation (RMI), between different PEs.

7. Post-processing discovered knowledge

7.1. Subspace clustering

High dimensionality continues to pose a significant challenge

to clustering algorithms because of the inherent sparsity of the

feature space. In fact, recent studies argued that for moderate-

to-high dimensional spaces all pairs of points are almost equi-

distant from one another, for a wide variety of data distributions

and proximity functions [3,9]. Under such circumstances, there is

very poor discrimination between points belonging to different

clusters in the full dimensional space.

A possible way of dealing with the sparsity of the feature

space F is to identify and retain only those features that are

relevant to the clustering while ignoring the rest. The term

relevant refers to dimensions forming subspaces where the

points of clusters are closely located. Consider the example

three-dimensional dataset of Fig. 14, which contains two

ellipsoids C1 and C3, and one orthogonal cluster C2. Clearly,

C2; C3, and C1 are bounded in one, two, and three dimensions,

respectively. Considering the pair of points P1 (50, 80, 0) and

P2 (50, 90, 100), it can be easily observed from Fig. 14 that,
Fig. 14. Clusters embedded
although these points belong to the same cluster C2, they are far

apart from one another in every subspace involving the dimen-

sion Z. However, P1 and P2 are very close in the subspace

X � Y. Various dimensionality reduction techniques, e.g. pri-

ncipal components analysis [22] can be used to detect irrelevant

features. However, since different subsets of points may be

correlated in different subspaces, any attempt to reduce the high

dimensionality by heuristically pruning away some dimensions

is susceptible to a substantial loss of information.

NOCEA is absolutely insensitive to the presence of

irrelevant features in high dimensional spaces, as opposed to

traditional clustering techniques [30]. This is because NOCEA

attempts to maximise both the homogeneity and data coverage

of rules rather than to optimise some distance or density based

criterion function. Hence, NOCEA is unusual in operating in

the full-dimensional space, thereby avoiding artifacts produced

by the joint projection of clusters in subspaces.

In practice, NOCEA simply ignores the problem of detecting

irrelevant features during the evolutionary search, and after

convergence simplifies the discovered rules by pruning away

irrelevant features. For example, let us assume that NOCEA

discovered the following rule-set for the dataset shown in

Fig. 14:

R1 : IF ð5 � X � 45Þ ^ ð0 � Y � 60Þ ^ ð30 � Z � 70Þ
THEN C1

R2 : IF ð0 � X � 100Þ ^ ð80 � Y � 90Þ ^ ð0 � Z � 100Þ
THEN C2

R3 : IF ð75 � X � 85Þ ^ ð20 � Y � 30Þ ^ ð0 � Z � 100Þ
THEN C3

Examination of the rules reveals that the information encap-

sulated within some specific conditions, e.g. (0 � X � 100) in

R2, is redundant in the sense that the length of such a feature-

gene is approximately equal to the size of the entire domain for

that dimension. Bearing in mind that the rules are always
in different subspaces.
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Fig. 15. Capturing non-convex clusters with rule-sets.
aligned to the coordinate axes and relatively homogeneous,

e.g. features are either independent of one another or weakly

correlated, reporting a rule in the full-dimensional space gives

us no more knowledge than looking at the subspace formed

by the bounded dimensions.

To decide whether a particular dimension is relevant to the

clustering of points inside a rule, NOCEA compares the

length of the rule in that dimension with the spreading of

points along the entire dimension. Recall from Section 5.1

that an outlier-resistant estimator of the spreading of points

in the ith dimension is the length lE of the interval E =

[max(ai, (Q1i � 1.5IQRi)), min(bi, (Q3i + 1.5IQRi))], where

Q1i, Q3i, and IQRi denote the first quartile, third quartile, and

the inter-quartile range of points in ith dimension, respec-

tively, while its domain is represented by [ai, bi]. In our

clustering context, the ith condition of the jth rule is

redundant if the following condition is true:

Tr �
�

ui j � li j

lE

�
(16)

where lij and uij denotes the real-valued decoded values for

the lower and upper bounds of the jth rule in the ith dimension.

The setting for the input threshold Tr 2 (0, l] is discussed in

Section 8.

Although the antecedent part of rules in the genotype has

fixed-length (d), irrelevant features are interpreted so that the

phenotype of individuals, i.e. rule-set that is reported to end-

users, has variable length in the rule-level, since conditions

corresponding to irrelevant features are simply ignored without

a substantial loss of information. After the simplification

analysis, the rules in our example reduce to a more informative

knowledge:

R1 : IF ð5 � X � 45Þ ^ ð0 � Y � 60Þ ^ ð30 � Z � 70Þ
THEN C1

R2 : IF ð80 � Y � 90Þ THEN C2

R3 : IF ð75 � X � 85Þ ^ ð20 � Y � 30Þ THEN C3

Retaining only the relevant features helps in developing a

better understanding of the inter-attribute correlations that can

greatly facilitate KDD phases, e.g. the decision making process

[14,19,28]. Examples of irrelevant features in real-world

seismic data along with their interpretation can be found in

Section 9.7.

7.2. Assembling clusters

This section describes a bottom-up post-processing algo-

rithm that assembles the genuine clusters from the discovered

rules. Often real world databases contain correlated subsets of

dimensions that lead to points getting aligned along arbitrary

shapes in lower dimensional spaces. Clusters with non-convex

geometry require multiple rules to obtain an accurate and

homogeneous descriptor.

In this paper, a cluster is a data pathway defined by a set

of adjacent rules with a marginal variation in point density. This

is not to suggest that all rules constituting a cluster are of

similar density in all possible subspaces, but only that these
rules must exhibit only a marginal variation in density in the

full dimensional space F . Hence, a cluster descriptor is in

the form of a disjunctive normal form (DNF) expression, where

each disjunct represents an axis-parallel rule. Once NOCEA

converges, the genome of the best individual undergoes the

following bottom-up grouping algorithm filling the consequent

part of the rules with a cluster identifier.

Initially each rule belongs to a distinct cluster. Each step of

the grouping involves merging two clusters that are the most

similar. The similarity between two clusters is measured by the

density ratio between the sparser rule from the two clusters and

the denser rule belonging to the other cluster. Formally, two

clusters C1 and C2 are merged if the following three conditions

are satisfied:
(1) C
1 and C2 are directly connected through at least two

adjacent rules RC1 and RC2 belonging to C1 and C2,

respectively.
(2) T
he similarity of C1 and C2 exceeds the homogeneity

threshold Th.
(3) T
he ratio of the length of intersection betweenRC1 andRC2

in every dimension—excluding of course the dimension

where the rules are contiguous—to the length of the

corresponding feature-gene of at least one rule exceeds an

input threshold Tc 2 (0, 1]. Tc is discussed in Section 8.
In short, the first condition reflects the requirement that rules

must be adjacent to be considered as members of the same

cluster. The second condition imposes the constraint that an

arbitrary-shaped cluster can only be assembled by rules of

similar density. The third condition requires that two adjacent

clusters must have a large enough touch to be members of the

same cluster.

Fig. 15 shows an example dataset containing both convex

and arbitrary-shaped clusters, where the relative darkness

indicates the density of the clusters. Observe that the

arbitrary-shaped cluster C4 has been captured using a set

of rules (R4, R5, and R6), while, in contrast, the non-convex

orthogonal clusters, C1; C2, and C3 require a single rule.

Although the ruleR2 adjoins ruleR3, they are not considered

as members of the same cluster, as they have very different

densities. Finally, the rules R1 and R2 despite being adjacent

and of similar density, have a very limited touch, thus they do

not belong to the same cluster.
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Hence, the discovered knowledge is reported in the

following DNF expression:

IF ð14 � X � 19Þ ^ ð12 � Y � 21Þ THEN cluster C1

IF ð20 � X � 33Þ ^ ð9 � Y � 13Þ THEN cluster C2

IF ð29 � X � 35Þ ^ ð2 � Y � 8Þ THEN cluster C3

IF ð9 � X � 23Þ ^ ð1 � Y � 5Þ½ �
_ ð2 � X � 8Þ ^ ð3 � Y � 9Þ½ �
_ ð5 � X � 12Þ ^ ð10 � Y � 13Þ½ � THEN cluster C4

8. Parameter settings

This section discusses the default parameter settings in

NOCEA.
� P
opulation size and termination. The default population size

is 50. NOCEA terminates if at least one of the following

conditions is true: when the number of generations that have

been executed exceeds a pre-specified upper limit of 300

generations, or when the difference between the performance

of the best individual and the average fitness of the population

members, reaches a given level of stability (i.e. 1e�5) for a

certain number of consecutive generations (i.e. 10 genera-

tion).
� I
nitialisation. Each population member is independently

initialised at random with a single hyper-rectangular rule,

which covers the entire domain in (d � 1) dimensions, while

it is extended only in half of the domain in one, randomly

selected dimension. The reason for initialising individuals

with bulky rule-seeds is to increase the probability of locating

non-sparse rule(s).
� R
eproduction. The primary objective of the reproduction

operator is to make duplicates of good solutions and

eliminate poorly performing individuals. NOCEA imple-

ments a typical k-fold (k = 4) tournament selection scheme.

In particular, each time an individual is requested for

reproduction, k distinct individuals are randomly drawn

without replacement from the population, and the best one is

selected. The selective pressure can be adjusted by changing

the value of k (tournament size).
� R
ecombination. The recombination rate is the probability that

recombination (instead of reproduction) is used to create new

genomes. NOCEA applies the overlaid rule crossover (ORC)

operator (Section 6.5) with probability 0.25, to two parents

and creates two feasible offspring genomes. Similar to

reproduction, in order to perform recombination parents are

selected using k-fold tournament selection.
� G
eneralisation. The generalisation rate indicating the

probability that an individual undergoes generalisation

(Section 6.3), is set to 1.0. The probability of generalising

a pair of adjacent rules that satisfy the generalisation

requirements is set to 0.05. Recall from Section 6.3 that the

threshold Tg 2 (0, 1] is introduced to permit generalising

only rules with proper alignment and similar size. Large

values for Tg, e.g. 0.8, guard against the formation of non-

homogeneous rules and degradation of the performance of
individuals, but they do not facilitate effective subspace

clustering, nor reduce the overall computational com-

plexity. Small values for Tg, e.g. 0.2, have exactly the

opposite effect. Fine-tuning Tg is a non-trivial task; as such,

NOCEA adopts a middle-ground stochastic approach with

variable Tg whose value for a given generalisation is drawn

from a normal distribution Tg = N(m, s) : (0 � Tg � 1),

where m = 0.65 and s = 0.1. Thereby, extreme values are not

completely avoided such that more search (generalisation)

combinations can be explored, yet they are not so common.

The second generalisation threshold, the Th, is discussed in

a subsequent paragraph entitled repairing.
� M
utation. The mutation rate, that is, the probability that a

newly created genome undergoes mutation, is set to 1.0. Each

rule bound has the same small probability 0.01 of undergoing

mutation. The type of mutation for the selected positions can

be either grow (Section 6.4.1) or seed (Section 6.4.2) with an

equal probability.
� R
epairing. The repairing rate, that is, the probability that a

newly created genome undergoes repairing, is set to 1.0. Each

candidate rule of an individual is fully repaired with

probability 1.0. The homogeneity operator (Section 6.6)

requires two input parameters, the sparsity (Ts) and

homogeneity (Th) threshold. Ts controls the minimum

percentage of total points that a feasible rule must cover

to be considered as a statistically significant pattern. For very

low dimensional datasets, e.g. d < 5, the default setting for

Ts = 0.5%, while for moderate-to-high dimensional datasets

Ts = 0.01%. The reason for selecting a lower Ts for the higher

dimensionality datasets is because, clusters tend to be less

populated as dimensionality increases. Perhaps the most

important parameter is Th, which controls the level of

homogeneity of the obtained rules. The experimental results

have shown that for low dimensional datasets a value of Th in

the range [0.4–0.5] provides similar results of high quality.

For higher dimensionality datasets, where clusters are

expected to be considerably sparser and more isolated from

one another, Th should be set to [0.3–0.4] to reduce the loss of

points in the boundaries of the clusters (Section 9.10.6). We

selected a higher value of Th for the low dimensional datasets

because as the dimensionality decreases clusters becomes

less isolated, therefore it is necessary to have a higher Th to

effectively discriminate clusters.
� R
eplacement. The replacement strategy prescribes how the

current population and the newly created offspring are

combined to create a new population of fixed size. NOCEA

implements a simple elite-preserving replacement, where the

best performing individual of the current population is

directly copied to the new population. NOCEA then finds the

best performing offspring to fill the remaining slots of the

new population. Elitism ensures that the statistics of the

population-best solutions do not degrade with generations.
� S
ubspace clustering. The subspace clustering threshold Tr

(Section 7.1) determines when the length of a feature-gene is

large enough, compared to the spread of points along the

corresponding dimension, to be deemed as irrelevant to

clustering. Notice that the value of Tr has no impact on the
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Table 1

Default parameter settings in NOCEA

Parameter name Value

Population size 50

Generations 300

Termination condition Number of generations

Mutation rate 1.0

Mutation probability 0.01

Grow/Seed mutation ratio 0.5

Recombination rate 0.25

Number of offspring 2

Generalisation rate 1.0

Generalisation period 1

Generalisation probability 0.05

Repairing rate 1.0

Repairing period 1

Selection strategy Tournament selection (size = 4)

Initialisation One random rule

Replacement strategy Elitist (elite size = 1)

Sparsity threshold (Ts) 0.5% when d < 5, 0.1% otherwise

Homogeneity threshold (Th) 0.3

Subspace threshold (Tr) 0.9

Generalisation threshold (Tg) N(0.65, 0.1)

Clustering threshold (Tc) 0.2
evolutionary search itself, but it does influences the quality of

the clustering results returned to the user. This is because

subspace clustering, a post-processing simplification stage,

simply interprets the discovered knowledge without influen-

cing its formation. The default value of Tr is 0.9.
� C
luster formation. The algorithm that groups adjacent rules

into clusters (Section 7.2) requires two input parameters: the

standard density threshold Th (see paragraph entitled

‘‘repairing’’ above) and Tc. From a cluster formation point

of view, Th controls the maximum allowable variance in the

density of points along the pathway defined by the rules that

constitute the body of an arbitrary-shaped cluster. Tc specifies

when two adjacent rules have enough touch to be members of

the same cluster. In all the experiments reported throughout

the paper, Tc was set to 0.2. Similar to Tr, Tc does not influence

the evolutionary search. Finally, determining an appropriate

setting for Tc is an application dependent task.

Table 1 summarises the default settings for both EA- and

clustering-related parameters used by NOCEA.

9. Evaluation

This section presents a real-world application of NOCEA

in the earthquake domain. The analysis primarily focuses on

clustering earthquakes associated with the highly-active crustal

deformation along the African–Eurasian–Arabian collision

boundary. Initially, a brief introduction regarding the geo-

tectonics and seismicity associated with this region, is provided.

The section continues with a detailed description of the dataset

itself along with a preliminary human-eye clustering. Next, the

discovered knowledge, e.g. rules and clusters, is listed, and

accompanied by various statistics. The following sections verify

the theoretical properties of NOCEA, e.g. discovery of clusters
with arbitrary data coverage, density, geometry, orientation,

effective subspace clustering, in a challenging real-world case

study, using representative pieces of knowledge discovered from

the earthquake dataset. Finally, the section concludes with an

extensive efficiency and effectiveness performance evaluation

on a combination of massive synthetic and real-world datasets.

The scalability results show an impressive near-linear depen-

dency on the database size, data, and cluster dimensionality, as

well as potential for high levels of task parallelism, reaching a

speed up of 13.8 on 16 processors.

9.1. How are earthquakes generated-measured?

One of the most frightening and destructive phenomena of

nature is a severe earthquake and its terrible after-effects. The

earth is formed of several layers that have very different

physical and chemical properties [1,2]. The outer layer, which

averages about 70 km in thickness, consists of about a dozen

large, irregularly shaped tectonic plates that slide over, under,

and past each other on top of the partly molten inner layer.

Most of the earth’s seismic activity, e.g. volcanoes and

earthquakes, occurs at the boundaries where the plates

collide. The plates are made of rock and drift all over the

globe, they move both horizontally and vertically. A fault is a

fracture or zone of fractures in the earth’s crust along which

two blocks of the crust have slipped with respect to each other.

Faults allow the blocks to move relative to each other. This

movement may occur rapidly, in the form of an earthquake—

or may occur slowly, in the form of creep. An earthquake is

caused by the sudden slip of a fault. Stresses in the earth’s

outer layer push the sides of the fault together. Stress builds up

and the rock slips suddenly, releasing energy in waves that

travel through the earth’s crust and cause the shaking that we

feel during an earthquake.

The Gutenberg–Richter (G–R) power law relation for the

frequency of occurrence of earthquakes is a well-known trait of

the dynamics of seismicity, suggesting that most seismically

active regions exhibit populations of small-to-moderate earth-

quakes that obey the G–R logarithmic relationship:

logðnÞ ¼ a� bM (17)

where n is the number of earthquakes with seismic energy radi-

ated greater than M (magnitude), while a and b are constants.

9.2. The ANSS earthquake catalogue

9.2.1. African–Eurasian–Arabian plate boundary

The Aegean sea and the surrounding area, which extends

from the Italian peninsula, in the west (78W), to the Karviola

junction of the North (NAF) and East (EAF) Anatolian Faults in

east Turkey (418E), experience a rapid and intense crustal

deformation [37,43]. The deformation and the seismic

excitation along this region is mainly attributed to the

northward motion of the African and Arabian tectonic plates

relative to the Eurasian. The solid bold line in Fig. 16 delineates

the Africa–Eurasia–Arabia plate collision zone.
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Fig. 16. Africa–Eurasia–Arabia plate boundary [37].
9.2.2. ANSS dataset description

The goal of earthquake prediction is to develop relatively

reliable probabilistic estimates of potentially damaging earth-

quakes early enough to minimise loss of life and property.

Scientists estimate earthquake probabilities in two ways: by

studying the history of past earthquakes in a specific area and

the rate at which strain accumulates in the rocks [1,2]. Our goal

is to mine a dataset containing seismic related parameters for

possible correlations between earthquakes, which occurred

along the highly-active African–Eurasian–Arabian collision

zone. In particular, NOCEA seeks clusters that represent

regions with relatively homogeneous behaviour as far as the

seismic activity is concerned. Our intention is not to interpret

the seismicity of a region deeply, but rather to provide a

comprehensive summary and visualisation of earthquake

activity to aid seismologists in gaining a deeper insight into

the phenomenon, and allow them to improve the reliability of

their estimates.

The American Advanced National Seismic System (ANSS)

(http://www.anss.org/) donated the earthquake dataset that is

used in the paper. It contains 34,593 seismic events recorded

from 07/01/1961 to 19/04/2004. The origin of an earthquake is

specified by three spatial dimensions, that is, focal depth,

longitude–latitude epicenter coordinates, one temporal dimen-

sion (time), and finally by the amount of energy (magnitude)

that was released. Table 2 summarises the characteristics of

the dataset. NOCEA operates on a [time � longitude �
latitude � depth � magnitude] axis-aligned rectangular grid

with resolution [l25 days � 0.18 � 0.18 � l.0 km � 0.1 Ric].

The third column represents the bin width computed by the

TSQ quantisation algorithm (Section 5) while the last column

shows the precision of the recorded measurements.

9.2.3. Visual clustering of the ANSS dataset

This section provides a preliminary human-eye clustering of

the ANSS dataset.
Table 2

Various characteristics of the ANSS earthquake dataset

Size = 34,593 Domain #Bins Bin width Precision

Time (days) 01/1961–04/2004 126 125 1

Longitude (8E) 7–45 381 0.1 0.1

Latitude (8N) 32–47 150 0.1 0.1

Depth (km) 0–500 488 1.0 1.0

Magnitude (Richter) 3.0–7.7 47 0.1 0.1
The ANSS earthquake dataset has distinct spatio-temporal-

magnitude cluster structures mainly due to the geological

heterogeneity of the spatial dataspace and the discontinuous

nature of the faulting zones [37]. However, as shown in Section

9.3, not all complex structures in a multidimensional space can

be always extracted by a non fully-dimensional projective

clustering method. Fig. 20 displays the spatial [longitude

� latitude � depth] distribution of earthquakes. Fig. 19(a–e)

depict the uni-dimensional frequency histograms for all

dimensions, while Figs. 17 and 18 illustrate some pair-wise
Fig. 17. Pair-wise projections of seismic events (A). (a) Longitude � depth; (b)

latitude � depth; (c) longitude � latitude.

mailto:ceeis@macs.hw.ac.uk
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Fig. 18. Pair-wise projections of seismic events (B). (a) Time � longitute; (b) time � latitude; (c) time � magnitude; (d) time � depth; (e) longitude � magnitude;

(f) latitude � magnitude.
scatter diagrams. The visual inspection of these figures reveals

some distinct trends of seismic activity.
� A
s expected, most earthquakes occur along the collision

boundaries between the tectonic plates (Fig. 17(c)), particu-

larly in the Aegean Sea, forming variable-length slices along

the depth axis as clearly shown in Figs. 20 and 17(a and b).

These events are located mainly close to the surface 0–50 km.

Another interesting observation that can be easily discerned

from Figs. 19(e) and 17(a and b) is that the vast majority of

seismic activity is confined along three shallow, remarkably

thin (l km), horizontal slices located at focal depths 2–3 km,

9–10 km, and 32–33 km that are highlighted with purple,

dark-blue, and cyan colour in Fig. 20, respectively. These

active regions are separated from one another by significantly

less active slices of varying thickness.
� A
s expected, the overall seismic activity is not evenly

distributed along the magnitude axis (Fig. 19(d)). This finding

obeys the G–R power-law (see Section 9.1), stating that
stresses built up in the earth’s outer layer are usually relaxed via

a few large-scale earthquakes that are accompanied by multi-

tudinous low-to-moderate fore- and after-shock events.
� T
he highly-negative skew in the time–frequency histogram

(Fig. 19(a)) is attributed to the incompleteness of the

instrument measurements in the past, and does not reflect a

chronologically increasing seismic excitation.
9.3. Evolutionary-based clustering of ANSS

This section presents the knowledge discovered by NOCEA

for the ANSS dataset, as well as the configuration settings for

both EA- and clustering-related parameters. It also gives a

classification of the rules to facilitate analysis of the results.

9.3.1. Analysing the ANSS dataset

NOCEA discovered 237 highly-homogeneous hyper-rec-

tangular rules forming 121 distinct clusters over the course of

300 generations. Some clusters have quite complex spatio-
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Fig. 19. Uni-dimensional frequency histograms for the earthquake dataset.
temporal structure probably due to the geological properties of

the region and the dynamics of earthquakes. The rules of the

fittest individual cover approximately 77% of the total points

(Ntotal = 34,593), while the remaining points (23%) were

considered non-uniform background noise by NOCEA. Fig. 21

depicts the performance of the best and worst individuals, as

well as the mean fitness of the population members over the

generations. Most rules were detected early in the evolutionary

search, while in the rest of the time NOCEA was performing

local fine-tuning. The complete set of cluster descriptors is

given in Appendix B.

Not surprisingly, most of the discovered clusters, especially

those with arbitrary shapes, are not distinguishable in most

non-fully-dimensional projections (Section 9.2.3), mainly

due to the large degree of overlapping among the points of

these clusters in lower dimensional projections. NOCEA is
able to extract these complex structures as it always operates

on the full-dimensional space, which guards against artifacts

formed by the joint projection of multiple clusters in lower

dimensional spaces.

9.3.2. Parameter settings

Table 3 summarises the configuration settings for both the

EA- and clustering-related parameters used by NOCEA to

mine the ANSS dataset. All experiments reported in Section 9

have been performed on a Linux Fedora Core 2 workstation

with an Intel(R) Xeon(TM) CPU 3.06 GHz processor, 512KB

cache, 2GB of DRAM, and 9GB of IDE disk.

NOCEA uses typical EA parameter settings. In particular,

the rates at which mutation and recombination are applied

were set to 1.0 and 0.25, respectively. Each boundary of every

rule undergoes either grow or seed mutation at random in
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Fig. 20. Spatial [longitude � latitude � depth] distribution.

Table 3

Parameter settings for the ANSS earthquake dataset

Parameter name Value

Population size 50

Generations 300

Termination condition Number of generations

Mutation rate 1.0

Mutation probability 0.01

Grow/Seed mutation ratio 0.5

Recombination rate 0.25

Number of offspring 2

Generalisation rate 1.0

Generalisation period 1

Generalisation probability 0.05

Repairing rate 1.0

Repairing period 1

Selection strategy Tournament selection (size = 4)

Initialisation A randomly generated rule

Replacement strategy Elitist (elite size = 1)

Sparsity threshold (Ts) 0.1% (0.025% high-magnitude rules)

Homogeneity threshold (Th) 0.3

Subspace clus. threshold (Tr) 0.9

Generalisation threshold (Tg) N(0.65, 0.1)

Clustering threshold (Tc) 0.2
every dimension with a small probability of 0.01. The size of

tournament in the tournament selection procedure controlling

how quickly the population is taken over by the dominant

individuals, is set to 4. To ensure that the performance statistics

of the population never degrades over generations, NOCEA

adopts an elitist replacement strategy where the best individual

of the current generation is directly copied into the next

generation without undergoing any genetic operation. The

population size was set to 50 individuals. NOCEA terminates

after a pre-specified number of 300 generations. Each

population member is initialised with a single d-dimensional

rule, which covers fully the domains in d � 1 dimensions while

extending to half of the domain in one, randomly chosen

dimension. This is done to increase the possibility of

generating non-sparse rules.

As far as the clustering-related parameters of NOCEA are

concerned, the following standard configuration (Section 8) was

used in our experiments: Ts = 0.1%, Th = 0.3, Tg = N(0.65, 0.1),

Tc = 0.2, and Tr = 0.9. In the case of the earthquake database
Fig. 21. Fitness diagram for the best–mean–worst solution.
and its extensions (see Section 9.10.1) the sparse threshold Ts

was deliberately set to a lower value 0.025% for high-magnitude

rules, i.e. rules with magnitude exceeding 5.0 on the Richter

scale, utilising a priori knowledge from the Gutenberg–Richter

(G–R) power-law relation (Section 9.1). In short, it is widely

believed that populations of small-to-moderate earthquakes

obey the G–R law defined as: log(n) = a � bM, where n is the

number of events with magnitude greater than M, while a and

b are constants. Therefore, given the sparsity of the feature space

in the high-magnitude neighbourhoods it is reasonable to

introduce an adaptive sparsity threshold.

9.3.3. A classification of the clustering rules

To facilitate analysis of the results we introduce the

following classification for the discovered rules:
� A
S-rule. An aftershock rule represents a confined spatio-

temporal region, which is characterised by a highly con-

centrated patch of low magnitude events, following a closely

adjacent, in both time and space, strong earthquake.
� R
-rule. An R-rule corresponds to a regular trend of seismic

activity occurring within a specific space-magnitude interval.

An R-rule can be viewed as a quasi-homogeneous cloud of

narrow range magnitude events with wide spreading in time.

Depending on the spatial window, the density of an R-rule

varies considerably.
� H
P-rule. Similarly to an AS-Rule, a historically precursory

rule HP-Rule, is a highly compact patch of low-magnitude

events preceding a closely located strong earthquake.
� P
-rule. Often, prior to a strong earthquake, the seismic activity

in a medium magnitude range intensifies and becomes

more clustered in space and time [36]. Although the generation

of an earthquake is not always localised around its source,

intense seismic activity that has not been associated with a
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Fig. 22. Arbitrary density, size, and geometry rules in [longitude � latitude � depth].
strong earthquake may be potentially a precursory signal for

future strong events, especially in regions where such patterns

of behaviour have been historically observed.
� U
-rule. A rule with unknown type represents a homogeneous

cloud of events not fitting any of the previous types.
9.4. Arbitrary density rules

NOCEA has the remarkable property of being able to

discover rules at any density level, provided of course that each

feasible rule contains a minimum number of points, i.e. the

sparsity level NTs.

Typically, AS-rules accompanying strong earthquakes are

by definition the most dense, since they are very narrowly

bounded in both space and time. Some representative examples

of relatively dense rules are R97 and R56 with density 2.16
Fig. 23. Arbitrary density, size, and geometr
and 0.225, respectively. The density of rules is measured in

units of number of points per grid cell. R97 (3.0 � magni-

tude � 3.1) and R56 (4.0 � magnitude � 4.2) each cover 54

shallow aftershocks that occurred at focal depths 5 and 10 km,

respectively, following the 13/05/1995 destructive earthquake

in Kozani–Greece with magnitude 6.6 [46]. R218, on the other

hand, is one of the sparser rules with density 1.51 � 10�7, that

is nearly six orders of magnitude smaller than R97. R218, an

R-rule type, covers a major part of the regular large-magnitude

seismicity (5.2 � magnitude � 6.2) in the EAF–Karviola

junction, generated within a specific depth interval (4–

37 km) from the beginning of the catalogue. The 3-D pro-

jections ofR97;R56, andR218 shown in Figs. 22–24, provide a

clear sense of how large is the compactness between AS- and

R-rules with large spatial window. For illustrative purposes,

both the borders and the data points covered by a given rule
y rules in [longitude � latitude � time].
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Fig. 24. Arbitrary density, size, and geometry rules in [longitude � latitude � magnitude].

Fig. 25. Frequency histogram for the data coverage of rules.
are visualised with the same colour, which is different from

other rules.

9.5. Arbitrary geometry and size rules

The ability to self-adjust well to the geometry and size of

non-spherical clusters, is one of NOCEAs most appealing

properties for real-world clustering. In fact, the number and

combination of dimensions where clustering rules may exhibit

large variances in size and geometry is arbitrary, and more

importantly is directly inherited from the underlying data

distribution. To elaborate on this issue consider some highly-

dense AS-rules such as R97, R56, and R79, as well as some

moderate-to-low density rules, e.g.R218,R95, andR230. Rules

R95, R56, and R218 are briefly discussed in Section 9.4. R79

captures an uncommon pattern of aftershock activity that is

not confined around the hypocenter of the mainshock. In short,

R79 covers 107 events of the intense aftershock activity

associated with the 26/06/2001 strong earthquake in Skyros

Island, N. Aegean Sea, Greece, with magnitude 6.5 [45].

Unlike typical AS-rules, e.g. R97 and R56, R79 is remarkably

elongated along the depth axis with a span of over 42 km (0–

42 km), as shown in Fig. 22. As mentioned earlier, significant

differences in size and geometry are not limited only to a

single dimension. For instance, considerR218,R95, andR230.

R230 delineates a time consistent (R-rule) seismogenic source

of moderate magnitude (4.8 � magnitude � 5.2) extending to

shallow depths (5 � depth � 33 km) through coastal north-

eastern Libya and the Mediterranean Sea south of Crete and

can be viewed as an extension of the Hellenic Arc to the south.

R95 covers mainland Tunisia as well as the sea between

Tunisia and Sicily. This region is seismically active since

directly beneath it lies the Africa–Eurasia plate boundary

[43]. The geometry of R95 is characterised by (a) thin

concentration (9 � depth � 10 km) along the depth axis, (b)

widespread magnitude interval (3.0 � magnitude � 5.2), and

(c) shorter time span of approximately 20 years, compared
toR230 andR218.R230 is geometrically (a) very confined along

two dimensions, i.e. latitude and magnitude, (b) widespread in

time and depth, and (c) average range spreading along longitude.

Finally, R218 is a ‘‘bulky’’ rule, i.e. it has a relatively large

volume, though its magnitude interval is not extremely wide-

spread. Figs. 22–24 shows 3-D projections of these rules in

spatial [longitude � latitude � depth], spatial-temporal [long-

itude � latitude � time] and spatial-magnitude [longitude �
latitude � magnitude] subspaces, illustrating NOCEAs ability

to discover rules with wide diversity in size and geometry.

9.6. Arbitrary data coverage rules

Fig. 25 plots a classical frequency histogram [51,53,56] for

the data coverage of rules, where the dissection, i.e. allocation,

of observations (the data coverage values of the discovered

rules) into bins is based on a uniform step of 0.02%. The

histogram illustrates a number of interesting issues:
� T
he highly concentrated structure observed around the mode

value (approximately at 0.2%) is certainly not due to any
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preference bias, but it rather reflects NOCEAs intrinsic ability

to directly inherit the size-geometry of rules, and conse-

quently their point coverage, from the underlying data

distribution. In the ANSS example it is the complex nature of

earthquake dynamics along with the discontinuity of the

faulting zones that result in the formation of a multitude of

earthquake patches with tiny point size.
� C
learly, the histogram exhibits a highly positive skew,

verifying that NOCEA can discover rules with arbitrarily

wide variances in data coverage.
� F
inally, as is often the case, especially in real-world high-

dimensional clustering problems, some clusters may com-

prise a very small fraction, e.g. 0.2%, of the total points. The
ble B1

ustering rules for the ANSS earthquake dataset (A)

le Cluster Coverage Density Time

2 C2 993–2.87 7.4 � 10�3 30/06/1988–26/05/

11 C2 358–1.03 1.1 � 10–2 30/06/1988–26/05/

13 C2 233–0.67 1 � 10–2 29/11/1979–05/02/

18 C2 404–1.16 6.3 � 10–3 17/11/1978–27/09/

30 C2 228–0.65 7.2 � 10–3 09/01/1995–26/05/

50 C2 133–0.38 9.6 � 10–3 08/03/1989–07/12/

67 C2 115–0.33 6.8 � 10–3 06/05/1983–27/09/

85 C2 130–0.37 7.3 � 10–3 15/08/1992–09/01/

124 C2 51–0.14 8.9 � 10–3 14/11/1989–15/05/

154 C2 38–0.10 9 � 10–3 30/06/1988–27/09/

161 C2 41–0.11 1.1 � 10–2 03/11/1988–29/12/

191 C2 86–0.24 6.6 � 10–3 23/07/1990–26/05/

199 C2 49–0.14 1.4 � 10–2 30/06/1988–20/03/

215 C2 37–0.10 6.7 � 10–3 23/07/1990–07/12/

22 C17 565–1.63 9.4 � 10–4 26/07/1979–01/02/

26 C17 237–0.68 6.7 � 10–4 13/03/1978–01/02/

39 C17 151–0.43 4.4 � 10–4 16/10/1975–19/04/

44 C17 215–0.62 6.5 � 10–4 17/06/1998–22/11/

80 C17 103–0.29 6.5 � 10–4 11/02/1998–20/07/

125 C17 168–0.48 4.8 � 10–4 30/06/1988–05/03/

127 C17 83–0.23 6.1 � 10–4 26/07/1979–19/04/

157 C17 43–0.12 7.6 � 10–4 30/06/1988–26/05/

174 C17 47–0.13 4.7 � 10–4 13/03/1978–05/06/

178 C17 44–0.12 5.2 � 10–4 17/06/1998–05/03/

195 C17 36–0.10 6.9 � 10–4 26/07/1979–23/10/

236 C17 39–0.11 1 � 10–3 22/11/2001–19/04/

14 C12 642–1.85 1.5 � 10–4

21 C12 540–1.56 1.1 � 10–4 29/03/2002–19/04/

60 C12 83–0.23 1.2 � 10–4 06/05/1983–19/04/

62 C12 79–0.22 7.6 � 10–5 29/03/2002–19/04/

64 C12 80–0.23 7.4 � 10–5 09/10/1997–29/03/

75 C12 137–0.39 1.7 � 10–4 30/06/1988–17/06/

192 C12 36–0.10 1.7 � 10–4 25/08/1993–16/12/

210 C12 36–0.10 1.8 � 10–4 05/09/1971–06/08/

217 C12 37–0.10 1.8 � 10–4 17/06/1998–31/07/

15 C13 516–1.49 1 � 10–5

34 C13 208–0.60 8.6 � 10–6 12/01/1984–17/09/

41 C13 190–0.54 4.9 � 10–6

96 C13 59–0.17 1 � 10–5 08/10/1963–29/11/

102 C13 69–0.19 7.9 � 10–6

129 C13 53–0.15 5.9 � 10–6 07/12/1991–26/05/

142 C13 45–0.13 4.3 � 10–6 05/09/1971–11/02/

166 C13 36–0.10 7 � 10–6 07/10/1974–04/03/

184 C13 45–0.13 7.4 � 10–6 12/01/1984–19/04/

226 C13 10–0.02 4.3 � 10�6
analysis of the histogram suggests that NOCEA has the

ability to reveal such tiny structures, regardless of their

geometry and density.
9.7. Subspace clustering

The main goal of subspace clustering is to identify and retain

only relevant features (dimensions) of the clustering while

pruning away those where the points are very widespread.

NOCEA performed effective subspace clustering for the

ANSS earthquake dataset. More specifically, in Tables B1–

B4, empty fields in the antecedent part of the rules correspond

to irrelevant feature-genes that are detected by NOCEAs
Longitude Latitude Depth Magnitude

1996 19.2–30.7 39.3–41.0 9–10 3.0–3.3

1996 20.1–21.8 37.3–39.3 9–10 3.0–3.4

1986 21.6–23.6 38.0–39.6 9–10 3.0–3.4

1996 19.9–24.0 37.8–39.3 9–10 3.4–3.6

1996 26.3–30.7 36.3–39.3 9–10 3.0–3.6

1991 26.3–28.0 37.6–39.3 9–10 3.0–3.6

1996 20.0–20.8 37.9–38.8 9–10 3.6–4.2

1995 29.2–30.9 36.8–39.3 9–10 3.0–3.6

1995 22.7–24.5 41.0–43.0 9–10 3.0–3.1

1996 19.8–21.4 41.0–42.1 9–10 3.2–3.3

1993 20.5–21.8 36.9–37.3 9–10 3.1–3.6

1996 21.8–24.2 38.5–39.3 9–10 3.0–3.4

1990 22.3–23.9 38.1–39.2 9–10 3.0–3.4

1991 28.0–30.7 37.6–39.3 9–10 3.0–3.3

1997 12.4–19.8 41.5–46.8 9–10 3.0–3.3

1997 9.40–14.0 42.3–45.1 9–10 3.3–3.8

2004 15.7–21.6 43.1–43.6 9–10 3.3–4.7

2001 12.4–23.3 36.9–47.0 9–10 3.0–3.3

2001 18.7–32.0 39.0–41.0 3–9 3.2–3.3

2000 16.9–22.1 40.9–43.1 9–10 3.3–4.2

2004 8.90–11.9 44.9–47.0 9–10 3.0–3.3

1996 22.1–24.7 41.0–42.9 9–10 3.1–3.6

1997 10.4–14.0 45.6–46.6 9–10 3.3–3.8

2000 9.90–14.0 42.4–47.0 9–10 3.3–4.2

1987 17.4–19.8 41.8–43.1 9–10 3.3–4.0

2004 13.1–18.4 43.5–47.0 9–10 3.0–3.3

19.3–31.0 33.8–39.9 32–33 4.2–4.7

2004 20.3–28.0 34.3–37.7 5–33 3.0–4.1

2004 21.8–28.3 33.6–36.5 9–10 4.1–4.7

2004 19.2–28.2 37.7–39.1 10–33 3.6–4.2

2002 19.7–32.0 36.0–38.4 5–9 3.0–3.7

1998 22.7–33.1 34.0–39.5 32–33 3.0–3.5

2003 29.3–31.3 34.1–39.2 32–33 3.5–4.2

1980 22.8–30.2 37.9–39.6 32–33 3.6–4.2

2002 31.3–35.3 33.9–37.4 32–33 3.5–4.7

19.2–30.4 37.5–39.7 16–32 3.5–4.7

1995 8.50–21.7 40.9–45.2 10–24 3.3–4.2

17.6–31.6 39.9–40.9 16–36 3.6–4.7

1979 18.9–31.6 37.3–39.6 10–16 4.0–4.7

19.9–21.0 37.2–40.0 10–41 4.7–5.5

1996 20.2–30.9 33.8–37.5 10–32 3.9–4.7

1998 18.4–27.7 39.5–40.9 16–37 3.0–3.5

1977 18.1–31.4 37.2–40.9 1–16 3.0–4.0

2004 7.00–16.6 45.2–46.7 10–16 3.0–4.2

20.4–21.0 36.3–40.0 0–32 5.5–5.7
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Table B2

Clustering rules for the ANSS earthquake dataset (B)

Rule Cluster Coverage Density Time Longitude Latitude Depth Magnitude

R4 C4 567–1.63 1.7 � 10�3 15/07/1978–08/04/2003 20.8–28.0 37.9–39.5 9–10 3.7–4.1

R35 C4 199–0.57 3.2 � 10–3 09/12/1980–17/09/1995 19.7–21.6 37.2–37.9 9–10 3.6–4.7

R63 C4 87–0.25 2.9 � 10–3 26/02/1988–26/05/1996 26.3–28.1 34.8–35.8 9–10 3.4–4.1

R131 C4 45–0.13 2.2 � 10–3 26/02/1988–22/04/1993 26.3–28.0 36.3–37.9 9–10 3.6–4.1

R149 C4 37–0.10 2.4 � 10–3 29/11/1979–09/07/2000 20.1–20.8 38.8–39.7 9–10 3.6–4.0

R173 C4 61–0.17 2.4 � 10–3 26/02/1988–09/01/1995 27.3–28.8 35.8–37.5 9–10 3.1–3.6

R176 C4 49–0.14 1.6 � 10–3 23/03/1979–27/09/1996 20.2–20.6 37.9–39.8 9–10 4.3–5.1

R12 C11 372–1.07 7.9 � 10–4 05/02/1986–29/03/2002 21.8–28.3 33.7–35.9 32–33 3.5–4.2

R20 C11 401–1.15 6.4 � 10–4 01/06/1974–29/03/2002 20.0–22.7 35.9–39.5 32–33 3.2–4.0

R61 C11 82–0.23 4.3 � 10–4 10/01/1972–05/02/1986 21.1–28.4 33.8–35.9 32–33 3.9–4.2

R133 C11 86–0.24 4.2 � 10–4 16/01/1973–16/03/2001 22.7–29.3 35.9–39.7 32–33 3.5–3.6

R189 C11 38–0.10 1.1 � 10–3 29/08/1982–26/05/1996 26.8–28.1 35.9–37.0 32–33 3.6–4.2

R29 C22 229–0.66 1.2 � 10–3 04/03/1977–21/10/1998 19.7–25.9 39.7–40.9 9–10 3.6–4.0

R31 C22 287–0.82 6 � 10–4 03/11/1988–19/04/2004 28.0–31.7 35.8–41.5 9–10 3.6–4.1

R49 C22 119–0.34 1.1 � 10–3 09/12/1980–30/06/1988 19.0–25.7 39.6–41.5 9–10 3.0–3.4

R55 C22 73–0.21 9.6 � 10–4 07/10/1974–19/04/2004 22.1–28.0 39.5–41.0 9–10 4.0–4.1

R104 C22 72–0.20 1.2 � 10–3 26/07/1979–14/02/1987 18.0–21.7 39.5–43.1 9–10 4.0–4.2

R147 C22 38–0.10 7.6 � 10–4 13/03/1978–29/11/1979 22.3–31.2 38.4–41.2 9–10 3.0–3.4

R156 C22 103–0.29 1.4 � 10–3 04/03/1977–23/10/1987 19.5–24.1 39.3–41.8 9–10 3.4–3.6

R10 C10 447–1.29 9.3 � 10–6 23.6–28.4 34.1–35.7 33–79 3.5–4.7

R25 C10 228–0.65 1.4 � 10–5 14/06/1964–01/02/1997 19.8–23.6 34.8–39.8 38–60 4.3–4.7

R54 C10 127–0.36 7.9 � 10–6 09/05/1972–19/04/2004 26.4–31.8 35.7–36.4 33–79 3.7–4.7

R143 C10 51–0.14 1.2 � 10–5 12/09/1972–19/04/2004 22.3–23.6 34.8–36.1 33–79 3.6–4.2

R43 C30 400–1.15 2.4 � 10–6 21.0–31.2 33.8–41.1 4–39 4.7–5.2

R59 C30 79–0.22 3.1 � 10–6 04/06/1963–06/05/1983 21.9–29.0 33.8–36.5 3–32 3.9–4.7

R99 C30 75–0.21 3.2 � 10–6 21.4–41.7 41.1–46.6 32–33 3.0–4.9

R139 C30 105–0.30 4.5 � 10–6 18.3–31.9 36.5–41.2 3–9 4.2–4.7

R169 C30 47–0.13 5.5 � 10–6 15/02/1963–06/08/1980 39.6–45.1 37.9–39.9 33–52 4.4–5.2

R203 C30 49–0.14 6.7 � 10–6 31.2–45.1 34–41.1 32–33 4.7–5.2

R205 C30 41–0.11 4.5 � 10–6 24.9–30.9 36.4–37.4 33–43 3.5–4.7

R6 C6 787–2.27 1.8 � 10–2 17/06/1998–19/04/2004 20.2–22.3 37.0–39.0 4–5 3.0–3.6

R36 C25 263–0.76 1.6 � 10–3 16/03/2001–16/12/2003 23.3–24.7 38.4–39.0 0–41 3.0–3.6

R51 C25 115–0.33 1.5 � 10–3 27/09/1996–09/07/2000 24.7–32.3 36.5–41.2 9–10 3.4–3.6

R103 C25 95–0.27 1.2 � 10–3 11/02/1998–16/03/2001 22.3–30.7 37.2–39.0 4–5 3.0–3.6

R138 C25 44–0.12 1.8 � 10–3 09/07/2000–22/11/2001 24.7–28.4 38.1–40.8 9–10 3.0–3.6

R180 C25 43–0.12 2.9 � 10–3 09/10/1997–01/11/1999 27.0–30.1 39.0–41.0 3–7 3.0–3.1

R16 C14 461–1.33 6.2 � 10–5 09/09/1983–19/04/2004 32.3–45.1 35.8–43.3 9–10 3.4–4.7

R155 C14 40–0.11 1 � 10–4 20/03/1990–09/01/1995 28.3–37.5 33.2–35.8 9–10 3.0–4.2

R206 C14 37–0.10 9.6 � 10–5 09/01/1995–19/04/2004 33.5–39.9 36.1–41.7 9–10 3.0–3.4

R17 C15 386–1.11 1.8 � 10–4 08/07/1977–19/04/2004 22.4–32.3 36.5–41.2 9–10 4.1–4.7

R87 C15 68–0.19 2.9 � 10–4 27/09/1996–29/03/2002 19.9–28.0 33.4–37.9 9–10 3.7–4.1

R128 C15 38–0.10 2 � 10–4 09/07/2000–29/03/2002 23.4–27.6 34.7–36.1 10–32 3.5–3.8

R201 C15 44–0.12 1.9 � 10–4 06/05/1983–26/02/1988 18.1–29.5 34.8–37.2 9–10 3.5–4.1

R32 C23 407–1.17 2.6 � 10–4 22/11/2001–19/04/2004 19.2–26.8 39.0–40.6 0–31 3.0–3.6

R66 C23 75–0.21 1.9 � 10–4 29/03/2002–19/04/2004 25.2–27.6 37.8–39.0 0–38 3.0–3.6

R163 C23 38–0.10 3.5 � 10–4 11/02/1998–19/04/2004 20.1–22.7 37.7–39.8 31–42 3.0–3.1

R3 C3 302–0.87 3.6 � 10–3 23/10/1987–27/09/1996 19.2–29.3 39.3–40.9 9–10 3.4–3.6

R65 C3 98–0.28 4.7 � 10–3 20/06/1987–15/08/1992 24.2–26.3 38.2–39.3 9–10 3.0–3.6

R86 C3 62–0.17 3.6 � 10–3 05/02/1986–30/06/1988 20.8–24.2 37.8–39.6 9–10 3.0–3.4

R141 C3 37–0.10 3.7 � 10–3 09/12/1980–05/02/1986 23.6–24.8 38.2–39.6 9–10 3.0–3.4

R9 C9 396–1.14 3.7 � 10–5 29/11/1979–20/01/1996 19.6–28.3 37.8–40.5 10–16 3.0–4.6

R148 C9 50–0.14 1.8 � 10–5 19/09/1984–17/09/1995 20.2–26.8 37.9–39.5 16–32 3.0–3.5

R197 C9 44–0.12 2.2 � 10–5 05/02/1986–25/08/1993 11.5–23.6 40.5–44.7 10–16 3.0–3.3

R37 C26 230–0.66 2.4 � 10–5 17/06/1998–16/03/2001 22.7–34.1 33.5–41.4 10–37 3.0–3.5

R78 C26 90–0.26 1.3 � 10–5 23/03/1979–08/04/2003 8.70–21.4 40.9–45.6 32–33 3.0–4.7

R193 C26 46–0.13 2.1 � 10–5 17/06/1998–22/11/2001 19.4–22.7 35.4–42.9 10–32 3.1–3.5

R213 C26 50–0.14 2.1 � 10–5 22/11/2001–19/04/2004 7.00–24.1 40.6–45.2 10–21 3.0–3.4
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Rule Cluster Coverage Density Time Longitude Latitude Depth Magnitude

R5 C5 313–0.90 6.3 � 10–3 25/04/1982–08/04/2003 9.40–12.4 44.0–44.9 9–10 3.0–3.3

R105 C5 54–0.15 5.2 � 10–3 25/04/1982–19/04/2004 11.8–12.4 43.1–44.0 9–10 3.0–3.3

R1 C1 361–1.04 1.3 � 10–3 29/03/2002–19/04/2004 20.1–22.4 37.7–39.0 5–31 3.0–3.6

R19 C16 316–0.91 1.5 � 10–3 05/03/2000–19/04/2004 21.0–27.9 34.5–37.0 4–5 3.0–4.0

R159 C16 45–0.13 8.5 � 10–4 21/10/1998–05/03/2000 20.5–28.4 34.6–37.0 4–5 3.2–3.9

R134 C79 294–0.84 2.2 � 10–1 01/02/1997–17/06/1998 12.5–13.1 42.7–43.2 9–10 3.0–4.1

R136 C79 55–0.15 1.1 � 10–1 01/02/1997–17/06/1998 12.6–13.1 42.8–43.2 9–10 4.1–4.7

R0 C0 348–1.00 3.9 � 10–2 15/08/1992–09/01/1995 26.1–28.2 37.8–39.3 9–10 3.0–3.4

Table B3

Clustering rules for the ANSS earthquake dataset (C)

Rule Cluster Coverage Density Time Longitude Latitude Depth Magnitude

R27 C20 229–0.66 2.7 � 10�4 13/03/1978–19/04/2004 14.0–18.2 43.6–46.5 9–10 3.3–4.2

R53 C20 104–0.30 1.9 � 10�4 12/06/1975–01/02/1997 9.90–14.0 41.6–47.0 9–10 3.8–4.2

R33 C24 258–0.74 1.8 � 10�5 05/09/1971–19/04/2004 20.7–22.3 35.8–38.9 33–71 3.4–4.2

R113 C24 44–0.12 2 � 10�5 16/03/2001–19/04/2004 20.3–27.7 35.1–39.6 42–60 3.0–3.4

R42 C29 169–0.48 3.4 � 10�5 14/11/1989–06/09/1994 19.7–22.5 37.5–41.7 4–5 3.0–3.3

R111 C29 86–0.24 2.5 � 10�3 25/08/1993–20/01/1996 19.7–22.2 37.3–41.2 4–5 3.3–3.8

R188 C29 39–0.11 6.3 � 10�3 06/09/1994–20/01/1996 19.5–21.4 38.9–41.6 4–5 3.0–3.3

R46 C32 181–0.52 1.1 � 10�5 06/05/1983–19/04/2004 7.00–22.8 41.2–47.0 3–9 3.3–3.8

R93 C32 55–0.15 4.2 � 10�6 26/07/1979–19/04/2004 10.3–22.4 41.3–44.1 3–9 3.8–4.7

R200 C32 48–0.13 1.1 � 10�5 23/02/1999–16/03/2001 7.0–35.6 37.1–46.3 0–3 3.1–3.8

R8 C8 270–0.78 3.9 � 10�5 01/02/1997–01/11/1999 25.6–30.7 36.8–41.0 9–10 3.0–3.4

R24 C19 267–0.77 5.4 � 10�4 26/02/1988–27/09/1996 21.8–26.3 33.8–37.8 9–10 3.0–4.1

R7 C7 254–0.73 1.3 � 10�2 09/12/1980–20/06/1987 24.8–25.9 38.2–39.5 9–10 3.0–3.7

R77 C47 81–0.23 5.8 � 10�4 09/01/1995–27/09/1996 25.1–30.4 34.7–40.0 4–5 3.0–4.0

R82 C47 71–0.20 3.6 � 10�4 25/08/1993–19/04/2004 18.4–29.1 34.2–40.1 4–5 4.0–4.1

R151 C47 50–0.14 5.2 � 10�4 17/06/1998–04/12/2002 21.2–29.2 37.2–39.5 4–5 3.6–4.0

R202 C47 47–0.13 4.6 � 10�4 29/03/2002–19/04/2004 22.4–23.3 37.8–39.0 0–25 3.0–3.6

R83 C50 155–0.44 1.4 � 10�4 15/07/1978–31/07/2002 14.0–16.9 36.9–43.1 9–10 3.3–4.2

R84 C50 84–0.24 7.5 � 10�5 26/10/1976–01/02/1997 9.50–15.7 40.9–47.0 9–10 4.2–4.7

R68 C39 108–0.31 9.1 � 10�1 14/06/1964–12/01/1984 7.00–23.8 40.9–47.0 10–27 3.5–4.7

R100 C39 71–0.20 1.6 � 10�6 12/01/1984–20/01/1996 7.00–23.1 41.1–45.8 24–32 3.0–5.1

R144 C39 39–0.11 8.6 � 10�7 29/06/1965–01/11/1999 10.7–19.9 35.2–47.1 10–24 4.8–5.1

R229 C39 19–0.05 7.1 � 10�7 11.8–19.9 36.5–41.1 26–46 4.8–5.1

R40 C28 153–0.44 2.1 � 10�6 25/09/1973–19/04/2004 21.5–29.0 34.3–37.7 79–108 3.5–4.6

R114 C28 42–0.12 3 � 10�6 21.1–23.6 34.0–39.6 60–76 4.2–4.7

R212 C28 36–0.10 3.7 � 10�6 16/12/1969–19/04/2004 22.3–23.6 36.1–38.4 33–79 3.5–4.2

R74 C45 158–0.45 3.5 � 10�7 31.6–45.1 34.8–42.2 10–32 3.5–5.2

R218 C45 52–0.15 1.2 � 10�7 34.2–45.1 35.9–43.5 4–37 5.2–6.2

R38 C27 197–0.56 2.6 � 10�1 31/07/2002–16/12/2003 15.1–15.7 43.0–43.4 9–10 3.0–3.8

R45 C31 188–0.54 3 � 10�5 17/08/1981–09/01/1995 19.5–29.5 37.9–41.2 5–9 3.0–4.2

R23 C18 185–0.53 9.8 � 10�1 26.2–26.8 45.4–45.8 124–169 3.2–4.8

R52 C35 118–0.34 5.3 � 10�7 21.0–32.9 34.1–41.7 2–41 5.2–5.7

R219 C35 21–0.06 2.7 � 10�7 22.0–32.7 34.0–36.8 41–88 5.2–5.7

R228 C35 27–0.07 4.3 � 10�7 10.2–21.0 37.0–46.5 4–9 4.8–5.5

R233 C35 11–0.03 4.2 � 10�7 20.6–28.8 34.7–38.0 75–94 4.8–5.2

R47 C33 143–0.41 1.1 � 10�1 23/03/1979–26/07/1979 18.5–19.5 41.7–42.4 9–10 3.0–4.9

R132 C78 50–0.14 6.9�10�5 11/02/1998–19/04/2004 7.00–24.3 41.0–44.9 7–9 3.0–3.3

R137 C78 49–0.14 1.1 � 10�4 30/06/1988–20/07/2001 10.8–19.1 42.1–47.0 4–5 3.0–3.3
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R165 C78 35–0.10 1.7 � 10�4 20/07/2001–19/04/2004 9.00–23.5 40.6–45.1 3–7 3.2–3.3

R106 C61 85–0.24 7.4 � 10�3 15/08/1992–09/01/1995 26.6–29.2 37.7–39.8 4–5 3.0–3.3

R187 C61 36–0.10 5.5 � 10�3 22/04/1993–09/01/1995 29.2–30.6 38.1–41.2 4–5 3.0–3.3

R69 C40 111–0.32 6.8 � 10�5 20/02/1965–23/03/1979 9.20–21.4 40.9–45.0 32–33 3.9–4.7

R79 C48 107–0.30 4.1 � 10�2 20/07/2001–22/11/2001 24.0–24.5 39.0–39.2 0–42 3.0–3.6

R119 C71 64–0.18 1.3 � 10�3 25/04/1982–29/03/2002 7.50–8.90 43.2–45.2 9–10 3.0–3.3

R214 C71 36–0.10 6.6 � 10�4 23/10/1987–20/07/2001 7.00–8.60 43.6–45.3 9–10 3.3–3.8

R48 C34 98–0.28 1.6 � 10�5 14/02/1987–07/12/1991 22.5–30.0 33.8–37.5 12–32 3.9–4.7

R70 C41 97–0.28 4 � 10�1 01/01/1983–06/05/1983 19.6–20.2 37.9–38.4 9–10 3.9–4.7

R179 C98 41–0.11 2.4 � 10�6 08/07/1977–19/04/2004 15.9–17.3 37.1–40.3 10–39 3.0–4.7

R207 C98 45–0.13 5.1 � 10�6 12.1–15.9 37.4–38.5 0–42 4.3–4.7

R152 C85 38–0.10 1.2 � 10�3 06/08/1980–04/12/2002 10.0–11.8 43.1–44.0 9–10 3.0–3.3

R186 C85 44–0.12 1.5 � 10�3 05/06/1997–17/06/1998 9.80–14.0 43.2–47.0 9–10 3.3–3.9

R88 C51 77–0.22 1.1 01/10/1985–09/06/1986 19.8–20.1 42.1–42.5 9–10 3.0–3.3

R71 C42 76–0.21 2.1 � 10�2 06/09/1994–26/05/1996 20.1–22.5 37.9–38.9 4–5 3.0–3.3

R177 C97 45–0.13 1.6 � 10�7 19.9–33.9 37.4–41.5 2–33 5.7–6.6

R222 C97 17–0.04 1.1 � 10�7 12.5–21.4 41.5–47.0 4–33 5.7–6.2

R223 C97 11–0.03 1.9 � 10�7 20.8–29.2 33.8–37.4 24–32 5.7–6.2

R91 C54 71–0.20 2.5 � 10�5 26/07/1979–19/04/2004 8.60–22.3 41.1–46.8 9–10 4.7–5.2

R92 C55 71–0.20 5.9 � 10�1 14/11/1989–20/03/1990 27.0–27.3 35.9–36.3 9–10 3.1–4.1

R122 C74 71–0.20 1.7 � 10�1 30/06/1988–03/05/1994 21.8–22.3 38.0–38.5 9–10 3.0–3.1

R76 C46 70–0.20 2.7 � 10�4 09/01/1995–19/04/2004 30.7–33.5 33.5–42.0 9–10 3.0–3.4

R58 C38 69–0.19 4.1 � 10�6 14.6–15.7 38.5–40.0 258–326 3.5–4.8

R90 C53 69–0.19 2.9 � 10�4 08/03/1989–19/04/2004 7.00–10.8 43.4–47.0 3–7 3.0–3.1

R95 C57 68–0.19 1.5 � 10�5 17/05/1984–19/04/2004 7.00–15.9 32.8–36.9 9–10 3.0–5.2

R81 C49 67–0.19 1.8 � 10�4 17/06/1998–20/07/2001 18.4–34.0 39.0–41.2 3–9 3.4–3.6
post-processing simplification algorithm of Section 7.1. It

can be easily discerned that the vast majority of rules are

embedded in the full 5-D space, with few exceptions involving

solely the temporal dimension. This finding is not surprising

for two reasons:
� D
ue to the discontinuous nature of the faulting zones in our

study [43], strain (source of earthquakes) accumulates at

different rates at different spatial neighbourhoods. Thereby,

there are no rules with adequately large spatial window,

which, in turn, does not permit dropping any spatial condition

in the antecedent part of rules.
� D
ue to the logarithmic nature of the G–R power law,

clustering rules are always bounded in relatively small

intervals along the magnitude axis.

The remainder of this section discusses the interpretation of

the presence of irrelevant features in the ANSS dataset. Fig. 26

depicts the projection of six rules, namely,R218,R97,R220,R221,

R95, and R169, in the 3-D [longitude � latitude � time]

subspace. These rules are mainly characterised by their varying

time window (interval), and are being deliberately chosen to

explain the meaning of subspace clustering from an earthquake
analysis perspective. Clearly, an R-rule such as R218;R220

(Vrancea–Romania) or R221 (Kos Island, Greece), delineates a

consistent trait of seismic activity with specific spatio-magnitude

behaviour over time. Obviously, the more confined the spatio-

magnitude window of an R-rule, the more precise the prediction

about future earthquakes due to the given rule is. From an

earthquake prediction point of view, the average value of the time

frequency histogram of a rule comprising an irrelevant time-gene

can be used to determine the recurrence period of earthquakes

with specific magnitude occurring within the spatial region that is

fully specified by the antecedent part of that rule. For instance,

given thatR218 covers 52 events from 1961 to 2004, and its land

surface is approximately 1,022,084 km2, the repetition time of

relatively shallow depth (4–37 km) earthquakes in this region

having magnitude in the range [5.2–6.5] is at least ð2004�½
1961Þ=52� 1; 022; 084=ð100� 100Þ½ � 	 84:5 years per 100 km

� 100 km of land surface. In contrast, AS-rules, e.g.R97 are of

limited usefulness for long-term earthquake prediction purposes

because of their localised nature and short lifetime.

Between the two extremes, AS- and R-rules, lie inter-

mediate-duration U-rules. Depending on the period(s) of

quiescence of U-rules one can extract different types of seismic

patterns. For instance, considerR95 andR169, two U-rules with
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Table B4

Clustering rules for the ANSS earthquake dataset (D)

Rule Cluster Coverage Density Time Longitude Latitude Depth Magnitude

R107 C62 63–0.18 1.2 � 10�6 07/01/1961–15/08/1992 19.9–30.9 34.3–37.9 41–71 4.7–5.2

R108 C63 63–0.18 5.8 � 10�3 31/07/2002–19/04/2004 20.2–21.3 37.5–38.9 2–4 3.0–3.7

R98 C59 62–0.17 1.6 � 10�1 23/07/1990–07/12/1991 29.3–29.7 36.8–37.2 9–10 3.0–3.6

R101 C60 62–0.17 3.4 � 10�2 26/02/1988–06/09/1994 20.4–21.6 37.4–37.8 9–10 3.4–3.6

R118 C70 62–0.17 1.8 � 10�2 30/06/1988–20/01/1996 19.8–21.1 41.0–42.2 9–10 3.0–3.1

R89 C52 61–0.17 8.5 � 10�4 22/11/2001–19/04/2004 10.8–16.4 40.3–44.9 3–7 3.0–3.1

R120 C72 61–0.17 2.3 � 10�5 26/11/1967–27/09/1996 31.3–37.1 33.6–39.0 32–33 3.7–4.7

R112 C66 59–0.17 3 � 10�1 27/09/1996–01/02/1997 32.0–32.5 34.2–34.7 32–33 3.9–4.7

R194 C104 57–0.16 1.9 � 10�3 01/06/1974–09/09/1983 19.4–22.8 37.2–38.8 32–33 4.0–4.2

R135 C80 56–0.15 1.2 � 10�1 03/11/1988–01/02/1997 21.8–22.3 38.1–38.5 9–10 3.2–3.3

R56 C36 54–0.15 2.2 � 10�1 15/05/1995–20/01/1996 21.4–22.0 39.8–40.3 9–10 4.0–4.2

R94 C56 54–0.15 1.1 06/09/1994–09/01/1995 28.8–29.0 36.7–37.1 9–10 3.0–3.6

R97 C58 54–0.15 2.2 15/05/1995–17/09/1995 21.4–21.9 39.8–40.3 4–5 3.0–3.1

R115 C67 54–0.15 3 � 10�5 07/01/1961–07/12/1991 19.4–23.7 37.3–39.6 33–38 4.3–4.7

R57 C37 53–0.15 1.3 � 10�1 06/09/1994–20/01/1996 21.4–21.9 39.8–40.3 9–10 4.3–4.7

R146 C83 53–0.15 2.5 � 10�2 16/03/2001–22/11/2001 25.5–25.8 38.3–38.7 25–40 3.2–3.8

R109 C64 52–0.15 3.4 � 10�2 18/02/1976–26/10/1976 12.8–13.4 46.0–46.6 32–33 3.0–51

R126 C76 51–0.14 1.4 � 10�2 17/06/1998–19/04/2004 20.2–21.2 37.0–39.2 4–5 3.7–3.8

R170 C93 51–0.14 1.5 � 10�4 25/04/1982–22/11/2001 7.00–11.5 43.9–45.0 10–14 3.0–3.3

R150 C84 48–0.13 7.6 � 10�7 21.5–26.6 35.1–38.4 108–137 3.4–4.6

R168 C92 48–0.13 2.2 � 10�3 22/11/2001–12/08/2003 19.2–22.2 40.6–43.0 9–10 3.0–3.6

R209 C109 47–0.13 2.7 � 10�4 16/10/1975–19/04/2004 19.5–21.0 39.8–42.6 9–10 4.2–4.7

R130 C77 46–0.13 5.7 � 10�5 06/05/1983–19/04/2004 26.4–27.1 36.2–36.7 137–164 3.4–4.8

R140 C81 45–0.13 1.2 � 10�4 08/03/1989–09/01/1995 22.2–30.8 34.7–38.4 4–5 3.3–4.0

R162 C89 45–0.13 1.9 � 10�6 14/04/1981–19/04/2004 28.4–34.5 34.1–35.7 33–74 3.7–4.6

R164 C90 45–0.13 1.6 � 10�5 06/11/1977–19/04/2004 31.2–45.1 36.9–42.0 9–10 4.7–5.2

R204 C107 36–0.10 1.4 � 10�6 28/12/1970–19/04/2004 15.3–16.0 38.2–39.3 82–258 3.0–5.0

R227 C107 9–0.02 7.9 � 10�7 14.6–15.8 38.2–40.2 233–295 5.0–5.7

R73 C44 44–0.12 4.4 � 10�5 30/06/1988–19/04/2004 41.9–45.1 34.7–44.4 32–33 3.5–4.2

R121 C73 44–0.12 2.8 15/05/1995–17/09/1995 21.9–22.3 38.1–38.5 9–10 3.0–3.1

R196 C105 44–0.12 1.1 � 10�1 05/06/1997–21/10/1998 20.5–21.3 37.0–37.6 32–33 4.0–4.2

R198 C106 44–0.12 2.5 � 10�3 26/01/1974–25/04/1982 21.1–25.6 37.9–39.5 32–33 3.0–3.1

R123 C75 44–0.12 4.2 08/03/1989–14/11/1989 23.3–23.8 39.2–39. 3 9–10 3.0–3.1

R167 C91 44–0.12 3.3 � 10�1 05/03/2000–09/07/2000 11.7–12.1 44.1–44. 5 9–10 3.3–4.1

R183 C101 42–0.12 6 � 10�5 17/06/1998–19/04/2004 7.00–24.1 40.6–46.6 0–3 3.0–3.1

R117 C69 42–0.12 1 06/05/1983–09/09/1983 24.6–25.1 39.9–40. 3 9–10 3.4–3.6

R145 C82 42–0.12 4 � 10�7 06/07/1962–26/11/1990 11.0–21.0 40.0–47. 0 11–33 5.1–5.7

R158 C87 40–0.11 3.8 � 10�5 01/01/1983–19/04/2004 26.4–26.9 45.4–45. 9 79–122 3.2–4.8

R116 C68 40–0.11 3.2 � 10�1 26/05/1996–27/09/1996 27.0–27.5 35.9–36. 3 32–33 3.6–4.2

R160 C88 40–0.11 1.1 � 10�3 22/04/1993–09/01/1995 22.5–26.6 37.7–43. 6 4–5 3.0–3.3

R175 C96 39–0.11 3.8 � 10�6 19.3–24.9 38.9–39. 8 33–60 3.7–4.3

R171 C94 39–0.11 1.6 31/07/2002–04/12/2002 13.5–13.9 38.3–38. 5 4–5 3.0–3.3

R172 C95 39–0.11 1.2 � 10�3 29/03/2002–19/04/2004 21.3–22.4 36.4–39. 0 1–4 3.0–3.6

R185 C102 38–0.10 9.7 � 10�4 12/07/1989–25/08/1993 19.9–21.2 37.0–41. 2 4–5 3.3–3.9

R153 C86 38–0.10 9.2 � 10�7 23/02/1964–06/08/1980 9.70–22.0 40.9–47.0 33–49 4.0–4.7

R181 C99 38–0.10 2.2 � 10�1 09/12/1980–14/04/1981 22.8–23.5 37.9–38. 3 32–33 3.6–4.2

R28 C21 37–0.10 1.9 � 10�4 20/06/1987–19/04/2004 19.9–21.7 43.6–46. 0 9–10 3.3–4.2

R182 C100 37–0.10 1.1 � 10�6 18.5–27.3 39.8–40. 5 37–64 3.0–4.7

R190 C103 36–0.10 1 � 10�7 14/04/1981–19/04/2004 7.9–32.4 41.4–46.6 33–53 3.0–5.1

R208 C108 36–0.10 1 � 10�2 17/06/1998–22/11/2001 19.6–23.6 39.8–40.7 4–5 3.0–3.1

R110 C65 36–0.10 3.3 � 10�2 01/01/1983–09/10/1997 7.00–7.50 44.2–44.7 9–10 3.0–3.1

R211 C110 36–0.10 7.6 � 10�4 27/09/1996–19/04/2004 20.0–21.4 36.8–39.3 9–10 4.1–4.7

R216 C111 35–0.10 3.1 � 10�3 17/09/1995–29/03/2002 21.3–22.4 35.9–38.6 32–33 4.0–4.2

R224 C114 35–0.10 2 � 10�5 15/02/1963–14/04/1981 8.00–21.4 42.4–45.2 31–34 4.8–5.1

R220 C112 35–0.10 1.2 � 10�5 26.1–26.8 45.4–45.9 105–172 4.8–5.5

R232 C118 35–0.10 1.9 � 10�7 07/01/1961–25/08/1993 30.9–45.1 33.3–37.9 39–70 4.8–5.2

R234 C119 24–0.06 8.3 � 10�5 18/02/1976–26/07/1979 9.30–22.5 41.1–47.0 9–10 4.9–5.1

R235 C120 15–0.04 5.4 � 10�2 29/08/1982–12/01/1984 19.9–20.2 37.9–38.4 9–10 4.8–5.2

R225 C115 13–0.03 2 � 10�9 21.5–45.5 36.8–47.0 48–146 5.5–7.1

R221 C113 13–0.03 1.9 � 10�5 26.5–27.2 36.3–36.9 144–171 4.8–5.2

R230 C116 12–0.03 2.4 � 10�7 20.8–28.0 32.0–33.8 5–33 4.8–5.2

R231 C117 11–0.03 4.1 � 10�7 08/02/1975–19/04/2004 12.6–16.1 38.5–40.1 258–487 4.8–5.0
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Fig. 26. Example rules with and without irrelevant time-dimension projected in [longitude � latitude � time].
similar time span, but very different period of activity.R95 is a

currently active (17/05/1984 � time � 19/04/2004) seismo-

genic zone in mainland Tunisia as well as the sea between

Tunisia and Sicily. Regardless of the reasons for R95’s

quiescence from 1961 to 1984, e.g. catalogue incompleteness,

it has the potential to become an R-rule with a dropped time-

gene in the near future, provided of course that the seismic

activity in that region continues with the same rate. In contrast,

R169’s activity located in Karviola–Turkey ended in the early

eighties (15/02/1963 � time � 06/08/1980), and therefore the

seismic hazard due to R169 should be viewed only as a part of

the generalised seismic excitation that was observed in that

region during the 1960s and 1970s, e.g. Varto (1966), Bingol

(1971), Lice (1975), Caldiran-Muradiye (1977) [1].

But what is the role of generalisation (Section 6.3) and

histogram smoothing via KDE (Appendix A) in subspace

clustering? Following the discussion above, it is not difficult to

understand the merit of introducing smoothness to the

frequency histograms. More specifically, without smoothing,

the jagged histograms that correspond to non-relevant

dimensions of very low density rules, e.g. time-dimension in

R218;R220, orR221, will be split into multiple smaller segments

by the homogeneity operator, as described in Section 6.6.

Excessive fragmentation of low-density rules along irrelevant

dimensions has two serious drawbacks:
� F
ormation of spurious (sparse) rules that are subsequently

discarded.
� S
evere distortion of the elongated shape, which is a

prerequisite for declaring a dimension as irrelevant during

subspace clustering (Section 7.1).

Finally, generalisation also contributes to subspace cluster-

ing by building up as generic rules as possible, thus enabling

the formation of widespread genes when possible. For

instance, without generalisation, NOCEA would fail to

detect the regular seismic pattern demarcated by R218, if the
stochastic evolutionary search creates multiple rules inside

that region.

9.8. Arbitrary-shaped clusters

The complex nature of the intra-continental collision

process along with the geological heterogeneity of the earth’s

crustal outer layer results in the formation of complex spatio-

temporal-magnitude cluster structures in the ANSS dataset

[37]. It is essential to reveal these structures to gain a deeper

insight into these intrinsically complex phenomena. In

NOCEA, the body of an arbitrary-shaped cluster is approxi-

mated using a set of axis-parallel and disjoint rules forming a

relatively homogeneous spatio-temporal-magnitude pathway

(see Section 7.2). The density of points along the neighbour-

hoods that collectively define such a pathway exhibits only a

marginal variation.

It is evident from the cluster-descriptor Tables B1–B4 that

the ANSS earthquake dataset, as expected, comprises many

arbitrary-shaped clusters of varying numbers of rules, point

coverage, density, and geometry. Figs. 27–29 depicts seven

arbitrary-shaped clusters, namely, C2; C10; C11; C12; C14; C16;
and C17, in the 3-D projections [longitude � latitude � depth],

[longitude � latitude � time], and [longitude � latitude �
magnitude], respectively. Points belonging to the same cluster

are plotted with the same colour. One can easily observe the

wide diversity in the size and geometry of the non-convex

clusters. Notice that NOCEA found many other clusters with

far more complex shapes but they are harder to visualise.

Another interesting observation is that non-convex clusters

may diffuse (spread) inside the feature space in arbitrary

directions. Finally, there are different degrees of overlapping

among clusters in different subsets of dimensions at different data

neighbourhoods. Although there are subspaces, e.g. [long-

itude � latitude � time], and [longitude � latitude � magni-

magnitude], where clusters are becoming blurred, NOCEA

can easily distinguish them as it always operates in the full-
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Fig. 27. Arbitrary-shaped clusters projected in [longitude � latitude � depth].
dimensional space, which, in turn, guards against artifacts

formed in lower dimensional projections as in [5,41].

9.9. Interpreting an arbitrary-shaped cluster

The backbone of a non-convex cluster may be arbitrarily

complex as discussed in Section 9.8. Likewise, the subset of

dimensions and the data localities where the geometry of a

non-convex cluster fluctuates considerably, are also arbitrary.

It is worth noting that rules belonging to the same cluster may

also overlap and/or have very different densities in some

subspaces of the feature space F . In our earthquake clustering

context, the data pathway defined by the rules of an arbitrary-

shaped cluster reflects the spatio-temporal-magnitude evolu-

tion of seismic activity associated with the given cluster. For

instance, consider the cluster C4 whose body is made up of

seven rules, i.e.R4;R35;R63;R131;R149;R173; andR176. The
Fig. 28. Arbitrary-shaped clusters projec
epicenters of the earthquakes in C4 are widely distributed

along an arc extending from the Ionian Sea, in the west, to the

Taurides mountains–Turkey, in the east, through the central

Aegean, as shown in Fig. 30. Notably, C4’s geometry exhibits

no fluctuations along the third spatial dimension, i.e. depth,

since all the above rules are characterised by the same focal

depth (9–10 km). Fig. 31 clearly shows that the seismic

activity due to C4 does not belong to a distinct class of events,

but instead the range of magnitudes of the rules constituting

C4 differs considerably. Finally, significant temporal fluctua-

tions are only evident (Fig. 32) in the south-eastern part of the

cluster near Rhodes and the Taurides mountains on the south-

western coast of Turkey. Isolating complex patterns of seismic

activity, and presenting them as comprehensible summaries

in the form of DNF expressions, helps seismologists to better

understand the phenomenon. Finally, the extraction and

interpretation of potential causal relationship(s) between the
ted in [longitude � latitude � time].
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Fig. 29. Arbitrary-shaped clusters projected in [longitude � latitude � magnitude].
seismicity associated with the rules of C4 go beyond the scope

of the paper.

9.10. Effectiveness and efficiency evaluation

In this section we evaluate the efficiency and effectiveness of

NOCEA by conducting a variety of experiments using a

mixture of synthetic and real-world datasets. In particular, the

goals of the experiments are to assess:
� E
fficiency: determine scalability with:


 Size of the database (i.e. number of records).


 Dimensionality of the data.


 Average dimensionality of the clusters.


 Number of processors in a parallel architecture.
Fig. 30. The backbone of an arbitrary-shaped clu
� E
st
ffectiveness: test if NOCEA recovers correctly and

accurately clusters that are embedded in some subspaces

of a high dimensional space.
9.10.1. Synthetic-real-world data generator

Various data generators have been recently proposed to

produce clusters embedded in subspaces of high dimensional

spaces for evaluation purposes [4,5,41,44]. The main dis-

advantage of these approaches is that the structure of the

resulting clusters is both artificial and far less complex than

real world cases. Additionally, despite these techniques being

parameterised in the number of the desired clusters, the

evaluation studies in [4,5,41,44] were based on a limited

number of clusters, i.e. 5. To address these limitations the

generator described in [4] was modified to enforce the creation
er (C4) projected in [longitude � latitude].
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Fig. 31. The backbone of an arbitrary-shaped cluster (C4) projected in [longitude � latitude � magnitude].
of complex, real-world type structures consisting of numer-

ous, i.e. 237, clusters based on the discovered rules from the

ANSS catalogue.

Recall from Section 9.3 that NOCEA partitioned the

34,593 points of the five-dimensional ANSS seismic

catalogue into 237 homogeneous rules, while the level of

background noise is approximately 23% (7911 points). The

main idea of the proposed generator is to create clusters that

can be approximated by one rule by embedding each ANSS

rule into higher dimensional spaces. The first five dimensions

of a cluster in the augmented spaces are directly inherited

from the coordinates of the corresponding rule. By doing

this we generate synthetic datasets with realistic character-

istics such as (a) real-world structural complexity, (b) numer-

ous clusters, (c) clusters with diversity in size, density,

geometry, and data coverage, and (d) real-world non-

uniformly distributed noise.
Fig. 32. The backbone of an arbitrary-shaped cluster
Dimensionality of clusters. Let d denote the desired number

of dimensions without considering the five features of the

earthquake dataset. Hereafter the latter will be referred to as e-

features. The range of values was set to [0, 100] for all

artificially generated attributes. Similar to generators that are

described in [4,44], the number of relevant dimensions

associated with a given rule is determined by a realisation of

a Poisson random variable with mean m, with the additional

constraint that this number must be at most d.

Determination of the bounded dimensions. The next step is

to determine the bounded dimensions associated with each

rule. Following the recommendation of [4,44], when generating

the (i + 1)th rule, approximately half of its bounded dimen-

sions are chosen from among the bounded dimensions of the

ith rule, while the remaining are generated at random. This

technique was introduced to model the fact that often different

clusters share subsets of correlated dimensions. To ensure no
(C4) projected in [longitude � latitude � time].
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dependency on the order by which rules are processed during

this stage, the list of rules is randomly permutated.

Variance of the bounded dimensions. If a rule is to be

embedded in k dimensions the algorithm selects k variance

values independently on each other. Given a spread parameter r

and a scale factor s0 uniformly distributed in [1, s] the variance

is then (r � s0)2, where r = s = 2 [4].

Centers of bounded dimensions. The coordinate of the

central or anchor point along each bounded dimension of a rule

is randomly drawn from [0, 100].

Number of points. In [4] the number of points (Ni) assigned

to the ith cluster is proportional to a realisation of an

exponential random variable. However, this technique results in

all clusters having reasonably similar size [44]. To force

imbalance in the cluster sizes, the authors in [44] proposed

computing initially (Ni) in a similar manner, but then setting for

each i � k/2, Ni = dNi and Ni+k/2 = Ni+k/2 + (1�d)Ni, for

d 2 {0.2, 0.33, 0.5}. However, to the best of our knowledge,

the most comprehensive studies [4,5,41,44] evaluating the

performance of clustering algorithms in high dimensional space

were based on a limited number of clusters, i.e. 5, which is often

not a realistic choice to simulate real-world examples. In

contrast, our generator creates a fairly large number of clusters,

i.e. 237, with a rich diversity in size, geometry, and data

coverage. Consequently, the resultant clusters are significantly

sparser in high dimensional spaces compared with other

approaches. This introduces an additional challenge: to

distinguish between clusters and produce correct cluster

descriptors. In fact, the number of points assigned to a given

rule in the augmented space is proportional to the coverage of

its parental rule in the original space. Since we are interested in

transmitting the original structures in the augmented space, the

number of points of each original rule is simply multiplied by

an integer replication factor to obtain the size of the

corresponding rule in the full dimensional space.

Types of data distribution. One of the main goals of this

section is to investigate NOCEAs performance under different

distributions of the points in the subspace of bounded

dimensions. Currently our generator supports the following

distributions:
� U
niform. For those attributes that define the subspace where

the rule is embedded, the value is drawn independently at

random from the uniform distribution within the range

½x̄� 3s; x̄þ 3s�, where x̄ and s are the mean value and

standard deviation in each dimension, respectively.
� N
ormal. For the ith bounded dimension of a rule, the

coordinates of the points projected onto dimension i follow a

normal distribution with mean x̄ at the respective coordinate

of the center point and variance determined above.
� U
Fig. 33. Execution time vs. number of records.
niform_Ellipse. Similar to uniform distribution, the algo-

rithm samples independently at random k values, one for each

bounded dimension in the respective range, with the

additional constraint that this point must be enclosed by

the kth dimensional hyper-ellipse, centered on the anchor

point of that rule and with a 3s-length axis in each bounded

dimension.
� N
ormal_Ellipse. The only difference from a Uniform_Ellipse

is that the points in each dimension are drawn independently

from a normal distribution as described earlier.

Generating data. Having completed the previous stages the

algorithm generates the points associated with a given rule as

follows: recall that in total there will be (d + 5) dimensions in

the full-dimensional space. Let (x1, x2, x3, x4, x5) be the

coordinates of a given point P in the subspace defined by the

e-features of the ruleR that covers that point. For each point P

ofR the algorithm creates randomly an appropriate number of

new points P0 in the close vicinity of P such that the coordinates

of the new points in the subspace defined by the e-features are

Nðx1;w1Þ;Nðx2;w2Þ;Nðx3;w3Þ;Nðx4;w4Þ;Nðx5;w5Þð Þ, where

wi is the bin width in the ith dimension (i 2 [1, 5]), while N(a, b)

is a normal distribution centered on a with standard deviation b.

The coordinates of points in the non-bounded dimensions are

then generated independently at random within [0, 100].

Finally, for all the remaining attributes the algorithm randomly

selects one type of distribution and then it appropriately creates

the coordinates of points depending on the data distribution as

described earlier. As far as the noise is concerned, the

procedure is identical. Note that, unlike other generators, our

approach does not create a perfectly uniform noise, since in the

subspace defined by the e-features, the distribution of noisy

points is directly inherited from the earthquake catalogue.

In all the experiments reported in Sections 9.10.2–9.10.6 20

independent and randomly initialised runs were performed for

all datasets. The reported measurements of execution time and

recall-accuracy are based on an arithmetic average of the

clustering results over the 20 different random runs.

9.10.2. Scalability with database size

Fig. 33 depicts the scalability of NOCEA as the size of the

database increases from 0.5 to 25 million records. Each dataset

has 20 dimensions including the five e-features and 237 single-

rule clusters embedded on average in some 10-dimensional

subspace as described in Section 9.10.1. Note that most of the

original rules were already embedded in the first five

dimensions (e-features). Additionally, recall from Section

9.10.1 that the level of noise is approximately 23% of the
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Fig. 35. Execution time vs. average cluster dimensionality.
database size. For this set of experiments, the distribution of

points for the bounded dimensions of all clusters follow a

uniform distribution. NOCEA successfully locates all input

clusters within the course of 50 generations, on average.

Fig. 33 shows that the execution time scales almost linearly

with the database size. This is because, given the relatively

low dimensionality of the datasets, the execution time is

dominated by the construction of the density histograms

which, in turn, is a task with linear complexity in the database

size. Similar scalability behaviour was reported in other

studies [5,41]. However these studies were based on small

numbers of clusters, usually five. Performance could be

improved by replacing the current linear data-search mechan-

ism that is employed by our system with a faster hyper-

rectangular query mechanism (kd-trees) [12].

9.10.3. Scalability with dimensionality of data

Fig. 34 shows the scalability of NOCEA as the dimension-

ality of the feature space increases from 20 to 200. In this series

of experiments, each dataset has 3 � 34,593 = 103,779 records

distributed over 273 clusters being embedded in some 10-

dimensional subspace.

Clearly, the curve exhibits a super-linear trend. This

behaviour is mainly due to the fact that for a given rule-set,

NOCEA must build at least one density histogram for each rule

in every dimension. Additionally, as the dimensionality

increases the application of the genetic operators becomes

increasingly more expensive due to the constraint of producing

individuals without overlapping rules. Note that both tasks

(construction of density histograms and constraint checking)

are of linear complexity with data dimensionality.

9.10.4. Scalability with cluster dimensionality

Fig. 35 shows NOCEAs scalability as the average

dimensionality of hidden clusters increases from 10 to 50 in

a 100-dimensional space. In each case, the dataset has 3 �
34,593 = 103,779 records containing as before 273 clusters,

and 23% noise.

The super-linear speed-up in the execution time with the

dimensionality of the hidden clusters is explained as follows:

the higher the dimensionality of the hidden clusters the more
Fig. 34. Execution time vs. number of dimensions.
likely it is for the evolutionary search operators to produce

non-homogeneous candidate rules along the bounded dimen-

sions. Hence, extra repairing operations are required to obtain

a feasible (homogeneous) rule-set. The computational over-

head introduced by the additional repairing operations for a

given cluster is generally proportional to the dimensionality of

that cluster. Additionally, as the dimensionality of hidden

clusters increases, more space becomes available (uncovered)

for the mutation operator to grow existing rules or to produce

new ones. Despite the fact that no access to the database is

required when mutating a genome, the cost of applying the

mutation operator may be substantial, especially for high

dimensional spaces or numerous clusters. In fact, not

surprisingly, given the relatively large number of clusters

(237) and the moderate size of the datasets used in this section,

when the dimensionality of hidden clusters exceeds the value of

30, mutating a single genome becomes more expensive than

evaluating a genome by a factor of 0.6.

9.10.5. Scalability with task parallelism

In this section we study the scalability of pNOCEA (Section

6.7) under various task parallelisation schemes. pNOCEA

supports task parallelism for the most expensive genetic

operations such as, repairing-evaluation (E), mutation (M),

recombination (R), and generalisation (G). Fig. 36 compares
Fig. 36. Speedups for various parallelisations of pNOCEA.
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the speedups achieved for various parallelisations of pNOCEA

using a synthetic dataset that was generated as described in

Section 9.10.1. The 100-dimensional dataset contains 242,151

points (23% noise) forming 237 uniform-clusters being

embedded on average in some 30-dimensional space.

Each parallelisation scheme is characterised by a combina-

tion of capital letters denoting the genetic operations that were

parallelised under that scheme. Let p be the number of

processors in pNOCEA. The speedup of pNOCEA with p

processors over the sequential NOCEA with one processor is

defined as t1/tp, where t1 is the execution time of the sequential

single-processor NOCEA while tp is the execution time of

pNOCEA with p processors [20].

All measurements have been performed on a network

of homogeneous processing elements (PEs) (Intel(R) Xeon

(TM) CPU 3.06 GHz, 512KB cache, 2GB of RAM) running

Fedora Core 2.0. The remote PEs were connected with the

coordinator machine through a 100Mb/s Ethernet cable while

the communication protocol was remote method invocation

(RMI) being implemented in JavaTM 2 Standard Edition

1.4.2_05.

Not surprisingly, the fully-parallelised version of pNOCEA,

that is E_R_M_G, gives the best results, with a speedup of

13.789 on 16 PEs. Regarding the other schemes, it is unsafe to

draw any general conclusion since the relative cost between

the genetic operations is heavily dependent on the dataset

itself. Hence, despite the coordination-communication over-

head introduced due to task parallelism, a fully-parallelised

pNOCEA is strongly recommended.

9.10.6. Effectiveness evaluation

The goal of this section is two-fold:
� T
o assess the accuracy of NOCEA in recovering the

boundaries and subspace in which each cluster has been

embedded.
� T
o investigate the quality of the clustering results under

various data distributions.

In all the above experiments, regardless of the data distri-

bution, each discovered cluster was correctly located in its

original subspace using a single hyper-rectangular rule. Since

by definition NOCEA seeks relatively homogeneous clusters,

the very low-density tails (if any) of a uni-dimensional

histogram must be separated from the main part of the

distribution. This is exactly the case of non-uniform clusters,

such as normal and ellipsoid. Bearing in mind that in our

experiments the data were distributed among a multitude (237)

of clusters, the data coverage of the homogeneous hyper-

rectangular ’’core‘‘ of a non-uniform cluster may not always

exceeds the fixed sparse threshold Ts. Consequently, even

though NOCEA has the ability to locate such clusters, the

pruning of non-sparse regions eliminates those candidate rules

capturing the core of very small clusters. This problem is

proportionately exaggerated with the dimensionality of the

clusters because the number of points being missed out in the

tails of a bounded dimension is added to the total loss.
As a result of separating the very low density boundaries

of a cluster from its denser core, NOCEA missed some (on

average 5 clusters over 20 different and randomly initialised

runs) non-uniform clusters of very small coverage, e.g. 0.02%,

especially when the dimensionality of the hidden clusters

was relatively high, e.g. greater than 10. Clearly, more

research in the future is required to tackle this problem.

10. Conclusions and future work

This paper summarises the work developed in [47] which

investigates the use of evolutionary algorithms to effectively

and efficiently mine clusters from massive and high dimen-

sional numerical databases. The fundamental question addre-

ssed by this paper is: can a stochastic search cluster large high

dimensional datasets, and extract knowledge that conforms to

the important requirements for DM clustering? Experimental

results on both artificial (reported in [47]) and real-world

datasets lead us to conclude that it can.

We have developed a novel three-phase clustering metho-

dology that utilises the intrinsic search parallelism and

stochastic nature of EAs to efficiently mine disjoint and

axis-aligned hyper-rectangular clustering rules with homo-

geneous data distribution from massive databases.

The proposed methodology meets the following desiderata

for DM clustering (see [47]):
� E
ffective treatment of high dimensionality and excep-

tional resistance to the curse of dimensionality; precise

discrimination of clusters even in very sparse high-dimen-

sional spaces.
� E
nd-user comprehensibility of the results.
� A
bility to discover clusters embedded in arbitrary subspaces

of high dimensional data.
� L
inear scalability with database size, and both data and

cluster dimensionality.
� S
ubstantial potential for task parallelism achieving a speed up

of 13.8 on 16 processors.
� A
bility to discover homogeneous clusters of arbitrary density,

geometry, and data coverage.
� I
nsensitivity to initialisation and order of data.
� S
ubstantial resistance to uniform noise.
� M
inimal requirements for a priori knowledge (e.g. automatic

determination of the optimal number of clusters and the

subspace where each cluster is embedded) and no presump-

tions of any canonical distribution for the input data.
� O
perating on the full dimensional space guards against

artifacts formed by the joint projection of multiple clusters in

lower dimensional spaces.
� I
ntroduction of a simple non-distance or density based

clustering criterion.
� S
tochastic traversal of the search space that easily avoids

local optima.

New scientific knowledge and understanding about the

distribution, dynamics, and evolution of seismic activity has

been acquired by clustering earthquakes that occurred along the
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Fig. A1. The Normal and Epanechnikov kernel functions.
African–Eurasian–Arabian plate boundary in a spatio-tem-

poral-magnitude space. The discovered rules can aid seismol-

ogists in gaining a deeper insight into the phenomenon and

allow them to improve the reliability of their estimates.

There are several avenues to extend this research and address

its limitations:
� D
ata-parallelism to mine arbitrary-size datasets.
� F
ine grain task-parallelism to enable several processors to

work simultaneously on the same task.
� I
ntroduction of alternative geometry and orientation rules to

capture more complex trends.
� U
se of non-uniform grids based on local distribution to

delineate cluster bounds more accurately.
� S
elf-adaptation of clustering-related parameters.

Finally, ongoing research focuses on interpreting the earth-

quake clustering rules and applying the proposed methodology

in climate datasets.
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Fig. A2. Epanechnikov KDE for various smoothing.
Appendix A. Kernel density estimation

This section describes how the Kernel density estimation

(KDE) method constructs a reasonably smooth approximation

of the real density.

A.1. Kernel smoothing

KDE is a non-parametric technique for density estimation

in which a known density function, the kernel K, is averaged

across the observed data points to create a smooth approxima-

tion of the real density. Given n observations X1, . . . , Xn the

Kernel density estimation at a point x can be thought of as being

obtained by ‘‘. . .spreading a probability mass of size 1/n

associated with each data point about its neighbourhood. . .’’
[56] by centring a scaled kernel function, usually termed as

‘‘bump’’, at each observation and then summing the n kernel

ordinates at that point. Combining contributions from each

data point means that in regions where there are many

observations, and it is expected that the true density has a

relatively large value, the kernel estimate should also assume

a relatively large value [56]. The opposite should occur in

regions where there are relatively few observations.
The shape of the bump is determined by a mathematical

kernel K function. K is usually chosen to be a unimodal

probability density function (pdf) that is symmetric about zero

and integrates to one. The spread of the kernel is determined

by a window- or band-width, h, that is analogous to the bin

width of a classical density histogram. A detailed discussion

for KDE can be found elsewhere [51,53,56]. The kernel density

estimate at point x is:

f ðx; hÞ ¼ 1

nh

Xn

i¼1

K

�
x� Xi

h

�
(A.1)

Fig. A1 illustrates two commonly used kernel functions, the

Normal and Epanechnikov [51,53,56].

A.2. Automatic bandwidth selection

It has been widely recognised that the choice of the

bandwidth h—rather than the shape of K—is crucial to the

quality of the KDE, as it controls the amount of smoothness in

the estimate of the density function [51,53,56]. A naive

approach would entail considering several density estimates

obtained over a range of bandwidths and selecting subjectively

by eye the most satisfactory estimate. However, when density

estimation is to be used routinely in large-scale problems then

an automatic-fast procedure is essential.

Fig. A2 shows three kernel density estimates based on a

sample of size n = 1000 from a density that is a mixture of

three Gaussian distributions Nð0; 1Þ;N �ð3=2Þ; ð1=3Þ2
� �

;
and N ð3=2Þ; ð1=4Þ2

� �
with probabilities (1/2), (1/4), and (1/

4), respectively. The Epanechnikov kernel has been used to

construct the estimates. If h is chosen too small (e.g. h = 0.08)

then spurious fine structures become visible, while if h is too

large (e.g. h = 0.95) then the trimodal nature of the distribution

is obscured. Evidently, the value h = 0.4 reaches a good

mailto:P.W.Trinder@hw.ac.uk
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mailto:zalzala@teresol.com
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compromise since both the essential structure of the distribution

is recovered while most local artifacts are smoothed away.

A popular method for automatic selection of h, is the

oversmoothing of the normal scale bandwidth rule, which

computes the optimal bandwidth for a normal density with the

same scale as the underlying density that is to be estimated. If s

denotes the standard deviation of the data then h is [51]:

h ¼ 1:144sn�1=5 (A.2)

Formulae (A.2) suggests a non-parametric way of computing

the optimal bandwidth to be used with the normal kernel, and

is expected to produce reasonable smoothing when the data

distribution is close to normal. The optimal bandwidth (hEpan.)

for the Epanechnikov kernel can be computed using the normal

scale bandwidth rule as starting point and then rescaling the

obtained normal bandwidth (hNormal) from Eq. (A.2) as [51]:

hEpan: 	 2:214� hNormal (A.3)

For departures from normality, e.g. multimodal or heavily

skewed density distributions, a global bandwidth approach

such as the normal scale bandwidth rule, may result in under-

smoothing in areas with only sparse observations while over-

smoothing in others. To deal with cases where the optimal

amount of smoothing varies across the domain various exten-

sions of the basic KDE have been proposed in the literature

[51,53,56]. These methods either use a broader kernel over

observations located in sparse regions (i.e. variable kernel

density estimator) or employ a different bandwidth at each

point where the density is estimated (i.e. local kernel density

estimator). Both methods adapt the amount of smoothing to the

sparseness of the data by varying the bandwidth inversely with

the real density. Despite their increased flexibility, these exten-

sions are prohibitively expensive for large and high-dimen-

sional datasets, simply because one must pre-compute multiple

bandwidths. To address these challenges, a new method for

computing an optimal h that reflect the local data distribution is

proposed (see Sections 5 and 6).

A.3. Binned Kernel density estimation

For moderate-to-large size samples or procedures invol-

ving a substantial number of density estimations, e.g. massive

and high-dimensional datasets, the direct use of the basic

KDE [formulae (A.1)] is very inefficient [53,56]. Consider,

for example, the problem of obtaining a kernel density

estimate over a mesh of M grid points, g1, . . . , gM. Indeed,

given a set of n observations, computing the KDE over the

mesh of M points would require O(nM) kernel evaluations

[56]. This number can be much reduced if one uses kernels

with compact support so that some data points fall outside the

support of K. The support of a kernel is the interval where the

kernel function is non-zero. But then one also needs to

perform a test to see if this is the case. With binning, however,

the computational order is reduced to only O(M) resulting in

an immense saving [56]. This is because there are only M

distinct grid point differences, and therefore by the symmetry
of K no more than M kernel evaluations are required. In

practice, the approximations are usually reasonable for

moderate values of M (e.g. 100 < M < 500), while for larger

values the approximations and the exact estimates are

virtually indistinguishable [56].

Let K be a symmetric kernel with finite support confined on

[�t, t] (t > 0). Additionally, let [l, u] denotes the real-valued

interval of the problem domain that has been partitioned into m

bins of uniform width w. The goal is to compute a smoothed

kernel density estimate for all (m) bins. But what resolution

must one use for the binned KDE? Following the recommen-

dation that the resolution for binned KDE must be relatively

fine [56], the new binning algorithm proceeds by partitioning

each one of the original bins (m) into ( p + 1) disjoint sub-

intervals using p equispaced splitting sites (1 � p). These

splitting sites along with the edges of the original bins define a

regular grid consisting of a mesh of M = (m + 1 + mp) points,

that is, l = g1 < � � � < gM = u with spacing ðw=ð pþ 1ÞÞ.
Following the recommendation that M should be set to

moderate values [56] (e.g. M = 100) so as to obtain a

reasonable approximation of the exact density estimate, p is

automatically computed as follows:

p ¼ maxð1; d ðM � m� 1Þ=m e Þ (A.4)

The basic idea of binning KDE methods rely on rounding

each observation by the nearest point from a regular spaced grid

according to a binning rule. In this thesis we use the so-called,

simple binning strategy, where for each observation the nearest

grid point is assigned a unit weight. When binning is

completed, each grid point gi (i = 1, . . . , M) has an associated

bin count ci, which is the sum total of all the weights that

correspond to sample data points that have been assigned to gi.

The binned kernel density estimator at the jth grid point is

now given by [56]:

f ð j; hÞ ¼ 1

nh

XM
i¼1

K

�
g j � gi

h

�
ci; j ¼ 1; . . . ;M (A.5)

Given that ci is zero outside [1, M] it follows that Eq. (A.5) can

be rewritten as:

f ð j; hÞ ¼
XM�1

z¼1�M

c j�zkz; j ¼ 1; . . . ;M (A.6)

where the kernel weight kz is defined as:

kz ¼
1

nh
K

��
1

h

�
ðu� lÞz
M � 1

�
; z2Z (A.7)

The advantage of binning stems essentially from the fact that K

is symmetric with finite support that is confined to [�t, t].

Therefore, kz need to be evaluated only once, and only for those

values of z where kz is non-zero, that is z = 0, . . . , L where:

L ¼ minð b thðM � 1Þ=ðu� 1Þ c ;M � 1Þ (A.8)
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The final step is to perform the direct convolution of cz and kz

in O(M2) time using:

f ð jÞ ¼
XL

z¼�L

c j�zkz; j ¼ 1; . . . ;M (A.9)

Finally, the density estimate for each of the original bins

(m) can now be determined by averaging the density estimates

of the grid points lying inside that bin including the bin edges.

A.4. Binned KDE for bounded domains

Often the domain of definition of a density is an interval of

the real line. Since the KDE has no knowledge of the boundary,

when the unknown density does not vanish in the boundary

regions some probability mass associated with data points

belonging to these regions may spill outside the boundaries

[56]. Therefore, the density estimate obtained will no longer

integrate to unity. Various modifications of the basic kernel

method have been proposed to ensure that the density estimator

performs well both near the boundaries and in the main part of

the distribution [51,53,56].

In this paper, the boundary problem is tackled by employing

special boundary kernels that are a linear multiple of the basic

kernel K [formulae (A.1)] [56]. Without loss of generality,

suppose that the lower (l) and upper (u) bounds of the interval

of interest are located at zero and wm (m, w: the number and

width of bins, respectively). Additionally, let K be the

Epanechnikov kernel with support confined to [�1, 1].

When estimating the density for grid points lying inside the

main part of the distribution (h, wm� h) the ordinary binned

kernel can be safely used because, centered on these grid

points it does not overspill the boundary. The problem of

‘‘losing’’ a substantial amount of probability mass arises

when the KDE is trying to estimate the density for grid

points that are located within one bandwidth of the bound-

aries [0, h) (left) and (wm� h, wm] (right), provided of course

that the real density does not vanish in these regions. Suppose

that our aim is to estimate the density at grid point gj = ah

such that (0 � a < l).

The standard technique for preventing KDE from assigning

probability mass outside the kernel support at the left boundary

region is to use the following linear multiple of the kernel K

[56]:

KLðv;aÞ ¼
n2;aðKÞ � n1;aðKÞv

n0;aðKÞn2;aðKÞ � n1;aðKÞ2
KðvÞ if ð�1< v<aÞ

0 otherwise

8<
:

(A.10)

where, v ¼ ðg j � giÞ=h and nr;aðKÞ ¼
R a

�1
xrKðxÞ dx.

For instance, one can determine the value of the integral

nr,a(K) for the Epanechnikov kernel as a function of a as

follows:

n0;aðKÞ ¼ 3
4
aþ 1

2
� 1

4
a3; n1;aðKÞ ¼ � 3

16
a4 � 3

16
þ 3

8
a2;

n2;aðKÞ ¼ � 3
20

a5 þ 1
10
þ 1

4
a5 (A.11)
After the boundary correction the binned kernel density

estimator at gj = ah (0 � a < 1) point is [56]:

f ð j; h;aÞ ¼ 1

nh

XM

i¼1

KLðv;aÞci; j ¼ 1; . . . ;M (A.12)

where, v ¼ ðg j � giÞ=h.

The derivation of the kernel density estimate for the right

boundary is the dual of the procedure described above.

A.5. KDE for frequency histogram smoothing

The binned KDE with boundary correction yields a

smoothed density histogram. One can easily obtain a smoothed

frequency histogram by multiplying the kernel density estimate

by the factor (nh), where h and n denote the smoothing

bandwidth and sample size, respectively.

Appendix B. ANSS earthquake clustering rules

Tables B1–B4 contain the complete set of cluster descriptors

for the ANSS earthquake dataset discovered by NOCEA. For

illustrative purposes, clusters are separated by a double space

white line and are sorted on decreasing order of point coverage.

Each rule is accompanied by 10 fields, namely, rule, cluster,

coverage (number of points, %), density, time, longitude,

latitude, depth, and magnitude. Empty fields, appearing only

for the time-gene (see Section 9.7 for an explanation), indicate

irrelevant dimensions.
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